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Abstract

After making some general remarks, | consider two examplesthat illustrate the
use of Bayesian Probability Theory. The first is a simple one, the physicist’s
favourite ‘toy, that provides a forum for a discussion of the key conceptual
issue of Bayesian analysis. the assignment of prior probabilities. The other
exampleillustrates the use of Bayesian ideasin the real world of experimental
physics.

1. INTRODUCTION

“We don't know all about the world to start with; our knowledge by experience consists
simply of arather scattered lot of sensations, and we cannot get any further without some a
priori postulates. My problem isto get these stated as clearly as possible”.

Sir Harold Jeffreys, in aletter to Sir Ronald Fisher dated 1 March 1934.

Scientific inference has led to the surest knowledge we have, yet, paradoxically, there is still
disagreement about how to perform it. The disagreement is both within as well as between camps, the
principal ones being frequentist and Bayesian. If pressed, the mgjority of physicists would claim to
belong to the frequentist camp. In practice, we belong to both camps. we are frequentists when we wish
to appear ‘objective; but Bayesian when to be otherwise is either too hard, or makes no sense. Until
fairly recently, relatively few of us have been party to the frequentist Bayesian debate. And society is
al the better for it! It is our pragmatism that has cut through the Gordian knot and allowed scientific
progress. However, we find ourselves performing ever more complex inferences that, in some cases,
have real world consequences and we can no longer regard the debate as mere philosophical musings.
Indeed, this workshop is atestimony to this loss of innocence.

All parties appear, at least, to agree on one thing: probability theory is a reasonable basis for a
theory of inference. But notice the use of the word ‘reasonable’ That word highlights the chief cause
of the disagreement: any theory of inference is inevitably subjective in the following sense: what one
person regards as reasonable may be considered unreasonable by another and, unlike scientific theories,
we cannot appeal to Nature to decide which of the many inference theoriesis best, nor which criteriaare
to be used. | used to think that biased estimates were bad. But while some of us strive mightily to create
them, others look on bewildered, wondering why on earth we work so hard to achieve a characteristic
they consider irrelevant.

Physicists, quite properly, are deeply concerned about delivering to the world objective results.
Therefore, anything that openly declaresitself to be subjectiveis viewed with suspicion. Since Neyman's
theory of inference is billed as objective many of us regard it as reasonable and the Bayesian theory as
unfit for scientific use. However, when one scrutinizes the Neyman theory, its ‘ objectivity’ provesto be
of avery peculiar sort, as | hope to show. | then discuss the difficult issue of prior probabilities by way of
asimple model. In the last section, | describe aredlistic Bayesian analysisto illustrate a point: Bayesian
methods are not only fit for scientific use, they are precisely what is needed to make maximal use of data.

But first here are some remarks about probability.
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1.1 What isprobability?

Probahility theory is a mathematical theory about abstractions called probabilities. Therefore, to put this
theory to work we are obliged to interpret these abstractions. At least three interpretations have been
suggested:

e propensity (Popper)

e degree of belief (Bayes, Laplace, Gauss, Jeffreys, de Finetti)

e relative frequency (Venn, Fisher, Neyman, von Mises).

In parentheses | have given the names of afew of the proponents. According to Karl Popper, an unbiased
coin, when tossed, has a propensity of 1/2 to land heads or tails. The 1/2 is claimed to be a property
of the coin. According to Laplace, probability is a measure of the degree of belief in a proposition:
given that you believe the coin to be unbiased your degree of belief in the proposition “the coin will
land heads’ is 1/2. Finally, according to Venn, if the coin is unbiased the relative frequency with which
heads appears in an infinite sequence of coin tossesis 1/2. Venn seems to have the edge on the other two
interpretations since it is a matter of experience that a coin tossed repeatedly lands heads about 1/2 the
time as the number of tosses, that is, trials, increases. Every physicist who performs repeated controlled
experiments, either real ones or virtual ones on a computer, provides overwhelming evidence in support
of Venn'sinterpretation.

So, whichiisit to be: degree of belief or relative frequency? The answer, | believe, is both, which
prompts another question: is one interpretation more fundamental than the other and if so which? The
answer is yes, degree of belief. It is yes for two very important reasons. one is practica the other
foundational. The practical reason is that we use praobability in a much broader context than that to
which the relative frequency interpretation pertains. It has been amply demonstrated that we perform
inferential reasoning according to rules that are isomorphic to those of probability theory. Any theory
of inference that dismisses the ‘degree of belief’ interpretation would be expected to suffer a severely
restricted domain of applicability relative to the large domain in which probability is used in everyday
life.

The second reason is that the Venn limit—the convergence of the ratio of the number of successes
to the number of trials—cannot be proved without appealing to the notion of degree of belief [1]. The
issue here is one of epistemology. Empirical evidence, even when overwhelming, does not prove that
athing is true; only that it is very likely, which is just another way of saying it is very probable. It
is easy to see why a mathematical proof, as commonly understood, cannot be established. Consider a
sequence of trials to test the Standard Model. Suppose each tria to be a proton—antiproton collision at
the Tevatron. Each trial ends in success (atop quark is created) or failure. Let 7" be the number of trials
and S the number of successes. Given the top quark mass, the Standard Model predicts the probahility p
of successes. The Standard Model, we note, is a quantum theory. Therefore, the sequence of successes
is strictly non-deterministic, in a sense in which a coin toss and a pseudo-random number generator are
not.

However, a necessary (but of course not sufficient) basis for amathematical proof of convergence
of a sequence to a limit is the existence of arule that connects term 7" + 1 deterministically to 7'. But
for quantum theory it is believed that no such rule exists. What can be and has been proved, by several
people starting with James Bernoulli, is this:

If the order of trialsisunimportant (that is, the sequence of trialsis exchangeable), and if the
probability of success at each tria is the same, then S/T" — p, asT" — oo with probability
one.

At this point, | can adopt two attitudes regarding this theorem: one is that clarity of thought is a virtue;
the second is that clarity of thought is nice but less important than pragmatism. As a pragmatist | would
say that this theorem proves that the Venn limit exists. But in this case | prefer clarity. Let us, therefore,
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be clear about what this theorem actually proves and what it does not. Bernoulli’s theorem does not
prove that S/T converges to p. Rather it is a statement about 1) the probability that S/T" converges to
p as 2) the number of trials increases without limit, provided that 3) the order of trials does not matter
and that 4) the probability at each tria is the same. Lurking behind these four seemingly innocuous
statements are deep issues that are far beyond the scope of what | wish to say in this paper. Let me just
note that the word ‘ probability’ occurs twice in the statement of Bernoulli’s theorem. If we insist that
al probabilities are relative frequencies then we would have to interpret ‘ probability of success at each
trial’ and ‘ probability one’ as the ‘limit with probability one' of other exchangeable sequences in order
to be consistent. Thisleads into the abyss of an infinitely recursive definition. Doubtless, von Mises was
well aware of this difficulty, which may be why he took the existence of the Venn ‘limit’ as an axiom.
However, even if oneis prepared to accept this axiom, | do not think it circumvents the epistemol ogical
difficulty of defining athing, probability, by making use of the thing twicein its definition. As de Finetti
[2] putsit

“In order for the results concerning frequencies to make sense, it is hecessary that the con-
cept of probability, and the concepts deriving from it which appear in the statements and
proofs of these results, should have been defined and given meaning beforehand. In par-
ticular, a result which depends on certain events being uncorrelated, or having equal prob-
abilities, does not make sense unless one has defined in advance what one means by the
probabilities of the individual events”.

| agree.

The dternative interpretation of probability is degree of belief. Thus the probability p is our
assessment of the probability of success at each trial, based on our current state of knowledge. That state
of knowledge could be informed, for example, by the predictions of the Standard Model. Bernoulli’s
theorem says that if our assessment of the probability of success at each tria is correct, and if our
assessment does not change, then it is reasonable to expect S/T" — pasT — oc.

But what if our assessment, initially, isincorrect? This poses no difficulty. Asour state of knowl-
edge changes, by virtue of data acquired, our assessment of the probability of success changes accord-
ingly. Bayes'stheorem shows how the degree of belief of a coherent reasoner will be updated to the point
whereit closely matches the relative frequency S/T.

1.2 Neyman’'stheory

Neyman rejected the Bayesian use of Bayes's theorem arguing that the prior probability for a parameter
“has no meaning’ when the latter isan unknown constant. He further argued that even if the parametersto
be estimated could be considered as random variables, we usually do not know the prior probability. With
the benefit of hindsight, we can see that these arguments betray a confusion about of the notion of degree
of belief. Jeffreys[1] frequently lamented the failure of his contemporaries to really understand what he
was talking about. | would note that even amongst thisillustrious gathering the confusion persists. So let
me belabour apoint: when one assigns a probability to aparameter it is not because one deemsit sensible
to think of the parameter asif it were arandom variable—this is clearly nonsense if the parameter isin
fact a constant. The probability assignments merely encode one’s knowledge (or that of an idealized
reasoner) of the possible values of the parameter.

In his classic paper of 1937 [3], Neyman introduced his theory of confidence intervals, which he
believed provided an important element of an objective theory of inference. He not only specified the
property that confidence intervals had to satisfy but he also gave a particular rule for constructing them,
although he left considerable freedom that can be creatively exploited [4]. Neyman's theory is elegant
and powerful. Nonetheless, his theory is open to criticism. But in order to raise objections we need to
understand what Neyman said.
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Imagine an ensemble of trials, or experiments, { £’} to each of which we associate an interval
[0(F),0(F)]. The ensemble of experiments yields an ensemble of intervals. Neyman required the en-
semble of confidence intervals to satisfy the following condition:

For every possible fixed point (0, ) in the parameter space of the problem, where 6 is the
parameter of interest and « denotes all other parameters of the problem

Prob{6 € [0(E),B(E)]} > 8. 1)

According to Neyman this probability is to be interpreted as a relative frequency. Thus, any set of
intervalsis an ensemble of confidence intervalsif the relative frequency with which the intervals contain
the point @ is greater than or equal to 3, for every possible fixed point in the parameter space regardliess
of its dimensionality. Neyman's idea is intuitively clear: an interval picked at random from such an
ensemble, the proverbia urn of sampling theory, will have a 1003% chance of containing the fixed point
0, whatever the value of # and «.. Thisis aremarkable requirement. Here is an example.

Suppose we wish to measure a cross-section. Our inference problem depends upon the following
parameters. the cross-section o, the efficiency ¢, the background b and the integrated luminosity L.
Consider a fixed point (o, €,b, L) in the parameter space. To this point we associate an ensemble of
confidence intervals, induced by an ensemble of possible experimental results. Some of these intervals
[o(E),a(F)] will contain o, otherswill not. The fraction of intervals, in the ensemble, that contain o is
called the coverage probability of the ensemble of intervals. A coverage probability is associated with
every point (o, €, b, L) of the parameter space. Moreover, the value of the coverage probability may vary
from point to point. Neyman's key ideais that the ensembles of intervals should be constructed so that,
over the allowed parameter space, the coverage probability never falls below some number 3, called the
confidence level. Both the coverage probability and the confidence level are to be interpreted as relative
frequencies.

The parameter space and its set of ensembles form what mathematicians call afibre bundle. The
parameter space is the base space to each point of which is attached afibre, that is, another space, here
the ensemble of intervals associated with that parameter point. Each fibre has a coverage probability,
and none falls below the confidence level 5. Since the fibres may vary in a non-trivial way from point
to point it is not possible, in general, to construct the fibre bundle as a simple Cartesian product of the
parameter space and a single ensemble of intervals. In general, a non-trivia fibre bundle is the natural
mathematical description of Neyman's construction. Well natural if, like me, you like to think of things
geometrically!

There are two difficulties with Neyman'sidea. The first is technical. For one-dimensional prob-
lems, or for problems in which we wish to set bounds on all parameters simultaneously, the construction
of confidence intervalsis straightforward. But when the parameter space is multi-dimensional and our
interest is to set limits on a single parameter, no general algorithm is known for constructing intervals.
That is, no general algorithm is known for eliminating nuisance parameters. In our example, we care
only about the cross-section; we have no interest in setting bounds on the integrated luminosity. What
we do, in practice, is to replace the nuisance parameters with their maximum likelihood estimates. The
justification for this procedure is the following theorem:

Pr(z|0, &) 9

_9log \0A) 2 2
S pPralba) @

as the data sample = grows without limit, and provided that the maximum likelihood esti-
mates 6 and & lie within the parameter space minus its boundary.

If our data sample is sufficiently large its likelihood becomes effectively a (non-truncated) multivariate
Gaussian, and consequently the distribution of the log-likelihood ratio is 2. Since that distribution is
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independent of the true values of the parameters, a probability statement about the log-likelihood ratio
can be re-stated as one about the parameter 0. But, and thisisthe crucial point, the theorem is silent about
what to do for small samples. Unfortunately, we high-energy physicistsinsist on looking for new things,
S0 our data samples are often small. So what are we, in fact, to do? We must after al publish. Today,
with our surfeit of computer time, we can contemplate a brute-force approach: start with an approximate
set of intervals, computed using Eqg. (2), and adjust them iteratively until they make Neyman happy. But
because of the second difficulty that | now discuss, the effort seems hardly worth the trouble.

The second difficulty is conceptual. 1t has been argued at this workshop, and elsewhere [5], that
the set of published 95% intervals constitute a bona fide ensemble of approximately 95% confidence
intervals. Here is the argument. Each published interval is drawn from an urn (that is, an ensemble of
experimentsif you prefer amore cheerful allusion) whose confidence level is 95%. Thefact that each urn
iscompletely different isirrelevant provided that the sampling probability from each isthe same, namely
95%. Thus 95% of the set of published intervals will be found to yield true statements. And herein lies
the beauty of coverage! The flaw in this argument is this. each published interval is drawn from an urn
that does not objectively exist, because the ensemble into which an actual experiment is embedded is
a purely conceptual construct not open to empirical scrutiny. Fisher [6], not known for fawning over
Bayesians, made asimilar point along time ago:

“... iIf we possess a unique sample on which significance tests are to be performed, there
isaways ... amultiplicity of populations to each of which we can legitimately regard our
sample as belonging; so the phrase ‘repeated sampling’ from the same population does not
enable us to determine which population is to be used to define the probability level, for no
one of them has objective reality, all being products of the statistician’s imagination”.

Thisistrue of our ensemble of experiments. Consequently, afew troublesome physicists, bent on giving
the Particle Data Group ahard time, need merely imagine adifferent set of urnsfrom which the published
results could legitimately have been drawn and thereby alter the confidence level of each result!

Of course, the published intervals do have a coverage probability. My claim isthat its value is a
matter to be decided by actual inspection—provided, of course, we know the right answers! It is not one
that can be deduced a priori for the reason just given. The fact that | am able to construct ensembles
of confidence intervals on my computer, by whatever procedure, and verify that they satisfy Neyman’s
criterion is certainly satisfying, but in no way does it prove anything empirically verifiable about the
interval | publish. Forgive me for flogging a sincerely dead horse, but let me state this another way:
Since | do not repeat my experiment, any statement to the effect that the virtual ensemble simulated on
my computer mimics the potential ensemble to which my published interval belongs is tantamount to
my claiming that if | were to repeat my experiment, then | would do so such that the virtual and real
ensembles matched. Maybe, or maybe not!

To summarize: A frequentist confidence level is a property of an ensemble, therefore, its objectiv-
ity, or lack thereof, is on a par with the ensemble that definesiit.

This whole discussion may strike you as a tad surreal, but | think it goes to the heart of the
matter: many physicists, for sensible reasons, reject the Bayesian theory and embrace coverage because
it iswidely viewed as objective. But, as argued above, confidence levels may or may not be objective
depending on the circumstances. Therefore, when confronted with a difficult inference problem our
choiceisnot between an ‘ objective’ and ‘ subjective’ theory of inference, but rather between two different
subjective theories. It may be reasonable to continue to insist upon coverage, but not because it is
objective.

After this somewhat philosophical detour it istime to turn to the real world. But en route to the
real world, lest Bayesians begin to feel uncontrollably smug, 1'd like to discuss an instructive ‘toy’ model
that highlights the fact that for a Bayesian lifeis hardly abed of roses[7].
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2. THEPHYSICIST'SFAVOURITE TOY

The typical high-energy physics experiment consists of doing a large number 7' of similar things—
for example, proton—antiproton collisions, and searching for n interesting outcomes—for example, ¢
production. We invariably assume that the order of the collisionsis irrelevant and that each interesting
outcome occurs with equal probability. Then we may avail ourselves of the well-known fact that the
probability assigned to n outcomes out of 7T trials, with our assumptions, is binomial. Sincen << T,
this probability can be approximated by a Poisson distribution

e HFun
Pr(n|p, I) = n;u’ ©)

and thus do we arrive at the physicist’s favourite toy. The symbol I denotes all prior information and
assumptions that led us to this probability assignment. Here, it is introduced for pedagogical reasons;
to remind us of the fact that all probabilities are conditional. We shall assume that our aim is to infer
something about the Poisson parameter p, given that we have observed n events. Just for fun, we'll give
this problem to each workshop member. Naturally, being physicists, each of usinsists on parametrizing
this problem as we seefit, but in the end when we compare notes we shall do so in terms of the parameter
1, by transforming to that parameter.

There are, of course, infinitely many ways to parametrize a likelihood function and the Poisson
likelihood is no exception. For simplicity, however, let's assume that each of us uses a parameter 1,
related to p asfollows

pp = HP 4
‘p’ for physicist if you like! Interms of the parameter 1., Eq. (3) becomes

()

which, we note, does not alter the probability assigned to n.
From Bayes's theorem

Pr(n|puyp, I)Prior(uy,|I)
Post I) = °
ost(pp[n, I) Ly, Pr(nlpy, )Prior(u,|T) ° ©

each of us can make inferences about our parameter 1., and hence ;.. Of course, no one can proceed
without specifying aprior probability Prior(u,|I). Unfortunately, being mere physicists we do not know
what its form should be. But since we are all in the same state of knowledge regarding our parameter,
coherence would seem to demand that we use the same functional form. So without a shred of motivation
let’stry the following form for the prior probability

Prior(pp|I) = p, Ydpuy - (7)

Although this prior is plucked out of thin air, it is actually more general than it appears because, in
principle, g could be an arbitrarily complicated function of p. Now each of usisin aposition to calculate,
assuming that the allowed parameter space for 1, is [0, co). We each find that

"y,

pl'(n—pg+p)

Post(uy|n. T) = ®

But as agreed, each of us transforms our posterior probability to the parameter 1 using Eq. (4). Thuswe
obtain, from Eqg. (8),

Post(pu|n, I) = T —pa T D)

(9)
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Unfortunately, something is seriously amiss with the family of posterior probabilities represented by
Eqg. 9: each of us has ended up making a different inference about the same parameter n! We can seethis
more clearly by computing the rth moment

m, = /,urPost(,u|n,I) (10)
m
= TI'(n—pg+p+7)/I'(n—pg+p),

of the posterior probability Post(u|n, ). The moments clearly depend on p, that is, on how we have
chosen to parametrize the problem.

What does a Bayesian have to say about this state of affairs? Isit a problem? | would say yes,
it is. But there are some Bayesians who call themselves * subjective Bayesians and others who believe
themselves to be ‘objective Bayesians'. | confess that these terms leave me a bit baffled. The latter
term because it seems to be an oxymoron and the former because it seems to be superfluous. The
fundamental Bayesian pact is this: The prior probability is an encoding of a state of knowledge; as such
it is a subjective construct. That construct may encode one’s personal state of knowledge or belief, and
that's a fine thing to do and is very powerful. But it may also encode a state of knowledge that is not
specifically yours and that too isjust fine. The issueis one of encoding a state of knowledge: Are there
any desiderata that should be respected? The subjectivist is probably inclined to say no: simply choose
the parametrization that makes sense for you and associate a prior, declare it to be supreme, and force
all other priors to differ from yours in just the right way to render an inference about x unique. So a
‘subjective’ Bayesian would presumably reject Eq. 7.

| believe that to make headway, we should entertain some further principles. They should not
degenerate into dogma but should serve as alantern in the dark. Here are two possible principles:

e Possible Principle 1: For the same likelihood and the same form of prior we should obtain the
same inferences.

e Possible Principle 2: The moments of the posterior probability should be finite.

Let’'s apply these tentative principles to the moments in Eq. (10). Principle 1 says that each of us should
make the same inferences about p, that is, the moments ought not to depend on the whim of aworkshop
member; it ought not to depend on p. Principle 2 says that m, < oo. Together these principles imply
that

—-pg+p=a>0, (1)

where a is aconstant. This leadsto the following prior
Prior(up|I) = ug/P ™ dpy - (12)

But we didn’t quite make it; our principles are insufficient to uniquely specify avalue for the constant a.
We need something more. Here is something more, suggested by Vijay Balasubramanian [8]:

e Possible Principle 3: When in doubt, choose a prior that gives equa weight to all likelihoods
indexed by the same parameters.

That is, impose auniform prior on the space of distributions. Thisrequirement isamuch more reasonable
one (here is that word again) than imposing uniformity on the space of parameters because the space of
distributions is invariant, whereas that of parametersis not. The space of distributionsis akin to a space
containing invariant objects like the vectors in a vector space, whereas the parameter space is analogous
to the non-invariant space of vector coordinates. In our case, we impose a uniform prior on the space
inhabited by Poisson distributions. Balasubramanian has shown that a uniform prior on the space of
distributions induces, locally, a Riemannian metric whose invariant measure is determined by the Fisher
information, F'. For our toy model the invariant measureis

Prior(uy|1) = F'dp, , (13)
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where

F(pp) = — <d2 o I;r:? by [)> : (14)
D

Equation (13) is called the Jeffreys prior. It gives a = 1/2 and thus uniquely specifies the form of the
prior probability. Possible Principle 3 is a generalization of Possible Principle 1. Thus we conclude
that the prior probability that forces us all to make the same inference, regardless of how we choose to
parametrize the problem, is
1l
Prior(,|1) = pp 2% " dlu, . (15)
This is all very tidy. However, when Jeffreys [1] applied his genera prior probability to the
Gaussian, treating both its mean and standard deviation together, he got a result he did not like. He
therefore suggested another principle:

e Possible Principle 4: If the parameter space can be partitioned into subspaces that a priori are
considered independent, then the general prior should be applied to each subspace separately.

Thisgave him aprior heliked. Alas, for a Bayesian lifeis not easy. While the frequentist struggles with
justifying the use of a particular non-objective ensemble, the Bayesian struggles to justify why some set
of additional principlesfor encoding minimal prior knowledge isreasonable. Meanwhile, the ‘ subjective
Bayesian’ saysthisisall amere chasing after shadows. And so it goes!

3. THE REAL WORLD

The foregoing discussion might suggest to “Abandon all hope, ye who enter” the real world of inference
problems. Fortunately, it is not quite so bleak. The real world imposes some very severe constraints on
what we can reasonably be expected to do. For one thing, the lifetime of a physicist is finite, indeed,
short when compared with the age of the Universe. Technical resources are also finite. And then thereis
competition from fellow physicists. Finally, uncertainty in abundance is the norm. Perhaps with enough
deep thought all inference problems can be solved in a pristine manner. In practice, we are forced to
exercise amodicum of judgement when undertaking any realistic analysis. We introduce approximations
as needed, we side-step difficult issues by accepting some conventions and we rely upon our ability not to
get lost amongst the trees. But when | reflect on what must be done to measure, say, the top quark mass,
a problem replete with uncertainties in the jet energy scale, acceptance, background, luminosity, Monte
Carlo modelling to name but afew, it strikes me as desirable to have a coherent and intuitive framework
to think about such problems. Bayesian Probability Theory provides precisely such aframework. More-
over, it is aframework that mitigates our propensity to get confused about statistics when the going gets
tough. The second example | discuss shows that real science can be done in spite of prior anxiety [7].

3.1 Measuring the solar neutrino survival probability

It has been known for over a quarter of a century that fewer electron neutrinos are received from the
Sun than expected on the basis of the Standard Solar Model (SSM) [9]-{13]. This is the famous solar
neutrino problem. Figure 1 summarizes the situation as of Neutrino 98. If the SSM is correct—and there
isvery strong evidencein its favour [14], then the inevitable conclusion is that a fraction of the electron
neutrinos created in the solar core are lost before they reach detectors on Earth. The loss of electron
neutrinos is parametrized by the neutrino survival probability, p(v|E, ), which is the probability that a
solar neutrino v of energy F, arrives at the Earth.

Several loss mechanisms have been suggested, such as the oscillation of electron neutrinosto less
readily observed states such as muon, tau or sterile neutrinos [15, 16]. Many x2-based analyses have
been performed to estimate model parameters [17]-{19]. To the degree that a fit to the solar neutrino
datais good, it provides evidence in favour of the particular new physics that has been assumed. From
this perspective, solar neutrino physicsis yet another way to probe physics beyond the Standard Model.
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Total Rates: Standard Model vs. Experiment
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Fig. 1. Predictions of the 1998 Standard Solar Model of Bahcall and Pinsonneault relative to data presented at Neutrino 98.
Courtesy J.N. Bahcall.

But I'd like to address a more modest question: What do the data tell us about the solar neutrino
survival probability independently of any particular model of new physics? We can provide a complete
answer by computing the posterior probability of different hypotheses about the value of the survival
probability, for agiven neutrino energy [20, 21]. Our Bayesian analysisis comprised of four components

e The model
e Thedata
e Thelikelihood
e Theprior
First we sketch the model. (See Ref. [20] for details.)
The solar neutrino capture rate S; on chlorine and gallium can be written as

Si= Y0, [ pIB)oi(B)é5(B)E, (16)
J

where @ ; is the total flux from neutrino source j, ¢; is the normalized neutrino energy spectrum and o;
is the cross-section for experiment i. The predicted spectrum, plus experimental energy thresholds, are
shown in Fig. 2. The full spectrum consists of eight components (of which six are shown in Fig. 2), with
total fluxes ¢, to ¢g [11].

The Super-Kamiokande experiment [22] measures the electron recoil spectrum arising from the
scattering of the 8B neutrinos (plus higher energy neutrinos) off atomic electrons. We shall use the
electron recoil spectrum reported at Neutrino 98. The spectrum spans the range 6.5 to 20 MeV. Light
water experiments, like Super-Kamiokande, are sensitive to all neutrino flavours but do not distinguish
between them. There are, therefore, two possibilities. the v, deficit could be caused by v, conversions
to v, where x is either i or . If so the measured neutrino flux would be the sum of these flavours. If,
however, the v, are simply lost without a trace, for example because of conversion into sterile neutrinos,
then the measured flux would be comprised of v, only. Like the rates for the radiochemical experiments,
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Fig. 2. Solar neutrino energy spectrum as predicted by the Bahcall-Pinsonneault 1998 Standard Solar Model, including the
neutrino energy thresholds for different solar neutrino experiments. Courtesy J.N. Bahcall.

the measured electron recoil spectrum is linear in the neutrino survival probability. The data are shown
inFig. 3.

For solar neutrino experiments, a reasonable definition of sensitivity is the product of the cross-
section times the spectrum [20]. This quantity is plotted in Fig. 4. Two points are noteworthy: each
experiment is sensitive to different parts of the neutrino energy spectrum and there are regionsin neutrino
energy where the sensitivity is essentially zero. We should anticipate that these facts will constrain what
we are able to learn about the neutrino survival probability from the current solar neutrino data.

Sincewe do not know the cause of the solar neutrino deficit, let’s adopt a purely phenomenol ogical
approach to the survival probability. Guided by the results from previous analyses [17]-{19], [23] we
write the survival probability as a sum of two finite Fourier series:

7
p(v|E,,a) = Z ar41C08(rmE,/L1)/(1 + exp[(E, — L1)/b]) (17)
r=0
3

+ > ar9cos(rrk, /Ly)
r=0

where now we explicitly note the fact that the survival probability depends upon the set of parameters
a. Thefirsttermin Eq. (17) is defined in the interval 0.0 to L; MeV—and suppressed beyond 7, by the
exponential. The second term spans the interval 0.0 to L, MeV. We have divided the function this way
to model a survival probability that varies rapidly in the interval 0.0 to I.; and less so elsewhere. The
parameters L1, Lo and b are set to 1.0, 15.0 and 0.1 MeV, respectively.

We now consider the likelihood function Pr(D|H, I), where H denotes the hypothesis under
consideration. The likelihood is assumed to be proportional to a multi-variate Gaussian g(D|S, X),
where D = (D1, ..., D1g) represents the 19 data—3 rates from the chlorine and gallium experiments
plus 16 rates from the binned Super-K amiokande electron recoil spectrum (Fig. 3); 3 denotesthe 19 x 19
error matrix for the experimental dataand S = (51, ..., S19) represents the predicted rates.
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Fig. 3: Electron recoil spectrum measured by Super-Kamiokande compared to spectrum predicted by the Bahcall-Pinsonneault
1998 Standard Solar Model. From Ref. [24].
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Fig. 4: Spectral sensitivity as afunction of the neutrino energy. From Ref. [20].
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The remaining ingredient is the prior probability. First we assess our state of knowledge. There
are two sets of parameters to be considered: the total fluxes (¥4, ..., ®g) and the survival probability
parameters (as, .. .,a12). The hypotheses under consideration concern the values of these two sets of
parameters. The Standard Solar Model provides predictions ®° = (®9,..., ®Q) for the total fluxes,
together with estimates of their theoretical uncertainties. So here is an analysis that must deal with
theoretical uncertainties in some sensible way. | do not know how such a thing can be addressed in a
manner consistent with frequentist precepts. For a Bayesian uncertainty is, well, uncertainty, regardless
of provenance; therefore, every sort can be treated identically. We represent our state of knowledge
regarding the fluxes by a multi-variate Gaussian prior probability Prior(®|I) = g(®|$°, ¥¢), where ¢°
isthe vector of flux predictions and ¢ is the corresponding error matrix [11].

Unfortunately, we know very little about the parameters aq, ..., a2, SO we shal short-circuit
discussion by taking, as amatter of convention, the prior probability for a to be uniform. In practice, any
other plausible choice makes very little difference to our conclusions. We may even find that a uniform
prior for a is consistent with the generalized Jeffreys prior. Thus we arrive at the following prior for this
inference problem:

Prior(a, ®|/) = Prior(a|®,)Prior(®|I) (18)
= daPrior(®|1) ,

where I now includes the prior information from the Standard Solar Model.
Now we can calculate! The posterior probability is given by

Pr(D|a, ®, I)Prior(a, ®|I)
Post(a, ®|D. 1) = — . 19
ost(a, ®|D, I) I. o Pr(Dla, @, T)Prior(a, ®|1) (19)

But sincewearen’t really interested in the total fluxes probability, theory dictates that we just marginalize
(that is, integrate) them away to arrive at the quantity of interest Post(a|D, I'). Actually, what we really
want is the probability of the survival probability for a given neutrino energy £,! That is, we want

Post(¢lD. 1) = [ 8(p ~ p(v|E,. a)) PlalD. 1) . (20)

Figure 5 shows contour plots of Post(p|D, I) for the two cases considered, conversion to sterile and
active neutrinos.

Our Bayesian analysis has produced a result that, intuitively, makes alot of sense. As expected,
given the sensitivity plot in Fig. fig:sensitivity, our knowledge of the survival probability is very un-
certain between 1 and 5 MeV. In fact, the survival probability is tightly constrained in only two narrow
regions: in the ” Be region just below 1 MeV and another at around 8 MeV, near the peak of the 8B
neutrino spectrum. For neutrino energies above 12 MeV or so, the survival probability is basically un-
constrained by current data.

4. SUMMARY

It has been claimed by some at this workshop that Bayesian methods are of limited use in physics re-
search. This of course is not true as | hope to have shown. Bayesian methods are, however, explicitly
subjective and this may give one pause for thought. | have argued that frequentist methods are not nearly
as objective as claimed. While Bayesians cannot avoid theirreducible subjectivism of prior probabilities,
frequentists cannot avoid the use of ensembles that do not objectively exist. Frequentists struggle with
any uncertainty that does not arise from repeated sampling, like theoretical errors, while for Bayesians
uncertainty in al itsformsistreated identically. On the other hand, some Bayesians struggle to convince
us that a particular choice of prior is reasonable, while frequentists look on in amusement. The point
is, neither approach is free from warts. But, of the two approaches to inference, | would say that the
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Fig. 5: Survival probability vs neutrino energy assuming the neutrino flux consists of v, only (left plot) and v, to active neutrinos
(right plot).

Bayesian one has more to offer, is easier to understand, has greater conceptual cohesion and, the most
important point of al, more closely accords with the way we physicists think [25]. And thisis the real
reason why it should be embraced.
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Discussion after talk of Harrison Prosper. Chairman: Matts Roos.

Jacques Bouchez

| wanted to comment on your last example on solar neutrinos. | think in your analysis you miss
an important point. In your approach, | understand that you impose the three components of the solar
neutrino flux to be positive. However, when one does an unconstrained (no bound on flux values) fit on
the experimental data, the best fit that one gets gives a strongly negative flux for the “Be component,
which isfound 2 to 3 sigmas below zero. In your analysis you can't find this case, as you restrict fluxes
to be positive. You certainly find the beryllium flux nearly zero, but you miss the point that with your
positive survival probabilities you have avery poor description of the data. You would get a much better
description by going to unphysical parameter values, where the beryllium flux is negative. So | don't
think this analysisis the most powerful to understand the real solar neutrino problem.

H. Prosper

The physical point isthat over the past decade or so people have been using chi-squared techniques
and that’s a problem. Of course, if you use chi-squared techniques, you're essentially using a likelihood
technique and, if you look at the likelihood, it peaks in an unphysical region. The question is, what
do you do about that? Classically (forget about Bayesian theory), what do you do if your likelihood
peaks in anon-physical region? All theories I've seen assume that the maximum likelihood estimate lies
within the parameter space, and if that’s true everything is wonderful, but the fact of the matter is that
the likelihood peaks out here. What people have done is to take the value of the beryllium flux to be
zero. Why? Because if your rule for estimatesis ‘| choose the value that maximizes the likelihood' then
necessarily you must choose the boundaries, so the answer is that the beryllium flux is zero. Thefact is
that thisis an arbitrary choice, and you still want to have some way of quantifying the uncertainty. In the
Bayesian analysis | put in the information that the flux is a positive number. That necessarily influences
my answer and here it is. The answer isthat the beryllium flux is very low in this particular case. | want
to be able to put in these boundaries because these are physical conditions, but as soon as you put these
boundarieson aclassical calculation, you can then no longer rely upon all those wonderful theorems. For
example, thereisatheorem that says, if | have alikelihood and | take the likelihood with some parameter
and divide that likelihood by the maximum likelihood value, and | take minus two times the log of that
ratio, this number is distributed like a chi-squared variate, so | just look up in my tables and I’'m done.
As soon as you truncate the space, that theorem goes out of the window, and then we're left unstuck. So
thisis powerful because it allows us to put in constraints up front but the answer you get depends on the
prior probability that you put in. Now isthat prior subjective? Well, yesin the sense that | cannot appesal
to Nature to tell me what it is. | can appeal, for example to Bahcall and ask him: “Tell me what do you
think isthe distribution of your uncertainties?” and he gives me some distribution of probability. But for
the other things | assume it to be flat. 1’ve no idea whether that’s correct or not, it could be | should do
something else. And that’'s inevitable. My point is that | think eventually, if one put enough effort into
thinking, one might be able to find the proper prior. But for the time being we could all agree on some
conventional choicesin order for usto make progress. Physicsis full of conventions. We all know this,
and | don't think it is necessarily a bad thing.

Michael Woodroofe

| have really more comments than questions, | hopethat’s OK. First of all the Jeffreys prior hasthe
property that the posterior distributions will tend to agree with the frequentist answer in large samples
to a higher order than we're used to. In almost all cases we get leading normal terms for both. Use of
the Jeffreys prior will match up the second order term (the coefficient of one over root n) and alot of
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people like them for that reason. Unfortunately the quality of the approximation tends to break down a
little bit (in fact a lot) as you get into higher and higher dimensions in the parameter space. And that
leads me to my second major comment. The problem of putting a prior on a high-dimensional spaceis
just an awfully, awfully hard problem. Asyou point out correctly, to do it subjectively you've really got
to think about possible relationships among the fifteen different variables, and you don’t really havetime
to dothat. | don’t know, but | would not be surprised if it makes a substantial differencein your analyses
whether you use aflat prior or a square-root prior.

H. Prosper

For thiswe actually tried various priors. There was hardly any difference.

M. Woodroofe

The last comment is more a quibble than anything else. When you say it has not been proved that
probabilities are relative frequencies, | can deduce that from de Finetti’ s theorem.

H. Prosper

Good! My point isin some ways a haive one, but thisis how | think about it. Becauseit’s random,
I have no rule that tells me what the next term in the series is, and from the days when | was learning
about proving the convergence of series, | was told that you have to have arule that tellsyou how N + 1
isrelated to V. If no such rule exists, then you have no operational way of proving limits. But I’m happy
to discover that in fact thisiswrong.

Glen Cowan

There'sarelated question of whether the top mass reported in the PDG bookl et is correct or usable
and so forth. In the particular procedure you've done, with a constant prior, the mode of your posterior
distribution coincides with the maximum likelihood estimate. So in fact the numbersthat are in the PDG
booklet, at least to some approximate extent, summarize the likelihood function which is what Giulio
was just telling us we should do, and which | think the classical statisticians would also tell us that we
do.

H. Prosper

But there is a detail which one should not forget. In Roger Barlow’s method he substitutes for
each of the unknown parameters their maximum likelihood estimate. Here, we integrated over those pa-
rameters, and we did arough integration over things like the energy scale uncertainty, and the luminosity
uncertainty, and the efficiency and so on. There's no reason that this answer would necessarily agree
with an answer obtained by ssimply taking the mode of the likelihood for al the parameters that enter
your problem.

G. Cowan

Nevertheless the numbers in the PDG book summarize in some way the likelihood functions, is
that not correct? | want to make one other comment and that is it seems to me that taking a flat prior
for something like top mass is contrary to the philosophy of using subjective input. You certainly don’t
believe that, subjectively, the probability the top mass is between 100 and 200 GeV is equal to the
probability that it's between a million and a million and a hundred. | see that you need a solution that
you can implement simply, so you take aflat prior. That seems to run very contrary to the philosophy
that you started with.



Carlo Giunti

About the solar neutrinos. | think that what you did is very interesting. However, | don’t under-
stand what is the use of this probability that you derived, because usually the probability is confronted
with the quantum mechanically calculated probability in order, for example, to get information on neu-
trino mass mixing etc. But the quantum mechanical probability is different from the Bayesian. It is
a frequentist probability, so | guess that you cannot confront the Bayesian probability with quantum
mechanics.

H. Prosper

On the contrary. This summarizes what | know about the neutrino survival probability and the
accuracy with which thisis known, given the 1998 data from the various experiments. So when someone
comes aong with a new theory that explains neutrino disappearance, they could take this probability
and use it to determine the parameters of that theory. They will not have to go back and analyse all the
experiments, they will simply take this as a starting point and from this determine say sin?(26) and what
have you. It is often said that quantum mechanics proves that probability is arelative frequency. There's
a chicken and egg problem here. We have to first of all prove quantum mechanics, which is what we all
have been doing for a century. The way we do it in areal experiment, isthat we have lots of collisions, |
count how many events | get, and then | have to go backwards, | have to then infer something about the
theory, and to do so, | have to make some assumptions. You can simply assume up front that probability
is frequency, but it's an assumption. The theory does not say that probability is a frequency. The theory
says that | have amplitudes, | square them and the result is the relative frequency with which this thing
or that thing occurs. My job as an experimentalist is to try and measure the relative frequencies. To do
that | need to make some assumptions. Otherwise | cannot even start.

C. Giunti

My guessis that you propose to change the definition of probability of quantum mechanics. That
would be arevolution.

H. Prosper

Not at al. | am simply asserting that what the theory actually contains are amplitudes and strange
rules for combining them. When those things are combined and the sgquare is taken of those combined
amplitudes, what is given is relative frequency. That is something | can measure, the number of events
and the number of trials and | can take the ratio of these. The relation between that ratio and the mathe-
matical theory of probability is something that requiresinterpretation. You can't get around that problem.
It's recognized by everyone in fact, by Fisher, Venn, Von Mises, everyone who has worked on this rec-
ognized that it requires an interpretation. Mathematical theory is an abstraction and to use it requires
that you interpret what this abstraction is, and some people claim that they have been able to prove cer-
tain things and others can prove other things, and you require it to be interpreted. It doesn’'t come from
experiment. That's simply as a statement of epistomology that’s not correct.

L. Lyons

| have aquestion for the frequentistsin the audience. Harrison said that frequentists can’t take into
account theoretical errors, and | wonder if any frequentists would like to say something about that.
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R. Cousins

I’m going to mention thisin my talk this afternoon because it is a problem. That is, you really
have to stretch your definition of frequency right to parallel universes or something. | don’t think it's our
biggest practical problem with theoretical errors. The biggest practical problem with theoretical errorsis
getting the theorists to quantify the error according to any definition of probability, including the degree
of belief.

Fred James

| found your attitude about priors a little ambiguous, whether you want to use objective priors or
subjective priors. You gave alot of argument for why some priors are objectively better than others, but
can you clarify this alittle?

H. Prosper

The fact of the matter is we use judgement. That's just a true statement | believe. But | try to
avoid classifying these priors as objective or subjective, partly because | don't actually know what these
words mean in that context. When you say ‘subjective’, do you mean a prior that is my own personal
opinion, or do you mean a prior that is the opinion of the DO collaboration, arrived at by who shouted
loudest? Or do you mean it’s the opinion of the PDG? My stanceisthis- | don’t really care whether it's
described as objective or subjective, my point simply is that in order to derive a prior, you have to start
with some subjective criteria. Once these criteria are stated, if you have enough mathematical energy,
you can derive aprior. Whether you call what you derive subjective or objective is a matter of definition,
but you have to start with some subjective criteria. That'sall I’m saying.

Don Groom

Why isn’t your prior in the case of the DO top measurement, the Gaussian defined by the CDF
Collaboration?

H. Prosper

In fact, that's how we combined our results. The thing about Bayes's theorem which is very nice
asyou al know, is that you can multiply likelihoods. That's what we did to get the final number for the
Tevatron. But, it doesn’t matter how many likelihoods you combine, you can combine an infinite number,
at the very end there is a prior sitting there. You cannot escape, you cannot get round the problem. We
are going to measure the top mass again in run 2, and some of us are going to use run 1 as a prior to
combine with the next experiment, but still lurking at the end of thislong chain of likelihoods is a prior
that you cannot get rid of, if you insist on using this approach. Essentially that is exactly what we did,
we sat down and we combined likelihoods, but that doesn’t eliminate the need for a prior.

Roger Barlow

Can | just point out as somebody should, that in this talk we had a prior which was uniform in the
mass of the particle, in the previous talk we had a prior which was uniform in the log of the mass of the
particle. Can | ask Harry, and you must have done this, if you had taken a prior which was not flat in the
mass but flat in the mass sgquared, or flat in the log of the mass, how much difference does that make —
are we talking 1 MeV or one-tenth of an MeV or amillionth of an MeV?
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H. Prosper

We haven't done that, and one reason why we didn’t do it is because in the published analysis the
calculation is done at discrete top masses that we run from from 110 to 240 GeV in steps of 5 GeV. Now,
if you take this discrete set, and you argue that you don’t know what the prior is, then even if you had in
fact used the square of the top mass, or the log of the top mass, you still arrive at the same conclusion.
What we can try to do to answer your question isto try to do the cal culation where we assume a smooth
function for the top mass, and just see what we get. My guess, just from experience, is that the answer
will not be very different from what we published, but thisis a guess.

L. Lyons

With the problem of the top mass you're measuring something which was as | remember 175 + 5.
Altogether the region of interest isnot al that big around 175, so | would guess, as you say, that the prior
is not very important. However, when one is talking about limits which extend down to zero, that is the
place where one really has to worry about the prior | would guess.

H. Prosper

| agree with you, that’s where it really makes a big difference, but my point simply isthat it's not
different in kind because the prior still exists whether you have zero events or 1000 events. In one case it
affects your answer more than in the other, but the problem is still there.

Jim Linnemann

That was the context in which we were looking at families of priors, to try to examine the question
of the dependence of upper limits on which prior you chose.

Fred James

Just a comment on this question of how we define probability. That is still very important and my
point of view is that the probability of quantum mechanics, as has been stated before, is a frequentist
probability. | don’t see any problem of interpretation here. Probability in our model of quantum mechan-
icsis along-term frequency. For example, the branching ratio of the AY to pr— is the probability that
the next A° will decay to pr—, and whether we have measured it or not, it is going to be the long-term
frequency. That's our model and everyone believes that.

H. Prosper

Interesting point. One thing I’'ve learned from Fred, after a long association, is that it's a good
thing to go back to original papers. When Max Born introduced the idea that squaring this funny number
isaprobability, that's all he said: “It's a probability”. He didn’t say that thisis the relative frequency or
the degree of belief, he simply said that this is the probability for this thing to happen, and it's an extra
step we have to make to say that this probability is one of these things that have been stated.
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