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Abstract

The spectrum of D2-branes wrapped on an ALE space of general
ADE type is determined, by representing them as boundary states of N =
2 superconformal minimal models. The stable quantum states have RR
charges which precisely represent the gauge fields of the corresponding Lie
algebra. This provides a simple and direct physical link between the ADE
classification of N =2 superconformal field theories, and the corresponding
root systems. An affine extension of this structure is also considered, whose
boundary states represent D2-branes plus additional D0-branes.
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1. Introduction

After their rôle in “minimal” conformal field theories had been discovered [1],

ADE
�

classifications have surfaced in various manifestations in the physics litera-

ture; for a recent review, see [2]. However, what has been lacking for a long time

is a deeper insight into how these various manifestations are related to each other.

In particular, while the CFT partition functions encode some group theoretical data

(most notably the exponents ηj , which label the diagonal terms), more basic group

theoretical quantities like root systems could not be identified within the (bulk) con-

formal field theories. Only recently [3] was it realized that such basic data, in the

form of eigenvectors of the Cartan matrix, play a rôle in constructing boundary states

associated with the conformal field theories.

That root systems of ADE type appear indeed more naturally on the boundary

rather than in the bulk, can easily be seen as follows. As is well known, the ADE

classification of modular invariants of SU(2)k can be directly related to modular

invariants of the N = 2 superconformal minimal models by representing these in terms

of cosets
‡

(SU(2)k×U(1))/U(1)). The latter can in turn be formulated [5] as Landau-

Ginzburg models based on superpotentials given by Arnold’s simple singularities of

ADE type [6]. Geometrically, the middle-dimensional homology of the resolution of

these singularities is known to be isomorphic to the corresponding root lattices. More

precisely: H∗(M,ZZ) ∼= Γ
(ADE)
R , where M ≡ M (ADE) denotes an ALE space which is

a non-compact model of an ADE singularity on a compact K3 manifold.

Physically this means that D2-branes wrapped around the vanishing cycles of M

carry the RR quantum numbers of the charged gauge fields of the corresponding ADE

type. A priori, the wrapped D-branes are solitonic objects on which open strings end,

but they can be represented as boundary states of the CFT. The boundary states

thus probe the homology H∗(M,ZZ) of the ALE space and so exhibit somewhat finer

details of the geometry than the bulk chiral ring, which probes H∗
∂
(M,C). This

then completes the chain of connections between the ADE classification of modular

invariants and D-brane configurations of ADE type, i.e., root systems.
\

� As usual, this stands for the simply laced Lie algebras of type An, Dn, E6,7,8.

‡ Note that one can construct further partition functions from this coset which do not describe

the N = 2 minimal models [4].

\ From this point of view, the fact that the exponents ηj of the Lie algebra appear in the bulk

partition function is simply a consequence of the fact that the Ishibashi states that underlie

the boundary states are determined by the diagonal terms of the bulk partition function.
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Using boundary Landau-Ginzburg theory [7], this line of thoughts has been used

recently [8] to analyze the spectrum of quantum D-branes on ALE spaces and Seiberg-

Witten curves. However, the discussion there was restricted to gauge symmetries

of type SU(N) ∼ AN−1. The purpose of the present brief note is to extend the

computation in a systematic and uniform way to all the simply laced Lie algebras.

A convenient setting of the problem is to consider type IIA strings compactified

on ALE spaces (for related works on strings and D-branes on ALE spaces see e.g., [9]).

Such string compactifications can be described in conformal field theory by Landau-

Ginzburg superpotentials of the form [10]: WG(z, xi, uk) = z−h + PG(x1, x2, x3, uk),

where h = h(G) and PG(·, uk) are the dual Coxeter number and simple singularity,

respectively, of the corresponding simply laced Lie algebra G of type ADE. More

specifically, we will be here interested in the exactly solvable “Gepner” points in the

respective moduli spaces, described by the following superpotentials [10]:

WAh−1
= z−h + x1

h + x2
2 + x3

2

WD h
2

+1
= z−h + x1

h
2 + x1x2

2 + x3
2

WE6
= z−12 + x1

4 + x2
3 + x3

2

WE7
= z−18 + x1

3x2 + x3
2 + x3

2

WE8
= z−30 + x1

5 + x2
3 + x3

2 .

(1)

These non-compact Landau-Ginzburg theories describe smooth conformal field the-

ories with ĉ = 2, which can also be represented in terms coset models based on

(
SU(2)h−2

U(1) × SL(2)h+2

U(1) )/ZZh [10,11]. The non-compact z-dependent piece, correspond-

ing to the SL(2) factor in the coset, describes the non-universal degrees of freedom

that are not important for our purposes; its rôle is mainly to push the central charge

up to the right value, and also to supply a certain contribution to the intersection

form that we are going to compute momentarily.

2. Boundary state intersection index

We will now compute the topological intersection index [12,13] Ia,b ≡ Tra,b[(−1)F ]

of the boundary states associated with the LG theories defined in (1). Since these

theories are tensor products of the N = 2 minimal models and their non-compact

counterparts, we begin by discussing the boundary states [14] of the minimal models

based on SU(2)k

U(1) , at levels k = h − 2. They are labelled by |L,M, S〉, where L =

1, ..., r ≡ rank(G), M = −h + 1, ..., h (mod 2h), and finally S = −1, 0, 1, 2 (mod 4)
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determines the R- or NS-sectors (there is a selection rule that puts a constraint on

the labels L,M, S, whose precise form will be discussed later). The boundary states

can be expanded into the Ishibashi states | 〉〉 as follows [15]:

∣∣L,M, S
〉

=
∑

(`,m,s)

ψ
(`)

L√
S

(`,m,s)
(0,0,0)

ei π
h

(mM−h
2

sS)
∣∣`,m, s

〉〉
(2)

(up to normalization). Here, the Ishibashi labels ` run over the exponents
†
ηj asso-

ciated with the Lie algebraG: (`+ 1) ∈ {ηj} ≡ E(G) (m and s run like M and S as

explained above), and

S
(`′,m′,s′)

(`,m,s) =
1√
2h

sin
[π
h

(`+ 1)(`′ + 1)
]
exp

[
i
π

h
(mm′ − h

2
ss′)

]
(3)

are the modular transformation matrices of the N = 2 characters. Moreover, ψ
(`)

L

are the orthonormal eigenvectors of the ADE Cartan matrix C(G), with eigenvalues

γj ≡ 2 − 2 cos[πηj/h], j = 1, ..., r. It was shown in [3] that the analogous boundary

states |L〉 of ̂SU(2)k=h−2 indeed solve the Cardy condition [16].

Note that the labels ` and L are in general on logically different footings: while

(` + 1) labels the exponents ηj(G), L labels the eigenvectors of C(G). This is in

accordance with what was said in the introduction: namely that the boundary states

are naturally associated with the homology lattice, H∗(M,ZZ), which in the present

situation is given by the root lattice. On the other hand, the bulk chiral ring, which

is isomorphic to the cohomology ring H∗
∂
(M,C), is associated with the exponents of

the simple singularity. Only for the A series there is no distinction between the bulk

and the boundary fusion algebras, that is, between the indices L and ` and between

ψ
(`′)

L and S
(`′)

` .

We will now adopt a particular convention for labeling the root system, following

[17]. That is, we split the simple roots αi according to a bi-coloration of the Dynkin

diagram, so that we obtain two orthogonal subsets of mutually commuting roots.
�

Following the notation of ref. [19], we represent this in the following way: {αi} ≡

† Explicitly, exponents ηj and Coxeter numbers h are: E(An) = {1, 2, . . . , n}, h(An) = n + 1,

E(Dn) = {1, 3, 5, . . . , 2n − 3, n − 1}, h(Dn) = n, E(E6) = {1, 4, 5, 7, 8, 11}, h(E6) = 12,

E(E7) = {1, 5, 7, 9, 11, 13, 17}, h(E7) = 18, and E(E8) = {1, 7, 11, 13, 17, 19, 23, 29}, h(E8) =
30, respectively.

� These two sets correspond to symmetry preserving and symmetry breaking boundary condi-

tions, as discussed in [18].
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{a•} ∪ {a◦}. Given these two sets of labels, we resolve the sign ambiguities of the

eigenvectors as follows:

ψ
(`)

• = ψ
(h−`)

• , ψ
(`)

◦ = −ψ (h−`)
◦ . (4)

The intersection index can now be computed [13,20] by evaluating an overlap

amplitude in the RR-sector:

I(L1, L2,M1,M2, S1, S2) ≡
RR

〈
L1,M1, S1

∣∣L2,M2, S2

〉
RR

. (5)

For fixed S and L labels, this can be viewed as a 2h× 2h matrix whose components

are labeled by the Mi. Inserting the expansion (2), restricting to the RR ground

states (i.e., setting m = `+ 1 and s = 1 in the sum) and suppressing the S labels, (5)

becomes

(
IADE
L1,L2

) M2

M1
= (−1)(S2−S1)/2

∑

`+1∈E(G)

(ψ
(`)

L1
)∗ψ

(`)
L2

S
(`,`+1,1)

(0,0,0)

ei π
h

(`+1)(M2−M1+1)e−i π
2
(S2−S1) .

(6)

The exponential involving the Mi can be rewritten in terms of a sine function, so that

we get:

(
IADE
L1,L2

) M2

M1
= (−1)(S2−S1)/2

∑

`+1∈E(G)

(ψ
(`)

L1
)∗ψ

(`)
L2

S `
M2−M1+1+uL1

−uL2

(
S `

0

)−1

≡ (−1)(S2−S1)/2N M2−M1

L1,L2
,

(7)

where S
(`′)

` = 1√
2N

sin
[

π
N (`+1)(`′+1)

]
are the S-matrices and N `

L1,L2
nothing but the

boundary fusion coefficients of ̂SU(2)h−2 for the corresponding ADE type modular

invariant [3]. That a computation involving an N = 2 superconformal minimal model

turns out the fusion coefficients of an SU(2) WZW model, is perhaps not too surprising

in view of the observation [10] that the N = 2 minimal model, when tensored with the

non-compact SL(2) theory, turns into an SU(2) WZW model plus some additional

free fields.

We are not yet done, because we still need to identify the group theoretical

meaning of the intersection index IADE
L1,L2

. For this we can make use of certain group

theoretical facts [21] that involve the Coxeter element w of the Weyl group, W(G).

They have been very useful in the past in the context of integrable systems [22,23,19],

and indeed we will draw on some of the results of these papers.
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Recall that the Coxeter element is the unique (up to conjugation) element of the

Weyl group that is of order h = h(G) (that’s why h is called the Coxeter number).

Physically, ZZh is simply the R-symmetry of the LG potentials (1). If we denote by

ri a Weyl reflection in the simple root αi, then a useful representation of the Coxeter

generator is given by w = w(•) · w(◦) ∈ ZZh ⊂ W(G), where

w(•) =
∏

r• , w(◦) =
∏

r◦ . (8)

The important point for us is that the roots of G decompose into r = rank(G) orbits

of the Coxeter element, which are one-to-one to the nodes of the Dynkin diagram

∆(G). More specifically, one can identify a unique representative φi, i = 1, ..., r for

each orbit, by demanding that if φi is a positive root, then w · φi is a negative root.

Concretely, one can write the following explicit representation [19]:

φ• = w(◦) · α• , φ◦ = α◦ . (9)

In this way we have a direct correspondence between the boundary state labels Li

and the ZZh orbits of the roots of G.

We are now ready to make use of the following formula that was proven in ref.

[19]:

N `+u1−u2

L1,L2
= 〈λL1

, w−`/2φL2
〉 , (10)

where λL is the fundamental weight dual to the simple root αL, and ui = 0 iff

Li ∈ {L•} and ui = 1 iff Li ∈ {L◦}. This formula makes the crucial step in translating

the ADE boundary fusion coefficients into inner products in the ADE weight space.

In the final step the non-compact piece z−h of the LG tensor products (1) comes

into play. As was argued in [8], it contributes a factor (1 − w−1) to the intersection

index and this can be used to convert the fundamental weight to the Coxeter orbit

representative [21]: φL = (1−w−1) · λL. We thus obtain alltogether (suppressing the

S labels): (
IALE
L1,L2

) M2

M1
= 〈φL1

, w(M1−M2+u2−u1)/2φL2
〉 , (11)

where Li = 1, ..., r and Mi = −h+ 1, ..., h. Note that the ui implement the “grading”

induced by the bi-coloration of the Dynkin diagram, which can be expressed in terms of

the selection rule: ui+Mi+Si = 0 mod 2 (generalizing the selection rule Li+Mi+Si =
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0 mod 2 for the A-series). Since (11) is periodic in the M labels, we can rewrite it in

terms of the cyclic 2h× 2h shift generator γ(2h) (with γ(2h)2h = 1) as follows:

IALE
L1,L2

=

h−1∑

k=0

〈φL1
, wkφL2

〉 γ(2h)2k+u2−u1 , (12)

which makes the ZZh symmetry of the potentials (1) manifest.

Eq. (12) is precisely what was expected: the boundary states are one-to-one to

the roots of G (organized in orbits of the ZZh Coxeter symmetry labelled by Li), and

moreover their intersection index gives the inner product between root vectors. This

shows that the N = 2 minimal model boundary states indeed correspond to D-branes

wrapped around the primitive cycles of the ALE space.

3. Affine extension including D0-branes

Note that we have obtained a finite spectrum of BPS states (wrapped D2 branes)

on the ALE space, in one-to-one correspondence to the finite number of primary fields

of the ADE type N = 2 superconformal minimal models. It is given in terms of the

roots of the gauge group, precisely what is expected for the rigid field theory limit

of the type IIA string compactification in which we send the string scale to infinity.

It is remarkable that the truncation of the CFT fusion rules has precisely the right

structure to select within the root lattice the finite root system.

However, at finite string scale we expect infinitely many further BPS states, in

particular D0 brane (or Kaluza-Klein) states with arbitrary positive charge n. These

are expected to extend the finite root system to an affine one (for a recent exposition,

see e.g., [24]). In our framework they should arise from the coupling to the non-

compact sector of the LG models (1). While at the moment it is unclear to us how

this works for general groups, the situation is much simpler for the A-series, where

there is no distinction between the bulk and boundary labels, ` and L.

That is, the sine functions in ψ `
L = S `

L (c.f., eq. (3)) allow for a natural periodic

extension of the labels L that appear in the fusion coefficients N and intersection ma-

trices I. This allows to formally generate an infinite spectrum of BPS charges, starting

from a basic set of “fractional brane” charges, ~q(0). More precisely, by choosing a differ-

ent Coxeter element than before (namely w =
∏
ri), we can group all the simple roots

in the ` = 0 orbit, together with the extending root αh: ~q(0) = {α1, . . . , αh−1, αh};
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this was the choice that was made in ref. [8]. We can then generate further charges

by acting with the step generator [25]

t` =

`/2∑

k=−`/2

γ(2h)2k (13)

in the following way:

~q(`) = ~q(0) · t` . (14)

As shown in [8], for the standard range ` = 0, ..., (h− 2), this reproduces all the roots

of Ah−1, with I`1,`2 = t`1 · C · t`2 t as their intersection matrix (C denotes the extended

Cartan matrix of Ah−1).

Extending now the range to arbitrary ` ∈ ZZ+, we first of all note that there are

gaps in the spectrum whenever ` = h − 1 (mod h), which is where the intersection

index vanishes: Ih−1(mod h),`2 = 0. Moreover we find that (up to ordering of the

components): ~q(`+nh) = ~q(`) + nδ, n ∈ ZZ+, where δ ≡ ∑h
i=1 αi (this follows from

the fact that the highest root δ is associated with the corner entry of the cyclic step

generator γ). Accordingly, I`1+n1h,`2+n2h = I`1,`2 . This gives the requisite extension

of the root system to the one of Âh−1, obtained by adding to {αi} the imaginary

simple root δ, with 〈δ, δ〉 = 0. More precisely, the BPS spectrum we get in this way

corresponds to the positive roots of Âh−1:

{
α̂+

}
=

{
α+ + nδ, n ≥ 0

}
∪

{
− α+ + nδ, n > 0

}
∪

{
nδ, n > 0

}
, (15)

where α+ are the positive roots of Ah−1. Physically, the first set corresponds to the

wrapped D2-branes with ` = 0, ..., [k/2] (k ≡ h − 2) plus their KK excitations; the

second set to the branes with ` = [k/2] + 1, ..., k, which may be viewed as anti-D2-

branes (associated with negative ` shifted by h) plus KK excitations. The last set

corresponds of course to the pure KK modes, or D0 bound states.

To motivate the above construction, note that the same algebraic structure (a

finite spectrum repeated infinitely many times with a null state in between the copies)

is familiar from 2d topological minimal models coupled to topological gravity. In fact

it was argued in [10] that the LG models (1) are closely related to such systems.

More specifically, it is known for Ah−1 that the ground ring [26] is given by the

finite chiral primary ring of the (twisted) N = 2 minimal model, times a tower of

infinitely many gravitational descendants [27]: {x`yn}, ` = 0, .., h− 2, and n ∈ ZZ+.
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Actually, the extended spectrum can be entirely constructed from within the LG

model (so that {x`yn} ∼= {x`+nh}), by suitably defining physical states in terms of

equivariant cohomology [28]. This is the same structure that we seem to find for the

boundary states, with the understanding that each ring element leads to a whole ZZh

orbit of BPS states.

Our point of view is, therefore, that the infinitely many BPS states (D2-branes

wrapped around the cycles of the ALE space plus n D0-branes on top of that) should

be nothing but the boundary counterpart of the gravitationally extended chiral ring

of the bulk.

4. ALE fibrations and N = 2 Yang-Mills theories

It is straightforward to extend our results to N = 2 d = 4 supersymmetric gauge

theories of general ADE type, and determine their non-perturbative BPS spectra at

the origin of the respective moduli spaces. As mentioned in ref. [8], the corresponding

LG potentials are obtained by a particular fibration of the ALE spaces over IP1,

which amounts to setting z−h → z−2h
1 + z−2h

2 in (1). The intersection index of D3-

brane boundary states wrapping the compact cycles of the fibered ALE is obtained

by including an extra factor of (1 − w−1) in (12), and looks explicitly:

ISW
L1,L2

(Gh = ADE,Nf = 0) = (1 − g−1)2
h−1∑

k=0

〈λL1
, wkφL2

〉 g2k+u2−u1 ,

with g = γ(4h)2. This is now identified with the intersection form of the vanishing

cycles of the Seiberg-Witten curves, from which the strong coupling spectrum of dyons

at the ZZ2h symmetric point of the moduli space can be extracted, as explained in [8].

The fibration procedure is not unique, and other fibrations of the same ALE

space give rise to N = 2 gauge theories with matter fields [29]. While most of the

possibilities do not lead to tensor product models and thus are hard to deal with,

we find that SU(Nc) with Nf = Nc − 1 massless matter multiplets is very simply

described by:

WSW
Nc,Nf=Nc−1 =

1

z1Nc+1
+

1

z2Nc(Nc+1)
+ xNc ,

whose intersection form is:

ISW
L1,L2

(Nc, Nf = Nc − 1) = tL1
(1 − g−Nc)(1 − g−1)(1 − gNc+1)tTL2

with g = γ(2Nc(Nc + 1))2. Our boundary CFT methods allow a straightforward

determination of the strong coupling dyon spectrum of these gauge theories at the

ZZNc(Nc+1) symmetric origin of their moduli spaces.
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