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Abstract
After making somegeneral remarks, I consider two examplesthat illustratethe
use of Bayesian Probability Theory. The first is a simple one, the physicist’s
favourite ‘ toy,’ that provides a forum for a discussion of the key conceptual
issue of Bayesian analysis: the assignment of prior probabilities. The other
example illustrates theuseof Bayesian ideas in the real world of experimental
physics.

1. INTRODUCTION

“We don’t know all about the world to start with; our knowledge by experience consists
simply of a rather scattered lot of sensations, and we cannot get any further without some a
priori postulates. My problem is to get thesestated as clearly aspossible” .

Sir Harold Jeffreys, in a letter to Sir Ronald Fisher dated 1 March 1934.

Scientific inference has led to the surest knowledge we have, yet, paradoxically, there is still
disagreement about how to perform it. The disagreement is both within as well as between camps, the
principal ones being frequentist and Bayesian. If pressed, the majority of physicists would claim to
belong to the frequentist camp. In practice, webelong to both camps: weare frequentistswhen wewish
to appear ‘objective,’ but Bayesian when to be otherwise is either too hard, or makes no sense. Until
fairly recently, relatively few of us have been party to the frequentist Bayesian debate. And society is
all the better for it! It is our pragmatism that has cut through the Gordian knot and allowed scientific
progress. However, we find ourselves performing ever more complex inferences that, in some cases,
have real world consequences and we can no longer regard the debate as mere philosophical musings.
Indeed, this workshop is a testimony to this loss of innocence.

All parties appear, at least, to agree on one thing: probability theory is a reasonable basis for a
theory of inference. But notice the use of the word ‘ reasonable.’ That word highlights the chief cause
of the disagreement: any theory of inference is inevitably subjective in the following sense: what one
person regards as reasonable may be considered unreasonable by another and, unlike scientific theories,
wecannot appeal to Nature to decidewhich of themany inference theories isbest, nor which criteriaare
to beused. I used to think that biased estimates werebad. But whilesomeof usstrivemightily to create
them, others look on bewildered, wondering why on earth we work so hard to achieve a characteristic
they consider irrelevant.

Physicists, quite properly, are deeply concerned about delivering to the world objective results.
Therefore, anything that openly declaresitself to besubjectiveisviewed with suspicion. SinceNeyman’s
theory of inference is billed as objective many of us regard it as reasonable and the Bayesian theory as
unfit for scientific use. However, when one scrutinizes the Neyman theory, its ‘objectivity’ proves to be
of avery peculiar sort, as I hopeto show. I then discussthedifficult issueof prior probabilitiesby way of
asimplemodel. In the last section, I describea realistic Bayesian analysis to illustrateapoint: Bayesian
methodsarenot only fit for scientific use, they areprecisely what isneeded to makemaximal useof data.

But first herearesomeremarks about probability.
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1.1 What is probability?

Probability theory isamathematical theory about abstractionscalled probabilities. Therefore, to put this
theory to work we are obliged to interpret these abstractions. At least three interpretations have been
suggested:� propensity (Popper)� degreeof belief (Bayes, Laplace, Gauss, Jeffreys, deFinetti)� relative frequency (Venn, Fisher, Neyman, von Mises).

In parenthesesI havegiven thenamesof afew of theproponents. According to Karl Popper, an unbiased
coin, when tossed, has a propensity of 1/2 to land heads or tails. The 1/2 is claimed to be a property
of the coin. According to Laplace, probability is a measure of the degree of belief in a proposition:
given that you believe the coin to be unbiased your degree of belief in the proposition “ the coin will
land heads” is 1/2. Finally, according to Venn, if the coin is unbiased the relative frequency with which
headsappears in an infinitesequenceof coin tosses is1/2. Venn seemsto have theedgeon theother two
interpretations since it is a matter of experience that a coin tossed repeatedly lands heads about 1/2 the
time as the number of tosses, that is, trials, increases. Every physicist who performs repeated controlled
experiments, either real ones or virtual ones on a computer, provides overwhelming evidence in support
of Venn’s interpretation.

So, which is it to be: degree of belief or relative frequency? The answer, I believe, is both, which
prompts another question: is one interpretation more fundamental than the other and if so which? The
answer is yes, degree of belief. It is yes for two very important reasons: one is practical the other
foundational. The practical reason is that we use probability in a much broader context than that to
which the relative frequency interpretation pertains. It has been amply demonstrated that we perform
inferential reasoning according to rules that are isomorphic to those of probability theory. Any theory
of inference that dismisses the ‘degree of belief ’ interpretation would be expected to suffer a severely
restricted domain of applicability relative to the large domain in which probability is used in everyday
life.

Thesecond reason is that theVenn limit—theconvergenceof the ratio of thenumber of successes
to the number of trials—cannot be proved without appealing to the notion of degree of belief [1]. The
issue here is one of epistemology. Empirical evidence, even when overwhelming, does not prove that
a thing is true; only that it is very likely, which is just another way of saying it is very probable. It
is easy to see why a mathematical proof, as commonly understood, cannot be established. Consider a
sequence of trials to test the Standard Model. Suppose each trial to be a proton–antiproton collision at
the Tevatron. Each trial ends in success (a top quark is created) or failure. Let

�
be the number of trials

and � thenumber of successes. Given the top quark mass, theStandard Model predicts theprobability �
of successes. The Standard Model, we note, is a quantum theory. Therefore, the sequence of successes
is strictly non-deterministic, in a sense in which a coin toss and a pseudo-random number generator are
not.

However, a necessary (but of course not sufficient) basis for a mathematical proof of convergence
of a sequence to a limit is the existence of a rule that connects term

�����
deterministically to

�
. But

for quantum theory it is believed that no such rule exists. What can be and has been proved, by several
peoplestarting with James Bernoulli, is this:

If theorder of trials isunimportant (that is, thesequenceof trials isexchangeable), and if the
probability of success at each trial is the same, then �	� ��
 � , as

��
�

with probability

one.

At this point, I can adopt two attitudes regarding this theorem: one is that clarity of thought is a virtue;
the second is that clarity of thought is nice but less important than pragmatism. As a pragmatist I would
say that this theorem proves that the Venn limit exists. But in this case I prefer clarity. Let us, therefore,
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be clear about what this theorem actually proves and what it does not. Bernoulli’s theorem does not
prove that �	� � converges to � . Rather it is a statement about 1) the probability that �	� � converges to� as 2) the number of trials increases without limit, provided that 3) the order of trials does not matter
and that 4) the probability at each trial is the same. Lurking behind these four seemingly innocuous
statements are deep issues that are far beyond the scope of what I wish to say in this paper. Let me just
note that the word ‘probability’ occurs twice in the statement of Bernoulli’s theorem. If we insist that
all probabilities are relative frequencies then we would have to interpret ‘probability of success at each
trial’ and ‘probability one’ as the ‘ limit with probability one’ of other exchangeable sequences in order
to beconsistent. This leads into theabyssof an infinitely recursivedefinition. Doubtless, von Miseswas
well aware of this difficulty, which may be why he took the existence of the Venn ‘ limit’ as an axiom.
However, even if one is prepared to accept this axiom, I do not think it circumvents the epistemological
difficulty of defining a thing, probability, by making useof the thing twice in itsdefinition. AsdeFinetti
[2] puts it

“ In order for the results concerning frequencies to make sense, it is necessary that the con-
cept of probability, and the concepts deriving from it which appear in the statements and
proofs of these results, should have been defined and given meaning beforehand. In par-
ticular, a result which depends on certain events being uncorrelated, or having equal prob-
abilities, does not make sense unless one has defined in advance what one means by the
probabilities of the individual events” .

I agree.

The alternative interpretation of probability is degree of belief. Thus the probability � is our
assessment of theprobability of successat each trial, based on our current stateof knowledge. That state
of knowledge could be informed, for example, by the predictions of the Standard Model. Bernoulli’s
theorem says that if our assessment of the probability of success at each trial is correct, and if our
assessment does not change, then it is reasonable to expect �	� ��
 � as

��
�

.

But what if our assessment, initially, is incorrect? This poses no difficulty. As our state of knowl-
edge changes, by virtue of data acquired, our assessment of the probability of success changes accord-
ingly. Bayes’stheorem showshow thedegreeof belief of acoherent reasoner will beupdated to thepoint
where it closely matches the relative frequency �	� � .

1.2 Neyman’s theory

Neyman rejected the Bayesian use of Bayes’s theorem arguing that the prior probability for a parameter
‘hasno meaning’ when thelatter isan unknown constant. Hefurther argued that even if theparametersto
beestimated could beconsidered asrandom variables, weusually do not know theprior probability. With
thebenefit of hindsight, wecan seethat theseargumentsbetray aconfusion about of thenotion of degree
of belief. Jeffreys [1] frequently lamented the failure of his contemporaries to really understand what he
wastalking about. I would note that even amongst this illustriousgathering theconfusion persists. So let
mebelabour apoint: when oneassignsaprobability to aparameter it isnot becauseonedeemsit sensible
to think of the parameter as if it were a random variable—this is clearly nonsense if the parameter is in
fact a constant. The probability assignments merely encode one’s knowledge (or that of an idealized
reasoner) of thepossiblevalues of theparameter.

In his classic paper of 1937 [3], Neyman introduced his theory of confidence intervals, which he
believed provided an important element of an objective theory of inference. He not only specified the
property that confidence intervals had to satisfy but he also gave a particular rule for constructing them,
although he left considerable freedom that can be creatively exploited [4]. Neyman’s theory is elegant
and powerful. Nonetheless, his theory is open to criticism. But in order to raise objections we need to
understand what Neyman said.
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Imagine an ensemble of trials, or experiments, ����� to each of which we associate an interval� � � ����� ��� ����� . The ensemble of experiments yields an ensemble of intervals. Neyman required the en-
sembleof confidence intervals to satisfy the following condition:

For every possible fixed point
��� ��� � in the parameter space of the problem, where

�
is the

parameter of interest and � denotes all other parameters of theproblem

!#"%$'& � �)(*� � � ���%� ��� ���+�,�.-0/21 (1)

According to Neyman this probability is to be interpreted as a relative frequency. Thus, any set of
intervals isan ensembleof confidence intervals if the relative frequency with which the intervalscontain
the point

�
is greater than or equal to / , for every possible fixed point in the parameter space regardless

of its dimensionality. Neyman’s idea is intuitively clear: an interval picked at random from such an
ensemble, theproverbial urn of sampling theory, will havea

��3'3 / % chanceof containing thefixed point�
, whatever thevalueof

�
and � . This is a remarkable requirement. Here is an example.

Suppose we wish to measure a cross-section. Our inference problem depends upon the following
parameters: the cross-section 4 , the efficiency 5 , the background 6 and the integrated luminosity 7 .
Consider a fixed point

� 48��59��6:�;7<� in the parameter space. To this point we associate an ensemble of
confidence intervals, induced by an ensemble of possible experimental results. Some of these intervals� 4 � ����� 4 � ����� will contain 4 , others will not. The fraction of intervals, in the ensemble, that contain 4 is
called the coverage probability of the ensemble of intervals. A coverage probability is associated with
every point

� 48��59��6:��7=� of theparameter space. Moreover, thevalueof thecoverageprobability may vary
from point to point. Neyman’s key idea is that the ensembles of intervals should be constructed so that,
over the allowed parameter space, the coverage probability never falls below some number / , called the
confidence level. Both the coverage probability and the confidence level are to be interpreted as relative
frequencies.

The parameter space and its set of ensembles form what mathematicians call a fibre bundle. The
parameter space is the base space to each point of which is attached a fibre, that is, another space, here
the ensemble of intervals associated with that parameter point. Each fibre has a coverage probability,
and none falls below the confidence level / . Since the fibres may vary in a non-trivial way from point
to point it is not possible, in general, to construct the fibre bundle as a simple Cartesian product of the
parameter space and a single ensemble of intervals. In general, a non-trivial fibre bundle is the natural
mathematical description of Neyman’s construction. Well natural if, like me, you like to think of things
geometrically!

There are two difficulties with Neyman’s idea. The first is technical. For one-dimensional prob-
lems, or for problems in which wewish to set boundson all parameterssimultaneously, theconstruction
of confidence intervals is straightforward. But when the parameter space is multi-dimensional and our
interest is to set limits on a single parameter, no general algorithm is known for constructing intervals.
That is, no general algorithm is known for eliminating nuisance parameters. In our example, we care
only about the cross-section; we have no interest in setting bounds on the integrated luminosity. What
we do, in practice, is to replace the nuisance parameters with their maximum likelihood estimates. The
justification for this procedure is the following theorem:

>)?A@ $'BDCFE �+GIH � �	J�K�CFE �+GIH J� �	J�K�

MLON � (2)

as the data sample
G

grows without limit, and provided that the maximum likelihood esti-
mates J� and J� liewithin theparameter spaceminus its boundary.

If our data sample is sufficiently large its likelihood becomes effectively a (non-truncated) multivariate
Gaussian, and consequently the distribution of the log-likelihood ratio is

L N
. Since that distribution is
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independent of the true values of the parameters, a probability statement about the log-likelihood ratio
can bere-stated asoneabout theparameter

�
. But, and this isthecrucial point, thetheorem issilent about

what to do for small samples. Unfortunately, wehigh-energy physicists insist on looking for new things,
so our data samples are often small. So what are we, in fact, to do? We must after all publish. Today,
with our surfeit of computer time, wecan contemplateabrute-forceapproach: start with an approximate
set of intervals, computed using Eq. (2), and adjust them iteratively until they make Neyman happy. But
becauseof thesecond difficulty that I now discuss, theeffort seems hardly worth the trouble.

The second difficulty is conceptual. It has been argued at this workshop, and elsewhere [5], that
the set of published 95% intervals constitute a bona fide ensemble of approximately 95% confidence
intervals. Here is the argument. Each published interval is drawn from an urn (that is, an ensemble of
experimentsif you prefer amorecheerful allusion) whoseconfidencelevel is95%. Thefact that each urn
iscompletely different is irrelevant provided that thesampling probability from each is thesame, namely
95%. Thus 95% of the set of published intervals will be found to yield true statements. And herein lies
the beauty of coverage! The flaw in this argument is this: each published interval is drawn from an urn
that does not objectively exist, because the ensemble into which an actual experiment is embedded is
a purely conceptual construct not open to empirical scrutiny. Fisher [6], not known for fawning over
Bayesians, madeasimilar point a long timeago:

“ ... if we possess a unique sample on which significance tests are to be performed, there
is always ... a multiplicity of populations to each of which we can legitimately regard our
sample as belonging; so the phrase ‘ repeated sampling’ from the same population does not
enable us to determine which population is to be used to define the probability level, for no
oneof them has objective reality, all being products of thestatistician’s imagination” .

This is trueof our ensembleof experiments. Consequently, a few troublesomephysicists, bent on giving
theParticleDataGroup ahard time, need merely imagineadifferent set of urnsfrom which thepublished
results could legitimately havebeen drawn and thereby alter theconfidence level of each result!

Of course, the published intervals do have a coverage probability. My claim is that its value is a
matter to bedecided by actual inspection—provided, of course, weknow theright answers! It isnot one
that can be deduced a priori for the reason just given. The fact that I am able to construct ensembles
of confidence intervals on my computer, by whatever procedure, and verify that they satisfy Neyman’s
criterion is certainly satisfying, but in no way does it prove anything empirically verifiable about the
interval I publish. Forgive me for flogging a sincerely dead horse, but let me state this another way:
Since I do not repeat my experiment, any statement to the effect that the virtual ensemble simulated on
my computer mimics the potential ensemble to which my published interval belongs is tantamount to
my claiming that if I were to repeat my experiment, then I would do so such that the virtual and real
ensemblesmatched. Maybe, or maybenot!

To summarize: A frequentist confidence level isaproperty of an ensemble, therefore, itsobjectiv-
ity, or lack thereof, is on apar with theensemble that defines it.

This whole discussion may strike you as a tad surreal, but I think it goes to the heart of the
matter: many physicists, for sensible reasons, reject the Bayesian theory and embrace coverage because
it is widely viewed as objective. But, as argued above, confidence levels may or may not be objective
depending on the circumstances. Therefore, when confronted with a difficult inference problem our
choiceisnot between an ‘objective’ and ‘subjective’ theory of inference, but rather between two different
subjective theories. It may be reasonable to continue to insist upon coverage, but not because it is
objective.

After this somewhat philosophical detour it is time to turn to the real world. But en route to the
real world, lest Bayesiansbegin to feel uncontrollably smug, I’d liketo discussan instructive ‘ toy’ model
that highlights the fact that for aBayesian life ishardly abed of roses [7].
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2. THE PHYSICIST’S FAVOURITE TOY

The typical high-energy physics experiment consists of doing a large number
�

of similar things—
for example, proton–antiproton collisions, and searching for P interesting outcomes—for example, Q;RQ
production. We invariably assume that the order of the collisions is irrelevant and that each interesting
outcome occurs with equal probability. Then we may avail ourselves of the well-known fact that the
probability assigned to P outcomes out of

�
trials, with our assumptions, is binomial. Since P�S.S �

,
this probability can beapproximated by aPoisson distribution

!#" � P H T �;UV�AWYX[Z
\ T	]
P<^ � (3)

and thus do we arrive at the physicist’s favourite toy. The symbol U denotes all prior information and
assumptions that led us to this probability assignment. Here, it is introduced for pedagogical reasons;
to remind us of the fact that all probabilities are conditional. We shall assume that our aim is to infer
something about thePoisson parameter

T
, given that wehaveobserved P events. Just for fun, we’ ll give

this problem to each workshop member. Naturally, being physicists, each of us insists on parametrizing
thisproblem asweseefit, but in theend when wecomparenotesweshall do so in termsof theparameterT

, by transforming to that parameter.

There are, of course, infinitely many ways to parametrize a likelihood function and the Poisson
likelihood is no exception. For simplicity, however, let’s assume that each of us uses a parameter

T`_
related to

T
as follows T`_ W T _ 1 (4)

‘ � ’ for physicist if you like! In terms of theparameter
T`_

Eq. (3) becomes

!#" � P H T`_ �;UV�AWYX[Z
\8a�b+cc T ]ed __
P<^ � (5)

which, wenote, does not alter theprobability assigned to P .

From Bayes’s theorem

!f$�g%h �+T`_iH PA�;UV�AW
!	" � P H T	_ ��Uj� !	"lk $�" �+T`_iH Uj�
\ c !#" � P H T`_ �;UV� !#"ek $'" ��T	_iH Uj� � (6)

each of us can make inferences about our parameter
T _

, and hence
T

. Of course, no one can proceed
without specifying aprior probability

!#"ek $'" ��T`_mH UV� . Unfortunately, being merephysicistswedo not know
what its form should be. But since we are all in the same state of knowledge regarding our parameter,
coherencewould seem to demand that weusethesamefunctional form. So without ashred of motivation
let’s try the following form for theprior probability

!#"ek $'" �+T _ H UV�AW T
Z
n_po T _ 1 (7)

Although this prior is plucked out of thin air, it is actually more general than it appears because, in
principle, q could bean arbitrarily complicated function of � . Now each of usis in aposition to calculate,
assuming that theallowed parameter space for

T _
is
� 3 � 
 � . Weeach find that

!r$�g%h �+T _ H PA�;UV�AWYX[Z
\8a�bscc T ][d _

Z
n_ o T _

�ft � P > �fq � �f� 1 (8)

But as agreed, each of us transforms our posterior probability to theparameter
T

using Eq. (4). Thus we
obtain, from Eq. (8), !f$'g%h ��TuH PA�;UV�AWYX[Z

\ T`]
Z
_ n�v _

Z
w o T

t � P > �fq � �f� 1 (9)
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Unfortunately, something is seriously amiss with the family of posterior probabilities represented by
Eq. 9: each of ushasended up making adifferent inferenceabout thesameparameter

T
! Wecan seethis

moreclearly by computing the E th moment

xzy { \ T
y !f$'g%h ��T|H PA�;UV� (10)

W t � P > �fq � � � E �%��t � P > �iq � �f�A�
of the posterior probability

!f$�g%h �+T|H P<��Uj� . The moments clearly depend on � , that is, on how we have
chosen to parametrize theproblem.

What does a Bayesian have to say about this state of affairs? Is it a problem? I would say yes,
it is. But there are some Bayesians who call themselves ‘subjective Bayesians’ and others who believe
themselves to be ‘objective Bayesians’ . I confess that these terms leave me a bit baffled. The latter
term because it seems to be an oxymoron and the former because it seems to be superfluous. The
fundamental Bayesian pact is this: The prior probability is an encoding of a state of knowledge; as such
it is a subjective construct. That construct may encode one’s personal state of knowledge or belief, and
that’s a fine thing to do and is very powerful. But it may also encode a state of knowledge that is not
specifically yours and that too is just fine. The issue is one of encoding a state of knowledge: Are there
any desiderata that should be respected? The subjectivist is probably inclined to say no: simply choose
the parametrization that makes sense for you and associate a prior, declare it to be supreme, and force
all other priors to differ from yours in just the right way to render an inference about

T
unique. So a

‘subjective’ Bayesian would presumably reject Eq. 7.

I believe that to make headway, we should entertain some further principles. They should not
degenerate into dogmabut should serveas a lantern in thedark. Hereare two possibleprinciples:� Possible Principle 1: For the same likelihood and the same form of prior we should obtain the

same inferences.� PossiblePrinciple2: Themoments of theposterior probability should befinite.

Let’s apply these tentative principles to the moments in Eq. (10). Principle 1 says that each of us should
make thesame inferencesabout

T
, that is, themomentsought not to depend on thewhim of aworkshop

member; it ought not to depend on � . Principle 2 says that xzy S 

. Together these principles imply

that > �fq � �}W�~�� 3 � (11)

where ~ is aconstant. This leads to the following prior

!	"lk $�" �+T`_iH Uj��W T`� d _
Z
w_ o T`_ 1 (12)

But wedidn’t quitemake it; our principlesare insufficient to uniquely specify avalue for theconstant ~ .
Weneed something more. Here issomething more, suggested by Vijay Balasubramanian [8]:� Possible Principle 3: When in doubt, choose a prior that gives equal weight to all likelihoods

indexed by thesameparameters.

That is, imposeauniformprior on thespaceof distributions. Thisrequirement isamuch morereasonable
one (here is that word again) than imposing uniformity on the space of parameters because the space of
distributions is invariant, whereas that of parameters is not. The space of distributions is akin to a space
containing invariant objects like the vectors in a vector space, whereas the parameter space is analogous
to the non-invariant space of vector coordinates. In our case, we impose a uniform prior on the space
inhabited by Poisson distributions. Balasubramanian has shown that a uniform prior on the space of
distributions induces, locally, a Riemannian metric whose invariant measure is determined by the Fisher
information, � . For our toy model the invariant measure is

!#"ek $'" �+T _ H UV�AW�� w d N o T _ � (13)
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where

� �+T`_ ��W > o N @ $'B|!#" � P H T`_ ��Uj�o T N _ 1 (14)

Equation (13) is called the Jeffreys prior. It gives ~zW � � ? and thus uniquely specifies the form of the
prior probability. Possible Principle 3 is a generalization of Possible Principle 1. Thus we conclude
that the prior probability that forces us all to make the same inference, regardless of how we choose to
parametrize theproblem, is !#"ek $'" �+T _ H UV�AW T Z

a��� N Z
_l�_ o T _ 1 (15)

This is all very tidy. However, when Jeffreys [1] applied his general prior probability to the
Gaussian, treating both its mean and standard deviation together, he got a result he did not like. He
thereforesuggested another principle:� Possible Principle 4: If the parameter space can be partitioned into subspaces that a priori are

considered independent, then thegeneral prior should beapplied to each subspaceseparately.

This gavehim aprior he liked. Alas, for aBayesian life is not easy. While the frequentist struggles with
justifying the use of a particular non-objective ensemble, the Bayesian struggles to justify why some set
of additional principles for encoding minimal prior knowledge is reasonable. Meanwhile, the ‘subjective
Bayesian’ says this is all amerechasing after shadows. And so it goes!

3. THE REAL WORLD

The foregoing discussion might suggest to “Abandon all hope, yewho enter” the real world of inference
problems. Fortunately, it is not quite so bleak. The real world imposes some very severe constraints on
what we can reasonably be expected to do. For one thing, the lifetime of a physicist is finite, indeed,
short when compared with theageof theUniverse. Technical resourcesarealso finite. And then there is
competition from fellow physicists. Finally, uncertainty in abundance is the norm. Perhaps with enough
deep thought all inference problems can be solved in a pristine manner. In practice, we are forced to
exerciseamodicum of judgement when undertaking any realistic analysis. Weintroduceapproximations
asneeded, weside-step difficult issuesby accepting someconventionsand werely upon our ability not to
get lost amongst the trees. But when I reflect on what must bedone to measure, say, the top quark mass,
a problem replete with uncertainties in the jet energy scale, acceptance, background, luminosity, Monte
Carlo modelling to name but a few, it strikes me as desirable to have a coherent and intuitive framework
to think about such problems. Bayesian Probability Theory providesprecisely such a framework. More-
over, it is a framework that mitigates our propensity to get confused about statistics when the going gets
tough. Thesecond example I discuss shows that real sciencecan bedone in spiteof prior anxiety [7].

3.1 Measuring the solar neutrino survival probability

It has been known for over a quarter of a century that fewer electron neutrinos are received from the
Sun than expected on the basis of the Standard Solar Model (SSM) [9]–[13]. This is the famous solar
neutrino problem. Figure1 summarizes thesituation asof Neutrino 98. If theSSM iscorrect—and there
is very strong evidence in its favour [14], then the inevitable conclusion is that a fraction of the electron
neutrinos created in the solar core are lost before they reach detectors on Earth. The loss of electron
neutrinos is parametrized by the neutrino survival probability, � ���OH �<��� , which is the probability that a
solar neutrino

�
of energy � � arrives at theEarth.

Several lossmechanismshavebeen suggested, such as theoscillation of electron neutrinos to less
readily observed states such as muon, tau or sterile neutrinos [15, 16]. Many

L N
-based analyses have

been performed to estimate model parameters [17]–[19]. To the degree that a fit to the solar neutrino
data is good, it provides evidence in favour of the particular new physics that has been assumed. From
this perspective, solar neutrino physics is yet another way to probephysicsbeyond theStandard Model.

36



  

Fig. 1: Predictions of the 1998 Standard Solar Model of Bahcall and Pinsonneault relative to data presented at Neutrino 98.

Courtesy J.N. Bahcall.

But I’d like to address a more modest question: What do the data tell us about the solar neutrino
survival probability independently of any particular model of new physics? We can provide a complete
answer by computing the posterior probability of different hypotheses about the value of the survival
probability, for agiven neutrino energy [20, 21]. Our Bayesian analysis iscomprised of four components

� Themodel� Thedata� The likelihood� Theprior

First wesketch themodel. (SeeRef. [20] for details.)

Thesolar neutrino capture rate �m� on chlorineand gallium can bewritten as

�m� W ��� � � ���OH �=����4V� � �<����� � � �<��� o �=��� (16)

where � � is the total flux from neutrino source � , � � is the normalized neutrino energy spectrum and 4j�
is the cross-section for experiment � . The predicted spectrum, plus experimental energy thresholds, are
shown in Fig. 2. The full spectrum consistsof eight components (of which six areshown in Fig. 2), with
total fluxes � w to ��� [11].

The Super-Kamiokande experiment [22] measures the electron recoil spectrum arising from the
scattering of the ��� neutrinos (plus higher energy neutrinos) off atomic electrons. We shall use the
electron recoil spectrum reported at Neutrino 98. The spectrum spans the range 6.5 to 20 MeV. Light
water experiments, like Super-Kamiokande, are sensitive to all neutrino flavours but do not distinguish
between them. There are, therefore, two possibilities: the

���
deficit could be caused by

���
conversions

to
���

, where
G

is either
T

or � . If so the measured neutrino flux would be the sum of these flavours. If,
however, the

�:�
aresimply lost without a trace, for examplebecauseof conversion into sterileneutrinos,

then themeasured flux would becomprised of
� �

only. Like therates for theradiochemical experiments,
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Fig. 2: Solar neutrino energy spectrum as predicted by the Bahcall–Pinsonneault 1998 Standard Solar Model, including the

neutrino energy thresholds for different solar neutrino experiments. Courtesy J.N. Bahcall.

the measured electron recoil spectrum is linear in the neutrino survival probability. The data are shown
in Fig. 3.

For solar neutrino experiments, a reasonable definition of sensitivity is the product of the cross-
section times the spectrum [20]. This quantity is plotted in Fig. 4. Two points are noteworthy: each
experiment issensitiveto different partsof theneutrino energy spectrum and thereareregionsin neutrino
energy where thesensitivity isessentially zero. Weshould anticipate that these factswill constrain what
weareable to learn about theneutrino survival probability from thecurrent solar neutrino data.

Sincewedo not know thecauseof thesolar neutrino deficit, let’sadopt apurely phenomenological
approach to the survival probability. Guided by the results from previous analyses [17]–[19], [23] we
write thesurvival probability as asum of two finiteFourier series:

� ���OH � � �;~���W
�
y���� ~ y v w cos

� E�� � � �'7 w �%� � �I� exp
� � � � > 7 w �%��6��,� (17)

� �y���� ~ y v�� cos
� E�� �<���'7 N �A�

where now we explicitly note the fact that the survival probability depends upon the set of parameters~ . The first term in Eq. (17) is defined in the interval 0.0 to 7 w MeV—and suppressed beyond 7 w by the
exponential. The second term spans the interval 0.0 to 7 N MeV. We have divided the function this way
to model a survival probability that varies rapidly in the interval 0.0 to 7 w and less so elsewhere. The
parameters 7 w , 7 N and 6 areset to 1.0, 15.0 and 0.1 MeV, respectively.

We now consider the likelihood function
!#" �% ¡H ¢ ��Uj� , where

¢
denotes the hypothesis under

consideration. The likelihood is assumed to be proportional to a multi-variate Gaussian £ �% ¡H �	�;¤¥� ,
where

  { ��  w ��1;1�1;�   w � � represents the 19 data—3 rates from the chlorine and gallium experiments
plus16 ratesfrom thebinned Super-Kamiokandeelectron recoil spectrum (Fig. 3); ¤ denotesthe

��¦A§¨�'¦
error matrix for theexperimental dataand � { � � w ��1;1�1;��� w � � represents thepredicted rates.
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The remaining ingredient is the prior probability. First we assess our state of knowledge. There
are two sets of parameters to be considered: the total fluxes

� � w �;1�1�1;�����'� and the survival probability
parameters

� ~ w ��1;1�1;��~ w N � . The hypotheses under consideration concern the values of these two sets of
parameters. The Standard Solar Model provides predictions � � { � � � w ��1;1�1;��� �� � for the total fluxes,
together with estimates of their theoretical uncertainties. So here is an analysis that must deal with
theoretical uncertainties in some sensible way. I do not know how such a thing can be addressed in a
manner consistent with frequentist precepts. For a Bayesian uncertainty is, well, uncertainty, regardless
of provenance; therefore, every sort can be treated identically. We represent our state of knowledge
regarding thefluxesby amulti-variateGaussian prior probability

!#"ek $'" � � H Uj��W­£ � � H � � �;¤¯®°� , where � �
is thevector of flux predictions and ¤¯® is thecorresponding error matrix [11].

Unfortunately, we know very little about the parameters ~ w �;1�1�1;��~ w N , so we shall short-circuit
discussion by taking, asamatter of convention, theprior probability for ~ to beuniform. In practice, any
other plausible choice makes very little difference to our conclusions. We may even find that a uniform
prior for ~ is consistent with thegeneralized Jeffreys prior. Thus wearriveat the following prior for this
inferenceproblem:

!#"ek $'" � ~���� H Uj��W !	"lk $�" � ~ H �¥��Uj� !	"lk $�" � � H Uj� (18)

W o ~ !#"ek $'" � � H UV�A�
where U now includes theprior information from theStandard Solar Model.

Now wecan calculate! Theposterior probability is given by

!f$�g%h � ~���� H   ��Uj�AW
!#" �� ¡H ~j�;�¥��Uj� !#"ek $'" � ~���� H Uj�
��± ® !#" �� ¡H ~j�;�¥��Uj� !#"ek $'" � ~���� H Uj� 1 (19)

But sincewearen’t really interested in thetotal fluxesprobability, theory dictatesthat wejust marginalize
(that is, integrate) them away to arrive at the quantity of interest

!f$�g%h � ~ H   ��Uj� . Actually, what we really
want is theprobability of thesurvival probability for agiven neutrino energy �<� ! That is, wewant

!r$�g%h � � H   ��Uj��W �<² � � > � �%�`H �<���;~j�%� C � ~ H   ��Uj�A1 (20)

Figure 5 shows contour plots of
!f$'g%h � � H   ��Uj� for the two cases considered, conversion to sterile and

activeneutrinos.

Our Bayesian analysis has produced a result that, intuitively, makes a lot of sense. As expected,
given the sensitivity plot in Fig. fig:sensitivity, our knowledge of the survival probability is very un-
certain between 1 and 5 MeV. In fact, the survival probability is tightly constrained in only two narrow
regions: in the

� � X region just below 1 MeV and another at around 8 MeV, near the peak of the � �
neutrino spectrum. For neutrino energies above 12 MeV or so, the survival probability is basically un-
constrained by current data.

4. SUMMARY

It has been claimed by some at this workshop that Bayesian methods are of limited use in physics re-
search. This of course is not true as I hope to have shown. Bayesian methods are, however, explicitly
subjectiveand thismay giveonepausefor thought. I haveargued that frequentist methodsarenot nearly
asobjectiveasclaimed. WhileBayesianscannot avoid theirreduciblesubjectivism of prior probabilities,
frequentists cannot avoid the use of ensembles that do not objectively exist. Frequentists struggle with
any uncertainty that does not arise from repeated sampling, like theoretical errors, while for Bayesians
uncertainty in all its forms is treated identically. On theother hand, someBayesiansstruggle to convince
us that a particular choice of prior is reasonable, while frequentists look on in amusement. The point
is, neither approach is free from warts. But, of the two approaches to inference, I would say that the
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Fig. 5: Survival probability vsneutrino energy assuming theneutrino flux consistsof ·9¸ only (left plot) and ·¹¸ to activeneutrinos

(right plot).

Bayesian one has more to offer, is easier to understand, has greater conceptual cohesion and, the most
important point of all, more closely accords with the way we physicists think [25]. And this is the real
reason why it should beembraced.
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Discussion after talk of Harrison Prosper. Chairman: Matts Roos.

Jacques Bouchez

I wanted to comment on your last example on solar neutrinos. I think in your analysis you miss
an important point. In your approach, I understand that you impose the three components of the solar
neutrino flux to be positive. However, when one does an unconstrained (no bound on flux values) fit on
the experimental data, the best fit that one gets gives a strongly negative flux for the

�
Be component,

which is found 2 to 3 sigmas below zero. In your analysis you can’t find this case, as you restrict fluxes
to be positive. You certainly find the beryllium flux nearly zero, but you miss the point that with your
positivesurvival probabilitiesyou haveavery poor description of thedata. You would get amuch better
description by going to unphysical parameter values, where the beryllium flux is negative. So I don’t
think this analysis is themost powerful to understand the real solar neutrino problem.

H. Prosper

Thephysical point isthat over thepast decadeor so peoplehavebeen using chi-squared techniques
and that’s a problem. Of course, if you use chi-squared techniques, you’re essentially using a likelihood
technique and, if you look at the likelihood, it peaks in an unphysical region. The question is, what
do you do about that? Classically (forget about Bayesian theory), what do you do if your likelihood
peaks in anon-physical region? All theories I’veseen assumethat themaximum likelihood estimate lies
within the parameter space, and if that’s true everything is wonderful, but the fact of the matter is that
the likelihood peaks out here. What people have done is to take the value of the beryllium flux to be
zero. Why? Because if your rule for estimates is ‘ I choose thevalue that maximizes the likelihood’ then
necessarily you must choose the boundaries, so the answer is that the beryllium flux is zero. The fact is
that this isan arbitrary choice, and you still want to havesomeway of quantifying theuncertainty. In the
Bayesian analysis I put in the information that the flux is a positive number. That necessarily influences
my answer and here it is. The answer is that the beryllium flux is very low in this particular case. I want
to be able to put in these boundaries because these are physical conditions, but as soon as you put these
boundarieson aclassical calculation, you can then no longer rely upon all thosewonderful theorems. For
example, there isatheorem that says, if I havealikelihood and I takethelikelihood with someparameter
and divide that likelihood by the maximum likelihood value, and I take minus two times the log of that
ratio, this number is distributed like a chi-squared variate, so I just look up in my tables and I’m done.
As soon as you truncate the space, that theorem goes out of the window, and then we’re left unstuck. So
this is powerful because it allows us to put in constraints up front but the answer you get depends on the
prior probability that you put in. Now is that prior subjective? Well, yes in thesense that I cannot appeal
to Nature to tell me what it is. I can appeal, for example to Bahcall and ask him: “Tell me what do you
think is thedistribution of your uncertainties?” and hegivesmesomedistribution of probability. But for
the other things I assume it to be flat. I’ve no idea whether that’s correct or not, it could be I should do
something else. And that’s inevitable. My point is that I think eventually, if one put enough effort into
thinking, one might be able to find the proper prior. But for the time being we could all agree on some
conventional choices in order for us to make progress. Physics is full of conventions. We all know this,
and I don’t think it is necessarily abad thing.

Michael Woodroofe

I havereally morecommentsthan questions, I hopethat’sOK. First of all theJeffreysprior hasthe
property that the posterior distributions will tend to agree with the frequentist answer in large samples
to a higher order than we’re used to. In almost all cases we get leading normal terms for both. Use of
the Jeffreys prior will match up the second order term (the coefficient of one over root P ) and a lot of

43



  

people like them for that reason. Unfortunately the quality of the approximation tends to break down a
little bit (in fact a lot) as you get into higher and higher dimensions in the parameter space. And that
leads me to my second major comment. The problem of putting a prior on a high-dimensional space is
just an awfully, awfully hard problem. As you point out correctly, to do it subjectively you’ve really got
to think about possiblerelationshipsamong thefifteen different variables, and you don’t really havetime
to do that. I don’t know, but I would not besurprised if it makesasubstantial difference in your analyses
whether you useaflat prior or asquare-root prior.

H. Prosper

For this weactually tried various priors. Therewas hardly any difference.

M. Woodroofe

The last comment is more a quibble than anything else. When you say it has not been proved that
probabilities are relative frequencies, I can deduce that from deFinetti’s theorem.

H. Prosper

Good! My point is in somewaysanaiveone, but this ishow I think about it. Because it’s random,
I have no rule that tells me what the next term in the series is, and from the days when I was learning
about proving theconvergenceof series, I was told that you have to havearule that tellsyou how ½ �2�
is related to ½ . If no such ruleexists, then you haveno operational way of proving limits. But I’m happy
to discover that in fact this is wrong.

Glen Cowan

There’sarelated question of whether thetop massreported in thePDG booklet iscorrect or usable
and so forth. In the particular procedure you’ve done, with a constant prior, the mode of your posterior
distribution coincideswith themaximum likelihood estimate. So in fact thenumbers that are in thePDG
booklet, at least to some approximate extent, summarize the likelihood function which is what Giulio
was just telling us we should do, and which I think the classical statisticians would also tell us that we
do.

H. Prosper

But there is a detail which one should not forget. In Roger Barlow’s method he substitutes for
each of the unknown parameters their maximum likelihood estimate. Here, we integrated over those pa-
rameters, and wedid arough integration over things like theenergy scaleuncertainty, and the luminosity
uncertainty, and the efficiency and so on. There’s no reason that this answer would necessarily agree
with an answer obtained by simply taking the mode of the likelihood for all the parameters that enter
your problem.

G. Cowan

Nevertheless the numbers in the PDG book summarize in some way the likelihood functions, is
that not correct? I want to make one other comment and that is it seems to me that taking a flat prior
for something like top mass is contrary to the philosophy of using subjective input. You certainly don’t
believe that, subjectively, the probability the top mass is between 100 and 200 GeV is equal to the
probability that it’s between a million and a million and a hundred. I see that you need a solution that
you can implement simply, so you take a flat prior. That seems to run very contrary to the philosophy
that you started with.
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Carlo Giunti

About the solar neutrinos. I think that what you did is very interesting. However, I don’t under-
stand what is the use of this probability that you derived, because usually the probability is confronted
with the quantum mechanically calculated probability in order, for example, to get information on neu-
trino mass mixing etc. But the quantum mechanical probability is different from the Bayesian. It is
a frequentist probability, so I guess that you cannot confront the Bayesian probability with quantum
mechanics.

H. Prosper

On the contrary. This summarizes what I know about the neutrino survival probability and the
accuracy with which this isknown, given the1998 datafrom thevariousexperiments. So when someone
comes along with a new theory that explains neutrino disappearance, they could take this probability
and use it to determine the parameters of that theory. They will not have to go back and analyse all the
experiments, they will simply take thisasastarting point and from thisdeterminesay

gek ¾ N � ? � � and what
haveyou. It isoften said that quantum mechanicsproves that probability isa relative frequency. There’s
a chicken and egg problem here. We have to first of all prove quantum mechanics, which is what we all
havebeen doing for acentury. Theway wedo it in a real experiment, is that wehave lotsof collisions, I
count how many events I get, and then I have to go backwards, I have to then infer something about the
theory, and to do so, I have to makesomeassumptions. You can simply assumeup front that probability
is frequency, but it’s an assumption. The theory does not say that probability is a frequency. The theory
says that I have amplitudes, I square them and the result is the relative frequency with which this thing
or that thing occurs. My job as an experimentalist is to try and measure the relative frequencies. To do
that I need to makesomeassumptions. Otherwise I cannot even start.

C. Giunti

My guess is that you propose to change the definition of probability of quantum mechanics. That
would bea revolution.

H. Prosper

Not at all. I am simply asserting that what the theory actually containsareamplitudesand strange
rules for combining them. When those things are combined and the square is taken of those combined
amplitudes, what is given is relative frequency. That is something I can measure, the number of events
and the number of trials and I can take the ratio of these. The relation between that ratio and the mathe-
matical theory of probability issomething that requiresinterpretation. You can’t get around that problem.
It’s recognized by everyone in fact, by Fisher, Venn, Von Mises, everyone who has worked on this rec-
ognized that it requires an interpretation. Mathematical theory is an abstraction and to use it requires
that you interpret what this abstraction is, and some people claim that they have been able to prove cer-
tain things and others can prove other things, and you require it to be interpreted. It doesn’t come from
experiment. That’s simply as astatement of epistomology that’s not correct.

L. Lyons

I haveaquestion for thefrequentists in theaudience. Harrison said that frequentistscan’t takeinto
account theoretical errors, and I wonder if any frequentists would like to say something about that.
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R. Cousins

I’m going to mention this in my talk this afternoon because it is a problem. That is, you really
have to stretch your definition of frequency right to parallel universesor something. I don’t think it’sour
biggest practical problem with theoretical errors. Thebiggest practical problem with theoretical errors is
getting the theorists to quantify the error according to any definition of probability, including the degree
of belief.

Fred James

I found your attitude about priors a little ambiguous, whether you want to use objective priors or
subjective priors. You gave a lot of argument for why some priors are objectively better than others, but
can you clarify this a little?

H. Prosper

The fact of the matter is we use judgement. That’s just a true statement I believe. But I try to
avoid classifying these priors as objective or subjective, partly because I don’t actually know what these
words mean in that context. When you say ‘subjective’ , do you mean a prior that is my own personal
opinion, or do you mean a prior that is the opinion of the D0 collaboration, arrived at by who shouted
loudest? Or do you mean it’s the opinion of the PDG? My stance is this - I don’t really care whether it’s
described as objective or subjective, my point simply is that in order to derive a prior, you have to start
with some subjective criteria. Once these criteria are stated, if you have enough mathematical energy,
you can deriveaprior. Whether you call what you derivesubjectiveor objective isamatter of definition,
but you have to start with somesubjectivecriteria. That’s all I’m saying.

Don Groom

Why isn’t your prior in the case of the D0 top measurement, the Gaussian defined by the CDF
Collaboration?

H. Prosper

In fact, that’s how we combined our results. The thing about Bayes’s theorem which is very nice
as you all know, is that you can multiply likelihoods. That’s what we did to get the final number for the
Tevatron. But, it doesn’t matter how many likelihoodsyou combine, you can combinean infinitenumber,
at the very end there is a prior sitting there. You cannot escape, you cannot get round the problem. We
are going to measure the top mass again in run 2, and some of us are going to use run 1 as a prior to
combine with the next experiment, but still lurking at the end of this long chain of likelihoods is a prior
that you cannot get rid of, if you insist on using this approach. Essentially that is exactly what we did,
wesat down and wecombined likelihoods, but that doesn’t eliminate theneed for aprior.

Roger Barlow

Can I just point out assomebody should, that in this talk wehad aprior which wasuniform in the
mass of the particle, in the previous talk we had a prior which was uniform in the log of the mass of the
particle. Can I ask Harry, and you must havedone this, if you had taken aprior which wasnot flat in the
mass but flat in the mass squared, or flat in the log of the mass, how much difference does that make —
arewe talking 1 MeV or one-tenth of an MeV or amillionth of an MeV?
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H. Prosper

We haven’t done that, and one reason why we didn’t do it is because in the published analysis the
calculation isdoneat discrete top masses that werun from from 110 to 240 GeV in stepsof 5 GeV. Now,
if you take this discreteset, and you argue that you don’t know what the prior is, then even if you had in
fact used the square of the top mass, or the log of the top mass, you still arrive at the same conclusion.
What wecan try to do to answer your question is to try to do thecalculation whereweassumeasmooth
function for the top mass, and just see what we get. My guess, just from experience, is that the answer
will not bevery different from what wepublished, but this is aguess.

L. Lyons

With theproblem of the top massyou’remeasuring something which wasas I remember
��¿'À=Á2À

.
Altogether theregion of interest isnot all that big around 175, so I would guess, asyou say, that theprior
is not very important. However, when one is talking about limits which extend down to zero, that is the
placewhereone really has to worry about theprior I would guess.

H. Prosper

I agree with you, that’s where it really makes a big difference, but my point simply is that it’s not
different in kind because theprior still existswhether you havezero eventsor 1000 events. In onecase it
affects your answer more than in theother, but theproblem is still there.

Jim Linnemann

That wasthecontext in which wewere looking at familiesof priors, to try to examinethequestion
of thedependenceof upper limits on which prior you chose.

Fred James

Just a comment on this question of how we define probability. That is still very important and my
point of view is that the probability of quantum mechanics, as has been stated before, is a frequentist
probability. I don’t seeany problem of interpretation here. Probability in our model of quantum mechan-
ics is a long-term frequency. For example, the branching ratio of the Â � to � � Z is the probability that
the next Â � will decay to � � Z , and whether we have measured it or not, it is going to be the long-term
frequency. That’s our model and everyonebelieves that.

H. Prosper

Interesting point. One thing I’ve learned from Fred, after a long association, is that it’s a good
thing to go back to original papers. When Max Born introduced the ideathat squaring this funny number
is a probability, that’s all he said: “ It’s a probability” . He didn’t say that this is the relative frequency or
the degree of belief, he simply said that this is the probability for this thing to happen, and it’s an extra
step wehave to make to say that this probability is oneof these things that havebeen stated.
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