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Possible resonance free lattices for the VLHC

D. Galletly and A. Verdier
SL Division

Abstract

A systematic search for resonance-free lattices has been
performed. Numerous solutions exist for sets of about fifty
cells. A VLHC-like machine could be made of blocks of
61 cells which are free from resonances up to tenth or-
der. A tracking test shows a 20% improvement of the dy-
namic aperture with respect to standard cells, for several
multipole components. It opens the possibility of relaxing
the constraints on systematic multipole components for the
magnet cells. The tolerances on field quality will then be
dictated by chromatic and an-harmonic effects of the mul-
tipole components.

1 INTRODUCTION

The principle of resonance-free lattices has been estab-
lished in ref. [1]. An application to the LHC has shown
that it is indeed attractive for practical machines [2]. For
this latter case, it was shown that an acceptable dynamic
aperture could be obtained with an octupole uncertainty b4
of 1.5×10−4 at 17mm from the dipole centre , which is
about three times the realistic value estimated by the mag-
net builders (uncertainty means that the dipoles of each arc
has a different systematic b4 component with this r.m.s.
value).

The fact that the dynamic aperture is somewhat insen-
sitive to the multipole strength opens an interesting possi-
bility for a very large machine like VLHC. Designing arcs
composed of resonance-free sets of cells, makes it possible
to reduce the number of multipole correctors to the very
minimum without worrying about dynamic aperture.

In what follows, we recall first the basic principles of
resonance-free lattices. Then the list of possible cell ar-
rangements with the minimum number of cell is given. A
tentative machine layout is proposed.

2 RESONANCE-FREE LATTICES

We recall here the main arguments developed in [1] in the
frame of the single resonance theory (see for instance [3]).
We consider only the response in amplitude of an harmonic
oscillator driven by the non-linear field associated with the
unperturbed linear oscillation,to first order in multipole
strength. The change of frequency with amplitude is not
taken into account. On a resonance of ordern defined by
nx.Qx + ny.Qy = integer, with |nx| + |ny| = n, the
driving term, which originates from the Fourier transform
of the non-linear field created by the excursion of the linear

motion in the multipolebn, is proportional to the circum-
ferential integral [3] :
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It can be shown that, for an ensemble ofNc identical cells,
the condition of cancellation of this integral is quite simple
and leads to the following theorem [1] :

“ A part of a circular machine containing Nc identi-
cal cells will not contribute to the excitation of any non-
linear resonance, to first order in multipole strength, ex-
cept those defined by

nxµx,c + nyµy,c = 2k3π, (1)

if the phase advances per cell are given the values :

µx,c =
2k1π

Nc
µy,c =

2k2π

Nc
(2)

which cancel the one-D non-linear resonances,k1 k2

and k3 being any integers.”

The usefulness of this theorem lies in the fact that there
are much more resonances cancelled than excited. It is pre-
cisely the aim of the present paper to show that, depending
on the number of cellsNc and the numbersk1 andk2 there
are no resonance excited up to a quite high order (to first
order in multipole strength). For instance those associated
with sextupoles are third order as well as second order (the
latter are called sub-resonances as only third order reso-
nances are traditionally associated with sextupoles). The
fourth order resonances associated with sextupoles come
from a second order effect which is not considered here.

Applications of resonance-free lattices have been al-
ready worked out. As said above, it has been shown that
an LHC optics using this principle is rather insensitive to a
large octupole uncertainty [2]. A restricted version of the
principle has also been tested experimentally in LEP a long
time ago, when there was a serious coupling problem asso-
ciated with unexpected skew quadrupole components in the
dipoles. The linear coupling resonance defined bynx =
1, ny = −1 is cancelled providedµx,c − µy,c 6= 2k′π.
Taking k2 = k1 ± 1, fulfils this condition providedµx,c

andµy,c take the specified values. The solution retained
for LEP wasµy,c = 60◦ andµx,c = 71.3◦. The value
of 60◦ of the vertical phase was needed for the non-linear
chromaticity correction, it does not fulfil the condition for
the cancellation of the vertical resonances for a number of
32 cells which is that of LEP arc. This number of cells per



arc requires a value of the horizontal phase advance equal
to the vertical one plusk1 × 11.25◦ to cancel the linear
coupling resonance alone. The value retained forµx,c cor-
responds tok1 = 1. It was shown experimentally that the
importance of the linear coupling resonance was dramati-
cally reduced [4].

3 RESONANCE-FREE ENSEMBLES OF
FODO CELLS

There is no need for a sophisticated algorithm to find val-
ues for the three parametersNc, k1, k2 which do not satisfy
equation 1. The simplest method for doing this is to find
nx, ny andk′ which satisfy equation 1 for givenNc, k1, k2

up to a given order of resonance, simply discard those val-
ues ofNc, k1, k2. The values which are not discarded con-
stitute the solutions for resonance-free lattices.

We start by putting the values ofµx and µy given by
equation 2 in equation 1. The solution to our problem con-
sists then of solving the Diophantine equation :

nxk1 + nyk2 = k′Nc (3)

The values ofk1 andk2 are constrained to provide reason-
able values of the phase advances. As the phase advance of
FODO cells is always smaller thanπ, the value ofk1, asso-
ciated arbitrarily with the horizontal plane, is constrained
to be smaller thanNc/2. As we want to have values of
the phase advance leading to reasonableβ-values, it is also
constrained to be larger than 0.13Nc (lowest value corre-
sponding to a phase advance of 45◦).

Similarly the value ofk2, associated arbitrarily with the
vertical plane has to be comprised between 0.13Nc and
0.31Nc. These values determine phase advances such that
the maximumβ-functions are not far from the minimum
they take when the phase advance is varied. Furthermore
we imposek1 > k2 as the focusing must be stronger in
the horizontal plane for aperture reasons. The solutions are

Table 1: Lowest values ofNc , k1 andk2 with no resonance
up to second order only.

k1 2 4 6 6
k2 1 2 3 3
Nc 7 15 22 23

Table 2: Lowest values ofNc , k1 andk2 with no resonance
up to third order only.

k1 3 3 3 4 4 4 5 5 5
k2 2 2 2 3 3 3 4 3 4
Nc 10 11 12 14 15 16 17 18 18

listed in the tables 1 to 9. Each table contains the smallest
values ofNc as well as possiblek1 andk2, associated with
a given resonance order.

Table 3: Lowest values ofNc , k1 andk2 with no resonance
up to fourth order

k1 3 3 3 4 5 4 4 5 4
k2 2 2 2 3 3 3 3 3 3
Nc 13 14 15 17 17 18 19 19 20

Table 4: Lowest values ofNc , k1 andk2 with no resonance
up to fifth order

k1 4 4 5 4 5 5 7 8 5
k2 3 3 3 3 4 4 4 7 4
Nc 21 22 22 23 26 27 27 27 28

Table 5: Lowest values ofNc , k1 andk2 with no resonance
up to sixth order

k1 8 8 9 5 8 9 8 9 8
k2 6 6 8 4 6 7 6 7 7
Nc 27 29 30 31 31 31 33 33 34

Table 6: Lowest values ofNc , k1 andk2 with no resonance
up to seventh order

k1 10 11 10 11 9 10 10 10 11
k2 6 6 8 7 8 6 7 8 9
Nc 37 37 37 38 38 39 39 39 39

Table 7: Lowest values ofNc , k1 andk2 with no resonance
up to eighth order

k1 10 11 10 10 12 11 10 13 10
k2 8 8 8 9 7 7 8 8 8
Nc 41 42 43 43 44 45 45 46 47

Table 8: Lowest values ofNc , k1 andk2 with no resonance
up to ninth order

k1 13 11 15 14 12 13 17 12 16
k2 7 9 7 8 10 9 9 10 15
Nc 50 50 55 55 55 55 57 57 57

Table 9: Lowest values ofNc , k1 andk2 with no resonance
up to tenth order

k1 12 18 17 14 18 12 12 13 18
k2 10 15 8 9 15 11 10 10 15
Nc 61 61 62 62 62 63 63 64 64

4 EXAMPLES OF LATTICES FOR THE
VLHC

The total number of cells of the VLHC presently envisaged
is between 400 and 500 [5]. The lattice contains two inter-
action regions, which leads naturally to a race-track layout.

Using sets of 61 cells to build the arcs, the simplest solu-
tion consists of using 4 sets per arc (about half a machine)
with k1 = 18, i.e. µx,c = 106.23◦ and k2 = 15, i.e.
µy,c = 88.52◦ (see table 9). At the end each arc there
must be a dispersion suppressor which is made from two
cells with missing dipoles and two independently powered
horizontally focusing quadrupoles to make the horizontal



dispersion exactly zero at the exit of the arc. In the empty
spaces associated with the missing dipoles, multipole cor-
rectors have to be provided to complete the resonance-free
scheme according to the most important systematic multi-
poles in the dipoles.

The cell length, which is an important optimisation pa-
rameter [5], is not constrained by the scheme. It can prob-
ably be increased compared with a conventional scheme,
thanks to its larger dynamic aperture, in order to reduce the
number of quadrupoles. This length will be probably lim-
ited by the non-linear chromaticity and the anharmonicities
associated with the multipoles. In order to cope with these
problems, one set of multipole compensators could be in-
stalled in each sequence of 61 cells, which is compatible
with the resonance-free scheme. For the above case, there
is room for four different multipoles, e.g. sextupoles, oc-
tupoles, decapoles and do-decapoles per half ring. As each
set of corrector does not excite its associated non-linear res-
onance, it can be probably be excited enough to compen-
sate for the rest of the half ring. This is particularly true
for the octupole scheme which might be needed for lan-
dau damping at high energy [6]. Of course the exact range
of excitation of such correctors have yet to be determined
as the resonance-free system is associated with first order
multipole strength only.

A sorting of the magnets by sets of 61 can be envisaged
in order to reduce the values of the most important random
multipole components since they will be dominant once the
effect of the systematic components is attenuated.

5 TRACKING TEST

Tracking was done on a race-track ring with two super-
periods which could simulate a VLHC. There are two arcs
made from four times 61 cells. Transfer matrices are added
at both end of each arc to simulate an insertion and to set
bothβ values to 1m at the end of each super-period. The
circumference is of the order of 50km. No dispersion sup-
pressor has been included as the scheme has a zero disper-
sion in the insertions, due to the integer phases in the arcs.
The cell phase advances are defined byk1=12 andk1=10
which makes theβ-functions a littler large but avoids reso-
nances up to 10th order. The cell length is 100m.

The dynamic aperture has been computed for three dif-
ferent arc cells : 60◦ in both planes (labelled 60/60), 60◦
in both planes (labelled 90/90) and the resonance-free lat-
tice withk1=12,k2=10. Some optics parameters associated
with these optics are given in table 10. The dynamic aper-
ture is defined for a given ratio of the initial coordinates,
e.g. {x,y=x/10}, {x,y=x}, {x,y=10x}, by the largest value
of the larger coordinate for which the betatron oscillations
remain stable over 104 turns. The chromaticity sextupoles
are included but not the synchrotron oscillations. The re-
sults are given in the tables 11 and 12 for different multi-
pole contents of the dipoles.

Table 10: Characteristics of the optics used for tracking.
Qx Qy β̂x/m β̂y/m D̂x/m

60/60 122.28 122.31 170 170 1.74
90/90 82.28 82.31 173 173 3.22

Res. free 96.28 80.31 160 182 2.41

Table 11: Dynamic aperture results for b4=b5=10−4 at
0.01m from the dipole centre, for three different optics.
Both β-functions are equal to 1m and bothα are zero at
the starting point. The coordinates are in millimetre, the
resolution is 1%. The anharmonicities are in105m−1.

optics y=x/10 y=x x=y/10 ∂Qx

∂Ex

∂Qy

∂Ex

∂Qy

∂Ey

90/90 0.64 0.65 0.87 4.12 -8.47 4.22
60/60 1.11 0.65 1.17 7.65 -15.3 7.65

Res. free 0.92 0.80 1.15 5.65 -13.6 8.09

Table 12: Dynamic aperture results for b10=10−4 at 0.01m
from the dipole centre. Same optics and same units as for
fig.11.The anharmonicities are inm−1

optics y=x/10 y=x x=y/10 ∂Qx

∂QxEx

∂Qy

∂Ex

∂Qy

∂Ey

90/90 0.89 0.58 0.86 -579 -3485 196
60/60 0.71 0.50 0.66 -295 -930 -219

Res. free 1.01 0.70 1.00 -472 -1757 91

6 CONCLUSION

A VLHC lattice could be built from sets of 61 cells. With
suitable phase advances, these sets do not excite system-
atic resonances of order up to 10 to first order in multipole
strength.

Limited numbers of multipole correctors can be used,
typically one multipole type per set of 61 cells .
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