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1. Introduction

Twistor spinors were introduced by R.Penrose and his collaborators in Ge-
neral Relativity as solutions of a conformally invariant spinoriel �eld equa-
tion (twistor equation) (see [Pen67], [PR86], [NW84]). Twistor spinors are
also of interest in physics since they de�ne in�nitesimal isometries in semi-
Riemannian supergeometry (see [ACDS98]). In Riemannian geometry the
twistor equation �rst appeared as an integrability condition for the canonical
almost complex structure of the twistor space of an oriented four-dimensional
Riemannianmanifold (see [AHS78]). In the second half of the 80th A.Lichnero-
wicz started the systematic investigation of twistor spinors on Riemannian spin
manifolds from the view point of conformal di�erential geometry. Nowadays
one has a lot of structure results and examples for manifolds with twistor spi-
nors in the Riemannian setting (see e.g. [Lic88b], [Lic88a], [Lic89], [Wan89],
[Fri89] [Lic90], [BFGK91], [Hab90], [B�ar93], [Hab94], [Hab96], [KR94],
[KR96], [KR97b], [KR97a], [KR98]).
An other special kind of spinor �elds related to Killing vector �elds and Killing
tensors and therefore called Killing spinors is used in supergravity and super-
string theories (see e.g. [HPSW72], [DNP86], [FO99a], [AFOHS98]). In
mathematics the name Killing spinor is used (more restrictive than in physics
literature) for those twistor spinors which are simultaneous eigenspinors of the
Dirac operator. The interest of mathematicians in Killing spinors started with
the observation of Th. Friedrich in 1980 that a special kind of Killing spi-
nors realise the limit case in the eigenvalue estimate of the Dirac operator on
compact Riemannian spin manifolds of positive scalar curvature. In the time
after the Riemannian geometries admitting Killing spinors were intensively
studied. They are now basically known and in low dimensions completely clas-
si�ed (see [BFGK91] [Hij86], [B�ar93]). These results found applications also
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outside the spin geometry, for example as tool for proving rigidity theorems for
asymptotically hyperbolic Riemannian manifolds (see [AD98], [Her98]). In
the last years the investigation of special adapted spinoriel �eld equations was
extended to K�ahler, quaternionic-K�ahler and Weyl geometry (see e.g. [MS96],
[Mor99], [KSW98], [Buc00b], [Buc00a]).
In opposite to the situation in the Riemannian setting, there is not much

known about solutions of the twistor and Killing equation in the pseudo-
Riemannian setting, where these equations originally came from. The general
inde�nite case was studied by Ines Kath in [Kat97], [Kat98a], [Kat98b],
[Kat99], where one can �nd construction principles and examples for inde�-
nite manifolds carrying Killing and parallel spinors. In the present paper we
restrict ourselfes to the Lorentzian case. We explain some results concerning
the twistor and Killing equation in Lorentzian geometry, which we obtained
in a common project with Ines Kath, Christoph Bohle, Felipe Leitner and
Thomas Leistner.

2. Basic facts on twistor spinors

Let (Mn;k; g) be a smooth semi-Riemannian spin manifold of index k and
dimension n � 3 with the spinor bundle S. There are two conformally covariant
di�erential operators of �rst order acting on the spinor �elds �(S), the Dirac
operator D and the twistor operator (also called Penrose operator) P . The
Dirac operator is de�ned as the composition of the spinor derivative rS with
the Cli�ord multiplication �

D : �(S)
rS�! �(T �M 
 S)

g� �(TM 
 S)
��! �(S);

wheras the twistor operator is the composition of the spinor derivative rS

with the projection p onto the kernel of the Cli�ord multiplication �

P : �(S)
rS�! �(T �M 
 S)

g� �(TM 
 S)
p�! �(Ker�):

The elements of the kernel of P are called twistor spinors. A spinor �eld ' is
a twistor spinor if and only if it satis�es the twistor equation

rS
X'+

1

n
X �D' = 0

for each vector �eld X. Special twistor spinors are the parallel and the Killing
spinors, which satisfy simultaneous the Dirac equation. They are given by the
spinoriel �eld equation

rS
X' = �X � ' ; � 2 C :

The complex number � is called Killing number.

We are interested in the following geometric problems :
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1. Which semi-Riemannian (in particular Lorentzian) geometries admit so-
lutions of the twistor equation ?

2. How the properties of twistor spinors are related to the geometric struc-
tures where they can occur.

The basic property of the twistor equation is that it is conformally cova-
riant : Let ~g = e2�g be a conformally equivalent metric to g and let the spinor
bundles of (M; g) and (M; ~g) be identi�ed in the standard way. Then for the

twistor operators of P and ~P the relation

~P' = e�
1

2
�P (e�

1

2
�')

holds.
Let us denote by R the scalar curvature and by Ric the Ricci curvature of
(Mn;k; g). K denotes the (2,0)-Rho tensor

K =
1

n� 2

�
R

2(n� 1)
g � Ric

�
:

We always identify TM with TM� using the metric g. For a (2; 0)-tensor
�eld B we denote by the same symbol B the corresponding (1; 1)-tensor �eld
B : TM �! TM , g(B(X); Y ) = B(X;Y ): Let C be the (2,1)-Cotton-York
tensor

C(X;Y ) = (rXK)(Y )� (rYK)(X):

Furthermore, let W be the (4,0)-Weyl tensor of (M; g) and let denote by the
same symbol the corresponding (2,2)-tensor �eld W : �2M �! �2M: Then
we have the following integrability conditions for twistor spinors

Proposition 2.1. | ([BFGK91] Th.1.3, Th.1.5)
Let ' 2 �(S) be a twistor spinor and � = Y ^ Z 2 �2M a two form. Then

D2' =
1

4

n

n� 1
R'(1)

rS
XD' =

n

2
K(X) � '(2)

W (�) � ' = 0(3)

W (�) �D' = nC(Y;Z) � '(4)

(rXW )(�) � ' = X � C(Y;Z) � '+
2

n
(X � W (�)) �D'(5)

If (Mn; g) admits Killing spinors the Ricci and the scalar curvature of M
satisfy in addition

Proposition 2.2. | Let ' 2 �(S) be a Killing spinor to the Killing number
� 2 C . Then
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1. (Ric(X) � 4�2(n� 1)X) � ' = 0 . In particular, the image of the endo-
morphism Ric� 4�2(n� 1)idTM is totally lightlike.

2. The scalar curvature is constant and given by R = 4n(n � 1)�2 . The
Killing number � is real or purely imaginary.

If the Killing number � is zero (R = 0), ' is a parallel spinor, in case �
is real and non-zero (R > 0), ' is called real Killing spinor, and in case � is
purely imaginary (R < 0), ' is called imaginary Killing spinor.

We consider the following covariant derivative in the bundle E = S � S

rE
X :=

 
rS
X

1
nX�

�n
2K(X) rS

X

!
:

Using the integrability condition (2) of Proposition 2.1 one obtains the follo-
wing

Proposition 2.3. | ([BFGK91], Theorem 1.4.)
For any twistor spinor ' it holds rE

� '
D'

�
= 0. Conversely, if

�'
 

�
is rE-

parallel, then ' is a twistor spinor and  = D'.

The calculation of the curvature of rE and Proposition 2.3 yield

Proposition 2.4. | The dimension of the space of twistor spinors is confor-
mally invariant and bounded by

dimKerP � 2[
n
2
]+1 = 2 � rang S =: dn:

For each simply connected, conformally 
at semi-Riemannian spin manifold
the dimension of the space of twistor spinors equals dn. On the other hand,
the maximal dimension dn can only occur if (M; g) is conformally 
at.

Let Mn;k be a conformally 
at manifold with the universal covering ~Mn;k.
The bundle E is a tractor bundle associated to the conformal structure of
(M; g) and rE is the covariant derivative on E de�ned by the normal confor-
mal Cartan connection. Using this description one obtains a development of
~Mn;k into a covering Ĉn;k of the (pseudo-) M�obius sphere. The corresponding
holonomy representation

� : �1(M) �! O(k + 1; n� k + 1)

of the fundamental group of M characterizes conformally 
at spin manifolds
with twistor spinors.
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Proposition 2.5. | ([KR97a], [Lei00b]) A conformally 
at semi-Rieman-
nian manifold is spin and admits twistor spinors i� the holonomy representa-
tion � admits a lift

~� : �1(M) �! Spin(k + 1; n� k + 1)

and the the representation of �1(M) on the spinor modul �k+1;n�k+1 has a
proper trivial subrepresentation.

If the scalar curvature R of (Mn;k; g) is constant and non-zero, the inte-
grability conditions (1) and (2) of Proposition 2.1 show that the spinor �elds

 � :=
1

2
'�

r
n� 1

nR
D'

are formal eigenspinors of the Dirac operator D to the eigenvalue �1
2

q
nR
n�1 .

For an Einstein space (Mn;k; g) with constant scalar curvature R 6= 0 the

spinor �elds  � are Killing spinors to the Killing number � = �1
2

q
R

n(n�1) .

Hence, on this class of semi-Riemannian manifolds each twistor spinor is the
sum of two Killing spinors.

To each spinor �eld ' we associate a vector �eld V' (Dirac current) by the
formula

g(V';X) := ik+1hX � ';'i ; X 2 �(TM):

Proposition 2.6. | Let ' 2 �(S) be a twistor spinor. Then V' is a confor-
mal vector �eld with the divergence

div(V') = �2(�1)[ k2 ] h(hD';'i) ;
where h(f) denotes the real part of f if the index k of g is odd and the imagi-
nary part of f , if the index k of g is even.

From now on we restrict our consideration to the case of Lorentzian ma-
nifolds (Mn;1; g). Then for each spinor �eld the vector �eld V' is causal :
g(V'; V') � 0. Let denote by Zero(') and Zero(V') the zero sets of the spi-
nor and the associated vector �eld, respectively. In the Lorentzian setting we
have the following special feature of these zero sets

Proposition 2.7. | ([Lei00c]) For each spinor �eld ' on a Lorentzian
manifold the zero sets Zero(') and Zero(V') coincide. If ' is a twistor
spinor with zero, then V' is an essential conformal �eld satisfying rV'(p) = 0
for each p 2 Zero(V'). The zero set of ' is the union of isolated points and
isolated lightlike geodesics. Furthermore, the Weyl tensor vanishes on the zero
set of '.
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3. Twistor spinors on 4-dimensional spacetimes

Let us �rst collect some results in the 4-dimensional case.

Proposition 3.1. | Let (M; g) be a 4-dimensional Lorentzian spin manifold
and let ' 2 �(S�) be a half spinor. Then V' � ' = 0. In particular, the vector
�eld V' is lightlike. In case ' is a twistor spinor we have V' � W = 0.

From the Propositions 2.7 and 3.1 it follows that a 4-dimensional spacetime
with nontrivial twistor spinors is in each point of Petrov type N or 0.
There is a standard model for 4-dimensional spacetimes admitting parallel
spinors, known by physicists for a long time, the so-called pp-manifolds

R
4;1; gf := �2dx1dx2 + f(x2; x3; x4)dx

2
2 + dx23 + dx24;

where f denotes a smooth function.

Proposition 3.2. | ([Ehl62])
Each 4-dimensional spacetime admitting parallel spinors is locally isometric to
a standard pp-manifold (R4;1; gf ).

Proposition 3.3. | ([Boh98])
Each 4-dimensional spacetime admitting real Killing spinors has constant po-
sitive sectional curvature. If a 4-dimensional spacetime admits 2 linearely in-
depending imaginary Killing spinors, then it has constant negative sectional
curvature.

The following spacetime has exactly 1 imaginary Killing spinor :�
R
4; hf := e2x4(�2dx1dx2 + f(x2; x3)dx

2
2 + dx23) + dx24

�
:

If @
2f
@x2

3

6= 0, then (R4; hf ) is neighter conformally 
at nor Einstein.

One kind of spacetimes of Petrov type N are the so-called Fe�erman spaces
which are known in CR-geometry. In 1991 J. Lewandowski proved the following

Proposition 3.4. | ([Lew91]) Let ' be a twistor half spinor without zeros
on a 4-dimensional spacetime (M4;1; g).

1. If V' is hypersurface orthogonal, then (M4;1) is locally conformal equi-
valent to a pp-manifold.

2. If the rotation rot(V') of V' is nondegenerate on V ?' =V', then (M4;1; g)
is locally conformal equivalent to a Fe�erman space.

On the other hand, there exist local solutions of the twistor equation on each
4-dimensional Fe�erman space and each pp-manifold.
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As in the Riemannian situation there is a twistor space of each 4-dimensional
(real) Lorentzian manifold. The structure of this twistor space was studied
for example in [Nur96], [Nur97], [MS94], [Lei98], [Lei99]. In [Lei98] it is
shown, that similarily to the Riemannian situation a twistor spinor on a 4-
dimensional spacetime can be considered as holomorphic section (with respect
to an optical structure) in the canonical line bundle over the twistor space of
the spacetime.

4. Lorentzian twistor spinors, CR geometry and Fe�erman spaces

In this section we want to explain how the result of Lewandowski can be
generalised to arbitrary even dimensions. Detailed proofs of the statements
can be found in [Bau99a]. First we recall some notions from CR-geometry
which are necessary to de�ne the Fe�erman spaces.
Let N2m+1 be a smooth oriented manifold of odd dimension 2m + 1. A

CR-structure on N is a pair (H;J), where

1. H � TM is a real 2m-dimensional subbundle,
2. J : H �! H is an almost complex structure on H : J2 = �id,
3. If X;Y 2 �(H) , then [JX; Y ] + [X;JY ] 2 �(H) and

NJ(X;Y ) := J([JX; Y ] + [X;JY ])� [JX; JY ] + [X;Y ] � 0
(integrability condition).

Let us �x in addition a contact form � 2 
1(N) such that �jH � 0 and let us
denote by T the Reeb vector �eld of �. In the following we suppose that the
Leviform L� : H �H �! R

L�(X;Y ) := d�(X;JY )

is positive de�nite. In this case (N;H; J; �) is called a strictly pseudoconvex
manifold. The tensor g� := L�+��� de�nes a Riemannian metric on N . There
is a special metric covariant derivative on a strictly pseudoconvex manifold,
the Tanaka-Webster connection rW : �(TN) �! �(TN�
 TN) given by the
conditions

rW g� = 0

TorW (X;Y ) = L�(JX; Y ) � T
TorW (T;X) = �1

2
([T;X] + J [T; JX])

for X;Y 2 �(H). This connection satis�es rWJ = 0 and rWT = 0 (see

[Tan75], [Web78]). Let us denote by T10 � TNC the eigenspace of the com-

plex extension of J on HC to the eigenvalue i. Then L� extends to a hermitian
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form on T10 by L�(U; V ) := �id�(U; V ); U; V 2 T10. For a complex 2-form

! 2 �2NC we denote by Tr�! the �-trace of ! :

Tr�! :=

mX
�=1

!(Z�; Z�) ;

where (Z1; :::; Zm) is an unitary basis of (T10; L�). Let R
W be the (4,0)-

curvature tensor of the Tanaka-Webster connection rW on the complexi�ed
tangent bundle of N

R
W (X;Y;Z; V ) := g�(([rW

X ;rW
Y ]�rW

[X;Y ])Z; V ):

and let us denote by

RicW := Trace
(3;4)
� :=

mX
�=1

R
W (�; �; Z�; Z�)

the Tanaka-Webster-Ricci-curvature and by RW := Trace� Ric
W the Tanaka-

Webster-scalar curvature. ThenRicW is a (1; 1)-form onN withRicW (X;Y ) 2
iR for real vectors X;Y 2 TN and RW is a real function.
Now, let us suppose, that (N2m+1;H; J; �) is a strictly pseudoconvex spin

manifold. The spin structure of (N; g�) de�nes a square root
p
�m+1;0N of the

canonical line bundle

�m+1;0N := f! 2 �m+1NC j V � ! = 0 8V 2 T10g:
We denote by (F; �;N) the S1-principal bundle associated to

p
�m+1;0N .

If one �xes a connection form A on F and the corresponding decomposition of
the tangent bundle TF = ThF �TvF = H��RT ��TvF into the horizontal
and vertical part, then a Lorentzian metric h is de�ned by

h := ��L� � ic��� �A;
where c is a non-zero real number.
The Fe�erman metric arrises from a special choise of A and c done in such a
way that the conformal class [h] of h does not depend on the pseudohermitian
form �. Such a choise can be made with the connection

A� := AW � i

4(m+ 1)
RW � �;

where AW is the connection form on F de�ned by the Tanaka-Webster connec-

tion rW . The curvature form of AW is 
A
W
= �1

2Ric
W . Then

h� := ��L� � i
8

m+ 2
��� � A�

is a Lorentzian metric such that the conformal class [h�] is an invariant of
the CR-structure (N;H; J). The metric h� is S1-invariant, the �bres of the
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S1-bundle are lightlike. We call (F 2m+2; h�) with its canonically induced spin
structure Fe�erman space of the strictly pseudoconvex spin manifold (N;H; J; �).
The Fe�erman metric was �rst discovered by C.Fe�erman for the case of
strictly pseudoconvex hypersurfaces N � C

m+1 ([Fef76]), who showed that
N � S1 carries a Lorentzian metric whose conformal class is induced by biho-
lomorphisms.The considerations of Fe�erman were extended by Burns, Diede-
rich and Snider ([BDS77]) and by Lee ([Lee86]) to the case of abstract (not
necessarily embedded) CR-manifolds. A geometric characterisation of Fe�er-
man metrics was given by Sparling (see [Spa85], [Gra87]).
The spin structure of (N; g�) induces a spin structure of the vector bundle
(H;L�). We denote the corresponding spinor bundle on N by SH . Then we
can prove the following

Proposition 4.1. | ([Bau99a], Proposition 22)
Let (N;H; J; �) be a strictly pseudoconvex spin manifold with the Fe�erman
space (F; h�) and the spinor bundle SH . Then

1. The 2-form d� acts by Cli�ord multiplication as endomorphism on the
spinor bundle SH and has an eigenspace decomposition of the form

SH = S�ni � S�ni+2i � S�ni+4i � :::� Sni�2i � Sni;

where the subbundles Ski are the eigenspaces of d� to the eigenvalue ki
which have the rang

�
n

(n+k)=2

�
.

2. The lifts of the two line bundles S�ni and Sni over N to the Fe�erman
space F are trival bundles.

3. The spinor bundle SF of the Fe�erman space can be identi�ed with two
copies of the lifted bundle SH : SF = ��SH � ��SH .

4. There exist global non-projectable sections  � in the trivial line bundles
��S�ni such that the spinor �elds

�� = ( �; 0)

are twistor spinors on the Fe�erman space (F; h�).

Studying the properties of the spinor �elds �� we obtain the following
twistoriel characterisation of Fe�erman spaces

Proposition 4.2. | ([Bau99a], Theorems 1 and 2)
Let (N2m+1;H; J; �) be a strictly pseudoconvex spin manifold and let (F; h�) be
its Fe�erman space. Then there exist two linearely independent twistor spinors
' on (F; h�) with the following properties :

1. V' is a regular, lightlike Killing �eld.

2. V' � ' = 0.

3. rS
V'
' = i c '; where c 2 R n f0g:
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Conversely, let (B2m+2; h) be a Lorentzian spin manifold which admits a non-
trivial twistor spinor satisfying the conditions 1., 2. and 3., then there exists a
strictly pseudoconvex spin manifold (N2m+1;H; J; �) such that (B; h) is locally
isometric to the Fe�erman space (F; h�) of (N;H; J; �).

The proof of Proposition 4.2 is based on the following characterisation of
Fe�erman spaces given by Sparling and Graham ([Spa85], [Gra87]) :
Let (Bn; h) be a Lorentzian manifold and let us denote by R the scalar curva-
ture, by Ric the Ricci-curvature, by W the (4,0)-Weyl tensor, by K the Rho
tensor

K :=
1

n� 2

�
1

2(n� 1)
R � h�Ric

�
;

and by C the (3,0)-Cotton-York-tensor

C(X;Y;Z) := h
�
X; (rYK)(Z)� (rZK)(Y )

�
of (B; h). If V is a regular lightlike Killing �eld on (B; h) such that

{ V � W = 0 ,

{ V � C = 0 and

{ K(V; V ) = const < 0 ;

then there exists a strictly pseudoconvex manifold (N;H; J; �) such that (B; h)
is locally isometric to the Fe�erman space (F; h�) of (N;H; J; �).
The integrability conditions (2), (3), and (4) of Proposition 2.1 imply that for
each twistor spinor ' the equation V' � C = 0 holds. Using in addition the
assumptions of Proposition 4.2 we obtain V' � W = 0 and K(V'; V') =
�c2 < 0 .

5. Lorentzian manifolds with parallel spinors

From Riemannian geometry it is known that the existence of Killing spinors
on a Riemannian manifold M is strongly related to the existence of parallel
spinors on a certain Riemannian manifold M̂ associated to M (see [B�ar93],
[Bau89]). In [BK99] we studied the relation between parallel spinors and
the holonomy of pseudo-Riemannian manifolds. Generalising a result of McK.
Wang ([Wan89]) we showed

Proposition 5.1. | Let (M; g) be a simply connected, non locally symme-
tric, irreducible semi-Riemannian spin manifold of dimension n = p + q and
signature (p; q). Let N denote the dimension of the space of parallel spinor
�elds on M . Then N > 0 if and only if the holonomy representation H of
(M:g) is (up to conjugacy in the full orthogonal group) on of the groups listed
in Table 1.
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H p q N

SU(r; s) � SO(2r; 2s) 2r 2s 2

Sp(r; s) � SO(4r; 4s) 4r 4s r + s+ 1

G2 � SO(7) 0 7 1

G�2(2) � SO(4; 3) 4 3 1

GC
2 � SO(7; 7) 7 7 2

Spin(7) � SO(8) 0 8 1

Spin+(4; 3) � SO(4; 4) 4 4 1

Spin(7)C � SO(8; 8) 8 8 1

Tab. 1

This list shows that there is no irreducible Lorentzian manifold with parallel
spinors. A special class of non-irreducible Lorentzian manifold with parallel
spinors is the following generalisation of pp-manifolds. Let (F; h) be a Rie-
mannian manifold with holonomy in SU(m) (Ricci 
at K�ahler), Sp(m) (hy-
perK�ahler), G2 or Spin(7) and let f : R � F :�! R be a smooth function.
Then the Lorentzian manifold

M := R
2 � F ; g(t;s;x) := �2dtds+ f(s; x)ds2 + hx

has parallel spinors. (M;h) is Ricci-
at i� the functions f(s; �) : F �! R are
harmonic for all s 2 R.
Low dimensional Lorentzian manifolds with parallel spinors and their holo-
nomy were studied in [FO99a], [FO99b] and [Bry99]. R. Bryant obtained
the local normal form of all 11-dimensional Lorentzian manifolds with paral-
lel lightlike spinors and maximal holonomy (now called Bryant-metrics). In
[Lei00a] indecomposable, reducible Lorentzian manifolds with a special kind
of holonomy and parallel spinors are discussed.
It is known that an even-dimensional Riemannian manifold admits pure paral-
lel spinors i� it is Ricci-
at and K�ahler. In [Kat99] this fact is generalised to
the pseudo-Riemannian situation. The existence of a pure parallel spinor on a
pseudo-Riemannian manifold can be characterised by curvature properties of
the associated optical structure.
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Each homogeneous Riemannian manifold with parallel spinors is 
at. The si-
tuation changes in the pseudo-Riemannian situation. In [Bau99b] we describe
all twistor spinors on the Lorentzian symmetric spaces explicitly. In particular,
we prove that each non conformally-
at simply connected Lorentzian symme-
tric space admits parallel spinors. These Lorentzian symmetric spaces have
solvable transvection group and are special pp-manifolds.

6. Lorentzian Einstein-Sasaki structures and imaginary Killing

spinors

It is easy to check that a Lorentzian manifold (M; g) has imaginary Killing
spinors to the Killing number i� i� the cone over M with timelike cone axis

C�2�(M) := (M � R ; gC := (2�t)2g � dt2)

has parallel spinors. We describe here the case of irreducible cone C�(M).
Proposition 5.1 shows that the only irreducible restricted holonomy represen-
tation of a non locally-symmetric pseudo-Riemannian manifold of index 2 with
parallel spinors is SU(1;m). This leads to Lorentzian Einstein-Sasaki struc-
tures on M .
A Lorentzian Sasaki manifold is a tripel (M; g; �), where

1. g is a Lorentzian metric.

2. � is a timelike Killing vector �eld with g(�; �) = �1:
3. J := �r� : TM �! TM satis�es

J2(X) = �X � g(X; �)� and (rXJ)(Y ) = �g(X;Y )� + g(Y; �)X

Lorentzian Sasaki structures are related to K�ahler structures by the following

Proposition 6.1. |

1. (M2m+1; g) has a Lorentzian Sasaki structure i� the cone C�1 (M) has a
(pseudo-Riemannian) K�ahler structure.

2. (M2m+1; g) is a Einstein space of negative scalar curvature R = �2m(2m+
1) i� the cone C�1 (M) is Ricci-
at.

This Proposition shows that the cone C�1 (M) has holonomy in SU(1;m)
i� (M2m+1; g) is a Lorentzian Einstein-Sasaki manifold. Then we can prove a
twistoriel characterisation of the Lorentzian Einstein-Sasaki geometry, similar
to that of Fe�erman spaces in Proposition 4.2.

Proposition 6.2. |
Let (M2m+1; g; �) be a simply connected Lorentzian Einstein-Sasaki manifold.
Then (M; g) is a spin manifold and there exists a twistor spinor ' 2 �(S)
such that
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1. V' is a timelike Killing vector �eld with g(V'; V') = �1.
2. V' � ' = �'.
3. rS

V'
' = �1

2 i '.

In particular, ' is an imaginary Killing spinor and V' = �. Conversely, let
(M2m+1; g) be a Lorentzian spin manifold with a twistor spinor satisfying 1.,
2. and 3., then (M; g; � = V') is a Lorentzian Einstein-Sasaki manifold.

If we proceed in the same way as above in the case of strictly pseudoconvex
spin manifolds but starting with K�ahler manifolds we end up with Lorentzian
Einstein-Sasaki manifolds admitting imaginary Killing spinors :
Let (X2m; h; J) be a K�ahler-Einstein spin manifold of negative scalar curvature
RX < 0. Let us denote by (M;�;X) the S1-principal bundle associated to the
square root of the canonical line bundle K := �m;0X de�ned by the spin
structure of (X;h) and let A be the connection form on M de�ned by the
Levi-Civita connection of (X;h). We consider the Lorentzian metric

g := ��h� 16m

RX(m+ 1)
A � A:

The manifold (M; g) is a Lorentzian Einstein-Sasaki spin manifold. The spinor
bundle SX of (X;h; J) decomposes into the eigenspaces Ski of the K�ahler form
! to the eigenvalues ki :

SX = S�im � S�im+2i � S�mi+4i � :::� Smi�2i � Smi:

The spinor bundle SM of (M; g) is isomorphic to the lift ��SX . There exist
global sections  " in the line bundles �

�S"mi � SM which are imaginary Killing

spinors to the Killing number �" := (�1)m"m+1
q

�RX
16m(m+1) i ; " = �1.

The above described construction is a special case of an investigation of I.Kath
in the general pseudo-Riemannian situation (see [Kat99]), which extends the
results of Ch. B�ar ([B�ar93]) concerning the Riemannian case. IfM is a simply
connected pseudo-Riemannian manifold such that the holonomy group of the
cone of M is contained in one of the groups H listed in Table 1 or in some
of the other non-compact real forms corresponding to these groups, then M
admits Killing spinors and the special geometry of the cone, de�ned by the
holonomy, de�nes a special geometry on M .

Finally, let us give an example of a Lorentzian manifold with imaginary Killing
spinors, which is non-Einstein : Let (F; h) be a Riemannian manifold with
holonomy in SU(m), Sp(m), G2 or Spin(7) and let f : F � R �! R be a
smooth function. We consider the manifold M = R

3 � F with the metric

gu;s;t;x = e2u(�2dsdt+ f(s; x)ds2 + hx) + du2:
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Then (M; g) is a Lorentzian manifold with imaginary Killing spinors which is
Einstein if and only if the functions f(s; �) : F ! R are harmonic for all s.

7. Lorentzian manifolds with real Killing spinors

Lorentzian manifolds with real Killing spinors were studied by Ch. Bohle in
[Boh99]. Similarily to the case of imaginary Killing spinors Lorentzian mani-
folds with real Killing spinors can be obtained by warped product construc-
tions out of Riemannian ones : It is easy to check that the warped product

F �� I := (F � I; g = �2h+ "dt2)

has real Killing spinors to the Killing number � i� (up to coordinate transfor-
mations) one of the cases of the following Table 2 occur.

case (F; h) I � "

1 Riemannian manifold with real Killing spinor
to the Killing number �

R cosh 2�t 1

2 Riemannian manifold with parallel spinor R e2�t 1

3 Riemannian manifold with imaginary Killing
spinor to the Killing number i�

(0;1) sinh 2�t 1

4 Lorentzian manifold with real Killing spinor
to the Killing number �

(��4� ;
�

4� ) cos�t �1

Tab. 2

On the other hand, each Lorentzian manifold with real Killing spinors has
locally such a warped product structure.
Let us denote by u :=< ';' >2 C1(M) the length function of a spinor �eld
' and by Q' the function

Q' = u2 + g(V'; V'):

Now, let ' be a real Killing spinor. Then V' is a closed conformal vector �eld
and grad(u) = �2�V' 6= 0. Hence, the level sets of u de�ne a foliation of M
into submanifolds of codimension 1. Furthermore, the function Q' is constant
on M . Since g(V'; V') � 0 we have Q' � u2. All level sets with u2 > Q' are
timelike submanifolds, those with u2 = Q' are degenerate. Let p 2 M be a
point where V'(p) is timelike, then around the point p the manifold (M; g) is
locally isometric to the following warped product
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{ Q' < 0 : case 1 of Table 2

{ Q' = 0 : case 2 of Table 2

{ Q' > 0 : case 3 of Table 2

In particular, (M; g) is an Einstein manifold.
For a complete Lorentzian manifold one can prove, that the length function
u : M ! R is surjective. Hence, on a complete Lorentzian manifold the �rst
integral Q' is nonpositive. Using the results about parallel and Killing spinors
in the Riemannian situation ([BFGK91], [B�ar93], [Wan89], we obtain the
following Splitting Theorem for complete Lorentzian manifolds in the presence
of Killing spinors

Proposition 7.1. | Let (Mn; g) be a complete, connected Lorentzian mani-
fold carrying a real Killing spinor ' to the Killing number �.

1. Q' < 0. Then (M; g) is of constant sectional curvature or is (up to a
rescaling of the metric) globally isometric to the warped product

(F � R; (cosh t)2 h� dt2);

where (F; h) is a complete Riemannian manifold which is covered by a
simply connected Einstein-Sasaki manifold (n = 2k), 3-Sasaki manifold
(n = 4k), nearly K�ahler, non-K�ahler manifold (n = 7) or a manifold
admitting a nearly parallel G2-structure (n = 8).

2. Q' = 0. Then fu = 0g is a degenerate hypersurface. (M; g) is of constant
sectional curvature or M n fu = 0g is globally isometric to the disjoint
union of warped products

(F1 � R; e2�th1 � dt2) [ (F2 � R; e2�th2 � dt2);

where (F1; h1) and (F2; h2) are complete Riemannian manifolds which
are covered by products of simply connected manifolds with holonomy
SU(m), Sp(m), G2, Spin(7) or f1g.

We conjecture that the �rst integral Q' = 0 can only occur on manifolds
with constant sectional curvature. For example, each spinor �eld ' on the
3-dimensional spaceform S3;1 of sectional curvature 1 has the �rst integral
Q' = 0.
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