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Résumé. — Le présent papier est un article de synthese basé sur les exposés
donnés au CIRM, Luminy, en juin 1999, et au ESI, Vienne, en octobre 1999,
concernant des nouveaux résultats sur les spineurs twisteurs et les spineurs de
Killing lorentziens. Apres quelques préliminaires sur les spineurs twisteurs, on
met en évidence des relations entre les spineurs twisteurs lorentziens admettant
un courant de Dirac isotrope et les espaces de Fefferman des variétés spino-
rielles strictement pseudoconvexes qui apparaissent dans la géométrie CR. De
plus, on décrit la relation entre les spineurs twisteurs admettant un courant
de Dirac de type temps et les structures de Sasaki-Einstein lorentziennes. On
indique aussi la structure locale des variétés lorentziennes admettant des spi-
neurs de Killing réels. En particulier, on obtient un Theoreme de splitting
global pour les variétés Lorentziennes completes qui admettent des spineurs
de Killing. Enfin, on fait le point sur la théorie des spineurs paralléles en
géométrie lorentzienne.
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Abstract. — This paper is a survey about recent results concerning twistor
and Killing spinors on Lorentzian manifolds based on lectures given at CIRM,
Luminy, in June 1999, and at ESI, Wien, in October 1999. After some basic
facts about twistor spinors we explain a relation between Lorentzian twistor
spinors with lightlike Dirac current and the Fefferman spaces of strictly pseu-
doconvex spin manifolds which appear in CR-geometry. Secondly, we discuss
the relation between twistor spinors with timelike Dirac current and Lorent-
zian Einstein Sasaki structures. Then, we indicate the local structure of all
Lorentzian manifolds carrying real Killing spinors. In particular, we show a
global Splitting Theorem for complete Lorentzian manifolds in the presence of
Killing spinors. Finally, we review some facts about parallel spinors in Lorent-
zian geometry.

Classification mathématique par sujets (1991). — 58G30, 53C50, 53A50.

Mots clefs. — Twistor equation, twistor spinors, Killing spinors, parallel spinors, Lorent-
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1. Introduction

Twistor spinors were introduced by R.Penrose and his collaborators in Ge-
neral Relativity as solutions of a conformally invariant spinoriel field equa-
tion (twistor equation) (see [Pen67], [PR86], [NW84]). Twistor spinors are
also of interest in physics since they define infinitesimal isometries in semi-
Riemannian supergeometry (see [ACDS98]). In Riemannian geometry the
twistor equation first appeared as an integrability condition for the canonical
almost complex structure of the twistor space of an oriented four-dimensional
Riemannian manifold (see [AHS78]). In the second half of the 80th A.Lichnero-
wicz started the systematic investigation of twistor spinors on Riemannian spin
manifolds from the view point of conformal differential geometry. Nowadays
one has a lot of structure results and examples for manifolds with twistor spi-
nors in the Riemannian setting (see e.g. [Lic88b], [Lic88a], [Lic89], [Wan89],
[Fri89] [Lic90],  BFGK91], [Hab90|, [Bar93], [Hab94], [Hab96], [KR94],
[KR96], [ KR97b|, [KR97a], [KR98)).

An other special kind of spinor fields related to Killing vector fields and Killing
tensors and therefore called Killing spinors is used in supergravity and super-
string theories (see e.g. [HPSW72], [DNP86|, [FO99a], [AFOHS98|). In
mathematics the name Killing spinor is used (more restrictive than in physics
literature) for those twistor spinors which are simultaneous eigenspinors of the
Dirac operator. The interest of mathematicians in Killing spinors started with
the observation of Th. Friedrich in 1980 that a special kind of Killing spi-
nors realise the limit case in the eigenvalue estimate of the Dirac operator on
compact Riemannian spin manifolds of positive scalar curvature. In the time
after the Riemannian geometries admitting Killing spinors were intensively
studied. They are now basically known and in low dimensions completely clas-
sified (see [ BFGK91] [Hij86], [Bar93]). These results found applications also
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outside the spin geometry, for example as tool for proving rigidity theorems for
asymptotically hyperbolic Riemannian manifolds (see [AD98], [Her98]). In
the last years the investigation of special adapted spinoriel field equations was
extended to Kéhler, quaternionic-Kéhler and Weyl geometry (see e.g. [MS96],
[Mor99|, [KSW98|, [Buc00b], [Buc00a]).

In opposite to the situation in the Riemannian setting, there is not much
known about solutions of the twistor and Killing equation in the pseudo-
Riemannian setting, where these equations originally came from. The general
indefinite case was studied by Ines Kath in [Kat97], [Kat98a], [Kat98b],
[Kat99], where one can find construction principles and examples for indefi-
nite manifolds carrying Killing and parallel spinors. In the present paper we
restrict ourselfes to the Lorentzian case. We explain some results concerning
the twistor and Killing equation in Lorentzian geometry, which we obtained
in a common project with Ines Kath, Christoph Bohle, Felipe Leitner and
Thomas Leistner.

2. Basic facts on twistor spinors

Let (M™*, g) be a smooth semi-Riemannian spin manifold of index k& and
dimension n > 3 with the spinor bundle S. There are two conformally covariant
differential operators of first order acting on the spinor fields , (S), the Dirac
operator D and the twistor operator (also called Penrose operator) P. The
Dirac operator is defined as the composition of the spinor derivative V° with
the Clifford multiplication p

v * 9 1%
D,(S)—),(TM@S)N,(TM@S)H,(S),

wheras the twistor operator is the composition of the spinor derivative V*
with the projection p onto the kernel of the Clifford multiplication p

P8 TMes) L, (TMeS) L, (Kerp).

The elements of the kernel of P are called twistor spinors. A spinor field ¢ is
a twistor spinor if and only if it satisfies the twistor equation

1
Vigo+—X-Dp=0
n

for each vector field X. Special twistor spinors are the parallel and the Killing
spinors, which satisfy simultaneous the Dirac equation. They are given by the
spinoriel field equation

Vieg=AX-p, MeC.
The complex number A is called Killing number.

We are interested in the following geometric problems :
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1. Which semi-Riemannian (in particular Lorentzian) geometries admit so-
lutions of the twistor equation ?

2. How the properties of twistor spinors are related to the geometric struc-
tures where they can occur.

The basic property of the twistor equation is that it is conformally cova-
riant : Let § = €??¢ be a conformally equivalent metric to ¢ and let the spinor
bundles of (M, g) and (M, g) be identified in the standard way. Then for the

twistor operators of P and P the relation
Py =e37P(e™2%)

holds.
Let us denote by R the scalar curvature and by Ric the Ricci curvature of
(M™F, g). K denotes the (2,0)-Rho tensor

1 R
K = — Ric;.
n—2{2(n—1)g lc}
We always identify TM with TM* using the metric ¢g. For a (2,0)-tensor
field B we denote by the same symbol B the corresponding (1, 1)-tensor field
B:TM — TM, g(B(X),Y) = B(X,Y). Let C be the (2,1)-Cotton-York
tensor

CX,Y) = (VxK)(Y) — (VyK)(X).

Furthermore, let W be the (4,0)-Weyl tensor of (M, g) and let denote by the
same symbol the corresponding (2,2)-tensor field W : A2M — A2M. Then
we have the following integrability conditions for twistor spinors

Proposition 2.1. — ([BFGK91] Th.1.3, Th.1.5)

Let ¢ €, (S) be a twistor spinor and n =Y AZ € A>M a two form. Then
1 n

1 D?p ==

(1) =l

2 Vs Dy = gK(X) o

3 Wi(n)-¢=0

4 W(n)-De=nC(Y,Z) ¢

(2)
(3)
(4)
2
(5) (VaxW)(n) -9 =X-C(Y,Z)- o+ —(X 1 W(n) - Dy
If (M™,g) admits Killing spinors the Ricci and the scalar curvature of M
satisfy in addition

Proposition 2.2. — Let p €, (S) be a Killing spinor to the Killing number
A €C. Then
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1. (Ric(X) —4X2(n —1)X) - @ = 0. In particular, the image of the endo-
morphism Ric — 4\%(n — 1)idrys is totally lightlike.

2. The scalar curvature is constant and given by R = 4n(n — 1)\? . The
Killing number X\ is real or purely imaginary.

If the Killing number X is zero (R = 0), ¢ is a parallel spinor, in case A
is real and non-zero (R > 0), ¢ is called real Killing spinor, and in case A is
purely imaginary (R < 0), ¢ is called imaginary Killing spinor.

We consider the following covariant derivative in the bundle £ = S & S

vl = Vi %{g .
—5K(X) VX

Using the integrability condition (2) of Proposition 2.1 one obtains the follo-
wing

Proposition 2.3. — ([BFGK91]|, Theorem 1.4.)
For any twistor spinor ¢ it holds VF (Dfp) = 0. Conversely, if (;‘;) is VE-
parallel, then @ is a twistor spinor and 1 = Dey.

The calculation of the curvature of V¥ and Proposition 2.3 yield

Proposition 2.4. — The dimension of the space of twistor spinors is confor-
mally invariant and bounded by

dim KerP < olzl+l — 9. rang S =: d,.

For each simply connected, conformally flat semi-Riemannian spin manifold
the dimension of the space of twistor spinors equals d,. On the other hand,
the maximal dimension dy, can only occur if (M,g) is conformally flat.

Let M™F be a conformally flat manifold with the universal covering M™F.
The bundle F is a tractor bundle associated to the conformal structure of
(M, g) and V¥ is the covariant derivative on E defined by the normal confor-
mal Cartan connection. Using this description one obtains a development of
M™* into a covering C™* of the (pseudo-) Mébius sphere. The corresponding
holonomy representation

p:m(M)— Ok+1,n—k+1)

of the fundamental group of M characterizes conformally flat spin manifolds
with twistor spinors.
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Proposition 2.5. — ([KR97a], [Lei00b]) A conformally flat semi-Rieman-
nian manifold is spin and admits twistor spinors iff the holonomy representa-
tion p admits o lift

p:m (M) — Spin(k+1,n—k+1)
and the the representation of i (M) on the spinor modul Ayy1pn_k+1 has a
proper trivial subrepresentation.

If the scalar curvature R of (M™F, g) is constant and non-zero, the inte-
grability conditions (1) and (2) of Proposition 2.1 show that the spinor fields

1 n—1
= —p =+ D
be=geE g DY
are formal eigenspinors of the Dirac operator D to the eigenvalue j:% :—ﬁ .

For an Einstein space (M™F, g) with constant scalar curvature R # 0 the
spinor fields 1y are Killing spinors to the Killing number A = $%, /n(n—R_l) .

Hence, on this class of semi-Riemannian manifolds each twistor spinor is the
sum of two Killing spinors.

To each spinor field ¢ we associate a vector field V,, (Dirac current) by the
formula

9(Vp, X) == "X -, ), X e, (TM).

Proposition 2.6. — Let ¢ €, (S) be a twistor spinor. Then V,, is a confor-
mal vector field with the divergence

div(V,)) = —2(—=1)[31 h((Dep, ),

where h(f) denotes the real part of f if the index k of g is odd and the imagi-
nary part of f, if the index k of g is even.

From now on we restrict our consideration to the case of Lorentzian ma-
nifolds (M™!, g). Then for each spinor field the vector field V,, is causal :
9(V,,V,) < 0. Let denote by Zero(y) and Zero(V,,) the zero sets of the spi-
nor and the associated vector field, respectively. In the Lorentzian setting we
have the following special feature of these zero sets

Proposition 2.7. — ([Lei00c]) For each spinor field ¢ on a Lorentzian
manifold the zero sets Zero(yp) and Zero(V,) coincide. If ¢ is a twistor
spinor with zero, then Vi, is an essential conformal field satisfying VV,(p) =0
for each p € Zero(V,). The zero set of ¢ is the union of isolated points and
1solated lightlike geodesics. Furthermore, the Weyl tensor vanishes on the zero

set of .
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3. Twistor spinors on 4-dimensional spacetimes

Let us first collect some results in the 4-dimensional case.

Proposition 3.1. — Let (M, g) be a 4-dimensional Lorentzian spin manifold
and let p € , (ST) be a half spinor. Then Vo - = 0. In particular, the vector
field V,, is lightlike. In case ¢ is a twistor spinor we have Vi, 1 W = 0.

From the Propositions 2.7 and 3.1 it follows that a 4-dimensional spacetime
with nontrivial twistor spinors is in each point of Petrov type N or 0.
There is a standard model for 4-dimensional spacetimes admitting parallel
spinors, known by physicists for a long time, the so-called pp-manifolds

R gp := —2dwidey + f(xo, T3, 24)d2s + dzh + dai,
where f denotes a smooth function.
Proposition 3.2. — ([Ehl62])

Each j-dimensional spacetime admitting parallel spinors is locally isometric to
a standard pp-manifold (R*!, g).

Proposition 3.3. — ([Boh98))

Each J-dimensional spacetime admitting real Killing spinors has constant po-
sitive sectional curvature. If a 4-dimensional spacetime admits 2 linearely in-
depending imaginary Killing spinors, then it has constant negative sectional
curvature.

The following spacetime has exactly 1 imaginary Killing spinor :
(R*, hy := €™ (—2dz1dws + f (22, 73)d23 + da3) + dzf).

It g%é # 0, then (R*, hy) is neighter conformally flat nor Einstein.

One kind of spacetimes of Petrov type IV are the so-called Fefferman spaces
which are known in CR-geometry. In 1991 J. Lewandowski proved the following

Proposition 3.4. — ([Lew91]) Let ¢ be a twistor half spinor without zeros
on a 4-dimensional spacetime (M™!,g).

1. If Vi, is hypersurface orthogonal, then (M*1) is locally conformal equi-
valent to a pp-manifold.

2. If the rotation rot(V,) of Vi, is nondegenerate on VQPL/V@, then (M*!, g)
18 locally conformal equivalent to a Fefferman space.

On the other hand, there exist local solutions of the twistor equation on each
4-dimensional Fefferman space and each pp-manifold.
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Asin the Riemannian situation there is a twistor space of each 4-dimensional
(real) Lorentzian manifold. The structure of this twistor space was studied
for example in [Nur96|, [Nur97], [MS94], [Lei98], [Lei99]. In [Lei98] it is
shown, that similarily to the Riemannian situation a twistor spinor on a 4-
dimensional spacetime can be considered as holomorphic section (with respect
to an optical structure) in the canonical line bundle over the twistor space of
the spacetime.

4. Lorentzian twistor spinors, CR geometry and Fefferman spaces

In this section we want to explain how the result of Lewandowski can be
generalised to arbitrary even dimensions. Detailed proofs of the statements
can be found in [Bau99a]. First we recall some notions from CR-geometry
which are necessary to define the Fefferman spaces.

Let N?™*! be a smooth oriented manifold of odd dimension 2m + 1. A
CR-structure on N is a pair (H,J), where

1. H CTM is a real 2m-dimensional subbundle,
J: H — H is an almost complex structure on H : J? = —id,
If X,)Ye, (H),then [JX,Y]+[X,JY] €, (H) and
Ny(X,Y):=J([JX, Y]+ [X,JY]) - [JX,JY]+[X,Y]=0
(integrability condition).

Let us fix in addition a contact form § € Q'(N) such that 8|5 = 0 and let us
denote by T the Reeb vector field of 6. In the following we suppose that the
Leviform Ly : H x H — R

Lo(X,Y) := do(X, JY)

is positive definite. In this case (N, H, J,0) is called a strictly pseudoconvex
manifold. The tensor gy := Ly+ 60060 defines a Riemannian metric on N. There
is a special metric covariant derivative on a strictly pseudoconvex manifold,
the Tanaka-Webster connection VWV : | (TN) — , (TN* ® TN) given by the
conditions

VW = 0
TorW(X,Y) = Lg(JX,Y)-T
1
Tor'V(T,X) = —5 (1, X] + J[T, JX])

for X,Y € , (H). This connection satisfies V"V'J = 0 and VWT = 0 (see
[Tan75], [WebT78]). Let us denote by Ty C TNC the eigenspace of the com-
plex extension of J on H C to the eigenvalue 7. Then Ly extends to a hermitian
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form on Tyg by Ly(U,V) := —idf(U,V), U,V € Typ. For a complex 2-form
w € A2NC we denote by Trew the f-trace of w :

m

Trow := Zw(Za,Za) ,

a=1
where (Z1,..., Zy) is an unitary basis of (Tio, Lg). Let %" be the (4,0)-
curvature tensor of the Tanaka-Webster connection V' on the complexified
tangent bundle of N

mW(Xa Y7 Za V) = 99(([VI)/‘(/7 vg[/] - V&,Y])Zvv)
and let us denote by

m
Ric" = Trace§3’4) = ZSRW(-, Ty L)

a=1
the Tanaka- Webster-Ricci-curvature and by RY := Traceg Ric"V the Tanaka-
Webster-scalar curvature. Then Ric" is a (1,1)-form on N with Ric"V (X,Y) €
iR for real vectors X,Y € TN and R" is a real function.

Now, let us suppose, that (N?™*+! H, J, 0) is a strictly pseudoconvex spin

manifold. The spin structure of (N, gy) defines a square root vV A™tLON of the
canonical line bundle

APHLON = {w e A™PINC |V Jw=0 YV €Ty}

We denote by (F, 7, N) the S'-principal bundle associated to VA™+LON.

If one fixes a connection form A on F' and the corresponding decomposition of
the tangent bundle TF = ThF @ TvF = H* @ RT* & TvF into the horizontal
and vertical part, then a Lorentzian metric A is defined by

h:=n*Ly —icn*0o A,

where c is a non-zero real number.
The Fefferman metric arrises from a special choise of A and ¢ done in such a
way that the conformal class [h] of h does not depend on the pseudohermitian
form 6. Such a choise can be made with the connection

1

Ag =AY ——— RV .9
o 4(m + 1) ’
where A" is the connection form on F' defined by the Tanaka-Webster connec-
tion V. The curvature form of AW is Q4" = —%Ricw. Then
8
hg :=m*Ly — 1 o A
0 ™ 0 ’Lm T 27‘(‘ o Ay

is a Lorentzian metric such that the conformal class [hy] is an invariant of
the CR-structure (N, H,.J). The metric hy is S'-invariant, the fibres of the
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S'-bundle are lightlike. We call (F?™*2 hy) with its canonically induced spin
structure Fefferman space of the strictly pseudoconvex spin manifold (N, H, J, 0).
The Fefferman metric was first discovered by C.Fefferman for the case of
strictly pseudoconvex hypersurfaces N C C™*! ([Fef76]), who showed that
N x S carries a Lorentzian metric whose conformal class is induced by biho-
lomorphisms.The considerations of Fefferman were extended by Burns, Diede-
rich and Snider ([BDS77]) and by Lee ([Lee86]) to the case of abstract (not
necessarily embedded) CR-manifolds. A geometric characterisation of Feffer-
man metrics was given by Sparling (see [Spa85], [Gra87]).

The spin structure of (N, gy) induces a spin structure of the vector bundle
(H, Ly). We denote the corresponding spinor bundle on N by Sy. Then we
can prove the following

Proposition 4.1. — ([Bau99a], Proposition 22)
Let (N, H, J,0) be a strictly pseudoconvex spin manifold with the Fefferman
space (F, hg) and the spinor bundle Sy . Then

1. The 2-form dO acts by Clifford multiplication as endomorphism on the
spinor bundle S and has an eigenspace decomposition of the form

SH =510 ®S_nit2 ®S_nitai ® ... ® Sni—2i ® Sni,

where the subbundles Sk; are the eigenspaces of df to the eigenvalue ki
which have the rang ((n_ﬁc)/?).

2. The lifts of the two line bundles S_,; and S,; over N to the Fefferman
space F are trival bundles.

3. The spinor bundle Sy of the Fefferman space can be identified with two
copies of the lifted bundle Sy : Sp =7*Syg & 7*Sg.

4. There exist global non-projectable sections P4 in the trivial line bundles
7 Sni such that the spinor fields

¢+ = (¥+,0)
are twistor spinors on the Fefferman space (F, hy).

Studying the properties of the spinor fields ¢+ we obtain the following
twistoriel characterisation of Fefferman spaces

Proposition 4.2. — ([Bau99a], Theorems 1 and 2)
Let (N?™+1 H, J,0) be a strictly pseudoconvez spin manifold and let (F, hy) be
its Fefferman space. Then there exist two linearely independent twistor spinors
© on (F,hg) with the following properties :

1. Vi, is a regular, lightlike Killing field.

2. V,-p=0.

3. V‘S,wgo:icgo, where ¢ € R\ {0}.
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Conversely, let (B>™+2 h) be a Lorentzian spin manifold which admits a non-
trivial twistor spinor satisfying the conditions 1., 2. and 3., then there exists a
strictly pseudoconvez spin manifold (N*™+1, H, J,0) such that (B, h) is locally
isometric to the Fefferman space (F,hg) of (N, H,J,6).

The proof of Proposition 4.2 is based on the following characterisation of
Fefferman spaces given by Sparling and Graham ([Spa85], [Gra87]) :
Let (B™, h) be a Lorentzian manifold and let us denote by R the scalar curva-
ture, by Ric the Ricci-curvature, by W the (4,0)-Weyl tensor, by K the Rho

tensor
1 1
K = -h — Ri
n—2{2(n—1)R ch},

and by C the (3,0)-Cotton-York-tensor
C(X,Y,2) = h(X,(VyK)(2) - (VzK)(Y))

of (B,h). If V is a regular lightlike Killing field on (B, h) such that

- Vaow=0,

- V1C=0 and

- K(V,V)=const<O0,
then there exists a strictly pseudoconvex manifold (N, H, J, 0) such that (B, h)
is locally isometric to the Fefferman space (F,hy) of (N, H, J,6).
The integrability conditions (2), (3), and (4) of Proposition 2.1 imply that for
each twistor spinor ¢ the equation V,, 1 C' = 0 holds. Using in addition the
assumptions of Proposition 4.2 we obtain V, 1 W =0 and K(V,,V,) =
-2 <0.

5. Lorentzian manifolds with parallel spinors

From Riemannian geometry it is known that the existence of Killing spinors
on a Riemannian manifold M is strongly related to the existence of parallel
spinors on a certain Riemannian manifold M associated to M (see [B&r93],
[Bau89]). In [BK99] we studied the relation between parallel spinors and
the holonomy of pseudo-Riemannian manifolds. Generalising a result of McK.
Wang ([Wan89]|) we showed

Proposition 5.1. — Let (M,g) be a simply connected, non locally symme-
tric, irreducible semi-Riemannian spin manifold of dimension n = p+ q and
signature (p,q). Let N denote the dimension of the space of parallel spinor
fields on M. Then N > 0 if and only if the holonomy representation H of
(M.g) is (up to conjugacy in the full orthogonal group) on of the groups listed
i Table 1.
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H p | q N
SU(r,s) C SO(2r,2s) |2r | 2s 2
Sp(r,s) C SO(4r,4s) |4r |4s|r+s+1
G2 C SO(7) 0|7 1
G35 C SO(4,3) 4 |3 1
GS € SO(7,7) 7|7 2
Spin(7) C SO(8) 018 1
Spin*(4,3) C SO(4,4) | 4 | 4 1
Spin(7)C € SO8,8) | 8 | 8 1
TaB. 1

This list shows that there is no irreducible Lorentzian manifold with parallel
spinors. A special class of non-irreducible Lorentzian manifold with parallel
spinors is the following generalisation of pp-manifolds. Let (F,h) be a Rie-
mannian manifold with holonomy in SU(m) (Ricci flat Kahler), Sp(m) (hy-
perKihler), Gy or Spin(7) and let f : R x F :— R be a smooth function.
Then the Lorentzian manifold

M:=R*xF, 9(t,5,2) = —2dtds + f(s,z)ds* + hy

has parallel spinors. (M, h) is Ricci-flat iff the functions f(s,:) : F — R are
harmonic for all s € R.

Low dimensional Lorentzian manifolds with parallel spinors and their holo-
nomy were studied in [FO99a], [FO99b| and [Bry99]. R. Bryant obtained
the local normal form of all 11-dimensional Lorentzian manifolds with paral-
lel lightlike spinors and maximal holonomy (now called Bryant-metrics). In
[Lei00a] indecomposable, reducible Lorentzian manifolds with a special kind
of holonomy and parallel spinors are discussed.

It is known that an even-dimensional Riemannian manifold admits pure paral-
lel spinors iff it is Ricci-flat and Kéhler. In [Kat99] this fact is generalised to
the pseudo-Riemannian situation. The existence of a pure parallel spinor on a
pseudo-Riemannian manifold can be characterised by curvature properties of
the associated optical structure.
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Each homogeneous Riemannian manifold with parallel spinors is flat. The si-
tuation changes in the pseudo-Riemannian situation. In [Bau99b] we describe
all twistor spinors on the Lorentzian symmetric spaces explicitly. In particular,
we prove that each non conformally-flat simply connected Lorentzian symme-
tric space admits parallel spinors. These Lorentzian symmetric spaces have
solvable transvection group and are special pp-manifolds.

6. Lorentzian Einstein-Sasaki structures and imaginary Killing
spinors

It is easy to check that a Lorentzian manifold (M, g) has imaginary Killing
spinors to the Killing number ¢ iff the cone over M with timelike cone axis
Co (M) := (M xR, gc:= (2\t)%g — dt?)

has parallel spinors. We describe here the case of irreducible cone C'~ (M).
Proposition 5.1 shows that the only irreducible restricted holonomy represen-
tation of a non locally-symmetric pseudo-Riemannian manifold of index 2 with
parallel spinors is SU(1,m). This leads to Lorentzian Einstein-Sasaki struc-
tures on M.

A Lorentzian Sasaki manifold is a tripel (M, g, &), where

1. g is a Lorentzian metric.
2. ¢ is a timelike Killing vector field with g(£,&) = —1.
3. J:=—-VE:TM — TM satisfies
JHX) = =X —g(X,£)¢ and (VxJ)(V) = —g(X,Y)§ +g(Y,§)X
Lorentzian Sasaki structures are related to Kahler structures by the following

Proposition 6.1. —

1. (M?™*1 g) has a Lorentzian Sasaki structure iff the cone Cy (M) has a
(pseudo-Riemannian) Kdhler structure.

2. (M2t g) is a Einstein space of negative scalar curvature R = —2m(2m+

1) iff the cone CT (M) is Ricci-flat.

This Proposition shows that the cone C| (M) has holonomy in SU(1,m)
iff (M?™*+1 g) is a Lorentzian Einstein-Sasaki manifold. Then we can prove a
twistoriel characterisation of the Lorentzian Einstein-Sasaki geometry, similar
to that of Fefferman spaces in Proposition 4.2.

Proposition 6.2. —

Let (M?™+1 g, &) be a simply connected Lorentzian Einstein-Sasaki manifold.
Then (M, g) is a spin manifold and there exists a twistor spinor ¢ € , (S)
such that
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1. Vi, is a timelike Killing vector field with g(V,,V,) = —1.
2. Vo= —o.

1 -
3. Vig/w(p = —3 1 Q.

In particular, ¢ is an imaginary Killing spinor and V, = £. Conversely, let
(M?™+1 g) be a Lorentzian spin manifold with a twistor spinor satisfying 1.,
2. and 3., then (M, g,§ =V,,) is a Lorentzian Einstein-Sasaki manifold.

If we proceed in the same way as above in the case of strictly pseudoconvex

spin manifolds but starting with Kahler manifolds we end up with Lorentzian
Einstein-Sasaki manifolds admitting imaginary Killing spinors :
Let (X?™, h, J) be a Kihler-Einstein spin manifold of negative scalar curvature
Rx < 0. Let us denote by (M, n, X) the S'-principal bundle associated to the
square root of the canonical line bundle K := A™%X defined by the spin
structure of (X, h) and let A be the connection form on M defined by the
Levi-Civita connection of (X, ). We consider the Lorentzian metric

The manifold (M, g) is a Lorentzian Einstein-Sasaki spin manifold. The spinor
bundle Sx of (X, h, J) decomposes into the eigenspaces S; of the Kéhler form
w to the eigenvalues ki :

Sx = S_im ® S—im+2i ® S—mit4i @ ... ® Smi—2i D Smi-

The spinor bundle Sy of (M, g) is isomorphic to the lift 7*Sx. There exist
global sections 1) in the line bundles 7*S¢,,; C Sas which are imaginary Killing

spinors to the Killing number )\, := (—1)me™*1, / Wﬁﬁl)i e ==+1.

The above described construction is a special case of an investigation of I.Kath
in the general pseudo-Riemannian situation (see [Kat99]), which extends the
results of Ch. Bér ([B&r93]) concerning the Riemannian case. If M is a simply
connected pseudo-Riemannian manifold such that the holonomy group of the
cone of M is contained in one of the groups H listed in Table 1 or in some
of the other non-compact real forms corresponding to these groups, then M
admits Killing spinors and the special geometry of the cone, defined by the
holonomy, defines a special geometry on M.

Finally, let us give an example of a Lorentzian manifold with imaginary Killing
spinors, which is non-Einstein : Let (F,h) be a Riemannian manifold with
holonomy in SU(m), Sp(m), Gy or Spin(7) and let f : F xR — R be a
smooth function. We consider the manifold M = R? x F with the metric

Qu,st,x = 62“(—2d8dt + f(s, (I;)dsz + hg) + du?.
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Then (M, g) is a Lorentzian manifold with imaginary Killing spinors which is
Einstein if and only if the functions f(s,-) : F' — R are harmonic for all s.

7. Lorentzian manifolds with real Killing spinors

Lorentzian manifolds with real Killing spinors were studied by Ch. Bohle in
[Boh99]. Similarily to the case of imaginary Killing spinors Lorentzian mani-
folds with real Killing spinors can be obtained by warped product construc-
tions out of Riemannian ones : It is easy to check that the warped product

F xgl:=(Fx1I,g=0%h+edt?)

has real Killing spinors to the Killing number X iff (up to coordinate transfor-
mations) one of the cases of the following Table 2 occur.

case | (F,h) I o €

1 Riemannian manifold with real Killing spinor R cosh2At | 1
to the Killing number A

2 Riemannian manifold with parallel spinor R e 1

3 Riemannian manifold with imaginary Killing | (0,00) | sinh2X¢ | 1
spinor to the Killing number i\

4 Lorentzian manifold with real Killing spinor | (7, 7%) | cosAt | —1
to the Killing number A

TAB. 2

On the other hand, each Lorentzian manifold with real Killing spinors has
locally such a warped product structure.
Let us denote by u :=< ¢, p >€ C*°(M) the length function of a spinor field
¢ and by @, the function

Qyp = u? + Q(Vnpa Vnp)-
Now, let ¢ be a real Killing spinor. Then V, is a closed conformal vector field
and grad(u) = —2AV,, # 0. Hence, the level sets of u define a foliation of M
into submanifolds of codimension 1. Furthermore, the function @, is constant
on M. Since g(V,,,V,) < 0 we have Q, < u?. All level sets with u? > @Q,, are
timelike submanifolds, those with u? = Q, are degenerate. Let p € M be a
point where V,,(p) is timelike, then around the point p the manifold (M, g) is
locally isometric to the following warped product
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~Q, <0 : casel of Table 2
-~ Q,=0: case2of Table 2
~Qu, >0 : case 3 of Table 2

In particular, (M, g) is an Einstein manifold.

For a complete Lorentzian manifold one can prove, that the length function
u : M — R is surjective. Hence, on a complete Lorentzian manifold the first
integral ), is nonpositive. Using the results about parallel and Killing spinors
in the Riemannian situation ((BFGK91], [Bar93], [Wan89], we obtain the
following Splitting Theorem for complete Lorentzian manifolds in the presence
of Killing spinors

Proposition 7.1. — Let (M™,g) be a complete, connected Lorentzian mani-
fold carrying a real Killing spinor ¢ to the Killing number X.

1. Q, < 0. Then (M,g) is of constant sectional curvature or is (up to a
rescaling of the metric) globally isometric to the warped product

(F x R, (cosht)? h — dt?),

where (F,h) is a complete Riemannian manifold which is covered by a
simply connected Einstein-Sasaki manifold (n = 2k), 3-Sasaki manifold
(n = 4k), nearly Kdhler, non-Kdahler manifold (n = 7) or a manifold
admitting a nearly parallel Go-structure (n = 8).

2. Q, =0. Then {u = 0} is a degenerate hypersurface. (M, g) is of constant
sectional curvature or M \ {u = 0} is globally isometric to the disjoint
union of warped products

(F} x R,eMhy — dt?) U (Fy x R, e hy — dt?),

where (F1,h1) and (Fa, h2) are complete Riemannian manifolds which
are covered by products of simply connected manifolds with holonomy

SU(m), Sp(m), Ge, Spin(7) or {1}.

We conjecture that the first integral (), = 0 can only occur on manifolds
with constant sectional curvature. For example, each spinor field ¢ on the
3-dimensional spaceform S*! of sectional curvature 1 has the first integral

Q, = 0.
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