
250 IEEE TRANSACrIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 2, APRIL 2000

A Software Approach for Readout and Data Acquisition in CMS

G. Antchev', E. C a d , S. Chatellier', S. Cittolin', S. Erhan', D. Gigi', J. Gntleber', C. Jacobs',
F. Meijers', R. Nicolau', L. Orsini', L. Pollet', A. Racz', D. Sainyn', N. Sinanis', P. Sphicas'

'CERN, Geneva, Switzerland; 'University of California, Los Angeles, USA: 'ETH Zurich, Switzerland

Abstract
Traditional systems dominated by performance

constraints tend to neglect other qualities such a main-
tainability and configurability. Object-Orientation allows one
to encapsulate the technology differences in communication

parameterisation schemes. Thus, a uniform view of the data
transport layer can be presented to the application
programmer [2] , [6] .

11. MOTIVATION
sub-systems and to provide a unifonn view of data transport
layer to the systems engincer. We applied this paradigm to
the desigii and implementation of intelligcnt data sewers in
the Compact Muon Solenoid (CMS) data acquisition system
at CERN to easily exploiting the physical cummimication
resources of the available equipment. CMS is a high-energy
physics experiment under study that incorporates a highly
distributed data acquisition system. This paper outlines the
architecture of one part, the so called Readout Unit, and
shows how we can exploit the object advantage for systems
with specific data rate requirements. A C t t streams
communication layer with zero copying functionality has
becn cstablislied for UDP, TCP, DLPI and spccific Myrinet
and VME bus cammunicatiou on the VxWorks real-time
operating system. This software provides performance close
to the hardware channel and hides communication details
from the application programmers.

I. INTRODUCTION
High Energy Physics experiments produce large amounts

of data that have to be read, processed, and stored
persistently for later analysis [I]. A split of responsibilities
into readout and processing can help to concentrate on the
critical issues of the two parts in on-line processing. As the
requirements on the detector readout are demanding in the
area of data transfer and buffering capacities, several
technologies have to be evaluated before concrete design and
implementation phases for the expcrirnent can take place.
Such a prototype driven process is supported by the
prevalence of combinable hardware building blocks:
processor boards, network interface cards, memory devices
and standard bus systems. There exist a number of different
physical data transfer and processing compoiicnts in the
prototypes for the Compact Muon Solenoid (CMS)
experiment readout system under study. Although efficient,
low level access of these compoiients from within specialised
application programs would increase coupling at the expense
of flexibility. We address this problem by applying a
Component Based Sonware Engineering approach
[2],[3],[41,[51. For each hardware component, a
corresponding software image exists. Differences in
accessing the hardware arc smoothed by software gluc. Thc
object-oriented approach allows abstracting out the
complexity of the functions and data involved in the
operations and rclievcs us from having complicated

From prior experiments in high-energy physics we have
learned that such installations are characterised by a long
lifetime. During this time the system will be subject to
incremental upgrades, that is changes or replacement of
hardware components, in order to fulfil evolving
requiremcnts. Experiments that are currently under design for
next generation colliders like the Large Hadron Collider,
require extensive prototype and design phases in which the
set-up with the best costlperformance ratio has to be
identified [7]. In this context, when composing a concrcte
system we are faced with strong requirements for flexibility
and re-use. Because of their naturc, read-out systems are
characterised by data movement. Input and output operations
from and to devices are the main function of such systems.
With regard to the diverging interfaces of the hardware
components involved, special software is needed to logically
connect them [8],[9]. The goal is to provide a software
framework that isolates the dcvcloper from software layers
that interact heavily with the physical environment, and
maintain and meets the need of thc program specification.

111. THE READOUT UNIT IN CMS

.
Pelcclor Fluilland

a w l 1 '
1W"W

I I . I '

Figurel: The CMS data acquisition systcm structure

The averagc data volume generated by the CMS detector
is expected to be of the order of I MElyte with a maximum
event rate of 100 kHz. However, the final output of the

0018-9499/00$10.00 0 2000 IEEE

25 1

experiment should not encccd 100 eventslsec 171. The transport layers. I n gcncral, software components comprisc
approach to data acquisition system that is being closcly collaborating objccts and present functionality
investigated in CMS to handle this stream of information is through a clean interface to the outside world [11],[12].
to makc a physical distinction between thc acquisition and Using this approach we can connect components through
the processing parts, sec Figure 1. The system call he which data s t ream flow. On top of it, richer paradigms can
described with a generic clientiserver model, which is made be placed. Figure 3 shows a layered vicw of tlie RU software.
up of two distinguishable entities, the Filter Unit (VU) and
the Readout Unit (RU). The FU is tlie client and requests
services from the RU that is the scrver. In particular, the RU
receives event data fragments frorn detector dependent units
on dedicated links; it buffers thcm locally and providcs them
on dcmand to the FU ovcr thi. available interconneclion
network. Tlic flow of event data will he colitrolled by an
event manager system. Imeriially the RU is split into its
functional responsibilities. A readout unit input (RUI) for
handling data coming from the detector, a readout unit output
(RUO) for serving requesls from processing units and a
readout unit supervisor (RUS) for control, monitoring and
configuration. There exists also a special readout unit
mcmory (RUM) device [IO] for buffering the data from the
detectors (see Figure 2). The RUI and the RUO represent two
tasks that operate independently of each other. The clear
intent of this is that performancc can bc gained, as tlie
application parts do ti01 nccd to reside on the same physical
component of the readout unit. In tlic ideal case, Input and
Output control can bc pcrformed on two scparate processing
units and data transfer through independent communication
buscs.

Figure 3: Sohare I w L t ofthc CMS readout unit

The top layer contains the application components in
which the actual functions of the Readout-Unit are
implemenled. It is based on an I/O slrcams package. The
latter one de-couples the application from the system specific
functions and provides a high-level interface to data
communication devices. The significant advantagc is that, we
can accomplish the major goal of having a completely
uniform interfacc between the calling program and the
underlying hardware.

B. Readout Unit Components

RUO
TasM

Data Flow
t

Figure 2 ; Readout unit functional decomposition

IV. SOFTWARE COMPONENTS
cumpmenl interfaces

Figurc 4: SoRware componcnts of the rcadout unit

A. The Approach
With ohjcct-oriented programming languages becoming

ubiquitous, we are able to addrcss the above-mentioned
requiremenls. By encapsulating differences in accessing
communication channels into specialised software
components, we are able to satisfy two demands at the same
time: (i) high perCorinance by opiimised access to particular
devices and (ii) a coinpletc abstraction of communication by
having a well dcfined interfacc for dirfercnt kinds of data

In our problem space, there are a number of logical activities
that occur at the same time. For example, the RUI
coiitinuuusly reads data from the dctector front-end and may
use asynchronous hardwarc interrupts to request services. In
addition, tho RUO serviccs requests from the filter units and
control several independent deviccs such the readout unit
memory and the interrace to the switch. As outlined above,
what we desire is the ability to represent these parallel
activities and model the RUI and the RUO as two

2s2

independent software tasks. Conscquently, RUI and RUO are
active components and exchange information through ti third
element. the RUM, as Fieure 4 illuslratcs 1101. Tlic RUI and

I n order to make use or tlic DMA cngine of the VME
board, tliis component has to drive the data transfer action. A
maniimlator (setl) can be uscd to dctcrniine how much data

I . .
the RUO are composite objccts. They can be sccn as a n
aggregatc of input/output sirearm [13],[141 uscd for control
and data transfer.

,3 ; ,,."
: ,.,."
! j ..(... .i

:, i,' ' FU Fast-Control
intc* qce.......... ,,.."

,,./ i RUO:OpenAndRead(Evsntld,Flit~~U~~it)

Data Flow
I

Figure 5 : DaLd flow and fast-conlrol Row i n KUO

As sliowii in Figurc 5 , the l l U 0 is essentially made of two
hasic components. The first component receives rcqiiests
through an input stream from the filter units and translatcs
them into spccific control actions. The second component
consists of an input stream used for accessing the RUM and
an output stream used to distribute event fragments to the
requesting filter unit. The dashed lines express the t h~ead of
execution of thc rcqucstcd aetiun from the filter unit. The I/O
streams for this composite object can be prepared at
configuration time to operate on thc available hardwarc or
software support. For example, thc control stream can be
configured on Ethcrnct, whilc the RUM strcam can be
configured to access a CPU board memory pool. The FU
output stream can be configured for a Myrinct [I51 switch
interlace. Similarly, the RUI consists of an input stream for
rccciving readout rcqucsts (triggcrs), an output stream to thc
RUM and an input slream to access VME memory.

C. VME - RU Menioiy Transfer Coding Example
This cxamplc depicts liow data can hc transfcrrcd from

VME to a dual-ported memory hoard and vice vcrsii by using
I/O streams components. First tlic input and output strcams
havc to be coofigurcd. This can bc done in a gcncric way, so
that the sanic kind of strcani can be used for dii'fcrcnt
communication devices. The cxaniplc reflects tlic task
performed by the RUI.
VXioStream iStream I ... VME config ...I ;
vxiostream OStream I ... RUM config ...) ;

has to bc transferred. Streams can hc tied togcther directly:
OStream.opent ... Cvent fragment i d ... i ;
isfream >> setlllength) >> acream;
astrcam.c1ose I 1 ;

Similarly, if data should he pushed into the dual part
memory using a copy operation, the streams arc used as
follows:
ostreani c c aetlllengthl cq istream;

D. DUUI Port Memoty to Network Coding Example
If data is moved from the RUM to a nctwork card, as

applicd in tlic RUO shown in Figure 5 , the following
sequence is used:
vxiostream istream I ... memory config ... I ;
vxiostream osrreani I ... net conf ig ... 1 ;
vxiohtream ctrlstream l...TCP conf ig ... I ;

RUO::svcO/jexecute in a taak context

LOOP Forever
(

I

i

CtrlStream > > SCtllSiieOflReq~e~t/l >> request;
thi3~>0penAndReadl~eqyesti;

I
KUO::OpfnAndREndlRequfst & request)

iStreum.ope*(reguest .EventPragment 11) ;
ostream.open (request .EventPilter I1 I ;
O S t r e a n << setlllength) c c istream;
istream. C l o s e l) ;
astream.c1oseo;

i
In thc given case, tlic ~ictwork card coiiiponciit will drive

the data transfer. As such network cards arc equipped with a
DMA engine, the component rnakcs use of it. Although we
would like to follow the requirement to design symmetric
coniponcnts [6] using thc stream operator in both dircctions
docs not always provide us with the best performancc. If wc
can use a UMA cngine that pcrforms the data copying, we
offer the application programmer only one possibility. E.g. in
the cxamplc abovc, thc instniction

is not iniplcmcntcd, bccausc istream is not armed with a
DMA engine. This rcslricls the number of possiblc use cases,
hut eases the implemeiilalion of highly ei'ficient programs.

istream >> setlllengthl >> ostream;

253

E. Zero Copy Streams
Figurc 6 : Coinponcnts encapsulate various different tasks, but
expose thc same clean and narcow inlcrface.

The implementation of the 110 streams aim at achieving
good pcrfonnance. Thcrcfore they rely on zero-copy buffers
wherever possible [16],[17],[18]. In general, driver interfaces
are characterised by copy semantics, where inpul and output
operations transfer data bctween the kerncl and user-defined
buffcrs. Although simple, this behaviour lilnils tlie ability of
the operating system to efficiently perform data transfer.
Instcad of copying data between kei-tic1 and user spacc, the
syslem will p a s addresses of pre-allocated buffers, as show11
in Figure 6 so that zero-copy transfer can be offered. So fa1
I10 streams were seen as black boxes. This permitted us to
colicetitrate on tlic way they can be connected for date
exchange. Let us briefly mention how they are configured.
There is one myior structnral element which is common to all
streams and which is relevant to the effectiveness of the I10
stream paradigm. lnterproccss communication components
are used to configure the streams for diffcrent hardware and
software interfaces. Such an element can be seen as an
adapter for a given hardwarc and is prepared at configuration
time. An adepter is assigned to eacli stream at instantiation
time. This is shown in the examples as configuration.
Streams benefit from adapters in order to perform their tasks,
see nested components in Figure 6.

V. SYSTEM EVALUATION
~~~ ~ . . 

LalWlCY 
35000 , 

Figure I ;  UDP soundtrip ineasurcment on LOO Mbit Ethernet. Thr 
differing slopcs indicate tlic effect data copy operations. 

100 Mbps Ethernet was used For coiitrol purposes atid 
Myrinet [15],[21] served for data transfer between readout 
and processing units. The RUM has been implemented using 
a custom board to allow storing and retrieving memory 
fragments in a file system like manner. 

A .  Performance of Zero Copy Streams 
A comparison between UDP transfer bascd on tlie 

ordiiiary socket interface and using a11 optimised protocol 
stack with zero copy buffers has been performcd [ 2 2 ] .  
Although no modifications in the struclure of the application 
program had to be pcrfoimed, performance could be 
increased significantly. From Figure 7 we see, Ihat the effect 
becomes more visiblc with increasing buffer sizes. The 
traditional component has to copy data severdl times iii order 
to present the application programmer with byte-stream 
semantics. 

B. Overhead af the Software Camponents 

Figure 8: Latency ineasumncnts for DMA 32bits VMD to PCI 
transfcrs using tliice different softwarc tools 

Figure 8 shows tlic latency slopes measured for DMA 
transfers from VMB to PCI. We evaluatcd tlircc different 
software approachcs. The highest performance is obtained 
with raw system access. This line serves as a refercnce to 
exhibit tlie overhead induced by additional software layers. In 
this particular case the overhcad measured f i r  the I 1 0  streams 
implementation compared to the system level is about 1 ttscc. 
Some better performance can be seen with a higher Ievcl 
operating system call that hides io somc cxtent the 
differences in the hardware, but does not provide the 
flexibility offered by the stream abstraction. As thc 
differences of the slopes arc constant for all block sizes, the 

The main characteristics that must be provided by the 
software system once il is applied in a real data acquisition 
enviromnent are reliable opcration and deterministic 
performance. For thcse reasons we chose the VxWorks RTOS 
1191. The hardware used to perform the development was a For real-time systems ollly few people ilivcstigated 
Motorola PPC MV2034 VME-based controllcr [ZO]. Standard coniigurable softwarc componenls. Research in object 

bcliaviour of the streams software is deterministic. 

VI. RELATED WORK 



254 

oriented RT operating systems has been done by the Chorus [3] D. Mcllroy, Mass-produced software components, in: P. 
group [23],[24], resulting in a commercial product distributed Naur et al. (ads.), Software Engineering Concepts and 
by Sun Microsystems. Techuiques (in PetrocelliiCharter, 1976, pp. 88-98) 

We are also investigating auother approach like the [4] D. L. Parnas, Designing Software for Easc of Extension 
ADAPTIVE Cominunicalion Environment (ACE) [25],[26]. and Contraction, in IEEE Tf'ansaction.r on Software 
This object oriented programming toolkit provides an Engineering, SE-S(2), March 1979, pp. 128-137 
abstraction layer on which compollents for network [ 5 ]  0, p,ierstrasz, s, ~ i b b ~  D, Tsichritzis, ,-omponcnt- 
programming are based. It is used along with a real-time oriented Software ~~~~l~~~~~~~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ ~ i ~ ~ ~  of [he 
CORBA implcmentation in avionics euvironmenls [27]. ACM35(9): 160-164, September 1992 

reusable componeuts, so that systems do not have to be built Modularization alld hicrarclly in  a family of operating 
from scratch cach time the platform is changed or new systems, ~ ~ ~ , ~ ~ ~ i ~ ~ ~ i ~ ~ ~  o f t / I e ~ c M ,  19(5), M~~ 1976, 
application functionality is introduced. This is common 
practice ill desktop computing and should also becomc the 171 The CMS Collaboration, The Compact Muon Solenoid, 
everyday workillg manner for real-time and embedded Technical P r V 0 . d  No. 7, LHCC 94-38 
systems. Although the related work shows that research December l9O5,  
groups go this direction, problems such as efficiency and [XI C.G. Masi, Software smartens up Data Manipulation, 
predictability are not yet entirely solved. IEEE Spectrum, April 1999, pp. 30-35. 

[9] I. Foster, 1. Gcislcr, C. Kesselman, S. Tuccke, Managing 
Mu-tiple Communication Methods in High-Performance 
Networked Computing Systems, .I. Par Dist Comp 40(1): 
35-48, 1997. VII. CONCLUSIONS 

We have presented how object oricntcd techniques can be [IO]S. Cittolin, A. Fucci, P. Sphicas and K. Sumorok, Dual 
Port Memories in LHC Experiments, CERN, CMS-RDl2 applied to provide a flexible and efficient software 

architecturcs for data acquisition systems. This design pattern TN 95-04, is extremely well suited for tackling problems related to 
subsystem connection in highly diverse enviromnents and [ 1 I]C. Ptkter and C. Szyperski, Why Objects Are Not 
providing an infrastructure for rapid prototype devclopment. Enough, in: Proceedings of tho First International 

Component Users Coiiference (SIGS Publishers), We have also shown some of the advantages over Munich, Germany, July 1996 traditional systems programming approaches, such as 
increased configurability by having well encapsulated [I21 LFostcr and C. Kesselman, The Grid: Blueprint for a 
behaviour of the hardware and good performance by offering New Cornpnting Infrastructure (Morgan Kaufmann Pub., 
highly optimised components for each kind of Inc. San Francisco,CA,USA) 1999, pp 259-278. 
communication hardware. In addition, the approach provides [13] D, ~ i ~ ~ 1 ~ i ~ ,  A streal,, I ~ ~ ~ ~ - o ~ ~ ~ ~ ~  systeI,,, AT&T ~ ~ l l  
easier software development due to the homogcncous view of ~ , ~ b ~  Technical journal 63(8): 31 1-324, October 1984, 
the undcrlying hardware. We experienced this whcn applying 
the proposed approac\, in an 8 by 8 demonstrator DAQ [14lK. Kreft and A. L a n m  Deriving from IOStreams, C++ 

Report, SIGS Publisher, September 1995. system [28]. 
~h~ cvo~vc to cover various ot~ler technologics [ W N .  J. Boden, D. Cohell an R. E. FcldmalIn, A. E. 

such as PCI and IOP enabled architectures. Components that K"'awik, C. L. Seitz, N. W-K. 
follow the prcscnted scheme will bc available for tllcsc 
technoloeies such that we can reuse our applications without 

The goal of all these efforts is to obtain a treasure of [61 A, N. Elabemanll, L, rlon and L, 

1995, 

MYRINIX: A Gigabit per Secolld Local Area N e t w o k  
I Micro 15(1):19-35, Feb 95. .. 

modifications. Success in performing this task would further 
prepare the ground for componen-based software 
engineering in high-performance data acquisition systems. 

VIII. REFERENCES 
[I]  A. Kruse, CMS Online Event Filter Software, Computer 

Physics Comrnunicafions 110, Elscvier Science Pub., 
1998 pp. 102-106 

[2] D. Batory and S. O'Malley, The Design and Implcmen- 
tation of Hierarchical Software Systems with Reusable 
Components, ACM Transactions on Software 
Engineering and Methodologv, 1(4), Oct 1992, pp. 355- 
398. 

[l6]M. Lauria and A. Chien, MPI-FM High Performance 
MPI on Workstation Clusters, .I Pur Dist Camp 40(1): 4- 
18, Jan 1997. 

[17]T. von Eickcn, A. Dam, V. Buuch and W. Vogcls, U- 
Net: A User-Level Nctwork Interface for Parallel and 
Distributed Computing, in Proceedings qf the Fifteenth 
ACMSymposiirm on Operating System Principles, pages 
40-53, ACM Press, December 3.6, Copper Mountain 
Resort, Colorado, USA, 1995. 

[18]F. O'Carroll, H. Tezuka, A. Hori and Y. Ishikawa, The 
Design and Implementation of Zero Copy MPI Using 
Commodity Hardware with a High Performance 
Network, in Proceedings of the I998 International 
Conference on Supercomputing (ICs 98), pages 243-250, 
ACM Press, Melbourne, Australia, 1998. 



[I91 Wind River Systems, Corporate Head Quarters, 500 
Wind River May, Alameda, CA 94501. 

[ZO] Motorola Computer Group, Corporate Head Quarters, 
2900 S. Diable Wy, Tempe, AZ 85281. 

[21]Myricom, Inc. High-speed Computers and Comm., 325 
N. Santa Anita Ave. Arcadia, CA 91006. 

[22] WindRiver Systems, SENS for  Tornado Component 
Release Supplement, 1.0, Ed. 1, January 1998, DOC- 
12286-ZD-02 

[23]S. Habert, L. Mosseri and V. Abrossimov, COOL: 
Kernel Support for Object-Oriented Environments, Proc. 
of fhe .Joint ECOOP/OOPSLA'90 Conference, Oct. 1990, 
Ottawa, Canada 

[24]M. Guillerinont - ChoruslClassiX r3 Technical 
Overview. Chows Systems Technical Report CSITR-96- 
119.13, May 1997. 

[25] D.C.Schmidt, The ADAPTIVE Communication Environ- 
ment. An Object Oriented Network Programming 
Toolkit for Developing Communication Sofiware, 12"' 
Sun User Group Conference, San Jose, CA, USA, 
December 7-9, 1993. 

[26]D. C. Schmidt, T. Harrison and E. AI-Shaer, Object- 
Oriented Components for High-speed Network 
Programming, Proceedings of the Conference on Object- 
Oriented Technologies, USENIX, June, 1995, Monterey, 
USA, pp. 21-38. 

[27]F. Kuhns, D. C. Schmidt, D. Levine and R. Bector, The 
Design and Performance of RIO - a Real-Time I 1 0  
Subsystem for ORB Endsystems, Proceedings of the Sh 
IEEE Reul-Time Technology and Applications 
Sympo.sium (RTAS99), Vaocouvcr, British Columbia, 
Canada, June 2-4, 1999. 

[28]The CMS Event Builder Demonstrator based on Myrinet, 
F. Meijers, et al. same conference 


