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1. Introduction

Boundary conformal field theory (BCFT) has turned out to be a very useful
tool for investigating properties of D-branes, especially in the domain of strong quan-
tum corrections. Most notably boundary N = 2 minimal models [1] have provided
important results on the spectrum of D-branes at the Fermat (“Gepner”) point of
Calabi-Yau threefold compactifications [2,3].

A particularly interesting feature of four dimensional theories with N = 2 super-
symmetry is that the D-brane BPS spectrum at the Gepner point can be substantially
different as compared to the large radius limit, where semi-classical geometry applies.
Indeed, when interpolating between these regimes in the moduli space, one may cross
certain lines of marginal stability. On these certain central charges become collinear
and thus BPS states become unstable against decay into constituents with smaller
charges.

This kind of phenomenon is well-known from N = 2 gauge theory, in which con-
text it had been discussed first [4,5]. While most investigations have been centered
at gauge group G = SU(2), there is only limited knowledge for general gauge groups
and matter content, because the situation becomes rapidly very complex. The picture
that seemed to emerge for pure gauge theories is that in a sufficiently small neigh-
borhood of the origin of the moduli space, MG, the spectrum of stable BPS states
is finite and consists only of those monopoles and dyons which become massless at
the various singularities in MG. On the other hand, in the semi-classical regime at
“infinity” in MG, the BPS spectrum is infinite, its most prominent members being
the massive gauge fields.

The purpose of the present note is to determine the strong coupling spectrum
of N = 2 SU(N) gauge theories, by relating them to boundary Landau-Ginzburg
theories [6,7] and so effectively mapping them to N = 2 d = 2 minimal models at
levels k = N − 2. In this way, the BPS states at the origin of MG can be mapped via
boundary states to the N(N − 1) primary fields φ`

m, so that the quantum truncation
of the spectrum may be interpreted in terms of the finite number of the primary fields
in the 2d CFT. It will turn out that the stable BPS states have indeed precisely the
electric and magnetic RR charges of the potentially massless monopoles and dyons.

Our setup is very simple. As is well-known, N = 2 gauge theories can be system-
atically embedded into type II string compactifications on Calabi-Yau threefolds [8,9].
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Specializing to the gauge sub-sector in question amounts to focusing on a (neighbor-
hood of an) appropriate isolated singularity on the threefold. This can be modeled
in terms of a non-compact CY threefold, whose compact piece supports the geometry
of the relevant Seiberg-Witten curve. The monopoles and dyons then correspond to
D-branes wrapped around the compact cycles, while the non-compact directions sub-
sume the non-universal degrees of freedom which decouple in the rigid theory we are
interested in.

Concretely, for G = SU(N) the non-compact threefold can be written as [8]:

z +
1
z

+ PAN−1(x1, uk) + x2
2 + x3

2 = 0 , (1)

where PAN−1(x, uk) = xN−∑N
k=2 ukx

N−k is the normal form of the simple singularity
[10] of type AN−1; the other simply laced gauge groups of type D,E can be treated
analogously. Dropping the quadratic pieces, (1) turns precisely into the Riemann
surface that underlies the BPS dynamics of N = 2 Yang-Mills theory [4,11]. We will
be interested in the “Gepner point” uk ≡ 0 of this geometry and study the spectrum
of wrapped D-branes in terms of boundary CFT.

2. Non-compact Landau-Ginzburg description

While the form (1) of the non-compact threefold is convenient for studying the
geometry that underlies the Yang-Mills theory, it is not very useful for a CFT formu-
lation, because for this we need an N = 2 superconformal Landau-Ginzburg theory
with ĉ = 3 to start with. In order to find a suitable form, recall that the geome-
try described by (1) is given by the fibration of an ALE space (described here by
PAN−1 besides the un-important quadratic pieces) over a IP1 base (described by the
z-dependent part) [8]. A good starting point is, therefore, to first focus on the ALE
space.

The ALE space corresponds to a non-compact model of a type AN−1 singularity
on a compact K3 surface, and type II string compactification on it can be described
in terms of a CFT based on the following Landau-Ginzburg superpotential [12]:†

WALE
AN−1

(x, z, uk) = xN −
N∑

k=2

uk x
N−kz−k , (2)

† We drop quadratic terms because they are irrelevant for the LG theory.
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and analogously for the other simply laced groups. The theory is singular at uk = 0,
and this reflects the appearance of massless gauge fields (or non-critical strings, if we
start from the IIB theory instead of type IIA). The Gepner point of this theory is
described by

WALE
AN−1

(x, z, uN = −1) = xN +
1
zN

, (3)

which indeed describes a smooth CFT with ĉ = 2 (remember that each term xN

contributes ĉ(N) = (N−2)/N). It can also be described in terms of a coset CFT
based on

(
SU(2)N−2

U(1) × SL(2)N+2
U(1)

)
/ZZN [12,13]. The idea is that the non-compact part

of the theory is a placeholder that encodes the non-universal, but decoupled dynamics
that is irrelevant to our problem. The quantities we are interested in reside in the
compact sub-sector, and do not depend on the details of the non-compact CFT.

We now return to describing the geometry we are really after, namely a fibration
of the ALE space over IP1. As is familiar from compact K3 fibrations [14], this
ultimately amounts to splitting z into two coordinates with half the degree each, and
so we arrive, tentatively at first, at the following LG representation of the Seiberg-
Witten theory:

WSW
AN−1

(x, z1, z2, uk) = xN +
1

z12N
+

1
z22N

−
N∑

k=2

uk x
N−k(z1z2)−k. (4)

This describes a CFT with ĉ = 3 which is smooth at the origin of its moduli space,
uk = 0; on the other hand, uN →∞ corresponds to the large base IP1 limit where we
recover the ALE space. Moreover the singularities at u` = 0, uN ±2, where the purely
z-dependent piece forms a complete square, correspond to the Argyres-Douglas points
[15]. More generally one can check that the discriminant locus in the moduli space
is the same as for (1). We will thus take (4) as the defining superpotential for our
boundary Landau-Ginzburg theory.

Our purpose is now to determine the spectrum of B-type boundary states at the
Gepner point of (4), by focusing on the compact piece of

WSW
AN−1

(x, z1, z2) = xN +
1

z12N
+

1
z22N

. (5)

This may also be viewed as a coset model of the form
(

SU(2)N−2
U(1) ×(SL(2)2N+2

U(1)

)2
)
/ZZ2N .
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3. Boundary CFT and Intersection Index

An important quantity to compute in order to verify that (5) is the cor-
rect form of the Landau-Ginzburg potential is the topological “intersection index”
Ia,b ≡ Tra,b[(−1)F ] of boundary states a,b. Using standard BCFT technology, the
index will indeed turn out to coincide with the intersection matrix of the vanishing
cycles (and not just of some arbitrary homology cycles) of the Seiberg-Witten curve.
Subsequently, we will determine the spectrum of the stable wrapped D-branes.

Since the LG potential (5) represents a tensor product of N = 2 superconformal
models, we can most conveniently focus on its components. First of all, as is well
known, xN represents an N = 2 minimal model SU(2)k

U(1) at level k = N − 2. The
primary fields are labelled by (`,m, s), with ` = 0, ..., N − 2, m = −N + 1, . . . , N
(mod 2N), and in addition s = −1, 0, 1, 2 (mod 4) determines the R- or NS-sectors
(` +m + s = 0 mod 2). We will be interested in A-type boundary states |`i, mi, si〉,
which are labelled by the same letters as the primary fields. As has been shown
in recent papers [2,7], the intersection index can be written as the following overlap
amplitude:

I`1,`2(m1, m2, s1, s2) ≡
RR

〈
`1, m1, s1

∣∣`2, m2, s2
〉
RR

. (6)

Using the expansion of the boundary states into Ishibashi states | 〉〉,

∣∣`,m, s〉 =
∑

(`′,m′,s′)

S
(`′,m′,s′)

(`,m,s)√
S

(`′,m′,s′)
(0,0,0)

∣∣`′, m′, s′
〉〉
, (7)

where S (`′,m′,s′)
(`,m,s) = 1√

2N
sin

[
π
N (`+ 1)(`′ + 1)

]
exp

[
i π
N (mm′ − N

2 ss
′] is the modular

transformation matrix associated with the N = 2 minimal model characters, the
result is [2,7]: (

I`1,`2

) m2

m1
(s1, s2) = (−1)

s2−s1
2 Nm2−m1

`1,`2
. (8)

This can be considered as 2N × 2N matrix for fixed `i, si (in the following, we will
keep si fixed). Above,

N `3
`1,`2

=
2
N

k∑
`=0

sin
[

π
N (`1 + 1)(`+ 1)

]
sin

[
π
N (`2 + 1)(`+ 1)

]
sin

[
π
N (`3 + 1)(`+ 1)

]
sin

[
π
N

(`+ 1)
]

(9)
are the Verlinde fusion coefficients associated with SU(2)k. Moreover one can extend
the standard range of the upper index, by defining N−`3−2

`1,`2
≡ −N `3

`1,`2
and N−1

`1,`2
=
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NN−1
`1,`2

≡ 0. The extended fusion coefficients are then periodic and so can be compactly
written in terms of the ZZN step generator g(2N) ≡ γ2(2N), where

γ(K) =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0




K×K

. (10)

One has then explicitly for the ` = 0 states [2]:

I
AN−1
0,0 = 1− g(2N) , (11)

which is a matrix without definite symmetry properties. Due to the selection rule
l+m+ s = 0 (mod 2), only every other entry needs to be considered in a given R- or
NS-sector, and this is what we will do when we write down explicit matrices further
below.

In order to obtain geometrically meaningful intersection matrices associated with
non-compact Calabi-Yau ĉ−folds, one needs to augment (11) by a contribution of the
non-compact sector which pushes the central charge up to ĉ = 2 or ĉ = 3. This will
ensure a completely symmetric or anti-symmetric intersection matrix. Note however
that the structure of the non-compact models SL(2)N+2

U(1) is much more complicated
than the one of the minimal models. In particular the SL(2) fusion rules, if they are
well-defined at all, are not known and do not even truncate, and it would be pretty
pointless to try to solve the associated boundary CFT.

Fortunately, this is not necessary and all we will need from the non-compact
sector is the intersection matrix for the trivial representation, ` = 0. By choosing a
parafermionic representation of the SU(2)k Kac-Moody algebra (k=N−2), it is easy
to see that when continuing to negative k, which corresponds to going to SL(2)k, the
U(1) current J3 = i

√
k∂φ switches sign and the rôles of J+ and J− are exchanged

[16,17]. As a consequence primary fields associated with parafermions ψ `
m will now be

associated with negative charges, q = −m/N . Thus, while we certainly do not know
the exact SL(2)N+2

U(1) S-matrices in the expansion of the boundary states into Ishibashi
states (7), the structure should remain simple for the ` = 0 states as far as the labels
m are concerned, and be related to the minimal model matrices by a sign flip of the
m labels.
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In other words, m1 and m2 are exchanged in (8) and this just amounts to the
transposition of I0,0. Imposing periodicity as before, we then conclude that for a LG
theory with W = 1/xN the intersection index should be:

I0,0 = 1− g−1(2N) . (12)

This is the generalization to negative N of the rule that in a tensor product LG model
with ZZK scaling symmetry, each term xN contributes a factor (1− gK/N (2K)) to the
intersection index [2,18]. The rule can be understood also from geometry: (1−gK/N)
is nothing but the “variation operator” that maps relative to absolute homology [10].
It in particular appears when evaluating period integrals in terms of non-compact,
V-shaped integration contours [19].

In forming the tensor product, we still need for the GSO projetion to mod out the
overallR symmetry, and this identifies the charge labels of the individual factors. Thus
all-in-all we obtain from (3) the following intersection index for D-brane boundary
states:

(I0,0)ALE
AN−1

=
(
1− g(2N)

)
·
(
1− g−1(2N)

)
. (13)

Similarly we get from the Landau-Ginzburg potential (5) for the non-compact three-
fold:

ISW
0,0 =

(
1− g2(4N)

)
·
(
1− g−1(4N)

)2

. (14)

We will show in the next section that this is indeed the correct, fully anti-symmetric
intersection matrix of vanishing cycles of the Seiberg-Witten curve.

Before doing so we like to recall that the intersection index for boundary states†

with ` 6= 0 can be obtained from I0,0 by simple matrix multiplication. More specif-
ically, all we need is to consider ` = 0, ..., [k/2], because of the field identification
φ `

m,s = φ k−`
m+k+2,s+2 we can map ` = [k/2] + 1, ..., k, back into the smaller range (the

shifted s-label implies that these states correspond to the anti-branes; the exception
is at the fixed point ` = k/2 where branes and anto-branes sit in the same m-orbit.).
From the fusion coefficients (9) one can then deduce [18]:

I`1,`2 = t`1 · I0,0 · tt`2 ,

t` ≡
`/2∑

k=−`/2

γ2k ,
(15)

† Of course we mean here the higher ` states of the minimal model only, and restrict ourselves

to the ` = 0 sector of the non-compact sector.
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where γ is the square–root (10) of g. It follows that if q(0)i = {0, 0, .., 1i, 0, ..0} are the
charges of the “basic” boundary states with ` = 0, the charges of the other states are

~q(`) = ~q(0) · t` . (16)

4. D-brane spectrum

We now like to verify that the boundary states, whose intersection indices are
given by (13) and (14), indeed correspond to wrapped D-branes that represent gauge
fields and N = 2 SYM dyons, respectively.

We start with the simpler case (13), where is easy to see that the submatrix
obtained by extracting every other entry coincides with the (cyclically extended)
symmetric rank (N − 1) Cartan matrix CAN−1 of SU(N).� Therefore, the ` = 0
boundary states correspond to the simple roots αi, which means that one can choose
a basis in which the boundary states have the following charges:

~q(0) =




α1
...

αN−1

αN


 , (17)

where the extending root is defined by αN ≡ −∑N−1
i αi. This is precisely as required

if we want to interpret the boundary states in terms of D-branes wrapped around the
compact 2-cycles of the ALE space. It is well-known that these cycles correspond to
root vectors and intersect in a Dynkin diagram-like pattern.

However, in order that the D-branes describe gauge fields in the adjoint repre-
sentation, we will need not just the simple roots but all the roots. One can easily see
that the remaining roots are obtained from the boundary states with higher spins,
` = 1, ..., [k/2]. A simple way to deduce this is to visualize a circle of N points in the
x-plane, which can be thought of as the projection of a weight diagram. The boundary
states with ` = 0 then correspond to the simple roots that connect subsequent points
around the circle. Moreover the ` = 1 states connect every other point, and so on.
Group theoretically this corresponds to decomposing the adjoint representation into
orbits of the Coxeter element of the Weyl group (when (` + 1) divides N , the orbits

� The deeper reason is the fact that the modular S matrices that enter in the fusion rule

coefficients N
`3
`1,`2

happen to be the eigenvectors of the AN−1 Cartan matrix.
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are short). In total we obtain all the 1
2N(N − 1) positively charged gauge fields in

this way, whose charges are given by linear combinations of the simple roots precisely
as given in (16).

We now turn to the more interesting BCFT based on the non-compact threefold
(5). Geometrically, what happens when we fiber an ALE space over a IP1 base is that
each point in the x-plane splits into a pair of branch points, and these are precisely the
branch points of the Seiberg-Witten curve [8] (this has been discussed at length in the
literature, see e.g., [20]). Correspondingly each 2-cycle on the ALE space splits into
two 3-cycles on the 3-fold, which correspond to 1-cycles on the SW curve; examples
for such cycles are shown in Fig.1.
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Fig.1: On the left we see a representation of the Seiberg-Witten
curve for G = SU(6) at the origin of its moduli space. The fat
lines denote the branch cuts of a double cover of the x-plane. The
dashed lines denote the vanishing cycles that correspond to the stable
dyons (we show only the upper sheet). On the right we display
the intersection matrices of these cycles, which coincide with the
intersection indices ISW

`,` (15) of the boundary states with spin `.
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A suitable symplectic basis of these cycles, which exhibits the magnetic and
electric charges in the form qi = [ gi ; ei ], can be chosen as follows:

~q(0) =




[ α1 ; 0 ]
[ −α1 ; α1 ]

...
...

[ αi ; (i− 1)αi]
[ −αi ; (2− i)αi ]

...
...

[ αN ;
∑

(1− k)αk]
[−αN ;

∑
(k − 2)αk]




. (18)

These are precisely the RR charge vectors of some the strong coupling dyons (namely
those which are associated with the simple roots) [21,20,22]. The inner product metric
of this basis takes a symplectic DZW form:

(ISW
geom) j

i = qi ◦ qj ≡ 〈gi, ej〉 − 〈gj, ei〉 , (19)

where 〈..., ...〉 is the inner product in weight space which given by the Cartan matrix
of SU(N). It is known to be the geometric intersection matrix of the vanishing cycles
that correspond to the potentially massless dyons [21]. As one can easily verify, it
indeed coincides with the intersection index (14) of the ` = 0 boundary states:

ISW
geom = ISW

0,0 .

Moreover, there are boundary states with spins ` = 1, ..., [k/2] (remember that ` =
[k/2] + 1, ..., k, corresponds to the anti-branes for which the orientation of the cycles
is reversed). Similarly to what we have discussed for the ALE space, these correspond
in the Yang-Mills theory to the dyons that originate from the non-simple roots. In
total we have 2 · 1

2
N(N − 1) states whose charges are determined by (16), and one

can check that these charges match the corresponding cycles on the SW curve – see
again Fig.1.

Finally some remarks on the BPS nature of the boundary states, following [7].
Note that maximally rankG = N − 1 of the dyons can be mutually local with respect
to each other, which corresponds to a choice of N − 1 non-intersecting cycles [15]
(parallel dashed lines in Fig.1). Any given choice of such boundary states can be
mapped to the set of primary chiral fields φ `

` of the superconformal mininal model at
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level k = N − 2. They are BPS with respect to the same linear combination of left-
and right-moving supercharges. The other possible choices of mutually local states are
generated by the ZZ2N symmetry, which describe states that preserve different linear
combinations of the supercharges [7]. Altogether the N(N − 1) states (not counting
the anti-branes) exhaust the set of primary (not necessarily chiral) fields φ `

m in the
minimal model.

Summarizing, we find that applying the rules of boundary conformal field theory
to the non-compact LG potential (5), we find a complete match between the charges
of the boundary states and the charges of those Yang-Mills dyons that are supposedly
stable at the origin of the moduli space.

5. Discussion

The important point of the present paper is not so much that the intersection
indices I`,` = Tr`,`[(−1)F ], as computed from CFT fusion rules, coincide with the
geometric intersection matrices of the vanishing cycles on the ALE space or SW
curve. This is just a reflection of the universality of the simple singularities, which
happen to underlie both the Yang-Mills theory [23] and the superconformal minimal
models [24]. At least we may view the coincidence as a confirmation of the choice (3)
and (5) of Landau-Ginzburg potentials, and as a further successful test on how BCFT
techniques work in non-compact situations.

Rather, the important point is that the spectrum of the D-brane boundary states
turns out to be truncated exactly such that it matches the expected dyon spectrum
of the strongly coupled Yang-Mills theory, and this is more than just simple algebraic
geometry and group theory. In order to appreciate this, recall that the geometry of a
compact or non-compact CY manifold determines a priori only the homology lattice
and thus what the possible RR charges of wrapped branes are. However, it does not
directly tell what subset of the charge lattice corresponds to the stable, single particle
quantum states, at a given point in the moduli space.†

As has been demonstrated in the present and in other recent papers, this kind of
questions can be analyzed in terms of boundary conformal field theory, at least as far
as exactly solvable models are concerned. In particular we have found that the BPS
spectrum of stable D-branes on ALE spaces and SW curves, at the Gepner points of
their respective moduli spaces, can be mapped one-to-one to the spectrum of primary

† For recent considerations about this issue, see [25].
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fields of the N = 2 superconformal minimal models. The latter is finite due to the
truncation to ` ≤ k of the fusion rules, which manifests itself in the sine functions
in the fusion coefficients (9); this is intimately related to the truncation to integrable
representations of ŜU(2)k.

The fact that these two instances of quantum truncation, namely of the spectrum
of wrapped D-branes on the one hand and of the spectrum of 2d primary fields on the
other, can be directly mapped into each other, is what we view as the most interesting
aspect of our considerations.

There are certain obvious generalizations one could think about, like considering
N = 2 d = 4 gauge theories with different gauge groups and matter content. As for
pure Yang-Mills theories based on simply laced Lie algebras of type ADE, we expect
the following Landau-Ginzburg potentials to provide a useful BCFT formulation:

WSW
ADE(zi, xj, uk) =

1
z12h(ADE)

+
1

z22h(ADE)
+ PADE(xj , uk) . (20)

Here, h(ADE) denotes the dual Coxeter number and PADE the normal form of the
simple singularity of the corresponding type [10].

Moreover it may be interesting to find a relation between our and the work of
[26], where a correspondence between BPS spectra of certain two and four dimensional
N = 2 supersymmetric gauge theories has been discovered. Finally one may ask about
the significance of integrable deformations [27] of the N = 2 minimal models in the
present context; these leave infinitely many two-dimensional currents conserved, and
so one may wonder about enhanced integrability properties of the Yang-Mills theories
on certain sub-loci on the moduli space.
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