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Abstract

We provide a rigorous basis for factorization for a large class of non-leptonic two-
body B-meson decays in the heavy-quark limit. The resulting factorization formula
incorporates elements of the naive factorization approach and the hard-scattering ap-
proach, but allows us to compute systematically radiative (“non-factorizable”) cor-
rections to naive factorization for decays such as B → Dπ and B → ππ. We first
discuss the factorization formula from a general point of view. We then consider fac-
torization for decays into heavy-light final states (such as B → Dπ) in more detail,
including a proof of the factorization formula at two-loop order. Explicit results for
the leading QCD corrections to factorization are presented and compared to existing
measurements of branching fractions and final-state interaction phases.
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1 Introduction

Non-leptonic, two-body B-meson decays, although simple as far as the underlying
weak decay of the b quark is concerned, are complicated on account of strong-
interaction effects. If these effects could be computed, this would enhance tremen-
dously our ability to uncover the origin of CP violation in weak interactions from
data on a variety of such decays being collected at the B factories.

In this paper we begin a systematic analysis of weak heavy-meson decays into
two energetic mesons based on the factorization properties of decay amplitudes in
quantum chromodynamics (QCD). (Some of the results have already been presented
in [1].) As in the classic analysis of semi-leptonic B → D transitions [2, 3], our
arguments make extensive use of the fact that the b quark is heavy compared to
the intrinsic scale of strong interactions. This allows us to deduce that non-leptonic
decay amplitudes in the heavy-quark limit have a simple structure. The arguments to
reach this conclusion, however, are quite different from those used for semi-leptonic
decays, since for non-leptonic decays a large momentum is transferred to at least
one of the final-state mesons. The results of this work justify naive factorization of
four fermion operators for many, but not all, non-leptonic decays and imply that
corrections termed “non-factorizable”, which up to now have been thought to be
intractable, can be calculated rigorously, if the mass of the weakly decaying quark is
large enough. This leads to a large number of predictions for CP-violating B decays
in the heavy-quark limit, for which measurements will soon become available.

Weak decays of heavy mesons involve three fundamental scales, the weak inter-
action scale MW , the b-quark mass mb, and the QCD scale ΛQCD, which are strongly
ordered: MW � mb � ΛQCD. The underlying weak decay being computable, all the-
oretical work concerns strong-interaction corrections. The strong-interaction effects
which involve virtualities above the scale mb are well understood. They renormalize
the coefficients of local operators Oi in the weak effective Hamiltonian [4], so that
the amplitude for the decay B →M1M2 is given by

A(B →M1M2) =
GF√

2

∑

i

λi Ci(µ) 〈M1M2|Oi|B〉(µ), (1)

where GF is the Fermi constant. Each term in the sum is the product of a Cabibbo-
Kobayashi-Maskawa (CKM) factor λi, a coefficient function Ci(µ), which incorporates
strong-interaction effects above the scale µ ∼ mb, and a matrix element of an operator
Oi. The most difficult theoretical problem is to compute these matrix elements or,
at least, to reduce them to simpler non-perturbative objects.

There exist a variety of treatments of this problem, on many of which we will
comment later, which rely on assumptions of some sort. Here we identify two some-
what contrary lines of approach. (A more comprehensive discussion of the literature
on non-leptonic B decays is given in a separate section of this paper.)

The first approach, which we shall call “naive factorization”, replaces the matrix
element of a four-fermion operator in a heavy-quark decay by the product of the
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matrix elements of two currents [5, 6], for example,

〈π+π−|(ūb)V−A(d̄u)V−A|B̄d〉 → 〈π−|(d̄u)V−A|0〉 〈π+|(ūb)V−A|B̄d〉. (2)

This assumes that the exchange of “non-factorizable” gluons between the π− and the
(B̄d π

+) system can be neglected, if the virtuality of the gluons is below µ ∼ mb. The
non-leptonic decay amplitude reduces to the product of a form factor and a decay
constant. This assumption is in general not justified, except in the limit of a large
number of colours in some cases. It deprives the amplitude of any physical mechanism
that could account for rescattering in the final state and for the generation of a strong
phase shift between different amplitudes. “Non-factorizable” radiative corrections
must also exist, because the scale dependence of the two sides of (2) is different.
Since “non-factorizable” corrections at scales larger than µ are taken into account
in deriving the effective weak Hamiltonian, it appears rather arbitrary to leave them
out below the scale µ.

The correct scale dependence can be restored by computing the transition matrix
element for an inclusive or partonic final state and by absorbing the correction into
effective scale-independent coefficients. However, without a systematic approach to
computing the hadronic matrix elements, this sidelines the real question of how to
improve the parametric accuracy of the naive factorization approach.

Various generalizations of the naive factorization approach have been proposed,
which include new parameters that account for non-factorizable corrections. In the
most general form, these generalizations have nothing to do with the original “fac-
torization” ansatz, but amount to a general parameterization of the matrix elements,
including those of penguin operators. Such general parameterizations are exact, but
at the price of introducing many unknown parameters and eliminating any theoret-
ical input on strong-interaction dynamics. Making such a parameterization useful
requires certain assumptions that relate these parameters.

The second method used to study non-leptonic decays is the hard-scattering ap-
proach. Here the assumption is that the decay is dominated by hard gluon exchange.
The decay amplitude is then expressed as a convolution of a hard-scattering factor
with light-cone wave functions of the participating mesons, for example,

〈π+π−|(ūb)V−A(d̄u)V−A|B̄d〉 →
∫ 1

0
dξdudvΦB(ξ) Φπ(u) Φπ(v)T (ξ, u, v;mb). (3)

This is analogous to more familiar applications of this method to hard exclusive
reactions involving only light hadrons [7, 8].

For many hard exclusive processes the hard-scattering contribution represents the
leading term in an expansion in ΛQCD/Q, where Q denotes the hard scale. However,
the short-distance dominance of hard exclusive processes is not enforced kinemati-
cally and relies crucially on the properties of hadronic wave functions. There is an
important difference between light mesons and heavy mesons regarding these wave
functions, because the light quark in a heavy meson at rest naturally has a small mo-
mentum of order ΛQCD, while for fast light mesons a configuration with a soft quark
is suppressed by the meson’s wave function. As a consequence the soft (or Feynman)
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mechanism is power suppressed for hard exclusive processes involving light mesons,
but it is of leading power, and in fact larger than the hard-scattering contribution by

a factor 1/αs(
√

mbΛQCD), for heavy-meson decays. (The arguments that lead to this

conclusion will be reviewed below.)
A standard analysis of higher-order corrections to the hard-scattering amplitude

T in (3) shows that the configuration in which the final-state meson picks up the soft
spectator quark of the heavy meson as a soft quark is suppressed by a Sudakov form
factor, if the meson has large momentum. This suggests that the hard-scattering term
may become dominant even for heavy-meson decays, if the heavy-quark mass is very
large. However, calculation of the B → π form factors in the QCD sum rule approach
[9, 10] indicates that the soft contribution dominates for b quarks with mb ≈ 5 GeV.
Even if Sudakov suppression were effective, arguing away the soft contribution in this
way is not completely satisfactory; a factorization formula that separates soft and
hard contributions on the basis of power counting alone is more desirable.

It is clear from this discussion that a satisfactory treatment should take into
account soft contributions (and hence provide the correct asymptotic limit – if we
ignore Sudakov suppression factors), but also allow us to compute corrections to the
naive factorization result in a systematic way (and hence result in a scheme- and
scale-independent expression up to corrections of higher order in the strong coupling
αs).

It is not at all obvious that such a treatment would result in a predictive frame-
work. We will show that this does indeed happen for most non-leptonic two-body
B decays. Our main conclusion is that “non-factorizable” corrections are dominated
by hard gluon exchange, while the soft effects that survive in the heavy-quark limit
are confined to the (BM1) system, where M1 denotes the meson that picks up the
spectator quark in the B meson. This result is expressed as a factorization for-
mula, which is valid up to corrections suppressed by ΛQCD/mb. At leading power
non-perturbative contributions are parameterized by the physical form factors for
the B → M1 transition and leading-twist light-cone distribution amplitudes of the
mesons. Hard perturbative corrections can be computed systematically in a way
similar to the hard-scattering approach. On the other hand, because the B → M1

transition is parameterized by a form factor, we recover the result of naive factor-
ization at lowest order in αs. An important implication of the factorization formula
is that strong rescattering phases are either perturbative or power suppressed in mb.
It is worth emphasizing that the decoupling of M2 occurs in the presence of soft
interactions in the (BM1) system. In other words, while strong-interaction effects
in the B → M1 transition are not confined to small transverse distances, the other
meson M2 is predominantly produced as a compact object with small transverse ex-
tension. The decoupling of soft effects then follows from “colour transparency”. The
colour-transparency argument for exclusive B decays has already been noted in the
literature [11, 12], but it has never been developed into a factorization formula that
could be used to obtain quantitative predictions.

The approach described in this paper is general and applies to decays into a
heavy and a light meson (such as B → Dπ) as well as to decays into two light
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mesons (such as B → ππ, B → πK, etc.). Factorization does not hold, however,
for decays such as B → πD and B → DDs, in which the meson that does not pick
up the spectator quark in the B meson is heavy. For the special case of the ratio
Γ(B → D∗π)/Γ(B → Dπ) Politzer and Wise evaluated “non-factorizable” one-loop
corrections several years ago [13]. Their result agrees with the result obtained from
the general factorization formula proposed here.

The outline of the paper is as follows: in Sect. 2 we state the factorization formula
in its general form and define the various elements of the formula, in particular the
light-cone distribution amplitudes. In Sect. 3 we collect the arguments that lead to
the factorization formula. We show how light-cone distribution amplitudes enter,
discuss the heavy-quark scaling of the B → π form factor and the cancellation of
soft and collinear effects. We also address the issue of multi-particle Fock states and
annihilation topologies, which are power suppressed in ΛQCD/mb. The arguments of
this section are appropriate for decays into a heavy and a light meson, as well as,
with some modifications, to decays into two light mesons. However, we will keep
the discussion qualitative and leave technical details to later sections. In Sect. 4 we
discuss the cancellation of long-distance singularities at one-loop order, and present
the calculation of the hard-scattering functions at this order for decays into a heavy
and a light meson. Sect. 5 extends the proof of the cancellation of singularities to
two-loop order and provides arguments for factorization to all orders. In Sect. 6 we
consider the phenomenology of decays into a heavy and a light meson on the basis
of the factorization formula. We examine to what extent a charm meson should be
considered as heavy or light and discuss various tests of the theoretical framework.
A critical review of and comparison with other approaches to exclusive non-leptonic
decays is given in Sect. 7. Sect. 8 contains our conclusion.

Except for the general discussion, we restrict this paper to the proof of factoriza-
tion and the phenomenology for decays into a heavy and a light meson. The more
elaborate technical arguments needed to establish the factorization formula for de-
cays into two light mesons, together with an adequate discussion of the heavy-quark
limit in this case, will be given in a subsequent paper.

2 Statement of the factorization formula

In this section we summarize the main result of this paper, the factorization formula
for non-leptonic B decays. We introduce relevant terminology and definitions.

2.1 The idea of factorization

In the context of non-leptonic decays the term “factorization” is usually applied to the
approximation of the matrix element of a four fermion operator by the product of a
form factor and a decay constant, see (2). Corrections to this approximation are called
“non-factorizable”. We will refer to this approximation as “naive factorization” and
use quotes on “non-factorizable” to avoid confusion with the meaning of factorization
in the context of hard processes in QCD.
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In the latter context factorization refers to the separation of long-distance contri-
butions to the process from a short-distance part that depends only on the large scale
mb. The short-distance part can be computed in an expansion in the strong coupling
αs(mb). The long-distance contributions must be computed non-perturbatively or de-
termined experimentally. The advantage is that these non-perturbative parameters
are often simpler in structure than the original quantity, or they are process indepen-
dent. For example, factorization applied to hard processes in inclusive hadron-hadron
collisions requires only parton distributions as non-perturbative inputs. Parton distri-
butions are much simpler objects than the original matrix element with two hadrons
in the initial state. On the other hand, factorization applied to the B → D form
factor leads to a non-perturbative object (the “Isgur-Wise function”) which is still
a function of the momentum transfer. However, the benefit here is that symmetries
relate this function to other form factors. In the case of non-leptonic B decays, the
simplification is primarily of the first kind (simpler structure). We call those effects
non-factorizable (without quotes) which depend on the long-distance properties of
the B meson and both final-state mesons combined.

The factorization properties of non-leptonic decay amplitudes depend on the two-
meson final state. We call a meson “light”, if its mass m remains finite in the
heavy-quark limit. A meson is called “heavy”, if we assume that its mass scales with
mb in the heavy-quark limit, such that m/mb stays fixed. In principle, we could
still have m � ΛQCD for a light meson. Charm mesons could be considered as light
in this sense. However, unless otherwise mentioned, we assume that m is of order
ΛQCD for a light meson, and we consider charm mesons as heavy. We also restrict
the term “heavy mesons” to mesons of a heavy and a light quark and do not include
onia of two heavy quarks. The difference is that heavy and light mesons have large
transverse extension of order 1/ΛQCD, while the transverse size of onia becomes small
in the heavy-quark limit.

Although not necessary, it is useful to describe non-leptonic decays in the B-meson
rest frame. In this paper quantities which are not Lorentz invariant will always refer
to this frame. In evaluating the scaling behaviour of the decay amplitudes we assume
that the energies of both final-state mesons scale like mb in the heavy-quark limit.
We do not consider explicitly the so-called small velocity limit for heavy mesons in
which mb ∼ m while mb − m � ΛQCD stays fixed in the heavy-quark limit, which
implies m/mb → 1. Although our results remain valid in this limit, the assumption
that m/mb stays fixed simplifies the discussion, because we do not have to distinguish
the scales mb and mb −m.

2.2 The factorization formula

We consider weak decays B → M1M2 in the heavy-quark limit and differentiate
between decays into final states containing a heavy and a light meson or two light
mesons. Up to power corrections of order ΛQCD/mb the transition matrix element of
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Figure 1: Graphical representation of the factorization formula. Only one of the two
form-factor terms in (4) is shown for simplicity.

an operator Oi in the weak effective Hamiltonian is given by

〈M1M2|Oi|B̄〉 =
∑

j

FB→M1
j (m2

2)
∫ 1

0
du T I

ij(u) ΦM2(u) + (M1 ↔M2)

+
∫ 1

0
dξdudv T II

i (ξ, u, v) ΦB(ξ) ΦM1(v) ΦM2(u)

if M1 and M2 are both light, (4)

〈M1M2|Oi|B̄〉 =
∑

j

FB→M1
j (m2

2)
∫ 1

0
du T I

ij(u) ΦM2(u)

if M1 is heavy and M2 is light.

Here F
B→M1,2

j (m2
2,1) denotes a B → M1,2 form factor, and ΦX(u) is the light-cone

distribution amplitude for the quark-antiquark Fock state of meson X. These non-
perturbative quantities will be defined precisely in the next subsection. T I

ij(u) and
T II

i (ξ, u, v) are hard-scattering functions, which are perturbatively calculable. The
hard-scattering kernels and light-cone distribution amplitudes depend on a factoriza-
tion scale and scheme, which is suppressed in the notation of (4). Finally, m1,2 denote
the light meson masses. Eq. (4) is represented graphically in Fig. 1. (The second
line of the first equation in (4) is somewhat simplified and may require including an
integration over transverse momentum in the B meson starting from order α2

s, see
the remarks after (12).)

As it stands, the first equation in (4) applies to decays into two light mesons, for
which the spectator quark in the B meson (in the following simply referred to as the
“spectator quark”) can go to either of the final-state mesons. An example is the decay
B− → π0K−. If the spectator quark can go only to one of the final-state mesons, as
for example in B̄d → π+K−, we call this meson M1 and the second form-factor term
on the right-hand side of (4) is absent.

The factorization formula simplifies when the spectator quark goes to a heavy
meson (second equation in (4)), such as in B̄d → D+π−. In this case the third term
on the right-hand side of (4), which accounts for hard interactions with the spectator
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quark, can be dropped because it is power suppressed in the heavy-quark limit. In the
opposite situation that the spectator quark goes to a light meson but the other meson
is heavy, factorization does not hold because the heavy meson is neither fast nor small
and cannot be factorized from the B → M1 transition. However, such amplitudes
are again power suppressed in the heavy-quark limit relative to amplitudes in which
the spectator quark goes to a heavy meson while the other meson is light. (These
statements will be justified in detail in Sect. 3.) We also note that factorization
does hold, at least formally, if the emission particle M2 is an onium. Finally, notice
that annihilation topologies do not appear in the factorization formula. They do not
contribute at leading order in the heavy-quark expansion.

Any hard interaction costs a power of αs. As a consequence the third term in (4)
is absent at order α0

s. Since at this order the functions T I
ij(u) are independent of u,

the convolution integral results in a meson decay constant and we see that (4) repro-
duces naive factorization. The factorization formula allows us to compute radiative
corrections to this result to all orders in αs. Further corrections are suppressed by
powers of ΛQCD/mb in the heavy-quark limit.

The significance and usefulness of the factorization formula stems from the fact
that the non-perturbative quantities which appear on the right-hand side of (4) are
much simpler than the original non-leptonic matrix element on the left-hand side.
This is because they either reflect universal properties of a single meson state (light-
cone distribution amplitudes) or refer only to a B → meson transition matrix element
of a local current (form factors). While it is extremely difficult, if not impossible [14],
to compute the original matrix element 〈M1M2|Oi|B̄〉 in lattice QCD, form factors
and light-cone distribution amplitudes are already being computed in this way, al-
though with significant systematic errors at present. Alternatively, form factors can
be obtained using data on semi-leptonic decays, and light-cone distribution ampli-
tudes by comparison with other hard exclusive processes.

Adopting the terminology introduced earlier, Eq. (4) implies that there exist no
non-factorizable effects (in the sense of QCD factorization) at leading order in the
heavy-quark expansion. Since the form factors and light-cone distribution amplitudes
are real, all final-state interactions and the strong phases generated by them are part
of the calculable hard-scattering functions. This and the absence of non-factorizable
corrections is unlikely to be true beyond leading order in the heavy-quark expansion,
because there exist soft gluon effects that connect M1 and M2, which are suppressed
by one power of ΛQCD/mb.

2.3 Definition of non-perturbative parameters

2.3.1 Form factors

The form factors FB→M
j (q2) in (4) arise in the decomposition of matrix elements of

the form
〈M(p′)|q̄Γb|B̄(p)〉, (5)

where Γ can be any irreducible Dirac matrix that appears after contraction of the
hard subgraph to a local vertex with respect to the B → M transition. For the
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purpose of discussion we will often refer to the matrix element of the vector current,
which is conventionally parameterized by two scalar form factors:

〈P (p′)|q̄γµb|B̄(p)〉 = FB→P
+ (q2) (pµ+p′

µ
)+
[

FB→P
0 (q2)−FB→P

+ (q2)
] m2

B −m2
P

q2
qµ, (6)

where q = p−p′. The pseudoscalar meson is denoted by P , mP is its mass and mB the
mass of the B meson. For q2 = 0 the two form factors coincide, FB→P

+ (0) = FB→P
0 (0).

The scaling of FB→P
+ (0) with mb will be discussed in Sect. 3.

Note that we write (4) in terms of physical form factors. In principle, Fig. 1
could be looked upon in two different ways. In the first way, we suppose that the
region represented by ‘F ’ accounts only for the soft contributions to the B → M1

form factor. The hard contributions to the form factor can be considered as part of
T I

ij or as part of the second diagram, i.e. as part of the hard-scattering factor T II
i .

Performing this split-up requires that one understands the factorization of hard and
soft contributions to the form factor. If M1 is heavy, this amounts to matching the
form factor onto a form factor defined in heavy-quark effective theory. However, for
a light meson M1, the factorization of hard and soft contributions to the form factor
is not yet completely understood. We bypass this problem by interpreting ‘F ’ as the
physical form factor, including hard and soft contributions. The hard contributions
to the form factor should then be omitted from the hard-scattering kernel T II

i and a
subtraction has to be performed in T I

ij beginning at two-loop order (see also Sect. 5).
The relevant diagrams are easily identified. An additional advantage of using physical
form factors is that they are directly related to measurable quantities, or to the form
factors obtained from lattice QCD or QCD sum rules.

2.3.2 Light-cone distribution amplitudes of light mesons

Light-cone distribution amplitudes play the same role for hard exclusive processes
that parton distributions play for inclusive processes. As in the latter case, the
leading-twist distribution amplitudes, which are the ones we need at leading power
in the 1/mb expansion, are given by two-particle operators with a certain helicity
structure. The helicity structure is determined by the angular momentum of the me-
son and the fact that the spinor of an energetic quark has only two large components.

The leading-twist light-cone distribution amplitudes for pseudoscalar mesons (P ),
longitudinally polarized vector mesons (V||), and transversely polarized vector mesons
(V⊥) with flavour content (q̄q′) are

〈P (q)|q̄(y)αq
′(x)β|0〉

∣

∣

∣

(x−y)2=0
=
ifP

4
(6qγ5)βα

∫ 1

0
du ei(ūqx+uqy) ΦP (u, µ),

〈V||(q)|q̄(y)αq
′(x)β|0〉

∣

∣

∣

(x−y)2=0
= − ifV

4
6qβα

∫ 1

0
du ei(ūqx+uqy) Φ||(u, µ), (7)

〈V⊥(q)|q̄(y)αq
′(x)β|0〉

∣

∣

∣

(x−y)2=0
= − ifT (µ)

8
[6ε∗⊥, 6q ]βα

∫ 1

0
du ei(ūqx+uqy) Φ⊥(u, µ).

The equality sign is to be understood as “equal up to higher-twist terms”, and it
is also understood that the operator on the left-hand side is a colour singlet. We
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use the “bar”-notation throughout this paper, i.e. v̄ ≡ 1 − v for any longitudinal
momentum fraction variable. The parameter µ is the renormalization scale of the
light-cone operators on the left-hand side. The distribution amplitudes are normal-
ized as

∫ 1
0 duΦX(u, µ) = 1 (X = P, ||,⊥). One defines the asymptotic distribution

amplitude as the limit in which the renormalization scale is sent to infinity. All three
distribution amplitudes introduced above have the same asymptotic form

ΦX(u, µ)
µ→∞
= 6uū. (8)

The decay constants appearing in (7) refer to the normalization in which fπ =
131 MeV. (fT (µ) is scale dependent, because it is related to the matrix element of
the non-conserved tensor current.) εµ

⊥ is the polarization vector of a transversely
polarized vector meson. For longitudinally polarized vector mesons we can identify
εµ
|| = qµ/mV , where mV is the vector-meson mass. Corrections to this are suppressed

by two powers of mV /q
0 ∼ ΛQCD/mb. We have used this fact to eliminate the polar-

ization vector of V|| in (7). There is a path-ordered exponential that connects the two
quark fields at different positions and makes the light-cone operators gauge invariant.
In (7) we have suppressed this standard factor.

The use of light-cone distribution amplitudes in non-leptonic B decays requires
justification, which we will provide in Sect. 3. The decay amplitude is then calculated
as follows: assign momentum uq to the quark in the outgoing (light) meson with
momentum q and assign momentum ūq to the antiquark. Write down the on-shell
amplitude in momentum space with outgoing quark and antiquark of momentum uq
and ūq, respectively, and perform the replacement

ūαa(uq)Γ(u, . . .)αβ,ab,...vβb(ūq) −→ ifP

4Nc

∫ 1

0
duΦP (u) (6qγ5)βαΓ(u, . . .)αβ,aa,... (9)

for pseudoscalars and, with obvious modifications, for vector mesons. (Here Nc = 3
refers to the number of colours.)

Even when working with light-cone distribution amplitudes (light-cone wave func-
tions integrated over transverse momentum) it is not always justified to perform the
collinear approximation on the external quark (antiquark) lines right away. One may
have to keep the transverse components of the quark momentum k and be allowed
to put k = uq only after some operations on the amplitude have been carried out.
However, these subtleties do not concern calculations that use only leading-twist
light-cone distributions.

2.3.3 Light-cone distribution amplitudes of B mesons

It is intuitive that light-cone distribution amplitudes for light mesons appear in non-
leptonic decays. The relevance of light-cone distribution amplitudes of B mesons is
less clear, because the spectator quark in the B meson is not energetic in the B-meson
rest frame. Hence if we assign momentum l to the spectator quark, all components
of l are of order ΛQCD.

The B-meson light-cone distribution amplitude appears only in the third term on
the right-hand side of (4), the hard spectator interaction term. As discussed above,
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this term is of leading power only for decays into two light mesons or decays into a
light meson and an onium. One finds, at least at order αs, that the hard spectator
interaction amplitude depends only on p′ · l at leading order in 1/mb, where p′ is
the momentum of the light meson that picks up the spectator quark. We introduce
light-cone components

v± =
v0 ± v3

√
2

(10)

for any vector v. If we choose p′ such that only p′− is non-zero, the hard spectator
amplitude A(l, . . .) depends only on l+. The decay amplitude for the general two-
particle Fock state of the B meson is given by the integral over the full Bethe-Salpeter
wave function

ΨB(z, p) = 〈0|q̄α(z)[. . .]bβ(0)|B̄d(p)〉 =
∫

d4l

(2π)4
e−ilz Ψ̂B(l, p) (11)

with the partonic decay amplitude. (The dots denote the path-ordered exponential
required to make the matrix element gauge invariant.) We then approximate

∫

d4l

(2π)4
A(l, . . .) Ψ̂B(l, p) =

∫

dl+A(l+, . . .)
∫

d2l⊥dl−
(2π)4

Ψ̂B(l, p), (12)

which is valid up to power corrections. Since the wave function can be integrated
over l⊥ and l− it follows that we need Ψ(z, p) only for light-like z, i.e. for z+ = z⊥ = 0.
We used this property to express the hard spectator interaction in (4) in terms of an
integral over longitudinal momentum fraction ξ. It is possible that this cannot be
justified in higher orders in perturbation theory. If not, the hard spectator interaction
has to be generalized to include an integration over the transverse momentum. We
leave this issue to subsequent work on factorization in decays into two light mesons.
(An example for which this generalization is necessary is the decay B+ → γe+ν,
which has recently been discussed in [15].) The qualitative discussion for light-light
final states in this paper is not affected by this potential complication.

For the most general decomposition of the light-cone distribution amplitude at
leading order in 1/mb, we make use of the fact that in the B-meson rest frame only the
upper two components of the b-quark spinor are large. However, since the spectator
quark is neither energetic nor heavy, no further restriction on the components of the
spectator-quark spinor exists. We then find that the B meson is described by two
scalar wave functions at leading power, which we can choose as

〈0|q̄α(z)[. . .]bβ(0)|B̄d(p)〉
∣

∣

∣

z+=z⊥=0
=

− ifB

4
[(6p+mb)γ5]βγ

∫ 1

0
dξ e−iξp+z− [ΦB1(ξ)+ 6n−ΦB2(ξ)]γα , (13)

where n− = (1, 0, 0,−1), and the normalization conditions are

∫ 1

0
dξ ΦB1(ξ) = 1,

∫ 1

0
dξΦB2(ξ) = 0. (14)

10



The light spectator carries longitudinal momentum fraction ξ ≡ l+/p+. At leading
power in 1/mb, we can neglect the difference between the b-quark mass and the B-
meson mass. We emphasize that (13) gives the most general decomposition of the
leading-power light-cone distribution amplitude only if the transverse momentum of
the spectator quark l⊥ can be neglected in the hard-scattering amplitude at leading
power in an expansion in 1/mb. If this is not the case, the B meson is still described
by two scalar wave functions at leading power; however, the right-hand side of (13)
has to be modified.

Contrary to the distribution amplitudes of light mesons, the B-meson distribution
amplitudes are poorly known, even theoretically. At scales much larger than mb, the
B meson is like a light meson and the distribution amplitude should approach a
symmetric form. At scales of order mb and smaller, one expects the distribution
amplitudes to be very asymmetric with ξ of order ΛQCD/mb.

We will use the decomposition (13) for the qualitative discussion of factorization
in Sect. 3. This will be sufficient since the remainder of the paper, which provides
technical arguments for factorization, is restricted to decays into heavy-light final
states, for which the hard spectator interaction, which requires the B-meson wave
function, is absent. For a technical proof of factorization for decays into two light
mesons the definition (13) is not satisfactory for several reasons. The B-meson wave
functions are defined in full QCD and contain an implicit dependence on mb that
should be made explicit. This concerns logarithms of mb which have to be summed
in order to define the heavy-quark limit properly. This can be done by matching the
distribution amplitudes on distribution amplitudes defined in heavy-quark effective
theory, although this is not mandatory at leading power in 1/mb. The distribution
amplitudes in heavy-quark effective theory are expressed more naturally in terms
of l+ rather than the variable ξ, which is mb dependent. Logarithmic effects in mb

should then be absorbed into the strong coupling and into the B-meson distribution
amplitude, or summed in other ways. In this respect it is worth noting that the
evolution of the B-meson distribution amplitude at scales below mb is driven by soft
singularities rather than by collinear ones. The singularity structure implies that
the integral over l+ actually extends to infinity, because the energy of the heavy
quark is infinite in the soft limit. In other words, even if the “primordial” B-meson
distribution contains only momenta of order ΛQCD, evolution generates a tail that
extends to infinite momenta. A complete definition of the B-meson wave function
therefore contains a cut-off µ such that l+ < µ in addition to the cut-off in transverse
momentum related to collinear singularities. We will return to these issues in a
subsequent paper devoted to factorization for decays into two light mesons.

3 Arguments for factorization

In this section we provide the basic power-counting arguments that lead to the fac-
torized structure of (4). We shall do so by analyzing qualitatively the hard, soft and
collinear contributions of the simplest diagrams in each class of contributions.

The plan of this section is as follows. We begin by spelling out the kinematic
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B
p p′

q

M2

“emission” meson
(light, onium)

M1

“recoil” meson
(heavy, light)

Figure 2: Kinematics and notation.

properties and dynamical assumptions from which power counting in 1/mb and the
relevance of light-cone distributions follow. We then discuss the heavy-quark scaling
for the B-meson form factors and review the argument why the soft contribution is
not suppressed. The analysis of “non-factorizable” diagrams for decays into a heavy
and a light meson and into two light mesons is presented subsequently. This includes
a discussion of power suppression of the contributions from annihilation diagrams.
The following subsection is devoted to the implications of the factorization formula
for final-state interactions. Next we discuss decays in which the emission particle
is a heavy-light meson, for which factorization (even naive factorization) does not
hold, and decays in which the emission particle is a heavy quarkonium, for which
factorization holds in the formal heavy-quark limit. We then discuss in more detail
the power suppression of the contributions from non-leading Fock states (higher-
twist light-cone distribution amplitudes) of the mesons. The section concludes by
mentioning some limitations of the QCD factorization approach.

3.1 Preliminaries and power counting

In this section we label the meson which picks up the spectator quark by M1 and
assign momentum p′ to it. If M1 is light, we choose the coordinate axis so that only
p′− is large, i.e. of order mb. The other meson is labeled M2 with momentum q. Unless
otherwise stated, M2 will be assumed to be light, and only q+ is of order mb. When
meson masses are neglected, p′ = mBn−/2, q = mBn+/2 with n± = (1, 0, 0,±1). See
Fig. 2 for notation and further terminology. In subsequent diagrams lines directed
upwards will always belong to M2 as in Fig. 2.

The simplest diagrams that we can draw for a non-leptonic decay amplitude assign
a quark and antiquark to each meson. We choose the quark and antiquark momentum
in M2 as

kq = uq + k⊥ +
~k 2
⊥

2umB
n−, kq̄ = ūq − k⊥ +

~k 2
⊥

2ūmB
n−. (15)

Note that q 6= kq +kq̄, but the off-shellness (kq +kq̄)
2 is of the same order as the light

meson mass, which we can neglect at leading power in 1/mb. A similar decomposition
is used for M1 in terms of v, p′ and k′⊥. Let l denote the momentum of the spectator
quark. The decay amplitude is then a function

A(p′, q; l; u, k⊥; v, k′⊥) (16)
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convoluted with meson wave functions.
We start by considering the case for which M1 is heavy. To prove (4) in this case

one has to show that:

1) There is no leading (in 1/mb) contribution from the endpoint regions u ∼
ΛQCD/mb and ū ∼ ΛQCD/mb.

2) One can set k⊥ = 0 in the amplitude (more generally, expand the amplitude in
k⊥) after collinear subtractions, which can be absorbed into the wave function
of M2. This, together with 1), guarantees that the amplitude is legitimately
expressed in terms of the light-cone distribution amplitude of M2.

3) The leading contribution comes from v̄ ∼ ΛQCD/mb, which guarantees the ab-
sence of a hard spectator interaction term.

4) After subtraction of infrared contributions corresponding to the light-cone dis-
tribution amplitude and the form factor, the leading contributions to the am-
plitude come only from internal lines with virtuality that scales with mb.

5) Non-valence Fock states are non-leading.

If M1 is light the same statements apply, except that there is now a leading contribu-
tion from large momentum transfer to the spectator quark, so that v̄ can be of order
1. In order to verify the structure of the third term in the first equation in (4), one
then has to show that for any hard spectator interaction the amplitude depends only
on l+, and that one can set k′⊥ = 0 in addition to k⊥ = 0 after collinear subtractions
appropriate to the wave functions of M1, M2 and B.

The requirement that after subtractions virtualities should be large is obvious to
guarantee the infrared finiteness of the hard-scattering functions T I

ij and T II
i . Let

us comment on setting transverse momenta in the wave functions to zero and on
endpoint contributions.

Neglecting transverse momenta requires that we count them as order ΛQCD when
comparing terms of different magnitude in the scattering amplitude. This conforms
to our intuition, and the assumption of the parton model, that intrinsic transverse
momenta are limited to hadronic scales. However, in QCD transverse momenta are
not limited, but logarithmically distributed up to the hard scale. The important point
is that those contributions that violate the starting assumption of limited transverse
momentum can be absorbed into the universal meson light-cone distribution ampli-
tudes. The statement that transverse momenta can be counted of order ΛQCD is to
be understood after these subtractions have been performed.

The second comment concerns “endpoint contributions” in the convolution in-
tegrals over longitudinal momentum fractions. These contributions are dangerous,
because we may be able to demonstrate the infrared safety of the hard-scattering
amplitude under assumption of generic u and independent of the shape of the meson
distribution amplitude, but for u→ 0 or u→ 1 a propagator that was assumed to be
off-shell approaches the mass-shell. If such a contribution is of leading power, we do
not expect the perturbative calculation of the hard-scattering function to be reliable.
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Estimating endpoint contributions requires knowledge of the endpoint behaviour
of the light-cone distribution amplitude. Since the distribution amplitude enters
the factorization formula at a renormalization scale of order mb, we can use the
asymptotic form of the wave function to estimate the endpoint contribution. (More
generally, we only have to assume that the distribution amplitude at a given scale
has the same endpoint behaviour as the asymptotic distribution amplitude. This is
generally the case, unless there is a conspiracy of terms in the Gegenbauer expansion
of the distribution amplitude. If such a conspiracy existed at some scale, it would be
immediately destroyed by evolving the distribution amplitude to a slightly different
scale.) Using (8) we count a light meson distribution amplitude as order ΛQCD/mb

in the endpoint region (defined as the region where u or ū is of order ΛQCD/mb, such
that the quark or antiquark momentum is of order ΛQCD) and order 1 away from the
endpoint (X = P, ||,⊥):

ΦX(u) ∼
{

1 ; generic u,

ΛQCD/mb ; u, ū ∼ ΛQCD/mb.
(17)

Note that the endpoint region has size of order ΛQCD/mb so that the endpoint sup-
pression is ∼ (ΛQCD/mb)

2. This suppression has to be weighted against potential
enhancements of the partonic amplitude when one of the propagators approaches the
mass shell.

The counting for B mesons, or heavy mesons in general, is different. Given the
normalization condition (14), we count

ΦB1(ξ) ∼
{

mb/ΛQCD ; ξ ∼ ΛQCD/mb,

0 ; ξ ∼ 1.
(18)

The zero probability for a light spectator with momentum of order mb must be
understood as a boundary condition for the wave function renormalized at a scale
much below mb. There is a small probability for hard fluctuations that transfer large
momentum to the spectator as discussed above. This “hard tail” is generated by
evolution of the wave function from a hadronic scale to a scale of order mb. If we
assume that the initial distribution at the hadronic scale falls sufficiently rapidly for
ξ � ΛQCD/mb, this remains true after evolution. We shall assume a sufficiently
fast fall-off, so that, for the purposes of power counting, the probability that the l+
(= ξp+) component of the spectator quark’s momentum is of order mb can be set to
zero. If M1 is a heavy meson, the same counting that applies to the B meson is valid
also for M1. Despite the fact that M1 has momentum of order mb, we do not need
to distinguish the B- and M1-meson rest frames for the purpose of power counting,
because the two frames are not connected by a parametrically large boost (i.e. the
Lorentz factor of the boost is of order 1 and not of order mb/ΛQCD). In other words,
the components of the spectator quark in M1 are still of order ΛQCD.

3.2 The B → M1 form factor

We now consider the form factor for the B → M1 transition and demonstrate that
it receives a leading contribution from soft gluon exchange. This implies that a non-
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����� �����Figure 3: Leading contributions to the B → M1 form factor in the hard-scattering ap-
proach. The dashed line represents the weak current. The two lines to the left belong to
the B meson, the ones to the right to the recoil meson M1.

leptonic decay cannot be treated completely in the hard-scattering picture, and there-
fore that the form factor should enter the factorization formula as a non-perturbative
quantity, as in (4). We begin the argument with the diagrams shown in Fig. 3, which
would be leading if the B → M1 transition could be considered as a hard process.
We shall also establish how the form factors scale with the mass of the heavy quark.

3.2.1 M1 heavy (B → D transitions)

The case when the final-state meson is heavy, for example a D meson, is particularly
simple. When the gluon exchanged in Fig. 3 is hard, the final spectator quark has
momentum of order mb. According to the counting rule (18) this configuration has no
overlap with the D-meson wave function. On the other hand, there is no suppression
for soft gluons in Fig. 3. It follows that the dominant behaviour of the B → D form
factor in the heavy-quark limit is given by soft processes.

To answer the question how the form factor scales in the heavy-quark limit, we
note that since the form factor is dominated by soft processes we can exploit the
heavy-quark symmetries. (The discussion in this section aims only at counting powers
of mb, that is we ignore logarithmic effects in mb which arise from hard corrections
to the b → c vertex.) Heavy-quark symmetry implies that the form factor scales like
a constant, since it is equal to one at zero velocity transfer and is independent of mb

as long as the Lorentz boost that connects the B and D rest frames is independent
of mb. The same conclusion also follows from the power-counting rules for light-cone
wave functions. To see this, we represent the form factor by an overlap integral of
light-cone wave functions (not integrated over transverse momentum),

FB→D
+,0 (0) ∼

∫

dξd2k⊥
16π3

ΨB(ξ, k⊥) ΨD(ξ′(ξ), k⊥), (19)

where ξ′(ξ) is fixed by kinematics and we have set q2 = 0. The probability of finding
the B meson in its valence Fock state is of order 1 in the heavy-quark limit, i.e.

∫ dξd2k⊥
16π3

|ΨB,D(ξ, k⊥)|2 ∼ 1. (20)

Counting k⊥ ∼ ΛQCD and dξ ∼ ΛQCD/mb, we deduce that ΨB(ξ, k⊥) ∼ m
1/2
b /Λ

3/2
QCD.
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An alternative way to arrive at this result uses the relation

ΦB(ξ) ∼ 1

fB

∫

k⊥<µ
d2k⊥ΨB(ξ, k⊥), (21)

together with fB ∼ Λ
3/2
QCD/m

1/2
b and the normalization condition for ΦB(ξ). From

(19), we then obtain the scaling law

FB→D
+,0 (0) ∼ 1, (22)

in agreement with our earlier power-counting estimate. The representation (19) of
the form factor as an overlap of wave functions for the two-particle Fock components
of the heavy-meson wave function is not rigorous, because there is no reason to
assume that the contribution from higher Fock states with additional soft gluons is
suppressed. The consistency with the estimate based on heavy-quark symmetry shows
that these additional contributions are not larger than the two-particle contribution.

3.2.2 M1 light (B → π transitions)

The case of the heavy-light form factor is more complicated. When the exchanged
gluon in Fig. 3 is soft, one of the quark constituents of M1 is soft (for the purpose
of illustration, for the remainder of this subsection we will take M1 to be a pion).
This configuration is suppressed by the endpoint behaviour of the pion distribution
amplitude given by (17). In addition we now also have a hard contribution, for which
there is no wave-function suppression.

We begin with the hard contribution. By assumption both quarks that form the
pion have longitudinal momenta of order mb, so that the virtuality of the exchanged
gluon is of order mbΛQCD. These gluons can be treated perturbatively in the heavy-
quark limit. The calculation of the diagrams shown in Fig. 3, setting q2 = 0 as an
example, results in

FB→π
+,0 (0) =

παsCF

Nc

fπfB

m2
b

∫ 1

0
dξdu [ΦB1(ξ) − 2ΦB2(ξ)] Φπ(u)

1

ξū2

+ terms with 1/ū. (23)

(For the calculation of the 1/ū term the B-meson distribution amplitude has to be
generalized as indicated after (13). However, the precise expression for the 1/ū term
is not necessary for the subsequent discussion.) With ū ∼ 1, ξ ∼ ΛQCD/mb and the
scaling behaviours of the distribution amplitudes discussed earlier, we obtain

FB→π
+,0; hard(0) ∼ αs(

√

mbΛQCD)
(

ΛQCD

mb

)3/2

. (24)

To our knowledge, this scaling behaviour was first derived in [16].
However, the computation of the hard contribution is not self-consistent. With

Φπ(u) ∝ uū, the integral in (23) diverges logarithmically for u → 1 [17, 18]. In this
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limit the momentum of the exchanged gluon approaches zero. If we interpret αs times
this logarithmic divergence as a constant of order 1, we obtain an estimate for the
soft contribution to the form factor:

FB→π
+,0; soft(0) ∼

(

ΛQCD

mb

)3/2

. (25)

There is an alternative way to arrive at this result. As in (19) we represent the
soft contribution to the form factor by an overlap integral of wave functions not
integrated over transverse momentum. The difference is that for u(ξ) ∼ ΛQCD/mb

the wave function for the pion scales as Ψπ(u(ξ), k⊥) ∼ 1/mb. Eq. (25) then follows
from (19). We therefore conclude that the hard and soft contributions to the heavy-
light form factor have the same scaling behaviour in the heavy-quark limit. The hard
contribution is suppressed by one power of αs. This is why the standard approach
to hard, exclusive processes [7, 8] is not applicable to heavy-light form factors, as
noticed already in [16]. Note that both ways of arriving at this conclusion make use
of the fact that the pion’s light-cone distribution amplitude vanishes linearly near
the endpoints u = 0 or 1. Since the applicability of the Fock-state expansion is
doubtful for endpoint regions, relying on the endpoint behaviour of the two-particle
wave function makes the power-counting estimate (25) appear less solid than the
estimate for the B → D form factor.

The dominance of the soft contribution has been a major motivation for applying
light-cone QCD sum rules to the calculation of the B → π form factor [16]. In this
framework, the leading contribution is again given by a diagram that corresponds to
the soft overlap term. The first order radiative correction [9, 10] contains both hard
and soft contributions, in accordance with the above discussion. Furthermore, the
heavy-quark scaling is also consistent with the one observed above [10]. However,
it should be noted that the heavy-quark scaling law in the framework of QCD sum
rules also relies on the endpoint behaviour of the pion wave function and therefore
does not provide an independent verification of the scaling behaviour.

The upshot of this discussion is that the heavy-to-light form factor is not fully
calculable in perturbative QCD (using light-cone distribution amplitudes), because
the form factor is dominated by a soft endpoint contribution. At this point, it is worth
recalling that we have neglected logarithmic effects in mb. Summing such logarithms
results in a Sudakov form factor that suppresses the kinematic configuration when
almost all momentum in the b → u transition is transferred to the u quark, i.e. it
suppresses the singularity at u = 1 in (23). (A similar situation occurs for the pion
form factor at next-to-leading power and is discussed in [19].) If the soft contribution
were suppressed sufficiently by the Sudakov form factor, as would be the case in the
limit of an asymptotically large bottom quark mass, the heavy-to-light form factor
would be calculable perturbatively in terms of light-cone distribution amplitudes. By
the arguments provided later in this section, the entire non-leptonic decay amplitude
into two light mesons (but not a heavy and a light meson) could then be brought
into the form of the second line of the first equation in (4). This observation is the
starting point for the hard-scattering approach to non-leptonic decays as discussed
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further in Sect. 7. However, it appears unlikely to us that Sudakov suppression
makes the soft contribution negligible for mb ≈ 5 GeV. For this reason we prefer to
keep the factorization formula in the more general form of (4). The important point
is that factorization is still valid under less restrictive assumptions that admit a soft
contribution to the heavy-light form factor. Nothing is lost keeping this more general
form, as the form factor, which then appears as an additional non-perturbative input,
can be obtained experimentally or from other methods.

We shall see later that the first and second line in the factorization formula (4)
are of the same order in the heavy-quark limit, but that the second line is suppressed
by one power of αs. This conclusion depends on the assumed endpoint behaviour of
the light-cone distribution amplitude of a light meson and on neglecting a potential
Sudakov suppression of the endpoint contribution. Let us mention what changes if
these assumptions are not valid. If Sudakov suppression is effective, or if the light-cone
distribution amplitude vanishes more rapidly than linearly near the endpoint, then
the hard contribution to the form factor is leading and both terms in the factorization
formula are of the same order in the heavy-quark limit and in αs. If, on the other
hand, the light meson distribution amplitude vanishes less rapidly than linearly near
the endpoint, or if soft effects are larger than indicated by the endpoint behaviour of
the two-particle wave function, then the first line in (4) becomes more important. (If
the wave function does not vanish at the endpoint, the factorization formula breaks
down.) In the following we shall assume the canonical endpoint behaviour provided
by the asymptotic wave function. We shall also restrict ourselves to power counting
and neglect possible Sudakov form factors.

To conclude this discussion of the form factor, we also mention that a complete
treatment of logarithms of mb goes far beyond the Sudakov form factor mentioned
above. The factor 1/ū2 that causes the divergence of the integral in (23) comes only
from the first diagram of Fig. 3. In [20] this term is absorbed into a redefinition of the
B-meson wave function by an eikonal phase. If this could be done to all orders, this
would remove the need to include a soft contribution to the form factor at leading
power in 1/mb, at least in perturbation theory. It is then shown in [20] that there is
another Sudakov form factor that suppresses the contribution from the small-ξ region
to the integral in (23). A complete discussion of logarithms of mb to all orders in
perturbation theory has, to our knowledge, never been given. We shall not pursue
this in this paper, too, since we use the form factor as an input.

3.3 Non-leptonic decay amplitudes

We now turn to the qualitative discussion of the lowest-order and one-gluon exchange
diagrams that could contribute to the hard-scattering kernels T I

ij(u) and T II
i (ξ, u, v)

in (4). In the figures which follow, with the exception of the annihilation diagrams,
the two lines directed upwards represent M2, which we shall assume to be a π− for
definiteness. The two lines on the left represent the B̄d, the lower line being the light
d̄ spectator. The two lines directed to the right represent M1, taken to be a D+ or π+

for definiteness. The black square marks the weak decay vertex for b → qūd where
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Figure 4: Leading-order contribution to the hard-scattering kernel T I
ij(u). The weak decay

of the b quark through a four-fermion operator (of current-current or penguin type) is
represented by the black square. See text and Fig. 2 for further notation.

q = c, u (see also Fig. 2).

3.3.1 Lowest-order diagram

There is a single diagram with no hard gluon interactions shown in Fig. 4. According
to (18) the spectator quark is soft, and since it does not undergo a hard interaction
it is absorbed as a soft quark by the recoiling meson. This is evidently a contribution
to the left-hand diagram of Fig. 1, involving the B → D (B → π) form factor in the
case of B̄d → D+π− (B̄d → π+π−). The hard subprocess in Fig. 4 is just given by the
insertion of a four-fermion operator and hence it does not depend on the longitudinal
momentum fraction u of the two quarks that form the emitted π−. Consequently,
the lowest-order contribution to T I

ij(u) in (4) is independent of u, and the u-integral
reduces to the normalization condition for the pion wave function. The result is,
not surprisingly, that the factorization formula (4) reproduces the result of naive
factorization, if we neglect gluon exchange.

Note that the physical picture underlying this lowest-order process is that the
spectator quark (which is part of the B → D or B → π form factor) is soft. If
this is the case, the hard-scattering approach misses the leading contribution to the
non-leptonic decay amplitude.

Putting together all factors relevant to power counting we find that, in the heavy-
quark limit, the decay amplitude scales as

A(B̄d → D+π−) ∼ GFm
2
b F

B→D(0) fπ ∼ GFm
2
b ΛQCD (26)

for a decay into a heavy-light final state (in which the spectator quark is absorbed
by the heavy meson), and

A(B̄d → π+π−) ∼ GFm
2
b F

B→π(0) fπ ∼ GFm
1/2
b Λ

5/2
QCD (27)

for a decay into two light mesons. Other contributions must be compared with these
scaling rules.

3.3.2 Factorizable diagrams

In order to justify naive factorization (Fig. 4) as the leading term in an expansion in
αs and ΛQCD/mb, we must show that radiative corrections are either suppressed in
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Figure 5: Diagrams at order αs that need not be calculated.

(a) (b) (c) (d)
Figure 6: “Non-factorizable” vertex corrections.

one of these two parameters, or already contained in the definition of the form factor
and the decay constant of M2 (the pion).

Consider the diagrams shown in Fig. 5. The first three diagrams are part of
the form factor and do not contribute to the hard-scattering kernels. Since the
first and third diagrams contain leading contributions from the region in which the
gluon is soft (as discussed for the first diagram in the previous subsection), they
should not be considered as corrections to Fig. 4. This is of no consequence since
these soft contributions are absorbed into the physical form factor. The diagrams
also have hard contributions, which we could isolate and compute. For instance,
the hard contributions in the third diagram are those that go into the short-distance
coefficient when the physical form factor is matched onto the heavy-to-heavy or heavy-
to-light form factor in heavy-quark effective theory. However, we do not perform this
matching here, neither do we attempt to construct a factorization formula for the
heavy-light form factor itself. Rather, the form factor that appears in (4) is the form
factor in full QCD, which is also the one directly measured in experiments.

The fourth diagram in Fig. 5 is also factorizable. In general, this diagram would
split into a hard contribution and a contribution to the evolution of the pion dis-
tribution amplitude. However, as the leading-order diagram (Fig. 4) involves only
the normalization integral of the pion distribution amplitude, the sum of the fourth
diagram in Fig. 5 and the wave-function renormalization of the quarks in the emitted
pion vanishes. In other words, these diagrams renormalize the (ūd) light-quark V −A
current, which however is conserved.

3.3.3 “Non-factorizable” vertex corrections

We now begin the analysis of “non-factorizable” diagrams, i.e. diagrams containing
gluon exchanges that do not belong to the form factor for the B →M1 transition or
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the decay constant of M2. At order αs these diagrams can be divided into four groups:
vertex corrections, penguin diagrams, hard spectator interactions and annihilation
diagrams. We discuss these four cases in turn.

The vertex corrections shown in Fig. 6 violate the naive factorization ansatz (2).
One of the key points of this paper is that these diagrams are calculable nonetheless.
Let us summarize the argument here. The explicit evaluation of these diagrams can
be found in Sect. 4. A generalization of the argument to higher orders is given in
Sect. 5.

The statement is that these diagrams form an order-αs correction to the hard-
scattering kernel T I

ij(u). To demonstrate this, we have to show that: (a) The trans-
verse momentum of the quarks that form M2 can be neglected at leading power,
i.e. the two momenta in (15) can be approximated by uq and ūq, respectively. This
guarantees that only a convolution in the longitudinal momentum fraction u appears
in the factorization formula. (b) The contribution from the soft-gluon region and
gluons collinear to the direction of M2 and M1 (if M1 is light) is power suppressed.
In practice this means that the sum of these diagrams cannot contain any infrared
divergences at leading power in 1/mb.

Neither of the two conditions holds true for any of the four diagrams individually,
as each of them separately is collinearly and infrared divergent. As will be shown in
detail later, the infrared divergences cancel when one sums over the gluon attachments
to the two quarks comprising the emission pion ((a+b), (c+d) in Fig. 6). This
cancellation is a technical manifestation of Bjorken’s colour-transparency argument
[11]: soft gluon interactions with the emitted colour-singlet ūd pair are suppressed,
because they interact only with the colour dipole moment of the compact light-quark
pair. Collinear divergences cancel after summing over gluon attachments to the b
and c (or u) quark line ((a+c), (b+d) in Fig. 6); in the light-cone gauge, collinear
divergences are absent altogether. Thus the sum of the four diagrams (a-d) involves
only hard gluon exchange at leading power. Because the hard gluons transfer large
momentum to the quarks that form the emission pion, the hard-scattering factor
now results in a non-trivial convolution with the pion distribution amplitude. “Non-
factorizable” contributions are therefore non-universal, i.e. they depend on what type
of meson M2 is.

Note that the colour-transparency argument, and hence the cancellation of soft
gluon effects, applies only if the ūd pair is compact. This is not the case if the emitted
pion is formed in a very asymmetric configuration, in which one of the quarks carries
almost all of the pion’s momentum. Since the probability for forming a pion in such
an endpoint configuration is of order (ΛQCD/mb)

2, they could become important only
if the hard-scattering amplitude favoured the production of these asymmetric pairs,
i.e. if T I

ij ∼ 1/u2 for u→ 0 (or T I
ij ∼ 1/ū2 for u→ 1). However, such strong endpoint

singularities in the hard-scattering amplitude do not occur.

3.3.4 Penguin diagrams

The penguin diagram (first diagram in Fig. 7) exists for B̄d → π+π− but not for
B̄d → D+π−. We need to show again that, at leading order in 1/mb, all internal lines
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Figure 7: Diagram with a “penguin” contraction. The second diagram represents a con-
tribution from the chromomagnetic dipole operator in the weak effective Hamiltonian.

in this diagram are hard.
Consider first the two final-state quarks into which the gluon splits. The quark

that goes into the recoil π+ to the right must always be energetic to make an ener-
getic pion, because the d̄ spectator quark is soft. The configuration in which the other
quark is soft is suppressed by the endpoint behaviour of the light-cone distribution
amplitude of the π−. We conclude that the gluon splits into two energetic quarks
that fly in opposite directions, and that the gluon has large virtuality ∼ ūm2

b , where
ū is the longitudinal momentum fraction of the antiquark in the π−. In principle,
one of the quarks in the quark loop can still be soft, if the loop momentum is soft
and the gluon momentum flows asymmetrically through the loop. But this configu-
ration is suppressed by two powers of ΛQCD/mb relative to the configuration where
both quarks carry large momentum of order mb, as follows from the structure of a
vacuum polarization diagram. As a result the penguin diagram contributes to the
hard-scattering kernel T I

ij(u) at order αs, just as the vertex diagrams do. The same
argument shows that the chromomagnetic dipole diagram (second diagram in Fig. 7)
is also a calculable correction to the hard-scattering kernel. An explicit calculation
of these diagrams can be found in [1].

Note that this argument provides a rigorous justification for the Bander-Silver-
man-Soni (BSS) mechanism [21] to generate strong-interaction phases perturbatively
by means of the rescattering phase of the penguin loop. In particular, the gluon
virtuality k2 = ūm2

b , which is usually treated as a phenomenological parameter, is
unambiguously determined by the kinematics of the decay process together with the
weighting of ū implied by the pion wave function. At the same time it should be
noted that the BSS mechanism does not provide a complete description of final-state
interactions even in the heavy-quark limit, as the vertex diagrams (c,d) of Fig. 6
also generate imaginary parts, which are of the same order as those of the penguin
diagram. A more detailed discussion of final-state interaction phases will be presented
in Sect. 3.4.

3.3.5 Hard spectator interaction

Up to this point, we have not obtained a contribution to the second line of (4), i.e.
to the hard-scattering term in Fig. 1 (as opposed to the form-factor term). The
diagrams shown in Fig. 8 cannot be associated with the form-factor term. These
diagrams would impede factorization if there existed a soft contribution at leading
power. While such terms are present in each of the two diagrams separately, to
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Figure 8: “Non-factorizable” spectator interactions.

leading power they cancel in the sum over the two gluon attachments to the ūd pair
by the same colour-transparency argument that was applied to the “non-factorizable”
vertex corrections. For decays into two light mesons there is a further suppression of
soft gluon exchange because of the endpoint suppression of the light-cone distribution
amplitude for the recoiling meson M1.

We consider first the decay into a heavy and a light meson (B̄d → D+π−) in
more detail. We still have to show that after the soft cancellation the remaining soft
contribution is power suppressed relative to the leading-order contribution (26). A
straightforward calculation leads to the following (simplified) result for the sum of
the two diagrams:

A(B̄d → D+π−)(Fig. 8) ∼ GF fπfDfB αs

∫ 1

0

dξ

ξ
ΦB1(ξ)

∫ 1

0

dη

η
ΦD1(η)

∫ 1

0

du

u
Φπ(u)

∼ GF αsmb Λ2
QCD. (28)

This is indeed power suppressed relative to (26). Note that the gluon virtuality is of
order ξηm2

b ∼ Λ2
QCD and so, strictly speaking, the calculation in terms of light-cone

distribution amplitudes cannot be justified. Nevertheless, we use (28) to estimate
the size of the soft contribution, as we did for the heavy-light form factor. On the
contrary, when the gluon is hard, it transfers large momentum to the spectator quark.
According to our power-counting rule (18), such a configuration has no overlap with
either the B- or the D-meson wave function. We therefore conclude that the hard
spectator interaction does not contribute to heavy-light final states at leading power
in the heavy-quark expansion. The factorization formula (4) then assumes a simpler
form, with the second line omitted, as discussed earlier.

For decays into two light mesons (B̄d → π+π−) the explicit expression for the sum
of the two diagrams is similar to the one above [1]:

A(B̄d → π+π−)(Fig. 8) ∼ GF f
2
πfB αs

∫ 1

0

dξ

ξ
ΦB1(ξ)

∫ 1

0

dv

v̄
Φπ(v)

∫ 1

0

du

u
Φπ(u)

∼






GF αsm
1/2
b Λ

5/2
QCD ; hard gluon,

GF αsm
−1/2
b Λ

7/2
QCD ; soft gluon.

(29)

The soft contribution is suppressed as discussed above, but the hard contribution
is of the same order as (27), with an additional factor of αs. (The hard gluon has
momentum of order mb, but its virtuality is only of order mbΛQCD, similar to the
hard contribution to the B → π form factor.) Eq. (29) results in a contribution to
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(a) (b) (c) (d)
Figure 9: Annihilation diagrams.

the second hard-scattering kernel, T II
i (ξ, u, v), in (4). In the heavy-quark limit, the

hard spectator interaction is of the same order as the vertex corrections and penguin
contributions to the first hard-scattering kernel. (See, however, the comments at
the end of Sect. 3.2 concerning a modification of this statement in the presence of
Sudakov form factors.)

3.3.6 Annihilation topologies

Our final concern in this subsection are the annihilation diagrams (Fig. 9) which
contribute to B̄d → D+π− and B̄d → π+π−. The hard part of these diagrams would
amount to another contribution to the second hard-scattering kernel, T II

i (ξ, u, v).
The soft part, if unsuppressed, would violate factorization. However, we shall show
now that the hard part as well as the soft part are suppressed by at least one power
of ΛQCD/mb.

Light-light final states (B̄d → π+π−)

We begin with the two diagrams (a,b). Suppose first that all four light quarks in
the final state are energetic. Then the virtuality of the gluon is of order m2

b . If
we now let one of the quarks be soft, the gluon virtuality can decrease to mbΛQCD

and the amplitude is then enhanced by a factor mb/ΛQCD. (In particular cases,
the virtuality of the internal quark line can also become small. However, closer
inspection shows that in this case the numerator also becomes small and there is no
further enhancement of the amplitude.) This enhancement is over-compensated by a
suppression with two powers of ΛQCD/mb, where one power arises from the endpoint
behaviour of the pion distribution amplitude and another from the small region of
phase space considered. The configuration where two final-state quarks are soft is
even further suppressed. It follows that the leading contribution to (a,b) arises when
all four quarks are energetic. Since the integral over the B-meson wave function
simply gives the normalization integral, it is easy to see that the diagrams scale at
most as

GF f
2
πfBαs ∼ GF αsm

−1/2
b Λ

7/2
QCD, (30)

which is one power of ΛQCD/mb smaller than (27). (In fact, current conservation
implies that the result is proportional to the difference of quark masses at the anni-
hilation vertex. Hence the sum of (a) and (b) vanishes for B̄d → π+π−.)
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The hard part of diagrams (c,d) (all four quarks energetic) obviously also scales
as (30). A difference to (a,b) arises when some of the quarks are soft. For emission
of the light qq̄ pair from the B-meson spectator quark (diagram (d)) it may happen
that the endpoint contribution from a single soft final-state quark is not suppressed
relative to the hard part, because the amplitude is enhanced by a large internal gluon
and quark propagator. (But since the gluon virtuality is still of order mbΛQCD, there

remains a factor αs(
√

mbΛQCD)). However, since the hard part is power suppressed

relative to (27), power suppression continues to hold for the entire graph.

Heavy-light final states (B̄d → D+π−)

The power counting is different for B̄d → D+π−, because the light quark that goes
into the D meson must always be soft according to (18), and hence the virtuality of
the gluon is never larger than mbΛQCD. Nevertheless, we obtain power suppression
also in this case. The argument is as follows. We can write the annihilation amplitude
as

A(B̄d → D+π−)(Fig. 9) ∼ GF fπfDfB αs

∫ 1

0
dξdηduΦB1(ξ) ΦD1(η) Φπ(u)T ann.(ξ, η, u),

(31)
where the dimensionless function T ann.(ξ, η, u) is a product of propagators and ver-
tices. The product of decay constants scales as Λ4

QCD/mb. Since dξ ΦB1(ξ) scales
as 1 and so does dηΦD1(η), while duΦπ(u) is never larger than 1, the amplitude
can only compete with the leading-order result (26) if T ann.(ξ, η, u) can be made of
order (mb/ΛQCD)3 or larger. Since T ann.(ξ, η, u) contains only two propagators, this
can be achieved only if both quarks the gluon splits into are soft, in which case
T ann.(ξ, η, u) ∼ (mb/ΛQCD)4. But then duΦπ(u) ∼ (ΛQCD/mb)

2 so that this contri-
bution is power suppressed.

3.3.7 Summary

To summarize the discussion up to this point: for the decay into a light emitted and
a heavy recoiling meson (such as our example B̄d → D+π−) the second factorization
formula in (4) holds. The hard-scattering kernel T I

ij(u) is computed in lowest order
from the diagram shown in Fig. 4, and at order αs from the vertex diagrams in Fig. 6.
For decays into two light mesons, the more complicated first formula in (4) applies.
Then, in addition to the vertex diagrams, there are penguin contributions (Fig. 7)
to the kernel T I

ij(u), and there is a non-vanishing hard-scattering term in (4). The
kernel T II

i (ξ, u, v) is computed from the diagrams shown in Fig. 8. In both cases,
naive factorization follows when one neglects all corrections of order ΛQCD/mb and
of order αs. Eq. (4) allows us to compute systematically corrections to higher order
in αs, but still neglects power corrections of order ΛQCD/mb.

Some of the loop diagrams entering the calculation of the hard-scattering kernels
have imaginary parts which contribute to the strong rescattering phases. It follows
from our discussion that these imaginary parts are of order αs or ΛQCD/mb. This
demonstrates that strong phases vanish in the heavy-quark limit (unless the real parts
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of the amplitudes are also suppressed). Since this statement goes against the folklore
that prevails from the present understanding of this issue, we shall return to this
point in Sect. 3.4.

In a common terminology, the decays which we have treated explicitly so far are
called “class-I” decays. The distinction of “class-I”, “class-II” and “class-III” decays
refers to colour factors and charge combinatorics arising in naive factorization. It is
clear that this distinction is not relevant to QCD factorization in the sense of (4),
which relies on the hardness and virtuality of partons. This means that the factor-
ization formula applies to any decay into two light mesons, irrespective of whether
the decay is class-I, class-II or dominated by penguin operators. Factorization also
works for all decays into heavy-light final states, in which the light spectator quark
in the B meson is absorbed by the heavy final-state particle (class-I). Factorization
does not work for a heavy-light final state, when the spectator quark is picked up by
the light meson (class-II), for example B̄d → π0D0. We will return to this point in
Sect. 3.5.

Our discussion has so far been based on the leading two-particle valence-quark
Fock state of the mesons. To complete the discussion we shall argue in Sect. 3.6
that the contributions to the decay amplitude from higher Fock components of the
meson wave functions are power suppressed. In Sect. 3.7 we will discuss some of the
limitations of the applicability of the factorization formula in practice, recalling that
the physical mass of the b quark is not asymptotically large.

3.4 Remarks on final-state interactions

Since the subject of final-state interactions, and of strong-interaction phases in partic-
ular, is of paramount importance for the interpretation of CP-violating observables,
we discuss here in some more detail the implications of QCD factorization for this
issue.

Final-state interactions are usually discussed in terms of intermediate hadronic
states. This is suggested by the unitarity relation (taking B → ππ for definiteness)

ImAB→ππ ∼
∑

n

AB→nA∗
n→ππ, (32)

where n runs over all hadronic intermediate states. We can also interpret the sum in
(32) as extending over intermediate states of partons. The partonic interpretation is
justified by the dominance of hard rescattering in the heavy-quark limit. In this limit
the number of physical intermediate states is arbitrarily large. We may then argue on
the grounds of parton-hadron duality that their average is described well enough (up
to ΛQCD/mb corrections, say) by a partonic calculation. This is the picture implied
by (4). The hadronic language is in principle exact. However, the large number of
intermediate states makes it intractable to observe systematic cancellations, which
usually occur in an inclusive sum over hadronic intermediate states.

A particular contribution to the right-hand side of (32) is elastic rescattering
(n = ππ). The energy dependence of the total elastic ππ-scattering cross section
is governed by soft pomeron behaviour. Hence the strong-interaction phase of the
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B → ππ amplitude due to elastic rescattering alone increases slowly in the heavy-
quark limit [22]. On general grounds, it is rather improbable that elastic rescattering
gives an appropriate representation of the imaginary part of the decay amplitude in
the heavy-quark limit. This expectation is also borne out in the framework of Regge
behaviour, as discussed in [22], where the importance (in fact, dominance) of inelastic
rescattering is emphasized. However, the approach pursued in [22] leaves open the
possibility of soft rescattering phases that do not vanish in the heavy-quark limit, as
well as the possibility of systematic cancellations, for which the Regge approach does
not provide an appropriate theoretical framework.

Eq. (4) implies that such systematic cancellations do occur in the sum over all
intermediate states n. It is worth recalling that similar cancellations are not uncom-
mon for hard processes. Consider the example of e+e− → hadrons at large energy
q. While the production of any hadronic final state occurs on a time scale of order
1/ΛQCD (and would lead to infrared divergences if we attempted to describe it using
perturbation theory), the inclusive cross section given by the sum over all hadronic
final states is described very well by a qq̄ pair that lives over a short time scale of or-
der 1/q. In close analogy, while each particular hadronic intermediate state n in (32)
cannot be described partonically, the sum over all intermediate states is accurately
represented by a qq̄ fluctuation of small transverse size of order 1/mb. Because the
qq̄ pair is small, the physical picture of rescattering is very different from elastic ππ
scattering.

In perturbation theory, the pomeron is associated with two-gluon exchange. The
analysis of two-loop contributions to the non-leptonic decay amplitude in Sect. 5
shows that the soft and collinear cancellations that guarantee the partonic interpre-
tation of rescattering extend to two-gluon exchange. (Strictly speaking, the analysis
of Sect. 5 applies only to decays into a heavy and a light meson. However, the
cancellation in the soft-soft region, which is relevant to the present discussion, goes
through unmodified if both final-state mesons are light.) Hence, the soft final-state
interactions are again subleading as required by the validity of (4). As far as the hard
rescattering contributions are concerned, two-gluon exchange plus ladder graphs be-
tween a compact qq̄ pair with energy of order mb and transverse size of order 1/mb

and the other pion does not lead to large logarithms, and hence there is no possibility
to construct the (hard) pomeron. Note the difference with elastic vector-meson pro-
duction through a virtual photon, which also involves a compact qq̄ pair. However,
in this case one considers s � Q2, where

√
s is the photon-proton center-of-mass

energy and Q the virtuality of the photon. This implies that the qq̄ fluctuation is
born long before it hits the proton. It is this difference of time scales, non-existent
in non-leptonic B decays, that permits pomeron exchange in elastic vector-meson
production in γ∗p collisions.

It follows from (4) that the leading strong-interaction phase is of order αs in the
heavy-quark limit. (More precisely, the imaginary part of the decay amplitude is
of order αs, so rescattering phases are small unless the real part, which starts at
order α0

s, is suppressed.) The same statement holds for rescattering in general. For
instance, according to the duality argument, a penguin contraction with a charm
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loop represents the sum over all intermediate states of the form DD̄, J/Ψρ, etc. that
rescatter into two pions.

As is clear from the discussion, parton-hadron duality is crucial for the validity of
(4) beyond perturbative factorization. Proving quantitatively to what accuracy we
can expect duality to hold is, as yet, an unsolved problem in QCD. In the absence of a
solution, it is worth noting that the same (often implicit) assumption is fundamental
to many successful QCD predictions in jet physics and hadron-hadron collisions. In
particular, the duality assumption that the sum over all hadronic states in (32) is
calculable in terms of partons (given the dominance of hard scattering) is the same
assumption that forms the basis for the application of the operator product expansion
to inclusive non-leptonic heavy-quark decays [23].

3.5 Non-leptonic decays when M2 is not light

The analysis of non-leptonic decay amplitudes in Sect. 3.3 referred to decays where
the emission particle M2 – the meson that does not pick up the spectator quark –
is a light meson. We now discuss the two other possibilities, M2 a heavy meson (for
example, D) and M2 an onium such as J/ψ.

3.5.1 M2 a heavy-light meson (B̄d → π0D0, D+D−)

Suppose that M2 is a D meson and the meson that picks up the spectator quark is
heavy or light. Examples of this type are the decays B̄d → π0D0 and B̄d → D+D−.
It is intuitively clear that factorization must be problematic in this case, because
the heavy D meson has large overlap with the Bπ (or BD in case of B̄d → D+D−)
system, which is dominated by soft processes.

In more detail, we consider the coupling of a gluon to the two quarks that form
the emitted D meson, i.e. the pairs of diagrams in Figs. 6 (a+b), (c+d) and Fig. 8.
Denoting the gluon momentum by k, the quark momenta by lq and lq̄, and the D-
meson momentum by q, we find that the gluon couples to the “current”

Jλ =
γλ(6 lq+ 6k +mc)Γ

2lq · k + k2
− Γ(6 lq̄+ 6k)γλ

2lq̄ · k + k2
, (33)

where Γ is part of the weak decay vertex. When k is soft (all components of order
ΛQCD) each of the two terms scales as 1/ΛQCD. Taking into account the complete
amplitude as done explicitly in Sect. 4.2, we can see that the decoupling of soft gluons
requires that the two terms in (33) cancel, leaving a remainder of order 1/mb. This
cancellation does indeed occur when M2 is a light meson, since in this case lq and lq̄
are dominated by their longitudinal components. When M2 is heavy the momenta
lq and lq̄ are asymmetric, with all components of the light antiquark momentum lq̄
of order ΛQCD in the B- or D-meson rest frame, while the zero-component of lq is of
order mc ∼ mb. Hence the current can be approximated by

Jλ ≈ δλ0Γ

k0
− Γ(6 lq̄+ 6k)γλ

2lq̄ · k + k2
∼ 1

ΛQCD
, (34)
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and the soft cancellation does not occur. (The on-shell condition for the charm quark
has been used to arrive at the previous equation.)

It follows that the emitted D meson does not factorize from the rest of the process
and that a factorization formula analogous to (4) does not apply to decays such
as B̄d → π0D0 and B̄d → D+D−. An important implication of this is that one
should also not expect naive factorization to work in this case. In other words, non-
factorizable corrections such as those shown in Fig. 6 modify the (naively) factorized
decay amplitude by terms of order 1.

There are decay modes, such as B− → D0π−, in which the spectator quark can
go to either of the two final-state mesons. The factorization formula (4) applies to
the contribution that arises when the spectator quark goes to the D meson, but not
when the spectator quark goes to the pion. However, even in the latter case we
may use naive factorization to estimate the power behaviour of the decay amplitude.
Adapting (26) and (27) to the decay B− → D0π−, we find that the non-factorizing
(class-II) amplitude is suppressed compared to the factorizing (class-I) amplitude:

A(B− → D0π−)class−II

A(B− → D0π−)class−I
∼ FB→π(m2

D)fD

FB→D(0)fπ
∼
(

ΛQCD

mb

)2

. (35)

Here we use that FB→π(q2) ∼ 1/m
3/2
b even for q2 ∼ m2

b as long as q2
max − q2 is also

of order m2
b . (It follows from our definition of heavy final-state mesons that these

conditions are fulfilled.) As a consequence, factorization does hold for B− → D0π− in
the sense that the class-II contribution is power suppressed. It should be mentioned
that (35) refers to the heavy-quark limit and that the scaling behaviour for real B
and D mesons is far from the estimate (35). This will be discussed briefly later in
this section and in more detail in Sect. 6.

3.5.2 M2 an onium (B̄d → J/ψK)

The case where M2 is a heavy quarkonium is special, because then additional mo-
mentum scales are involved. We consider the decay into charmonium and suppose
that mc ∼ mb → ∞, bearing in mind that this limit is hardly realistic.

The gluon coupling to the cc̄ pair analogous to (33) is now given by

Jλ =
γλ(6 lq+ 6k +mc)Γ

(lq + k)2 −m2
c

− Γ(6 lq̄+ 6k −mc)γλ

(lq̄ + k)2 −m2
c

. (36)

In the heavy-quark limit we may write lq = q/2 + p, lq̄ = q/2 − p, where p is of
order mcαs, the inverse size of the charmonium. A second important difference to
the case considered previously is that the charm-quark lines directed upwards in
Figs. 4 and 6 must be considered off-shell by an amount δ ∼ (mcαs)

2. When k is
soft (all components of order ΛQCD), the denominators in (36) are dominated by the
off-shellness δ, and the current simplifies to

Jλ ≈ 1

δ
(4pλΓ + (−6 lq +mc)γλΓ − Γγλ(−6 lq̄ −mc)) ≈

4pλΓ

δ
∼ 1

mbαs
. (37)
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Figure 10: Diagram that contributes to the hard-scattering kernel involving a quark-
antiquark-gluon distribution amplitude of the B meson and the emitted light meson.

Here we used that −6 lq +mc acting to the left (and similarly −6 lq̄ −mc acting to the
right) gives a contribution of order mcα

2
s, and we identified mc and mb in our formal

scaling limit. (Note that the scale of αs that appears here is p ∼ mcαs.) It follows
that factorization does hold for decay modes like J/ψK, although the soft gluon
contribution is suppressed only by a factor ΛQCD/(mbαs) rather than ΛQCD/mb. This
reflects the fact that an onium is small in the heavy-quark limit, but that its Bohr
radius is larger than 1/mb. For J/ψ the suppression is probably only marginal. On
the other hand, factorization is also recovered in the limit mc/mb → 0, i.e. when the
J/ψ is treated as a light meson relative to the B meson.

3.6 Non-leading Fock states

The discussion of the previous subsections concentrated on contributions related to
the quark-antiquark components of the meson wave functions. We now present qual-
itative arguments that justify this restriction to the valence-quark Fock components.
Some of these arguments are standard [7, 8].

An example of a diagram that would contribute to a hard-scattering function in-
volving quark-antiquark-gluon components of the emitted meson and the B meson
is shown in Fig. 10. For light mesons higher Fock components are related to higher-
order terms in the collinear expansion, including the effects of intrinsic transverse
momentum and off-shellness of the partons by gauge invariance. The assumption is
that the additional partons are collinear and carry a finite fraction of the meson’s
momentum in the heavy-quark limit. Under this assumption, it is easy to see that
adding additional partons to the Fock state increases the number of off-shell propaga-
tors in a given diagram (compare Fig. 10 to Fig. 4). This implies power suppression
in the heavy-quark expansion. Additional partons in the B-meson wave function are
always soft, as is the spectator quark. Nevertheless, when these partons are connected
to the hard-scattering amplitudes the virtuality of the additional propagators is still
of order mbΛQCD, which is sufficient to guarantee power suppression.

A more precarious situation may arise when the additional Fock components
carry only a small fraction of the meson’s momentum, contrary to the assumption
made above. It is usually argued [7, 8] that these configurations are suppressed,
because they occupy only a small fraction of the available phase space (since

∫

dui ∼
ΛQCD/mb when the parton that carries momentum fraction ui is soft). This argument
does not apply when the process involves heavy mesons. Consider for example a
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(a) (b)
Figure 11: (a) Soft overlap contribution which is part of the B → M1 form factor. (b) Soft
overlap with M2 which would violate factorization, if it were unsuppressed.

diagram such as the one in Fig. 11a for B → Dπ. This denotes the overlap of the
B-meson wave function involving additional soft gluons with the wave function of
the D meson, also containing soft gluons. There is no reason to suppose that this
overlap is suppressed relative to the soft overlap of the valence-quark wave functions.
It represents (part of) the overlap of the “soft cloud” around the b quark with (part
of) the “soft cloud” around the c quark after the weak decay of the b quark. The
partonic decomposition of this cloud is unrestricted up to global quantum numbers.
In the case where the B meson decays into two light mesons, there is a form-factor
suppression ∼ (ΛQCD/mb)

3/2 for the overlap of the valence-quark wave functions (see
Sect. 3.2), but once this price is paid there is again no reason for further suppression
of additional soft gluons in the overlap of the B-meson wave function and the wave
function of the recoiling meson M1.

The previous paragraph essentially repeated our earlier argument against the
hard-scattering approach, and in favour of using the B → M1 form factor as an
input for the factorization formula. However, given the presence of additional soft
partons in the B → M1 transition, we must now argue that it is unlikely that the
emitted meson M2 drags with it one of these soft partons, for instance a soft gluon
that goes into the wave function of M2, as shown in Fig. 11b. Notice that if the
qq̄ pair is produced in a colour-octet state at the weak interaction vertex, at least
one gluon (or further qq̄ pair) must be pulled into the emitted meson, if the decay is
to result in a two-body final state. What suppresses the process shown in Fig. 11b
relative to the one shown in Fig. 11a even if the emitted qq̄ pair is in a colour-
octet state? The dominant configuration has both quarks carry a large fraction of
the momentum of M2, and only the gluon might be soft. In this situation we can
apply a non-local “operator product expansion” to determine the coupling of the soft
gluon to the small qq̄ pair. The gluon endpoint behaviour of the qq̄g wave function
shown in Fig. 12 is then determined by the sum of the two diagrams on the right-
hand side of this figure. The leading term (for small gluon momentum) cancels in
the sum of the two diagrams, because the meson (represented by the black bar) is
a colour singlet. This cancellation, which is exactly the same cancellation needed
to demonstrate that “non-factorizable” vertex corrections (Fig. 6) are dominated by
hard gluons, provides one factor of ΛQCD/mb needed to show that Fig. 11b is power
suppressed relative to Fig. 11a. An explicit calculation of this soft, non-factorizable
contribution is presented in Sect. 4.3 for the decay B → Dπ, which confirms that it
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= +
Figure 12: Quark-antiquark-gluon distribution amplitude in the gluon endpoint region.

is power suppressed in the heavy-quark limit. We have thus covered (qualitatively)
all possibilities for non-valence contributions to the decay amplitude and find that
they are all suppressed in the heavy-quark limit.

3.7 Limitations of the factorization approach

Above we argued that the factorization formula (4) holds in the heavy-quark limit
mb → ∞. Since mb is fixed to about 5 GeV in the real world one may question
the accuracy of the heavy-quark limit. Indeed, we have seen that corrections to
the asymptotic limit are of order ΛQCD/mb and, generally speaking, do not assume
a factorized form. In this subsection we discuss several reasons why some power
corrections could turn out to be numerically larger than suggested by the parametric
suppression factor ΛQCD/mb.

3.7.1 Several small parameters

Large non-factorizable power corrections may arise if the leading-power, factorizable
term is somehow suppressed. There are several possibilities for such a suppression,
given a variety of small parameters that may enter into the non-leptonic decay am-
plitudes.

I) The hard, “non-factorizable” effects computed using the factorization formula
occur at order αs. Some interesting effects such as final-state interactions appear first
at this order. However, for realistic B mesons αs is not large compared to ΛQCD/mb.
Strong-interaction phases are a particularly important example. Since the phases due
to hard interactions are of order αs and soft phases are of order ΛQCD/mb, one should
not expect that these phases can be calculated with great precision. However, it is
probably more important to know that the imaginary part is small compared to the
real part, which is of order α0

s, and hence that strong phases should be small. This
does not apply if the real part is suppressed for other reasons (see below).

II) Colour suppression. Either the leading-order contribution or the order-αs

correction to naive factorization may be colour suppressed. In the second case, which
occurs for the class-I decays B̄d → D+π− and B̄d → π+π−, the first-order correction to
naive factorization is small. In this case, the two-loop correction may be as important
as the first-order correction computed later in this paper and in [1], but both are small.
If, on the other hand, the lowest-order term is colour suppressed, as occurs for the
class-II decays B̄d → J/ψK and B̄d → π0π0, perturbative and power corrections can
be sizeable. Then even the hard strong-interaction phase can be large [1]. But at the
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same time soft contributions could be potentially important, so that in some cases
only an order-of-magnitude estimate of the decay rate may be possible.

III) Small Wilson coefficients. The effective Hamiltonian (1) contains small coef-
ficients Ci relative to C1 ≈ 1, in particular the coefficients of the penguin operators
(i = 3, . . .). The distinction of class-I and class-II decays mentioned in II) is in part
also a manifestation of this effect. In addition there are decays for which the en-
tire leading-power contribution is suppressed by small Wilson coefficients, but some
power-suppressed effects are not. An example of this type is B− → K−K0. The
decay proceeds through a penguin operator b → dss̄ at leading power. But the
annihilation contribution which is power suppressed can occur through the current-
current operator with large Wilson coefficient C1. Our approach does not apply to
such (presumably) annihilation-dominated decays, unless a systematic treatment of
annihilation amplitudes can be found.

IV) Small CKM elements. Some amplitudes may be suppressed by a combina-
tion of small CKM elements. For example, B → πK decays receive large penguin
contributions despite their small Wilson coefficients, because the so-called tree am-
plitude is CKM suppressed. This is not a problem for factorization, since it applies
to the penguin and the tree amplitudes. We are not aware of any case (for ordinary
B mesons) in which a purely power-suppressed term is CKM enhanced and which
would therefore dominate the decay, as in the example of III) above. This situation
could occur for B−

c → D̄0K−, where the QCD dynamics is similar, if we consider the
charm as a light quark.

3.7.2 Power corrections enhanced by small quark masses

There is another enhancement of power-suppressed effects for some decays into two
light mesons connected with the curious numerical fact that

2µπ ≡ 2m2
π

mu +md
= −4〈q̄q〉

f 2
π

≈ 3 GeV (38)

is much larger than its naive scaling estimate ΛQCD. (Here 〈q̄q〉 = 〈0|ūu|0〉 = 〈0|d̄d|0〉
is the quark condensate.) Consider the contribution of the penguin operator O6 =
(d̄ibj)V −A(ūjui)V +A to the B̄d → π+π− decay amplitude. The leading-order graph of
Fig. 4 results in the expression

〈π+π−|(d̄ibj)V −A(ūjui)V +A|B̄d〉 = im2
BF

B→π
+ (0)fπ × 2µπ

mb
, (39)

which is formally a ΛQCD/mb power correction compared to (27) but numerically
large due to (38). We would not have to worry about such terms if they could all be
identified and the factorization formula (4) applied to them, since in this case higher-
order perturbative corrections would not contain non-factorizing infrared logarithms.
However, this is not the case.

After including radiative corrections, the matrix element on the left-hand side
of (39) is expressed as a non-trivial convolution with the pion light-cone distribution

33



amplitude. The terms involving µπ can be related to two-particle twist-3 (rather than
leading twist-2) distribution amplitudes, conventionally called Φp(u) and Φσ(u). The
distribution amplitude Φp(u) does not vanish at the endpoint. As a consequence the
hard spectator interaction (Fig. 8) contains an endpoint divergence. In other words,
the “correction” relative to (39) is of the form αs× logarithmic divergence, which we
interpret as being of the same order as (39). The non-factorizing character of the
“chirally-enhanced” [1] power corrections can introduce a substantial uncertainty in
some decay modes. As in the related situation for the pion form factor [19] one may
argue that the endpoint divergence is suppressed by a Sudakov form factor. However,
it is likely that when mb is not large enough to suppress these chirally-enhanced terms,
then it is also not large enough to make Sudakov suppression effective. Given the
importance of this issue, it deserves further investigation.

Notice that the chirally-enhanced terms do not appear in decays into a heavy and
a light meson such as B → Dπ, which we treat in detail later in this paper, because
these decays have no penguin contribution and no contribution from the hard spec-
tator interaction. Hence the twist-3 light-cone distribution amplitudes responsible
for chirally-enhanced power corrections do not enter in the evaluation of the decay
amplitude.

We conclude this subsection with a side remark: when (39) is applied to the
π0π0 final state, naive application of the equations of motion to the factorized matrix
element would result in m2

π/mu rather than 2m2
π/(mu + md). This statement can

sometimes be found in the literature but it is incorrect. The distinction of 2mu

and mu + md is an isospin-breaking effect. In the presence of isospin breaking the
π0 has a small iso-singlet component, which leads to a non-vanishing vacuum-to-π0

matrix element of the anomaly term in the divergence of the singlet axial-vector
current. When this term is taken into account in the equation of motion one obtains
m2

π/(mu +md) also for the factorized matrix element in B̄d → π0π0 decay. Note that
as (mu + md)/(2mu) ≈ 1.5, keeping track of the light quark masses is important to
correctly estimate the factorized amplitude.

3.7.3 Difficulties with charm

For the purposes of power counting we treated the charm quark as heavy, taking the
heavy-quark limit for fixed mc/mb. This simplified the discussion, since we did not
have to introduce mc as a separate scale. However, in reality charm is somewhat
intermediate between a heavy and a light quark, since mc is not particularly large
compared to ΛQCD.

It is worth noting that the first hard-scattering kernel in (4) cannot have 1/mc

corrections, since there is a smooth transition to the case of two light mesons. The
situation is different with the hard spectator interaction term, which we argued to
be power suppressed for decays into a D meson and a light meson. We shall come
back to this in Sect. 6, where we estimate the magnitude of this term for the Dπ final
state relaxing the assumption that the D meson is heavy.

The power-counting estimates based on mc ∼ mb → ∞ are particularly suspicious
in case of the suppression of the class-II amplitude in B− → D0π− in (35). Since the
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class-I amplitude dominates, we expect

R ≡ Br(B− → D0π−)

Br(B̄d → D+π−)
= 1 (40)

in the heavy-quark limit. This contradicts existing data which yield R = 1.89± 0.35,
despite the additional colour suppression of the class-II amplitude. One reason for
the failure of power counting lies in the departure of the decay constants and form
factors from naive power counting. The following compares the power counting to
the actual numbers (square brackets):

fD

fπ
∼
(

ΛQCD

mc

)1/2

[≈ 1.5]
FB→π

+ (m2
D)

FB→D
+ (0)

∼
(

ΛQCD

mb

)3/2

[≈ 0.5]. (41)

However, it is unclear whether the failure of power counting can be attributed to the
form factors and decay constants alone.

4 B → Dπ: Factorization to one-loop order

In this section we begin a more detailed and quantitative treatment of exclusive B
decays into a heavy meson (a D or D∗ meson) and a light meson, governed by a
b → cūd transition. Following the general discussion of Sect. 3, we shall illustrate
explicitly how factorization emerges at the one-loop order in this specific case, and in
the heavy-quark limit, defined as mb, mc � ΛQCD with mc/mb fixed. In particular, we
will compute at order αs the hard-scattering kernel T I(u) in the factorization formula
(4) for the decays B̄d → D(∗)+L−, where L is a light meson. For each final state f ,
we will finally express the decay amplitudes in terms of parameters a1(f), defined in
analogy with similar parameters used in the literature on naive factorization. The
numerical analysis of one-loop corrections to factorization and a comparison of our
results to the existing branching ratio measurements are postponed to Sect. 6. For
notational convenience we shall in this section mostly speak about B → Dπ decays,
but a similar treatment applies also to transitions such as B → D∗π, Dρ, or D∗ρ.

4.1 Generalities

The effective Hamiltonian relevant for B → Dπ can be written as

Heff =
GF√

2
V ∗

udVcb (C0O0 + C8O8) , (42)

with the operators

O0 = c̄γµ(1 − γ5)b d̄γµ(1 − γ5)u, (43)

O8 = c̄γµ(1 − γ5)T
Ab d̄γµ(1 − γ5)T

Au. (44)

Here we have chosen to write the two independent operators in the singlet-octet basis,
which is most convenient for our purposes, rather than in the more conventional bases
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of Q1, Q2 or Q+, Q− [4]. The Wilson coefficients C0, C8 describe the exchange of
hard gluons in the weak transition with virtualities between the high-energy matching
scale MW and a renormalization scale µ of order mb in the low-energy effective theory.
These coefficients have been calculated at next-to-leading order in renormalization-
group improved perturbation theory [24, 25] and are given by

C0 =
Nc + 1

2Nc

C+ +
Nc − 1

2Nc

C−, C8 = C+ − C−, (45)

where

C±(µ) =

(

1 +
αs(µ)

4π
B±

)

C̄±(µ), (46)

C̄±(µ) =

[

αs(MW )

αs(µ)

]d± [

1 +
αs(MW ) − αs(µ)

4π
(B± − J±)

]

. (47)

(The coefficients C0, C8 are related to the ones of the standard basis by C0 = C1+C2/3
and C8 = 2C2.) We employ the next-to-leading order expression for the running
coupling,

αs(µ) =
4π

β0 ln(µ2/Λ2
QCD)

[

1 − β1

β2
0

ln ln(µ2/Λ2
QCD)

ln(µ2/Λ2
QCD)

]

, (48)

β0 =
11Nc − 2f

3
, β1 =

34

3
N2

c − 10

3
Ncf − 2CFf, CF =

N2
c − 1

2Nc
, (49)

where Nc is the number of colours, and f the number of light flavours. ΛQCD ≡ Λ
(f)

MS

is the QCD scale in the MS scheme with f flavours. Next we have

d± =
γ

(0)
±

2β0
, γ

(0)
± = ±12

Nc ∓ 1

2Nc
, B± = ±Nc ∓ 1

2Nc
B. (50)

The general definition of J± may be found in [4]. Numerically, for Nc = 3 and f = 5

d± =







6
23
,

−12
23
,

B± − J± =







6473
3174

,

−9371
1587

.
(51)

The quantities β0, β1, d±, B±−J± are scheme independent. The scheme dependence
of the coefficients at next-to-leading order is parameterized by B± in (46). In the
naive dimensional regularization (NDR) and ‘t Hooft-Veltman (HV) schemes, this
scheme dependence is expressed in a single number B with BNDR = 11 and BHV = 7.
The dependence of the Wilson coefficients on the renormalization scheme and scale
is cancelled by a corresponding scale and scheme dependence of the hadronic matrix
elements of the operators O0 and O8.

Before continuing with a discussion of these matrix elements, it is useful to con-
sider the flavour structure for the various contributions to B → Dπ decays. The
possible quark-level topologies are depicted in Fig. 13. In the terminology generally
adopted for two-body non-leptonic decays, the decays B̄d → D+π−, B̄d → D0π0 and
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Figure 13: Basic quark-level topologies for B → Dπ decays (q = u, d): (a) class-I,
(b) class-II, (c) weak annihilation. B̄d → D+π− receives contributions from (a) and (c),
B̄d → D0π0 from (b) and (c), and B− → D0π− from (a) and (b). Only (a) contributes in
the heavy-quark limit.

B− → D0π− are referred to as class-I, class-II and class-III, respectively (see e.g.
[26]). In both B̄d → D+π− and B− → D0π− decays the pion can be directly created
from the weak current. We may call this a class-I contribution, following the above
terminology. In addition, in the case of B̄d → D+π− there is a contribution from
weak annihilation and a class-II amplitude contributes to B− → D0π−, see Fig. 13.
The important point is that the spectator quark goes into the light meson in the
case of the class-II amplitude. According to Sect. 3.5 this amplitude is therefore
suppressed in the heavy-quark limit, as is the annihilation amplitude. It follows that
the amplitude for B̄d → D0π0, receiving only class-II and annihilation contributions,
is subleading compared with B̄d → D+π− and B− → D0π−, which are dominated
by the class-I topology. The treatment of this leading class-I mechanism will be the
main subject of the following sections. (With reference to the general discussion in
Sect. 3, it should be noted that in the case of decays into light-light final states class-I
and class-II amplitudes are both of leading power in the heavy-quark expansion, and
the factorization formula applies to both of them.)

We shall use the one-loop analysis for B̄d → D+π− as a concrete example on which
we will illustrate explicitly the various steps involved in establishing the factorization
formula. We emphasize that most of the arguments used below are standard from
the theory of hard exclusive processes involving light hadrons [7]. However, we find
it instructive to repeat those arguments in the context of B decays.

4.2 Soft and collinear cancellations at one-loop order

In order to demonstrate the property of factorization for B̄d → D+π−, we will now
analyze the “non-factorizable” one-gluon exchange contributions (Fig. 6) to the b→
cūd transition in some detail. Recall from Sect. 3 that this is the only type of one-loop
corrections that we need to consider for heavy-light final states.

We consider the leading, valence Fock state of the emitted pion. This is justified
since higher Fock components only give power-suppressed contributions to the decay
amplitude in the heavy-quark limit, as discussed in Sect. 3.6 and demonstrated below.
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The valence Fock state of the pion can be written as

|π(q)〉 =
∫

du√
uū

d2l⊥
16π3

1√
2Nc

(

a†↑(lq)b
†
↓(lq̄) − a†↓(lq)b

†
↑(lq̄)

)

|0〉Ψ(u,~l⊥), (52)

where a†s (b†s) denotes the creation operator for a quark (antiquark) in a state with spin
s =↑ or s =↓, and we have suppressed colour indices. This representation of the pion
state is adequate for a leading-power analysis. The wave function Ψ(u,~l⊥) is defined
as the amplitude for the pion to be composed of two on-shell quarks, characterized
by longitudinal momentum fraction u and transverse momentum l⊥. The on-shell
momenta (l2q,q̄ = 0) of the quark (lq) and the antiquark (lq̄) are given by

lq = uq + l⊥ +
~l 2⊥

4uE
n−, lq̄ = ūq − l⊥ +

~l 2⊥
4ūE

n−. (53)

Here q = E(1, 0, 0, 1) is the pion momentum, E = pB · q/mB the pion energy and
n− = (1, 0, 0,−1). Furthermore l⊥ · q = l⊥ · n− = 0. For the purpose of power
counting l⊥ ∼ ΛQCD � E ∼ mb. Note that the invariant mass of the valence state

is (lq + lq̄)
2 = ~l 2⊥/(uū), which is of order Λ2

QCD and hence negligible in the heavy-
quark limit, unless u is in the vicinity of the endpoints (0 or 1). In this case the
invariant mass of the quark-antiquark pair becomes large and the valence Fock state
is no longer a valid representation of the pion. However, in the heavy-quark limit the
dominant contributions to the decay amplitude come from configurations where both
partons are hard (u and ū both of order 1) and the two-particle Fock state yields a
consistent description. The suppression of the soft regions (u or ū� 1) is related to
the endpoint behaviour of the pion wave function, as discussed in previous sections.
We will provide an explicit consistency check of this important feature later on.

As a next step we write down the amplitude

〈π(q)|u(0)αd̄(y)β|0〉 =
∫

du
d2l⊥
16π3

1√
2Nc

Ψ∗(u,~l⊥)(γ5 6q)αβ e
ilq ·y, (54)

which appears as an ingredient of the B → Dπ matrix element. The right-hand side
of (54) follows directly from (52). Using (54) it is straightforward to write down the
one-gluon exchange contribution to the B → Dπ matrix element of the operator O8

(Fig. 6). We have

〈D+π−|O8|B̄d〉1−gluon = (55)

ig2
s

CF

2

∫

d4k

(2π)4
〈D+|c̄A1(k)b|B̄d〉

1

k2

∫ 1

0
du
d2l⊥
16π3

Ψ∗(u,~l⊥)√
2Nc

tr[γ5 6qA2(lq, lq̄, k)],

where

A1(k) =
γλ(6pc− 6k +mc)Γ

2pc · k − k2
− Γ(6pb+ 6k +mb)γ

λ

2pb · k + k2
, (56)

A2(lq, lq̄, k) =
Γ(6 lq̄+ 6k)γλ

2lq̄ · k + k2
− γλ(6 lq+ 6k)Γ

2lq · k + k2
. (57)
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Here Γ = γµ(1 − γ5) and pb, pc are the momenta of the b quark and the c quark,
respectively. Note that this expression holds in an arbitrary covariant gauge. The
gauge-parameter dependent part of the gluon propagator gives no contribution to
(55), as can be easily seen from (56) and (57). There is no correction to the matrix
element of O0 at order αs, because in this case the (dū) pair is necessarily in a
colour-octet configuration and cannot form a pion.

In (55) the pion wave function Ψ(u, l⊥) appears separated from the B → D
transition. This is merely a reflection of the fact that we have represented the pion
state by (52). It does not, by itself, imply factorization, since the right-hand side

of (55) involves still nontrivial integrations over ~l⊥ and gluon momentum k, and
long- and short-distance contributions are not yet disentangled. In order for (55)
to make sense we need to show that the integral over k receives only subdominant
contributions from the region of small k2. This is equivalent to showing that the
integral over k does not contain infrared divergences at leading power in 1/mb.

To demonstrate infrared finiteness of the one-loop integral

J ≡
∫

d4k
1

k2
A1(k) ⊗ A2(lq, lq̄, k) (58)

at leading power, the heavy-quark limit and the corresponding large light-cone mo-
mentum of the pion are again essential. First note that when k is of order mb, J ∼ 1
for dimensional reasons. Potential infrared divergences could arise when k is soft or
when k is collinear to the pion momentum q. We need to show that the contributions
from these regions are power suppressed in mb. (Note that we do not need to show
that J is infrared finite. It is enough that logarithmic divergences have coefficients
that are power suppressed.)

We treat the soft region first. Here all components of k become small simul-
taneously, which we describe by scaling k ∼ λ. Counting powers of λ (d4k ∼ λ4,
1/k2 ∼ λ−2, 1/p · k ∼ λ−1) reveals that each of the four diagrams (corresponding to
the four terms in the product in (58)) is logarithmically divergent. However, because
k is small, the integrand can be simplified. For instance, the second term in A2 can
be approximated as

γλ(6 lq+ 6k)Γ
2lq · k + k2

=
γλ(u 6q+ 6 l⊥ +

~l2
⊥

4uE
6n−+ 6k)Γ

2uq · k + 2l⊥ · k +
~l2
⊥

2uE
n− · k + k2

' qλ
q · k Γ, (59)

where we used that 6q to the extreme left or right of an expression gives zero due to the
on-shell condition for the external quark lines. We get exactly the same expression
but with an opposite sign from the other term in A2 and hence the soft divergence
cancels out when adding the two terms in A2. More precisely, we find that the integral
is infrared finite in the soft region when l⊥ is neglected. When l⊥ is not neglected,
there is a divergence from soft k which is proportional to l2⊥/m

2
b ∼ Λ2

QCD/m
2
b . In

either case, the soft contribution to J is of order ΛQCD/mb or smaller and hence
suppressed relative to the hard contribution. This corresponds to the standard soft
cancellation mechanism, which is a technical manifestation of colour transparency.
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Each of the four terms in (58) is also divergent when k becomes collinear with the
light-cone momentum q. This implies the scaling

k+ ∼ λ0, k⊥ ∼ λ, k− ∼ λ2. (60)

Then d4k ∼ dk+dk−d2k⊥ ∼ λ4 and q · k = q+k− ∼ λ2, k2 = 2k+k− + k2
⊥ ∼ λ2.

The divergence is again logarithmic and it is thus sufficient to consider the leading
behaviour in the collinear limit. Writing k = αq+ . . . we can now simplify the second
term of A2 as

γλ(6 lq+ 6k)Γ
2lq · k + k2

' qλ
2(u+ α)Γ

2lq · k + k2
. (61)

No simplification occurs in the denominator (in particular l⊥ cannot be neglected),
but the important point is that the leading-power contribution is proportional to qλ.
Therefore, substituting k = αq into A1 and using q2 = 0, we obtain

qλA1 '
6q(6pc +mc)Γ

2αpc · q
− Γ(6pb +mb) 6q

2αpb · q
= 0, (62)

employing the equations of motion for the heavy quarks. Hence the collinearly di-
vergent region is seen to cancel out via the standard collinear Ward identity. This
completes the proof of the absence of infrared divergences at leading power in the
hard-scattering kernel for B̄d → D+π− to one-loop order. In other words, we have
shown that the “non-factorizable” diagrams of Fig. 6 are dominated by hard gluon
exchange.

Since we have now established that the leading contribution to J arises from k of
order mb (“hard” k), and since |~l⊥| � E, we may expand A2 in |~l⊥|/E. To leading
power the expansion simply reduces to neglecting l⊥ altogether, which implies lq = uq
and lq̄ = ūq in (57). As a consequence, we may perform the l⊥ integration in (55)
over the pion wave function. Defining

∫

d2l⊥
16π3

Ψ∗(u,~l⊥)√
2Nc

≡ ifπ

4Nc
Φπ(u), (63)

the matrix element of O8 in (55) becomes

〈D+π−|O8|B̄d〉1−gluon = (64)

−g2
s

CF

8Nc

∫

d4k

(2π)4
〈D+|c̄A1(k)b|B̄d〉

1

k2
fπ

∫ 1

0
duΦπ(u) tr[γ5 6qA2(uq, ūq, k)].

Putting y on the light-cone in (54), y+ = y⊥ = 0, hence lq · y = l+q y
− = uqy, and

comparing with (7), we see that the l⊥-integrated wave function Φπ(u) in (63) is
precisely the light-cone distribution amplitude of the pion in the usual definition (7).
This demonstrates the relevance of the light-cone wave function for the factorization
formula. Note that the collinear approximation for the quark-antiquark momenta
emerges automatically in the heavy-quark limit.
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Figure 14: The contribution of the qq̄g Fock state to the B̄d → D+π− amplitude.

After the k integral is performed, the expression (64) can be cast into the form

〈D+π−|O8|B̄d〉1−gluon ∼ FB→D(0)
∫ 1

0
du T8(u, z)Φπ(u), (65)

where z = mc/mb, T8(u, z) is the hard-scattering kernel, and FB→D(0) the form factor
that parameterizes the 〈D+|c̄[. . .]b|B̄d〉 matrix element. The result for T8(u, z) is given
in Sect. 4.4 below.

4.3 Higher Fock states and soft non-factorizable contribu-
tions

The discussion of the previous subsection relied on the dominance of the valence Fock
state of the high-energy pion emitted in B → Dπ. In the following section we will
argue that higher Fock states yield only subleading contributions in the heavy-quark
limit.

4.3.1 Additional hard-collinear partons

Generally, if additional collinear partons beyond the valence quarks are present in
the pion state, the B → Dπ amplitude will contain additional hard propagators that
lead to a power suppression in ΛQCD/mb. We illustrate this property by considering
the simplest nontrivial example, where the pion is composed of three partons, the
quark, the antiquark, and an additional gluon. The contribution of this 3-particle
Fock state to the B → Dπ decay amplitude is shown in Fig. 14. To evaluate this
contribution it is convenient to use the Fock-Schwinger gauge, which allows one to
express the gluon field Aλ in terms of the field-strength tensor Gρλ via

Aλ(x) =
∫ 1

0
dv vxρGρλ(vx). (66)

Up to twist 4 there are three quark-antiquark-gluon matrix elements that could po-
tentially contribute to the diagrams shown in Fig. 14. Due to the V −A structure of
the weak interaction vertex, the only relevant three-particle light-cone wave function
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has twist 4 and is given by [27, 28]

〈π(q)|d̄(0)γµγ5 gsGαβ(vx)u(0)|0〉 = fπ(qβgαµ − qαgβµ)
∫

Duφ⊥(ui)e
ivu3q·x

+ fπ
qµ
q · x(qαxβ − qβxα)

∫

Du
(

φ⊥(ui) + φ‖(ui)
)

eivu3q·x. (67)

Here
∫ Du ≡ ∫ 1

0 du1 du2 du3 δ(1 − u1 − u2 − u3), with u1, u2 and u3 the fractions of
the pion momentum carried by the quark, the antiquark and the gluon, respectively.
φ⊥ and φ‖ are twist-4, 3-particle light-cone distribution amplitudes. Evaluating the
diagrams in Fig. 14, and neglecting the charm-quark mass for simplicity, we find

〈D+π−|O8|B̄d〉qq̄g = ifπ〈D+|c̄ 6q(1 − γ5)b|B̄d〉
∫

Du2φ‖(ui)

u3m
2
b

. (68)

Since φ‖ ∼ Λ2
QCD, the suppression by two powers of ΛQCD/mb compared to the

leading-order matrix element is obvious. We remark that due to G-parity φ‖ is
antisymmetric in u1 ↔ u2 for a pion, so that (68) actually vanishes in this case. (It
would be non-zero if the pion were replaced by a K meson.)

There are higher-twist corrections also in the two-particle Fock state of the pion
itself. They could also contribute to power corrections. The leading ones could
come from the twist-3, two-particle pion wave functions, which can be important
numerically due to a chiral enhancement factorm2

π/(mu+md) (despite the suppression
by a power of ΛQCD/mb as mb → ∞). However, their contribution vanishes identically
for B → Dπ. This comes about because the twist-3 wave function is proportional to
an even number of γ-matrices (γ5, σµνγ5) and therefore the projection of the light-
quark “current” A2 in (57) onto this wave function is zero.

4.3.2 Additional soft partons

Finally, we consider the case where the non-factorizable gluon, i.e. the gluon ex-
changed between the pion and the (B̄D) system, is soft. In this case, the “qq̄g Fock
state” cannot be described by a light-cone wave function as in (67), which requires
the partons to be energetic. As we shall see now, such a contribution still receives a
power suppression in the heavy-quark limit, which arises from the soft-cancellation
mechanism discussed already in Sect. 4.2. Here we will derive an explicit expression
for the soft non-factorizable gluon correction. Note that the soft gluon can interact
with the spectator degrees of freedom in the B → D transition; this was not possible
for the mechanism of Fig. 14, which requires a collinear, energetic gluon, whereas the
spectator cloud is always soft.

We start from (57), take lq = uq and lq̄ = ūq, and put the gluon on-shell (since now
we are interested in an external gluon field). The resulting expression describes the
interaction of a soft gluon with the collinear light-quark pair, since both quarks are
energetic. Re-introducing colour, the coupling constant gs and the gluon polarization
vector ελ, the expression (57) projected onto the pion state becomes

d̄A2u → −q
κkαελεκαµλ

2q · k
fπΦπ(u)

uū

gsTr(TAT )

Nc

, (69)
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where T denotes the colour matrix at the weak vertex (T = 1 for O0, T = TB for
O8). We also used the ε-tensor with ε0123 = −1 and

d̄γµ(1 − γ5)u → ifπΦπ(u)qµ (70)

for projecting the current on the pion wave function, see (9). To simplify the result,
we have used the symmetry of Φπ(u) under u ↔ ū. The dependence on the gluon
momentum k in (69) involves the eikonal propagator i/q · k, which has the Fourier-
decomposition

i

q · k + iε
=
∫

d4x eik·x
∫ ∞

0
dτ δ(4)(x− τq). (71)

Hence we see that in configuration space the right-hand side of (69) corresponds to
the operator expression (at space-time point x = 0)

−fπΦπ(u)

4Ncuū

∫ ∞

0
ds gs Tr[G̃µν(−sn)T ]nν, (72)

where we defined n as a dimensionless null-vector describing the pion flight direction,
i.e. q = En, and

G̃µν = εµναβ G
αβ, Gµν = GA

µν T
A. (73)

Note that the expression (72) corresponds to the right-hand side of Fig. 12. With this
result we can write down the soft non-factorizable (SNF) contribution to the matrix
elements of O0,8 from one-gluon exchange as

〈D+π−|O0|B̄d〉SNF = 0, (74)

〈D+π−|O8|B̄d〉SNF =

−
∫ ∞

0
ds 〈D+|c̄γµ(1 − γ5)gsG̃µν(−sn)nνb|B̄d〉

∫ 1

0
du

fπΦπ(u)

8Ncuū
. (75)

Because of the colour structure of the one-gluon contribution, only the matrix element
of O8 is non-vanishing. The result in (75) can be compared to the leading contribution
to the matrix element of O0,

〈D+π−|O0|B̄d〉lead = 〈D+|c̄γµ(1 − γ5)b|B̄d〉 ifπqµ

∫ 1

0
duΦπ(u). (76)

In the heavy-quark limit (mb, mc → ∞) the dependence of the matrix elements of the
(c̄b) currents in (75), (76) on the heavy-quark masses can be extracted using heavy-
quark effective theory. Up to logarithms, this dependence arises only from trivial
factors related to the normalization of the B- and D-meson states, i.e.

〈D+|(c̄b)V −A|B̄d〉 ∼
√
mcmb. (77)

From dimensional counting one then finds for the matrix elements in (75) and (76)

〈O0〉lead ∼ fπm
2
b , 〈O8〉SNF ∼ fπmbΛQCD. (78)

It follows that the soft non-factorizable interactions of the pion with the spectator,
and soft partons in the B → D transition in general, are suppressed by one power
of ΛQCD/mb. This result is general as argued in Sect. 3.6 above. Note that in the
present case the contribution of 〈O8〉SNF to the decay amplitude is further suppressed
as it occurs only at relative order 1/N 2

c in colour counting.
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4.4 Matrix elements at next-to-leading order

As we have seen above, the B̄d → D+π− amplitude factorizes in the heavy-quark
limit into a matrix element of the form 〈D+|c̄[. . .]b|B̄d〉 for the B → D transition
and a matrix element 〈π−|d̄(x)[. . .]u(0)|0〉 with x2 = 0 that gives rise to the pion
light-cone distribution amplitude. Leaving aside power-suppressed contributions, the
essential requirement for this conclusion was the absence of both soft and collinear
infrared divergences in the gluon exchange between the (c̄b) and (d̄u) currents. This
gluon exchange is therefore calculable in QCD perturbation theory. We now compute
these corrections explicitly to order αs.

The effective Hamiltonian (42) can be written as

Heff =
GF√

2
V ∗

udVcb

{[

Nc + 1

2Nc
C̄+(µ) +

Nc − 1

2Nc
C̄−(µ) +

αs(µ)

4π

CF

2Nc
BC8(µ)

]

O0

+ C8(µ)O8

}

, (79)

where the scheme-dependent terms in the coefficient of the operator O0, proportional
to the constant B defined after (51), have been written explicitly.

Schematically, the matrix elements of O0 and O8 can be expressed in the form of
(4). Because the light-quark pair has to be in a colour singlet to produce the pion in
the leading Fock state, only O0 gives a contribution to zeroth order in αs. Similarly,
to first order in αs only O8 can contribute. The result of computing the diagrams in
Fig. 6 with an insertion of O8 can be presented in a form that holds simultaneously
for H = D,D∗ and L = π, ρ, using only that the (ūd) pair is a colour singlet and
that the external quarks can be taken on-shell. We obtain (z = mc/mb)

〈H(p′)L(q)|O8|B̄d(p)〉 =
αs

4π

CF

2Nc

ifL

∫ 1

0
duΦL(u) (80)

×
[

−
(

6 ln
µ2

m2
b

+B

)

(〈JV 〉 − 〈JA〉) + F (u, z) 〈JV 〉 − F (u,−z) 〈JA〉
]

,

where
〈JV 〉 = 〈H(p′)|c̄ 6q b|B̄d(p)〉, 〈JA〉 = 〈H(p′)|c̄ 6qγ5b |B̄d(p)〉. (81)

In obtaining (80) we have used the equations of motion for the quarks to reduce
the operator basis to JV and JA. It is worth noting that even after computing the
one-loop correction the (ūd) pair retains its V − A structure. This, together with
(7), implies that the form of (80) is identical for pions and longitudinally polarized
ρ mesons. The production of transversely polarized ρ mesons is power suppressed in
ΛQCD/mb, as follows from the [6ε∗⊥, 6q ] structure in the third line of (7).

In the case of a distribution amplitude ΦL(u) that is symmetric under u ↔ ū,
which is relevant for L = π, ρ, the function F (u, z) appearing in (80) can be compactly
written as

F (u, z) = 3 ln z2 − 7 + f(u, z) + f(u, 1/z), (82)
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with

f(u, z) = −u(1 − z2)[3(1 − u(1 − z2)) + z]

[1 − u(1 − z2)]2
ln[u(1 − z2)] − z

1 − u(1 − z2)
. (83)

In the general case, where ΦL(u) is not necessarily symmetric, the function F (u, z)
is given by

F (u, z) =
(

3 + 2 ln
u

ū

)

ln z2 − 7 + f(u, z) + f(ū, 1/z), (84)

where

f(u, z) = −u(1 − z2)[3(1 − u(1 − z2)) + z]

[1 − u(1 − z2)]2
ln[u(1 − z2)] − z

1 − u(1 − z2)

+ 2

[

ln[u(1 − z2)]

1 − u(1 − z2)
− ln2[u(1 − z2)] − Li2[1 − u(1 − z2)] − {u→ ū}

]

, (85)

and

Li2(x) = −
∫ x

0
dt

ln(1 − t)

t
(86)

is the dilogarithm. The contribution of f(u, z) in (84) comes from the first two
diagrams in Fig. 6 with the gluon coupling to the b quark, whereas f(ū, 1/z) arises
from the last two diagrams with the gluon coupling to the charm quark. Note that
the terms in the large square brackets in the definition of the function f(u, z) are odd
under the exchange u ↔ ū and thus vanish for a symmetric light-cone distribution
amplitude. These terms can be dropped if the light final-state meson is a pion or a
ρ meson, but they are relevant, e.g., for the discussion of Cabibbo-suppressed decays
such as B̄d → D(∗)+K− and B̄d → D(∗)+K∗−. The discontinuity of the amplitude,
which is responsible for the occurrence of strong rescattering phases, arises from
f(ū, 1/z) and can be obtained by recalling that z2 is z2 − iε with ε > 0 infinitesimal.
We then find

1

π
ImF (u, z) = −(1 − u)(1 − z2)[3(1 − u(1 − z2)) + z]

[1 − u(1 − z2)]2

− 2

[

ln[1 − u(1 − z2)] + 2 lnu+
z2

1 − u(1 − z2)
− {u→ ū}

]

. (87)

For z → 0 and the special case of a symmetric wave function these results coincide
with the results already presented in [1].

As mentioned above, (80) is applicable to all decays of the type B̄d → D(∗)+L−,
where L is a light hadron such as a pion or a (longitudinally polarized) ρ meson.
Only the operator JV contributes to B̄d → D+L−, and only JA contributes to B̄d →
D∗+L−. (Due to helicity conservation the vector current B → D∗ matrix element
contributes only in conjunction with a transversely polarized ρ meson and hence is
power suppressed in the heavy-quark limit.) Our final result can therefore be written
as

〈D+L−|O0,8|B̄d〉 = 〈D+|c̄γµ(1 − γ5)b|B̄d〉 · ifLqµ

∫ 1

0
du T0,8(u, z) ΦL(u), (88)
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where L = π, ρ, and the hard-scattering kernels are

T0(u, z) = 1 +O(α2
s), (89)

T8(u, z) =
αs

4π

CF

2Nc

[

−6 ln
µ2

m2
b

−B + F (u, z)

]

+O(α2
s). (90)

When the D meson is replaced by a D∗ meson, the result is identical except that
F (u, z) in (90) must be replaced by F (u,−z). Since no order αs corrections exist for
O0, the matrix element retains its leading-order factorized form

〈D+L−|O0|B̄d〉 = ifLqµ 〈D+|c̄γµ(1 − γ5)b|B̄d〉 (91)

to this accuracy. From (85) it follows that T8(u, z) tends to a constant as u approaches
the endpoints (u → 0, 1). (This is strictly true for the part of T8(u, z) that is
symmetric in u↔ ū; the asymmetric part diverges logarithmically (∝ ln u) as u→ 0,
which however does not affect the power behaviour and the convergence properties in
the endpoint region.) Therefore the contribution to (88) from the endpoint region is
suppressed, both by phase space and by the endpoint suppression intrinsic to ΦL(u).
Consequently the emitted light meson is indeed dominated by energetic constituents,
as required for the self-consistency of the factorization formula (88).

Combining (79), (88), (89) and (90), we obtain our final result for the class-I,
non-leptonic B̄d → D(∗)+L− decay amplitudes in the heavy-quark limit, and at next-
to-leading order in αs. The results can be compactly expressed in terms of the matrix
elements of a “transition operator”

T =
GF√

2
V ∗

udVcb [a1(DL)QV − a1(D
∗L)QA] , (92)

where
QV = c̄γµb ⊗ d̄γµ(1 − γ5)u, QA = c̄γµγ5b ⊗ d̄γµ(1 − γ5)u, (93)

and hadronic matrix elements of QV,A are understood to be evaluated in factorized
form, i.e.

〈DL|j1 ⊗ j2|B̄〉 ≡ 〈D|j1|B̄〉 〈L|j2|0〉. (94)

Eq. (92) defines the quantities a1(D
(∗)L), which include the leading “non-factorizable”

corrections, in a renormalization-scale and -scheme independent way. To leading
power in ΛQCD/mb these quantities should not be interpreted as phenomenological
parameters (as is usually done), because they are dominated by hard gluon exchange
and thus calculable in QCD. At next-to-leading order we get

a1(DL) =
Nc + 1

2Nc
C̄+(µ) +

Nc − 1

2Nc
C̄−(µ)

+
αs

4π

CF

2Nc
C8(µ)

[

−6 ln
µ2

m2
b

+
∫ 1

0
duF (u, z) ΦL(u)

]

, (95)

a1(D
∗L) =

Nc + 1

2Nc

C̄+(µ) +
Nc − 1

2Nc

C̄−(µ)

+
αs

4π

CF

2Nc

C8(µ)

[

−6 ln
µ2

m2
b

+
∫ 1

0
duF (u,−z) ΦL(u)

]

. (96)
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These expressions generalize the well-known leading-order formula

aLO
1 =

Nc + 1

2Nc

CLO
+ (µ) +

Nc − 1

2Nc

CLO
− (µ). (97)

We observe that the scheme dependence, parameterized by B, is cancelled between
the coefficient of O0 in (79) and the matrix element of O8 in (88). Likewise, the
µ dependence of the terms in brackets in (95) and (96) cancels against the scale
dependence of the coefficients C̄±(µ), ensuring a consistent physical result at next-
to-leading order in QCD.

The coefficients a1(DL) and a1(D
∗L) are seen to be non-universal, i.e. they are

explicitly dependent on the nature of the final-state mesons. This dependence enters
via the light-cone distribution amplitude ΦL(u) of the light emission meson and via
the analytic form of the hard-scattering kernel (F (u, z) vs. F (u,−z)). However, the
non-universality enters only at next-to-leading order.

Politzer and Wise have computed the “non-factorizable” vertex corrections to the
decay rate ratio of the Dπ and D∗π final states [13]. This requires only the symmetric
part (with respect to u↔ ū) of the difference F (u, z) − F (u,−z). Explicitly,

Γ(B̄d → D+π−)

Γ(B̄d → D∗+π−)
=

∣

∣

∣

∣

∣

〈D+|c̄ 6q(1 − γ5)b|B̄d〉
〈D∗+|c̄ 6q(1 − γ5)b|B̄d〉

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

a1(Dπ)

a1(D∗π)

∣

∣

∣

∣

∣

2

, (98)

where for simplicity we neglect the light meson masses as well as the mass difference
between D and D∗ in the phase-space for the two decays. At next-to-leading order

∣

∣

∣

∣

∣

a1(Dπ)

a1(D∗π)

∣

∣

∣

∣

∣

2

= 1 +
αs

4π

CF

Nc

C8

C0
Re
∫ 1

0
du [F (u, z) − F (u,−z)] Φπ(u). (99)

Our result for the symmetric part of F (u, z)−F (u,−z) coincides with that of Politzer
and Wise. Haas and Youssefmir have considered the decay rate ratio of the Dρ and
Dπ final states [29], which requires the calculation of the symmetric part of F (u, z).
Neglecting again the light meson masses we obtain

Γ(B̄d → D+ρ−)

Γ(B̄d → D+π−)
=
f 2

ρ

f 2
π

∣

∣

∣

∣

∣

a1(Dρ)

a1(Dπ)

∣

∣

∣

∣

∣

2

, (100)

where
∣

∣

∣

∣

∣

a1(Dρ)

a1(Dπ)

∣

∣

∣

∣

∣

2

= 1 +
αs

4π

CF

Nc

C8

C0

Re
∫ 1

0
duF (u, z) [Φρ(u) − Φπ(u)] . (101)

Our result for F (u, z) does not agree with that obtained in [29]. To compare the
two results, the kernel F (u, z) has to be symmetrized in u ↔ ū and u-independent
constants can be dropped, because they do not contribute to (101). The result of
Haas and Youssefmir would agree with ours if the term a + ln |a|/(1 − a) in the
function I1,1(a) defined in [29] were substituted by 1+ ln |a|/(1−a), and the function
J(a) were multiplied by 4.

47



5 B → Dπ: Factorization in higher orders

The one-loop expression for T8 in (90) has no infrared singularities, as required for
the validity of the factorization formula. In order for the factorization formula for
B̄d → D+π− decays (here and below we suppress a factor ifπm

2
B),

〈π−D+|O0,8|B̄d〉 = FB→D(0)
∫ 1

0
du T0,8(u) Φπ(u), (102)

to be valid, the amplitude T0,8(u) must be free of infrared singularities to all orders
in perturbation theory. (In this section we use again the decay B̄d → D+π− as a
representative for all decays into a heavy and light meson for which the spectator
quark in the B meson goes to the heavy meson in the final state.) This requires
demonstrating that the long-distance contributions to the B̄d → D+π− amplitude
match those contained in the form factor and the pion light-cone distribution ampli-
tude on the right-hand side of (102), i.e. that the sum of all the infrared singularities
in Feynman diagrams for the B̄d → D+π− amplitude must be precisely that present
in the Feynman diagrams for the form factor FB→D(0) and for the light-cone distri-
bution amplitude Φπ(u) of the pion. In this section we analyze in detail the infrared
singularities for B̄d → D+π− decays at two-loop order and demonstrate that this
is indeed the case. Some of the arguments we use have straightforward extensions
to all orders, but the following does not accomplish an all-order “proof”. We hope
that the arguments used to prove infrared finiteness at two-loop order are sufficiently
convincing to make infrared finiteness at all orders plausible.

The content of this section is rather technical. The phenomenologically oriented
reader may want to proceed directly with Sect. 6, where we discuss practical applica-
tions of the factorization formula and comparisons of our results with experimental
data.

5.1 Structure of the factorization proof at two-loop order

To state more precisely what needs to be demonstrated, we write the factorization
formula schematically as

A(B → Dπ) = FB→D(0) · T ∗ Φπ, (103)

where the ∗ represents the convolution, A(B → Dπ) represents the matrix element
on the left-hand side of (102), and the subscript ‘0,8’ is omitted. In order to extract
T , one computes A, FB→D and Φπ in perturbation theory and uses (103) to determine
T . We therefore rewrite (103) in perturbation theory,

A(0) + A(1) + A(2) + · · · =
(

F
(0)
B→D + F

(1)
B→D + F

(2)
B→D + · · ·

)

·
(

T (0) + T (1) + T (2) + · · ·
)

∗
(

Φ(0)
π + Φ(1)

π + Φ(2)
π + · · ·

)

, (104)

where the superscripts in parentheses indicate the order of perturbation theory, and
then compare terms of the same order. Thus up to two-loop order

F
(0)
B→D · T (0) ∗ Φ(0)

π = A(0), (105)
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F
(0)
B→D · T (1) ∗ Φ(0)

π = A(1) − F
(1)
B→D · T (0) ∗ Φ(0)

π − F
(0)
B→D · T (0) ∗ Φ(1)

π , (106)

F
(0)
B→D · T (2) ∗ Φ(0)

π = A(2) − F
(0)
B→D · T (1) ∗ Φ(1)

π − F
(1)
B→D · T (1) ∗ Φ(0)

π

−F (2)
B→D · T (0) ∗ Φ(0)

π − F
(0)
B→D · T (0) ∗ Φ(2)

π − F
(1)
B→D · T (0) ∗ Φ(1)

π . (107)

By perturbative expansion of the B → D form factor, we mean the perturbative
expansion of the matrix element of c̄Γb, evaluated between on-shell b- and c-quark
states. By perturbative expansion of the pion light-cone distribution amplitude, we
mean the perturbative expansion of the light-cone matrix element in (7), but with
the pion state replaced by an on-shell quark with momentum uq and an on-shell
antiquark with momentum ūq.

The zeroth order term in (105) is trivial and states that T (0) is given by the
diagram of Fig. 4. The two terms that need to be subtracted from A(1) at first order
exactly cancel the “factorizable” contributions to A(1) shown in Fig. 5. The first order
term in (106) therefore states that T (1) is given by the “non-factorizable” diagrams
of Fig. 6. If T (1) is to be infrared finite, the sum of these diagrams must be infrared
finite, which is indeed the case as we have already seen.

In this section we will be concerned with the second order term (107). The last
three terms on the right-hand side exactly cancel the “factorizable” corrections to
the two-loop amplitude A(2). The remaining two terms that need to be subtracted
from A(2) are non-trivial. We must show that the infrared divergences in the sum of
“non-factorizable” contributions to A(2) have precisely the right structure to match
the infrared divergences in F

(1)
B→D and Φ(1)

π , such that

A
(2)
non−fact. − F

(0)
B→D · T (1) ∗ Φ(1)

π − F
(1)
B→D · T (1) ∗ Φ(0)

π = infrared finite. (108)

The discussion above implies that in order to demonstrate the validity of the
factorization formula we need to identify the regions of phase space which can give
rise to infrared singularities. In general these arise when massless lines become soft or
collinear with the direction of q, the momentum of the pion. This requires that one
or both of the loop momenta in a two-loop diagram become soft or collinear. Rather
than computing the two-loop diagrams, we will analyze the Feynman integrands
corresponding to these diagrams in those momentum configurations that can give
rise to singularities, as we did at one-loop order, and show that (108) is valid. The
potentially singular regions are: one momentum soft or collinear, the other hard; both
momenta soft or collinear; one momentum soft, the other collinear. In the following
subsections we consider each of the five regions in turn.

At two-loop order there are 62 “non-factorizable” diagrams that contribute to
A(2) which we label from 1a to 19d and exhibit in Figs. 15 and 16. (We do not
exhibit diagrams with vacuum polarization insertions in gluon propagators, external
self-energy insertions in quark propagators, or one-loop counterterm insertions. The
demonstration of factorization for these sets of diagrams is a simple extension of that
for one-loop diagrams.) In these diagrams the inserted four-quark current-current
operators can have either a singlet-singlet (O0) or octet-octet (O8) colour structure.
The corresponding colour factors for each of the 62 diagrams are tabulated in Table 1
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Figure 15: Two-loop diagrams 1a-7b, contributing to the amplitudes for B → Dπ
decays.

and these will be used extensively in the discussion below. In evaluating the entries
we have taken a factor TA

ij at each quark-gluon vertex (A = 1 . . . 8 labels the colour
of the gluon and i = 1, 2, 3 (j = 1, 2, 3) that of the outgoing (incoming) quark) and
a factor of −ifABC at each three-gluon vertex where A,B,C are the colour labels of
the three gluons, with A→ B → C taken in a clockwise direction.

The diagrams are taken with on-shell external quark lines. We never write down
the corresponding on-shell spinors, but we use extensively the equation of motion for
the on-shell spinors to simplify the Feynman amplitude. We also use Feynman gauge
for gluon propagators.

5.2 The soft-soft region

We start by considering the region of phase space in which both loop momenta are
soft, i.e. they have components of momentum (in the rest-frame of the b quark)
which are much smaller than mb. There are different ways of routing the large
external momenta through a two-loop diagram. It is easy to see that one obtains
an infrared divergence only if the large momentum is routed through the quark lines
and all the gluons in each diagram are soft. The generic power counting in this
region of phase-space, taking all components of the gluons’ momenta to be of order
λ, gives a factor of λ8 from the two-loop phase space, factors of λ−1 and λ−2 for
each quark and gluon propagator and λ0 and λ1 for each quark-gluon and triple-
gluon vertex, respectively. Thus, for example, the counting for diagrams 1a-d would
give λ8 from phase space, λ−4 from the two gluon propagators, λ−4 from the four
quark propagators and λ0 for the four quark-gluon vertices, giving a total factor
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Figure 16: Two-loop diagrams 8a-19d, contributing to the amplitudes for B → Dπ
decays.
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Table 1: Colour factors for the two-loop diagrams. Here the normalization is such
that the tree-level diagram with O0 insertion has a colour factor Nc.

Diagrams O0 O8

1a,b 2c,d 4a,b 6a,b 7a CF

2
CF

2
(N2

c −2)
2Nc

1c,d 2a,b 3a,b 5a,b 7b CF

2
−CF

2
1

Nc

8a,b 10a-d 0 CF

2
Nc

2

8c,d 9a,b 11a,b 0 −CF

2
Nc

2

12a-d 15a-d 16a-d 19a-d 0 −CF

2
1

2Nc

13a-d 14a-d 17a-d 18a-d 0 CF

2
CF

of λ0 corresponding to a logarithmic divergence. Similarly for diagrams 8a-d we
have factors of λ8 (phase-space), λ−3 (quark propagators), λ−6 (gluon propagators),
λ0 (quark-gluon vertices) and λ1 (triple-gluon vertex) giving λ0 and a logarithmic
divergence again. The analysis of all diagrams shows that the divergence is at most
logarithmic. In this subsection we demonstrate the cancellation of these logarithmic
divergences.

For diagrams in which a single gluon is attached to a constituent of the pion
(diagrams 10a-11b, 16a-19d) the cancellation can be demonstrated in an exactly
analogous way to the one-loop case, i.e. the two contributions in which the gluon
is attached to the quark and antiquark in the pion cancel (e.g. the contribution of
diagram 10a cancels that of 10c). We need not discuss such diagrams further in this
subsection.

When one of the gluons is attached at both ends to the constituents of the pion (di-
agrams 12a-15d), each diagram is logarithmically divergent according to the generic
power-counting rules above, but the divergence is in fact absent for each diagram
separately. This follows because we can use the eikonal approximation for the quark
propagators and the on-shell condition for the external quark lines to show that the
logarithmic divergence is proportional to qρqρ = q2 = 0. (Of course, these diagrams
have divergences in other momentum configurations, see the following subsections).

Consider now the 18 diagrams 1a-7b which contain two gluons, each attached
to a heavy and a light quark, and take both gluons to be soft. The cancellation of
the corresponding infrared divergences can readily be demonstrated using standard
eikonal combinatorics. In Fig. 17 we draw the six possible ways of attaching two
gluons to the constituents of the pion. Thus for each of the three distinct ways of
attaching the two gluons to the heavy quarks there are six diagrams, {1a, 1c, 2a, 2c,
3a, 4a}, {5a, 5b, 6a, 6b, 7a, 7b} and {1b, 1d, 2b, 2d, 3b, 4b}. In this way the 18
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Figure 17: The six diagrams representing the possible attachments of two gluons to the
quark and antiquark constituents of the pion.

diagrams 1a-7b get divided into three sets of six diagrams. By studying the structure
of the diagrams in Fig. 17 we now demonstrate the cancellation of the divergences
from the soft-soft region of phase space within each of the sets of six diagrams.

In the six diagrams of Fig. 17 let the gluon with momentum k1 (k2) have Lorentz
and colour indices µ1 and A1 (µ2 and A2) and let the Dirac matrix of the current be
denoted by Γ and its colour matrix by T . The diagram in Fig. 17a has a factor:

γµ1(u 6q+ 6k1)γµ2(u 6q+ 6k1+ 6k2)Γ

(uq + k1)2 (uq + k1 + k2)2
C1 (109)

where C1 ≡ Tr{TA1TA2T}. The trace arises because the two external light quark lines
are projected on a colour singlet combination. Since we are neglecting the masses
of the light quarks we can use the equation of motion 6 q = 0 when the 6 q is the first
or last factor in the product of gamma-matrices associated with the light quark and
antiquark. Then, recalling that the components of k1 and k2 are small, and that we
need to keep only the leading term because the divergence is logarithmic, the term
in (109) reduces to

qµ1qµ2

(q · k1) (q · (k1 + k2))
ΓC1. (110)

This is the standard eikonal approximation. The corresponding factors for all six of
the diagrams in Fig. 17 are:

Fig. 17a:
qµ1 qµ2

(q · k1) (q · (k1 + k2))
ΓC1 Fig. 17b:

qµ1 qµ2

(q · k1) (q · (k1 + k2))
ΓC2

Fig. 17c:
qµ1 qµ2

(q · k2) (q · (k1 + k2))
ΓC2 Fig. 17d:

qµ1 qµ2

(q · k2) (q · (k1 + k2))
ΓC1

Fig. 17e: − qµ1 qµ2

(q · k1) (q · k2)
ΓC2 Fig. 17f: − qµ1 qµ2

(q · k1) (q · k2)
ΓC1,

53



;,<;�=
>1?�@

;.=
>9A"@

;,<

; =

>�B5@

; =

>�C�@Figure 18: (a) Diagram 1a, (b) representation of diagram 1a in the hard-soft region, (c)
diagram 4a, (d) representation of diagram 4a in the hard-soft region.

where C2 ≡ Tr{TA2TA1T}. We see that the coefficients of both C1 and C2 vanish
when the six contributions are summed, and hence the divergences of the 18 diagrams
1a-7b cancel.

An analogous cancellation occurs when the two gluons in the diagrams of Fig. 17
end at a triple gluon vertex. Thus, choosing momentum assignments that correspond
to (a), (d), (e) in Fig. 17, but with the labelling of k1 and k2 in (e) interchanged, and
accounting for the signs of the colour factors given in Table 1, the diagrams {8a, 8c,
9a} have relative contributions

1

(q · k1)(q · (k1 + k2))
:

1

(q · k2)(q · (k1 + k2))
: − 1

(q · k1)(q · k2)
, (111)

and hence cancel. A similar cancellation occurs between the soft-soft contributions
in diagrams {8b, 8d, 9b}. (If one chooses the momentum labelling of (e) as given in
Fig. 17, one obtains the third term in (111) with an opposite sign. The cancellation
still occurs because the entire expression is multiplied by an odd expression in k1 ↔ k2

and then integrated over k1 and k2.)
This completes our proof of the cancellation of potentially non-factorizing long-

distance contributions from the soft-soft region of phase space at two-loop order. It is
easy to see that the combinatorics of eikonal propagators is such that the cancellation
generalizes to all orders, assuming that all loop momenta are soft. Furthermore, we
did not use that the c quark is heavy. Hence the same argument also shows the
cancellation of purely soft divergences for the form-factor term in the factorization
formula for decays into two light mesons.

5.3 The hard-soft region

We now turn our attention to the region of phase space in which one loop momentum
is hard (i.e. all its components are of order mb) and the other is soft (i.e. all its
components are much smaller than mb). In order to have a potentially divergent
subgraph, we require one of the gluons (rather than quarks) to be soft.

Diagrams 1a-7b: We start by considering diagrams 1a-7b. As an example consider
diagram 1a, which we redraw in Fig. 18a. This has a potentially non-factorizing
contribution from the hard-soft region in which the inner loop is hard (i.e. k2 is hard)
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DFEGFigure 19: Representation of the hard inner loop.

and the external loop is soft (i.e. k1 is soft). The key point is that we can neglect k1

in the inner loop, allowing us, in this region of phase space, to represent diagram 1a
as in Fig. 18b. The grey circle represents the inner loop (which contains the integral
over k2, see Fig. 19), but is independent of k1. Similarly for diagram 4a, which we
redraw in Fig. 18c, the contribution from the region in which k1 is soft but k2 is hard
can be represented as in Fig. 18d, where the grey circle represents the same factor
as in Fig. 18b (see Fig. 19). The cancellation of the hard-soft contributions from
diagrams 1a and 4a now follows in the same way as for the infra-red divergences in
one-loop graphs in Sect. 4.2.

Similarly the pairs of diagrams {1b, 4b}, {1c, 3a}, {1d, 3b}, {5a, 7b}, {5b, 7b},
{6a, 7a} and {6b, 7a} each cancel by the same argument. Diagrams 7a and 7b appear
twice since they each contain two divergent hard-soft contributions (each of the two
gluons may be soft). Diagrams 2a-d have no divergent hard-soft contributions.

Diagrams 9a,b, 11a,b and 14a-d: By inspection we see that diagrams 9a,b,
11a,b and 14a-d have no divergent contributions in the hard-soft region.

Diagrams 10a-d, 15a-d, 16a-d, 18a-d and 19a-d: The singular terms from the
hard-soft contributions from each of the pairs of diagrams {10a, 10c}, {10b, 10d},
{15a, 15b}, {15c, 15d}, {16a, 16b}, {16c, 16d}, {18a, 18b}, {18c, 18d}, {19a, 19b}
and {19c, 19d} cancel by the one-loop mechanism as described above. In each case
the singular contribution comes from the region of phase space in which the gluon
attached to one of the constituents of the pion is soft (in diagrams 15a-d it is the
gluon which is attached to both a light and a heavy quark).

Diagrams 17a-d: We now turn to diagrams 17a-d. In this case the contribution
from the region in which the gluon attached to a light quark is soft and the other one
is hard does not give a singular contribution. On the other hand, the region in which
the gluon attached at both ends to heavy quarks is soft and the other one is hard
does lead to singular contributions, which do not cancel, but which are necessary
for the validity of the factorization formula. In other words, this contribution does
not lead to a singular term in the hard-scattering kernel T , but is absorbed into the
form-factor.

To see this, observe that the momentum of the soft gluon can be neglected in
the hard subgraph. Hence the four diagrams 17a-d contain the diagrams in Fig. 6
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Figure 20: One-loop contribution to the b → c transition form-factor (and hence to FB→D)

as hard subgraph. Since, according to (106), these give T (1), the contribution of
diagrams 17a-d to the two-loop B → Dπ amplitude A(2) in the hard-soft region is of
the form

A
(2)
17a−d,hard−soft = f

(1)
B→D · T (1) ∗ Φ(0)

π , (112)

where f
(1)
B→D stands for the soft contribution to the diagram shown in Fig. 20. The

factor f
(1)
B→D contains non-cancelling infrared divergences. But this factor is identical

to the soft contribution to the B → D form factor F
(1)
B→D and hence

A
(2)
17a−d,hard−soft − F

(1)
B→D · T (1) ∗ Φ(0)

π = infrared finite. (113)

Hence we have recovered (and “used up”) one of two subtraction terms that appear
in (108). Any other non-cancelling divergence that we may (and must) still find must

therefore be cancelled by F
(0)
B→D · T (1) ∗ Φ(1)

π .

Diagrams 8a-d, 12a-d, 13a-d: We are now left with diagrams 8a-d, 12a-d and
13a-d representing vertex and self-energy insertions on the valence quarks in the pion.
A potentially non-factorizing (infrared divergent) contribution arises when the gluon
that attaches to the heavy quark line is soft. In order to facilitate the discussion we
draw and label these insertions as in Fig. 21. The insertion of Fig. 21a contains a
factor

21a =
γµ(u 6q+ 6 l)γρ(u 6q+ 6k+ 6 l)γµ(u 6q+ 6k)Γ
(uq + l)2 (uq + k + l)2 (uq + k)2 l2

' γµ(u 6q+ 6 l)γρ(u 6q+ 6 l)γµ

[(uq + l)2]2 l2
6q Γ

2q · k , (114)

where we have used the fact that the components of k are small with respect to the
remaining momenta. This is multiplied by the colour factor ca = −1/2Nc. In the
same region of phase-space the corresponding factor from the diagram in Fig. 21(c)
is cc = Nc/2 times

21c ' (lµgνρ + lνgµρ − 2lρgµν)
γµ (u 6q+ 6 l)γν

(uq + l)2 [l2]2
6q Γ

2q · k

=
2qρ Γ

[l2]2 q · k
− 2lρ

γµ(u 6q+ 6 l)γµ

(uq + l)2 [l2]2
6q Γ

2q · k . (115)

The first term on the right-hand side of (115) cancels with the corresponding contri-
bution from diagram 21f and hence we do not consider it further here.

Finally we turn to the self-energy insertion in Fig. 21b,

21b =
γρ(u 6q+ 6k) [(u 6q+ 6k)Σ] (u 6q+ 6k)Γ

[(uq + k)]2
=
γρΣ (u 6q+ 6k)Γ

(uq + k)2
, (116)
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Figure 21: The six vertex and self-energy insertions on the constituents of the pion.

where the self-energy Σ is given by

∫

l

γµ (u 6q+ 6k+ 6 l)γµ

(uq + k + l)2 l2
= (u 6q+ 6k)Σ. (117)

In (117)
∫

l represents the integration over loop momentum l. The terms above are to
be multiplied by the colour factor cb = (N2

c − 1)/2Nc. Differentiating both sides of
(117) with respect to (uq + k)ρ we obtain:

−
∫

l

γµ (u 6q+ 6k+ 6 l) γρ (u 6q+ 6k+ 6 l) γµ

[(uq + k + l)2]2 l2
= γρΣ + 2(uq + k)ρ(u 6q+ 6k) dΣ

d(uq + k)2
. (118)

Now in this paragraph we are only considering the contribution from the integral
over the region of hard l. In this case Σ is analytic in (uq + k)2 and does not have a
logarithmic singularity in (uq+k)2 at small (uq+k)2, so the second term on the right-
hand side of (118) is of higher order in (uq + k)2 � m2

b and hence can be neglected.
Inserting the expression (118) for γρΣ into (116) and keeping only the terms which
give a singularity from the infrared region of the integration over k we obtain

21b = −γ
µ(u 6q+ 6 l)γρ(u 6q+ 6 l)γµ

[(uq + l)2]2 l2
6q Γ

2q · k , (119)

which apart from the colour factor is minus the contribution from the diagram of
Fig. 21a as expected from the Ward identity.

Thus we have two different integrals over l to consider. The first is the one which
appears in diagrams 21a and 21b:

Jρ
1 ≡

∫

l

γµ(u 6q+ 6 l)γρ(u 6q+ 6 l)γµ

[(uq + l)2]2 l2
= A1 γ

ρ + A2 6q qρ, (120)
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and the second comes from diagram 21c:

Jρ
2 ≡

∫

l

−2lρ γ
µ(u 6q+ 6 l)γµ

(uq + l)2 [l2]2
= B1 γ

ρ +B2 6q qρ. (121)

Since the 6 q qρ gives zero when multiplied by 6 q Γ/(2q · k), the total contribution from
21a-c (up to the term in (115), which cancels with 21f) is

21a + 21b + 21c(part) = [(ca − cb)A1 + ccB1]
6q Γ

2q · k . (122)

But multiplying Jρ
i by γρ and using the on-shell condition and q2 = 0 gives

A1 = B1 =
∫

l

1

l2 (uq + l)2
, (123)

and thus the total contribution is proportional to the combination of colour factors
ca − cb + cc = 0.

Similarly the soft-hard singularity from figures 21d, 21e and the remaining con-
tribution from 21f cancel. Thus we have demonstrated the cancellation of the singu-
larities from the soft-hard region of phase space in each of the sets of six diagrams
{8a, 8c, 12a, 12b, 13a, 13c} and {8b, 8d, 12c, 12d, 13b, 13d}. This completes our
proof that the contributions from this region of phase-space satisfy the factorization
formula.

5.4 The collinear-collinear contribution

We now consider the (logarithmic) singularities from the region of phase space in
which the momenta in both loops are collinear with the pion’s momentum. Let ki be
the momentum of a gluon collinear with the pion, and write it in terms of Sudakov
(light-cone) variables,

ki = αiq + βiq̄ + k⊥,i, (124)

with q̄ a second light-like vector such that q · q̄ ∼ m2
b (e.g. in a frame in which

q = E (1, 0, 0, 1), where E is the energy of the pion in the B-meson rest-frame, it is
convenient to define q̄ = E (1, 0, 0,−1)). k⊥,i contains only components which are
perpendicular to both q and q̄. By “collinear” we mean that αi ∼ 1, βi ∼ λ2, k⊥,i ∼
λmb, with λ ∼ ΛQCD/mb � 1, and hence k2 ∼ λ2m2

b . The loop integration measure
scales as d4ki ∼ λ4m4

b for collinear ki.

Diagrams 1a-7b: We start with diagrams 1a-7b, and consider the six ways of at-
taching two gluons onto the heavy-quark propagators as illustrated in Fig. 22. The
heavy quarks are off-shell in this region of phase space and hence their propagators
are not singular, which significantly simplifies the discussion. Furthermore, the sin-
gularity is at most logarithmic and hence we may approximate the collinear momenta
by ki ≈ αi q (i = 1, 2). The diagrams in Fig. 22 have two Lorentz indices µ1 and µ2 for
the external gluon lines. After approximating ki ≈ αi q, the remainder of a diagram,
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i.e. the light quark lines with their couplings to the two gluons, depends only on the
vector q, hence the open indices in the diagrams of Fig. 22 must be contracted with
qµ1qµ2 . Including this factor, we obtain by repeated use of the on-shell condition for
the b quark:

Fig. 22a =
1

α1α2

Γ
1

6p + α1 6q + α2 6q −mb

α2 6q
1

6p+ α1 6q −mb

α1 6q

=
1

α1α2
Γ

1

6p + α1 6q + α2 6q −mb
α2 6q =

1

α1(α1 + α2)
Γ (125)

Similar simplifications occur for the other five terms shown in Fig. 22. The relative
factors of the six insertions in Fig. 22 are:

Fig. 22a =
1

α1 (α1 + α2)
C1 Fig. 22b =

1

α2 (α1 + α2)
C2 (126)

Fig. 22c =
1

α2 (α1 + α2)
C1 Fig. 22d =

1

α1 (α1 + α2)
C2 (127)

Fig. 22e = − 1

α1 α2

C2 Fig. 22f = − 1

α1 α2

C1. (128)

C1 and C2 are the two distinct colour factors, C1 = Tr(T T2 T1) (C2 = Tr(T T1 T2))
where T, T1 and T2 are the colour matrices of the heavy-quark weak current and
the gluons with momenta k1 and k2, respectively. Adding up the contributions in
(126)-(128) we see that the coefficients of both C1 and C2 vanish. In this way the
singularities from the collinear-collinear region of phase space in the 18 diagrams 1a-
7b cancel in each of the following sets of six diagrams {1a, 2a, 2d, 1d, 5a, 6a}, {2c,
1c, 1b, 2b, 5b, 6b} and {3a, 4a, 3b, 4b, 7a, 7b}.

Diagrams 10a-11b: A similar cancellation occurs for the the six diagrams 10a-
11b, which are also individually logarithmically divergent. Indeed the cancellation
occurs in each of the two sets of three diagrams {10a, 10d, 11a} and {10c, 10b, 11b}.
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Diagrams 8a-9b and 12a-15d: The diagrams 8a-9b and 12a-15d require special
attention as they each contain five light propagators (either light quark or gluon)
which are collinear with the pion and these diagrams are hence potentially quadrati-
cally divergent. In each case, however, the numerators are suppressed in the collinear-
collinear region, so that the leading divergence is logarithmic. The cancellation of
this singularity occurs between pairs of diagrams (such as 8a and 8d or 14a and 14d)
in the same way as in the one-loop graphs.

As an example consider the numerator that comes from the light quark lines in
diagram 12a,

N12 ≡ γµ(u 6q+ 6k2)γ
ρ(u 6q+ 6k1+ 6k2)γµ(u 6q+ 6k1) Γ ∼ m3

b . (129)

The scaling estimate is the naive scaling estimate, according to which diagram 12a is
quadratically divergent, not taking into account cancellations. Inserting the Sudakov
decomposition (124) and using only the on-shell condition and q2 = 0, this transforms
into

N12 = (u+ α2) γ
µ6q γρ(6k⊥,1+ 6k⊥,2)γµ 6k⊥,1 Γ + (u+ α1 + α2) γ

µ 6k⊥,2γ
ρ 6q γµ 6k⊥,1 Γ

+ (u+ α1) γ
µ 6k⊥,2γ

ρ(6k⊥,1+ 6k⊥,2)γµ 6q Γ ∼ λ2m3
b (130)

The two leading powers have cancelled, so that the divergence is at most logarithmic.
We can now use that q · k⊥,1 = q · k⊥,2 = 0 to commute 6 q to the left. The result is
that

N12 ∼ qρ. (131)

But the logarithmically divergent terms proportional to qρ (where ρ is the index that
couples the gluon in diagram 12a to the heavy-quark line) cancel pairwise accord-
ing to the one-loop collinear cancellation mechanism discussed in Sect. 4.2. Similar
manipulations apply to all other diagrams 8a-9b and 12b-15d.

Diagrams 16a-19d: The diagrams 16a-19d are not divergent in the collinear-
collinear region and we do not consider them further in this subsection. They do
however have a collinear divergence, when the gluon attached to one of the con-
stituents of the pion is collinear with the pion’s momentum, while the other momen-
tum is hard. These divergences will be considered when considering the collinear-hard
region of phase-space in Sect. 5.6 below.

This concludes our demonstration that the singularities in diagrams from the
collinear-collinear region of phase space cancel and hence do not invalidate the fac-
torization formula.

5.5 The soft-collinear contributions

We now present, in some detail, a demonstration that the singularities in the soft-
collinear region of phase space do not invalidate the factorization formula, i.e. that
soft-collinear singularities cancel in the sum of all diagrams.
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5.5.1 Introduction

We start by explaining more carefully what we mean by both “soft” and “collinear”.
Let l be the momentum of a gluon collinear with the pion; we write it in terms of
Sudakov variables as in (124), l = αq + βq̄ + l⊥. The scaling of the components of l
is as described at the beginning of Sect. 5.4.

Consider now a soft gluon with momentum k, by which we mean that all compo-
nents of k are much smaller than mb. It is now important to consider what we mean
by “much smaller”. To illustrate this point imagine that we have a diagram with a
propagator 1/(uq + l)2, where l is collinear to the pion’s momentum q as described
above. By the power counting introduced above we find that this propagator is of
order 1/(λ2m2

b). Now if in addition we have the radiation of a soft gluon, there may
be a propagator such as 1/(uq + l + k)2. If the components of k are of order λmb

then 1/(uq + l + k)2 ∼ 1/(λm2
b) and not of order 1/(λ2m2

b). In this case k + l is
not collinear (as defined above), neither is it soft. Indeed in many of the diagrams
there are propagators whose denominators are linear combinations of q · k, q · l and
l2. Since q · l, l2 ∼ λ2m2

b , it is therefore also necessary to consider the region of phase
space in which q · k ∼ λ2m2

b , which implies that k ∼ λ2mb. We therefore distinguish
the regions of phase-space in which the components of k are of order λmb (which we
call “soft”) and where they are of order λ2mb (which we call “supersoft”). When l is
collinear and k is supersoft, then k + l satisfies the scaling conditions for a collinear
momentum. This means that when a loop momentum is collinear, one can classify
the set of collinear lines of a graph in terms of one-particle-irreducible subgraphs, just
as in the case of hard subgraphs. As far as we know, the only previous discussion of
the distinction of soft and supersoft in the context of QCD factorization “proofs” is
in [30]. If we think of λ as being of order ΛQCD/mb, one may consider the supersoft
region as unphysical, since non-perturbative modifications of the quark and gluon
propagators would prevent the momentum from becoming supersoft. On the other
hand, the structure of denominators clearly indicates that the infrared singularities of
Feynman integrals in dimensional regularization originate from supersoft momentum.

Table 2 contains a summary of the rules for determining the order of the divergence
from the soft-collinear and supersoft-collinear regions of phase space. We imagine
that the gluons have momenta k and l (and k ± l if the diagram contains a third
gluon) and each propagator scales like 1/λδ in these regions. The table contains the
powers δ for the collinear gluon with momentum l, the soft (S) or supersoft (SS) gluon
with momentum k, the gluon with momentum k ± l and the light and heavy quarks
which radiate these gluons. Thus, for example, if there is a light quark propagator
1/(uq+k+ l)2 in a diagram, then it scales like 1/λ for k soft and 1/λ2 for k supersoft.
For the heavy quarks 1/[(pb,c+k+l)2−m2

b,c] scales like λ0 (where pb,c are the momenta
of the b and c quarks respectively).

To illustrate the use of the entries in Table 2 consider diagram 1a in Fig. 15 and
start with the region in which one gluon is supersoft and the other is collinear. The
phase space for this region is of O(λ12). One possibility is that the outer gluon is
supersoft and the inner one is collinear in which case we obtain factors from the
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Table 2: The power δ corresponding to the 1/λδ scaling behaviour of each quark
and gluon propagator in the soft-collinear (S) and supersoft-collinear (SS) regions of
phase space. l is the momentum collinear to the pion’s momentum q and k is soft or
supersoft.

Gluon Light quark Heavy quark

S 2 1 1
k

SS 4 2 2

l 2 2 0

S 1 1 0
k ± l

SS 2 2 0

propagators proportional to:

1

λ4

1

λ2

1

λ2

1

λ0

1

λ2

1

λ2
,

supersoft collinear outer inner outer inner
gluon gluon heavy quark heavy quark light quark light quark

(132)

which combine to give 1/λ12. Thus we have a logarithmic divergence from this region.
If instead the outer gluon is collinear and the inner one is supersoft, then the outer
heavy-quark propagator scales like 1/λ0 so that the combined scaling factor for all
six propagators is 1/λ10 and there is no divergence.

Now consider the region in which k is soft rather than supersoft, and again we
illustrate the power counting in diagram 1a of Fig. 15. In this case the phase space
is of O(λ8) and if the outer gluon is the soft one then the propagators scale as:

1

λ2

1

λ2

1

λ

1

λ0

1

λ

1

λ
,

soft collinear outer inner outer inner
gluon gluon heavy quark heavy quark light quark light quark

(133)

which gives a combined factor of O(1/λ7). We therefore have no divergence from this
region of phase-space (nor from the region in which the inner gluon is the soft one).
This is not the case for all the diagrams, however, as we shall demonstrate below.

We now consider the supersoft-collinear and soft-collinear regions in turn.

5.5.2 The supersoft-collinear region

Diagrams 1a-7b We start by considering the 18 diagrams 1a-7b. We place them
into 4 groups {1a, 5a; 2a, 6a; 4a, 7b}, {1b, 5b; 2b, 6b; 4b, 7b}, {1c, 6b; 2c, 5b;
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supersoft.

3a, 7a} and {1d, 6a; 2d, 5a; 3b, 7a}. We label these groups I-IV, and only consider
explicitly the cancellation within group I (which will require contributions from ad-
ditional graphs). The cancellations within groups II-IV proceeds analogously to that
within group I. Diagrams 5a-7b have two contributions (where the two gluons are
supersoft-collinear or collinear-supersoft respectively) and hence appear twice in the
lists. Within each group, we identify three pairs (separated by the semicolons). Con-
sider the first pair {1a, 5a} and the region of phase space for which the gluon with the
outer vertex on the light quark propagator is the supersoft one (see e.g. Fig. 23a). For
the insertion of the singlet-singlet operator O0 the singularities from these diagrams
cancel analogously to the cancellation of collinear divergences at one-loop level. A
similar cancellation occurs between the singularities in all the pairs of diagrams for
the insertion of the operator O0.

For the insertion of the octet-octet operator O8 the cancellation of the singularities
is not complete within the set of diagrams 1a-7b. For illustration consider the first
group of diagrams {1a, 5a; 2a, 6a; 4a, 7b}. Since, apart from the colour factors, the
contributions of the two diagrams in each of the three pairs are equal and opposite,
and using the colour factors tabulated in Table 1 the total contribution from this
group of diagrams can be written in the form

CF

2

Nc

2
(Diag1a − Diag2a + Diag4a) . (134)

We therefore need to look at diagrams 1a, 2a and 4a in some more detail (see Fig. 23).
In this region of phase-space it is straightforward to establish that the integrands are
proportional to

Diag1a ≡ 2(u+ α)

α

pb · q
(pb · k) (q · k)

1

k2 l2 (uq + k + l)2
(135)

Diag2a ≡ 4(u+ α)2

α

pb · q
pb · k

1

k2 l2 (uq + l)2 (uq + k + l)2
(136)

Diag4a ≡ −2(u+ α)

α

pb · q
(pb · k) (q · k)

1

k2 l2 (uq + l)2
. (137)

Now using
(uq + k + l)2 − (uq + l)2 ' 2(u+ α)q · k (138)
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we see that Diag2a = −(Diag1a + Diag4a) and that the non-cancelling contribution
is proportional to the integral over

A1 =
Nc

2

4(u+ α)

α

pb · q
(pb · k)(q · k)k2l2

(

1

(uq + k + l)2
− 1

(uq + l)2

)

, (139)

where we have included the colour factor. Note that here and in the following we do
not include explicitly the colour factor CF/2 present in one-loop diagrams.

Diagrams 16a-19d: We now consider diagrams 16a-19d in the supersoft-collinear
region. By inspection (power counting) we readily deduce that diagrams 16a-d and
19a-d do not give a singular contribution in this region of phase space, regardless of
which of the two gluons is supersoft and which is collinear.

Diagram 17a does have a singular contribution from the region in which the gluon
which is attached (at one end) to a light quark is collinear and the one which is
attached at both ends to heavy quarks is supersoft. This singularity is cancelled by
the corresponding one in diagram 17c by the same mechanism by which collinear
divergences cancel at one-loop order (diagrams 17a and 17c have the same colour
factor). Similarly the singular contributions from diagrams 17b and 17d cancel.

Diagram 18a has a singular contribution from the region in which the gluon which
is attached at one end to a light quark is supersoft and the one which is attached at
both ends to the b quark is collinear. This singularity cancels against the correspond-
ing one in diagram 18b, by the same mechanism by which soft divergences cancel at
one-loop order. Similarly the singularities in diagrams 18c and 18d cancel.

Thus there is no residual singular contribution from diagrams 16a-19d.

Diagrams 10a-11b: We now turn to the six diagrams 10a-11b. Consider dia-
gram 10a and the three collinear-supersoft contributions as labelled in Fig. 24. The
propagators in the region of Fig. 24a combine to give a factor of λ−10 and hence no
singularity. In the regions of Fig. 24b and Fig. 24c, however, they give factors of
λ−12 and hence do yield singular contributions. The singular contribution from the
region in Fig. 24c can readily be seen to cancel the corresponding contribution from
diagram 10c by the standard mechanism of one-loop soft cancellations. This leaves
us the contribution of Fig. 24b, which is straightforward to evaluate giving a term
proportional to the integral over

Diag10a ≡ −2(u+ α)
pb · q
pb · k

1

k2l2(k + l)2(uq + k + l)2
, (140)

where we have used a shift of integration variable l → l + k. The corresponding
contributions from diagrams 10b, 10c and 10d contribute to groups II, III and IV
respectively.

Consider now diagram 11a and consider the three regions of phase-space as la-
belled in Fig. 24d-f. The region in Fig. 24f does not give a singular contribution,
whereas the other two regions do. We consider the contribution from Fig. 24d here,
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Figure 24: The three possible momentum routings in the supersoft-collinear region for
diagrams 10a [(a)-(c)] and 11a [(d)-(f)]. l represents the collinear momentum and k the
supersoft one.

that from Fig. 24e contributes to group IV. Similarly the two singular contributions
from diagram 11b contribute to groups II and III. The contribution from the region
in Fig. 24d can readily be evaluated and is proportional to the integral over

Diag11a(part) ≡ 2(u+ α)
pb · q
pb · k

1

k2l2(k + l)2(uq + k + l)2
, (141)

where we repeat that it is only the part of diagram 11a which contributes to group I
which is being evaluated.

Putting in the colour factor of Nc/2 for diagram 10a (−Nc/2 for diagram 11a) and
summing the contributions from (140) and (141), we obtain a singular contribution
to group I of

A2 = −Nc

2
4(u+ α)

pb · q
pb · k

1

k2l2(k + l)2(uq + k + l)2
. (142)

Next we note that (k + l)2 ≈ l2 + 2αq · k so that

1 =
(k + l)2

2αq · k − l2

2αq · k (143)

and

A2 =
Nc

2
(−2)

(u+ α)

α

pb · q
(pb · k)(q · k)k2l2

(

1

(uq + k + l)2
− 1

(uq + l)2

)

(144)

= −1

2
A1 (145)

where we have made the change of variables l → l − k in the second term of (144).
(Since l − k remains collinear for supersoft k, this change of variables is permitted
for supersoft k, but would not be permitted for soft k.)
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Diagrams 8a-9b and 12a-15d: Finally we consider the remaining diagrams in
which there is a single gluon attached (at one end) to one of the heavy quarks. Power
counting (including the momentum factor in the numerator) shows that there is no
singularity when this gluon is collinear. Thus we can restrict our attention to the
region in which the gluon which is attached to the heavy quark is supersoft. Note
that in this case the superficial degree of divergence is quadratic. However, taking
the numerator factors into account, the actual divergence is again only logarithmic
as can be seen from the expressions below.

Consider the contributions to diagrams 8a, 12a and 13a from this region of phase
space. This contribution can be written in the form:

A3 =
Nc

2
Diag8a +

( −1

2Nc

)

Diag12a +
(

Nc

2
− 1

2Nc

)

Diag13a, (146)

where we have explicitly exhibited the colour factors. Straightforward evaluation of
the diagrams shows that they are respectively proportional to the integrals over

Diag8a ≡ 4αq · (k + l) + 2(u+ α)q · k + 2(uq + l)2

(uq + k + l)2k2l2(k + l)2

pb · q
(pb · k)(q · k)

(147)

Diag12a ≡ 2l2⊥
(uq + l)2(uq + k + l)2k2l2

pb · q
(pb · k)(q · k)

(148)

Diag13a ≡ −2q · (l + k)

(uq + l + k)2k2l2
pb · q

(pb · k)(q · k)2
, (149)

where in (148) we use a metric such that l2⊥ is negative.
Using l2⊥ = (uq + l)2 − 2(u+ α)q · l, 2(u+ α)q · k = (uq + k + l)2 − (uq + l)2, and

dropping a term that vanishes after integration over k because it is antisymmetric in
k, one readily finds that Diag12a = −Diag13a, so that (146) becomes

A3 =
Nc

2
(Diag8a− Diag12a). (150)

Similarly using (143) we find that the first term in the numerator of (147) for dia-
gram 8a gives the same contribution as diagram 12a, so that A3 is the sum of the
contributions of the second and third terms in the numerator of (147):

A3 =
Nc

2

2(u+ α)q · k + 2(uq + l)2

(uq + k + l)2k2l2(k + l)2

pb · q
(pb · k)(q · k)

(151)

=
Nc

2

2(uq + k + l)2 − 2(u+ α)q · k
(uq + k + l)2k2l2(k + l)2

pb · q
(pb · k)(q · k)

(152)

=
Nc

2

{

2

k2l2(k + l)2
− 2(u+ α)q · k

(uq + k + l)2k2l2(k + l)2

}

pb · q
(pb · k)(q · k)

. (153)

The first term in the braces in (153) is independent of u. It cancels against the corre-
sponding term in diagram 8c by the standard one-loop soft cancellation mechanism
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and so we drop it from the definition of A3. We are left with the second term which
(by direct comparison with the expression in (142) ) gives

A3 =
1

2
A2. (154)

We do not exhibit all the corresponding formulae here for diagrams 9a, 14a and
15a but the steps are very similar. There is one subtlety in that diagram 9a has two
contributions, one to group I and the other to group III. Keeping only the part which
has the right structure to be of group I we find

A4 =
Nc

2
Diag9a(part) +

(

Nc

2
− 1

2Nc

)

Diag14a +
(

− 1

2Nc

)

Diag15a

=
1

2
A2. (155)

The evaluation of the contributions to the remaining groups of diagrams proceeds
in a similar way. Group II has contributions from diagrams {8b, 9b(part), 12d, 13b,
14b, 15c}, group III from {8c, 9a(part), 12b, 13c, 14c, 15b} and group IV from {8d,
9b(part), 12c, 13d, 14d, 15d}.

Total: The total contribution in group I is A1+A2+A3+A4, where A3 = A4 = A2/2
(see (154) and (155)) and A1 = −2A2 (see (145)). Thus the total contribution in
group I is zero. The cancellation of all the contributions to groups II, III and IV
occurs in a similar way. Hence we have demonstrated that there are no infrared
singularities in the supersoft-collinear region of phase-space.

5.5.3 The soft-collinear region

We also discuss briefly how the cancellation of singular contributions occurs in the
soft-collinear case. This case is simpler than the supersoft-collinear case, since some
terms that contribute to singularities for supersoft k give convergent integrals for
soft k, while the converse never occurs. As a consequence we shall see that the soft-
collinear case is covered by the line of argument that applied to the supersoft-collinear
case.

Diagrams 1a-7b: By power counting we see that the diagram 1a has no singular
contribution in the soft-collinear region, whereas diagrams 2a and 4a do. Thus

A1 soft =
Nc

2
(−Diag2a+Diag4a). (156)

Using the relation (uq + k + l)2 ' 2(u + α)q · k which is valid in the soft-collinear
region, we find that Diag2a = −Diag4a and

A1 soft = −4
Nc

2

u+ α

α

pb · q
(pb · k)(q · k)

1

k2l2(uq + l)2
. (157)
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Diagrams 16a-19d: Diagrams 16a and 19a are convergent in this region of phase
space just as they were in the supersoft-collinear one. Diagram 18a, which is singular
in the supersoft-collinear region is now convergent.

Diagram 17a does have a singular contribution again, from the region in which
the gluon which is attached (at one end) to a light quark is collinear and the one
which is attached at both ends to heavy quarks is soft. As above, this singularity
is cancelled by the corresponding one in diagram 17c by the same mechanism by
which collinear divergences cancel at one-loop order (diagrams 17a and 17c have the
same colour factor). Similarly the singular contributions from diagrams 17b and 17d
cancel. Thus there is no residual singular contribution from diagrams 16a-19d.

Diagrams 10a-11b: Consider diagram 10a and the momentum routings exhibited
in Fig. 24. Power counting now indicates that only the routing of Fig. 24b gives a
singular contribution and this can readily be evaluated:

Diag10a = −2
Nc

2
(u+ α)

pb · q
pb · k

1

k2l2(k − l)2(uq + l)2
. (158)

There is a singular contribution from the diagram 11a from the routing in Fig. 24d
(the routing in Fig. 24e is also singular but contributes to group IV). Explicit evalua-
tion of this contribution shows that it is equal to that in (158), so that the combined
contribution from diagrams 10a and the part of diagram 11a which contributes to
group I is

A2 soft = −4
Nc

2
(u+ α)

pb · q
pb · k

1

k2l2(k − l)2(uq + l)2
. (159)

In the soft collinear region (k − l)2 ' −2αq · k, so that

A2 soft = −1

2
A1 soft (160)

as in the supersoft-collinear case.

Diagrams 8a-9b and 12a-15d: We start by considering diagrams 8a, 12a and
13a in the soft collinear region. In general, and for 13a in particular, when the gluon
which is attached to a heavy quark is collinear, the cancellation of the corresponding
singularity proceeds in an analogous way to the cancellation of one-loop collinear
divergences. In fact for some diagrams (such as 8a or 12a) the potentially divergent
contribution vanishes by itself. This leaves us to consider the contributions when
this gluon is soft. Although by power counting it may appear that diagrams 12a
and 13a are logarithmically or linearly divergent, the numerators of these diagrams
vanish sufficiently quickly to render them finite. This leaves us with the singularity
in diagram 8a from the region sketched in Fig. 25a which has to be evaluated and is
found to be

Diag8a = −2
Nc

2
(u+ α)

pb · q
pb · k

1

k2l2(k − l)2(uq + l)2
. (161)

68



��� ����

�%� �%������

�
�

�"� ����

�%� �%��9�"�

�
�

Figure 25: Momentum routings for diagrams 8a and 9a which are considered in the text
for l collinear to the pion and k soft.

Therefore we have

A3 soft =
1

2
A2 soft (162)

as before.
Finally we have to consider diagrams 14a, 15a and the part of diagram 9a which

contributes to group I. The contribution to diagram 14a from the region in which the
gluon which is attached to a heavy quark is soft, is superficially quadratically diver-
gent, but the numerator reduces the divergence to a logarithmic one. This singularity
is cancelled by the analogous one in diagram 14c by the standard mechanism for the
cancellation of soft singularities at one-loop order. The remaining terms in diagram
14a are finite. Diagram 15a is superficially linearly divergent, but the numerators
render it finite. This leaves the contribution from the diagram 9a to group I, as
sketched in Fig. 25b. This can be evaluated and is found to be

Diag6a = −4
Nc

2
(u+α)(ū−α)

(pb · q)(q · k)
pb · k

1

k2l2(k − l)2(uq + l)2(ūq − l + k)2
. (163)

But in this region of phase space (ūq − l + k)2 ' 2(ū− α) q · k, so that again

A4 soft =
1

2
A2 soft. (164)

Thus collecting up (160), (162) and (164) as before we find that the total contri-
bution is zero:

A1 soft + A2 soft + A3 soft + A4 soft = 0. (165)

5.6 The hard-collinear contribution

In this subsection we consider the region in which one loop momentum is collinear
with the pion’s momentum and the other is hard. We choose loop momenta such
that a gluon has collinear momentum l and write l = αq + βq̄ + l⊥. k denotes a
hard momentum and we choose it such that a gluon line has momentum k. As in the
hard-soft case we can consider one-particle-irreducible hard subgraphs (since adding
a collinear momentum to a hard momentum gives a hard momentum). But note that
since αq ∼ mb, the hard subgraph depends on α, and a convolution in α with the
remainder of the graph remains.
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Figure 26: Components of two-loop Feynman diagrams. l is collinear with the pion’s mo-
mentum and k is a hard momentum. Routing (a) leads to potentially singular contributions
whereas routing (b) does not.
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Figure 27: Attachments of the collinear gluon (labelled by l) and hard gluon (with mo-
mentum k) to the heavy quarks (see text).

To anticipate the result of this subsection recall that we need to demonstrate that
(108) is valid and that we have already identified the second of the two subtraction
terms with a non-cancelling divergence in the hard-soft region. In order to verify that
(108) is valid, it remains to show that there is a non-cancelling divergence in the hard-

collinear region that has the structure of the first subtraction term, F
(0)
B→D ·T (1) ∗Φ(1)

π .
It is plausible that we should find this term in the hard-collinear region, since T (1) is
the hard one-loop amplitude and Φ(1)

π has only collinear divergences.

Diagrams 1a-7b: It is straightforward to establish that in order to get a divergence
the gluon with the collinear momentum must be attached to the end of a light-
quark or antiquark line and not internally (see Fig. 26). Since the divergences are
logarithmic we can set l = αq, and because the collinear gluon is attached to the end
of a light-quark or antiquark line we always get (using the on-shell condition) a factor
proportional to qρ, where ρ is the Lorentz index of the collinear gluon.

Consider now the diagrams in which both gluons are attached to the b quark
as indicated in Fig. 27a. These are diagrams {1a, 1c, 3a(part), 4a(part)}. These
diagrams all contain the factor

Γ
1

(6pb + α 6q+ 6k −mb)
γµ 1

(6pb + α 6q −mb)
α 6q, (166)

which can be simplified to

Γ
1

(6pb + α 6q+ 6k −mb)
γµ. (167)

(Strictly speaking these diagrams contain the factor (166) without the factor α. We
have included this factor for convenience and correct for it later in (175).)
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Similarly consider the diagrams in which the two gluons are attached to the b
quark as in Fig. 27b, i.e. diagrams {2a, 2c, 4a(part), 3a(part)}. These all have a
factor

Γ
1

(6pb + α 6q+ 6k −mb)
α 6q 1

(6pb+ 6k −mb)
γµ, (168)

which simplifies to

Γ
1

(6pb+ 6k −mb)
γµ − Γ

1

(6pb + α 6q+ 6k −mb)
γµ. (169)

Apart from the factors in (167) and (169) and the colour factors, the remaining terms
are common in the two sets of diagrams in the order we have written them (i.e. the
remaining factors in diagram 1a are equal to those in diagram 2a etc.).

Next consider the diagrams which have the hard gluon attached to the b quark
and the collinear one to the c-quark as in Fig. 27c, i.e. diagrams {6a, 5b, 7b(part),
7a(part)}. These all have a common factor

α 6q 1

(6pc − α 6q −mc)
Γ

1

(6pb+ 6k −mb)
γµ, (170)

which can be simplified to

−Γ
1

(6pb+ 6k −mb)
γµ. (171)

Again the remaining factors are equal in each of the four diagrams as in the corre-
sponding diagrams of the previous two sets.

Summing up these contributions we find they are of the form

(C1 − C2)Γ
1

(6pb + α 6q+ 6k −mb)
γµ + (C2 − C3)Γ

1

(6pb+ 6k −mb)
γµ, (172)

where C1, C2 and C3 are the remaining terms in each of the three sets of diagrams
(they are equal except for the colour factors).

Similarly when the hard gluon couples to the charm quark we obtain

(C ′
1 − C ′

2)γ
µ 1

6pc−6k −mc

Γ − (C ′
3 − C ′

2)γ
µ 1

6pc − α 6q−6k −mc

Γ. (173)

When we insert the singlet-singlet operator O0, all the colour factors are equal
and hence C1−C2 = C3−C2 = 0 (and similarly for the C ′

i) and we get an immediate
cancellation. We therefore only need to consider the insertion of the octet-octet
operator O8. In this case C ′

1 − C ′
2 = −(C1 − C2) and C ′

3 − C ′
2 = −(C3 − C2) so that

these diagrams give a contribution which is the integral over

Nc

2

[

Γ

(

1

6pb + α 6q+ 6k −mb
− 1

6pb+ 6k −mb

)

γµ −

γµ

(

1

6pc−6k −mc

− 1

6pc − α 6q−6k −mc

)

Γ

]

× L (174)

71



where L represents the contributions from the remaining parts of the diagrams, i.e.
the gluon propagators and the contribution from the light quark lines, but with a
factor αqρ, that has already been included, extracted. Hence L is given by

L =
1

k2l2
·

[

2(u+ α)

α

γµ((u+ α) 6q+ 6k)Γ
(uq + l)2((u+ α)q + k)2

− 2(ū+ α)

α

Γ((ū+ α) 6q+ 6k)γµ

(ūq + l)2((ū+ α)q + k)2

+
2(u+ α)

α

Γ(ū 6q+ 6k)γµ

(uq + l)2(ūq + k)2
− 2(ū+ α)

α

γµ(u 6q+ 6k)Γ
(ūq + l)2 (uq + k)2

]

. (175)

The four terms in square brackets in (175) correspond to the groupings we introduced
above, e.g., the diagrams {1a, 1c, 3a(part), 4a(part)} or in the case of the hard gluon
being attached to the charm quark they may be {5a, 6b, 7a(part), 7b(part)}. The
common factor of 1/α in (175) is present because we have already included a factor
of αqρ in the evaluation of the factors from the heavy quarks. This completes the
consideration of the contribution from diagrams 1a-7b.

Diagrams 8a-9b: We now consider diagrams 8a-9b, which have a similar structure
for the light quarks as diagrams 1a-7b. Evaluation of these diagrams yields the result

Nc

2
αqρ ((l − k)νgµρ + (2k + l)ρgµν − (2l + k)µgνρ) ·

−1

(k + l)2

(

Γ
1

6pb+ 6k+ 6 l −mb

γν + γν 1

6pc−6k−6 l −mc

Γ

)

× L. (176)

In the factor coming from the triple gluon vertex in (176) we can approximate l by
αq, so that

qρ ((l − k)νgµρ + (2k + l)ρgµν − (2l + k)µgνρ)

= (αq − k)νqµ + 2q · kgµν − (2αq + k)µqν. (177)

Next we make use of the fact that qµ gives zero when contracted with L so that we
can drop it and that (k + l)2 = k2 + 2αq · k, to write the contribution from these
diagrams as

Nc

2

{

(k + l)2gµν − k2gµν − kµαqν
}

·

−1

(k + l)2

(

Γ
1

6pb+ 6k+ 6 l −mb

γν + γν 1

6pc−6k−6 l −mc

Γ

)

× L. (178)

We now consider the three terms in { } in (178) in turn. The first term cancels two
of the four terms in (174) from diagrams 1a-7b. The remaining two terms in (174)

72



©�ª «©�ª

¬1­�®
¯

° ©"ª «©�ª

¬9±"®
¯

° ©�ª «©%ª

¬9²³®
¯

°
©�ª «©�ª

¬9´"®
¯

°

Figure 28: Attachments of the collinear gluon (labelled by l) and hard gluon (with mo-
mentum k) to the light quarks, as required for the evaluation of diagrams 12 and 15 (see
text).

can be combined with the second term in { } in (178) to give

X1 ≡ Nc

2

(

2(u+ α)

α

1

(uq + l)2l2
[T (u) − T (u+ α)] +

2(ū+ α)

α

1

(ūq + l)2l2
[T (u) − T (u− α)]

)

, (179)

where

T (u) ≡ 1

k2

(

γµ 1

u 6q+ 6kΓ − Γ
1

ū 6q+ 6kγ
µ

)

×
(

Γ
1

6pb+ 6k −mb

γµ + γµ 1

6pc−6k −mc

Γ

)

. (180)

Note that T (u) is exactly the integrand for the hard amplitude at one-loop order, i.e.
using the notation of (104)

∫

k
T (u) = T (1), (181)

where
∫

k denotes integration over the loop momentum k.
Finally we have to evaluate the third term in { } in (178), which gives a contri-

bution of

X2 ≡ Nc

2

4

k2l2(k + l)2

[

u+ α

α

1

(uq + l)2
Γ − ū+ α

α

1

(ūq + l)2
Γ

]

×
(

Γ
1

6pb + α 6q+ 6k −mb
α 6q + α 6q 1

6pc − α 6q−6k −mc
Γ

)

. (182)

X1 +X2 is the total contribution from diagrams 1a-9b.

Diagrams 12 and 15: We now consider diagrams 12a-12d and 15a-15d. In these
diagrams there are singular contributions when either of the two gluons is collinear
(and the other one is hard). However, in the case where the gluon which is attached
at one end to one of the heavy quarks is collinear, the standard mechanism for the
cancellation of collinear divergences at one-loop level applies (the singularities of
diagrams 15a and 15d cancel as do those in each pair of diagrams {15b, 15c}; {12a,
12c} and {12b, 12d}).
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Figure 29: Momentum routings in (a) diagram 16a, (b) diagram 17a (c) diagram 18a and
(d) diagram 19a which are considered in the text. l is a momentum collinear with that of
the pion and k is a hard momentum.

We therefore need only to consider the case where the collinear gluon is the one
attached at both ends to the light quarks. Straightforward evaluation of the factor
coming from the light quarks (see Fig. 28) shows that this factor is equal to

2(u+ α)

α

1

(uq + l)2

(

γµ 1

u 6q+ 6kΓ − γµ 1

(u+ α) 6q+ 6kΓ

−Γ
1

ū 6q+ 6kγ
µ + Γ

1

(ū− α) 6q+ 6kγ
µ
)

+
2(ū+ α)

α

1

(ūq + l)2

(

γµ 1

u 6q+ 6kΓ − γµ 1

(u− α) 6q+ 6kΓ

−Γ
1

ū 6q+ 6kγ
µ + Γ

1

(ū+ α) 6q+ 6kγ
µ
)

. (183)

But this is exactly the same factor as appears in the expression X1 in (179). Indeed,
the contribution from diagrams 12 and 15 is identical to (179) except that the colour
factor is −1/2Nc, instead of Nc/2. Combining the contributions from all the diagrams
we have evaluated so far, i.e. diagrams 1a-9b, 12a-12d and 15a-15d, we find a total
contribution of 2CF/NcX1 +X2.

Diagrams 16a-19d: In diagrams 16a-19d, the singular contribution comes from
the region in which the collinear gluon is the one attached at one end to the light-
quarks. As an example consider the diagram 16a (see Fig. 29a). The factor coming
from the heavy-quark lines (again multiplying it by αqρ) is of the form:

Diag16a ≡ Γ
1

6pb + α 6q −mb

γµ 1

6pb + α 6q+ 6k −mb

α 6q 1

6pb+ 6k −mb

γµ

= Γ
1

6pb + α 6q −mb

γµ 1

6pb+ 6k −mb

γµ − Γ
1

6pb + α 6q −mb

γµ 1

6pb + α 6q+ 6k −mb

γµ

≡ a1 − a2. (184)

The analogous contribution from diagram 17a is

Diag17a ≡ γµ 1

6pc+ 6k −mc

Γ
1

6pb+ 6k −mb

γµ − a3, (185)
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where

a3 ≡ γµ 1

6pc+ 6k −mc

Γ
1

6pb + α 6q+ 6k −mb

γµ. (186)

The first term in (185) cancels against the corresponding contribution from dia-
gram 17c and we do not include it further in the discussion. Finally the corresponding
terms in diagrams 18a and 19a are

Diag18a = a2 (187)

Diag19a = a3. (188)

All the remaining factors in these diagrams are the same, apart from the colour
factors, so including these we find that the sum of these four diagrams gives a con-
tribution which is proportional to

Diag16a+Diag17a+Diag18a+Diag19a = − 1

2Nc

a1 +
Nc

2
(a2 − a3). (189)

There is a further subtlety, however, and this concerns the mass renormalization
of the b quark (see Fig. 30). The singular contribution does not cancel (in contrast
to the wave-function renormalization), and is readily found to be −CF a1. Thus
the contribution of the diagrams {16a, 17a, 18a, 19a} together with that from the
diagram with the mass counterterm gives a contribution which is proportional to

−Nc

2
(a1 − a2 + a3). (190)

The remaining diagrams in the set 16a-19d yield analogous results, with different
factors from the light quarks naturally.

Diagrams 10a-11b: Again the only singular contribution comes from the region
in which the collinear gluon is the one which is attached at one end to a light quark
(see Fig. 24a). Explicit evaluation of diagram 10a gives the following contribution:

Diag10a =
Nc

2
(a1 − a2) +

Nc

2

1

(k + l)2

[

2Γ − Γ
1

6pb + α 6q+ 6k −mb

α 6q
]

, (191)

where all remaining factors are as in the previous paragraph. Thus we see that the
first term cancels part of the contribution from diagrams 16a-19d in (190). The
term 2Γ in the square brackets cancels against the corresponding contribution in
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diagram10d and we do not consider it further. This leaves us with the second term
in square brackets, which cancels half of the corresponding contribution in X2 (by
corresponding term we mean the product of the first term in the square brackets in
(182) with the first term in the brackets on the second line). The remaining terms
in X2 are cancelled by the corresponding contributions from the diagrams 10b-d and
11a-b.

Explicit evaluation of diagram11a shows that it also contains the term Nc/2 a3

which cancels the remaining term in (190). Thus X2, together with diagrams 16a-
19d and 10a-11b cancel. The total contribution from diagrams 1a-12d and 15a-19d
is 2CF/NcX1, where X1 is given explicitly in (179). Finally we need to evaluate
diagrams 13a-14d.

Diagrams 13a-14d: The singular contributions from diagrams 13a-d come from
the region in which the collinear gluon is the one attached at one end to a heavy quark.
These singularities in diagrams 13a-d from the collinear-hard region of phase space
can be seen to cancel by the mechanism which ensures the cancellation of collinear
singularities at one-loop order. Thus the singularity from diagram 13a cancels that
from 13d and similarly the singularities from diagrams 13b and 13c cancel.

Finally we consider diagrams 14a-d and the singular contributions come from the
region in which the collinear gluon is the one attached at one end to a light quark
and at the other to the light antiquark. Explicit evaluation of these four diagrams
yields the result:

Diags14a-d = CF
2l2⊥

(uq + l)2(ūq − l)2l2
T (u+ α), (192)

In deriving (192) we have used that the pion projection (7) inserts a factor 6qγ5 in the
trace over the light quark lines.

5.6.1 The total contribution

We now combine the result in (192) with the remaining term, 2CF/NcX1, to write
the total singular contribution (S) from the hard-collinear region of phase space as

S = CF

(

2(u+ α)

α

1

(uq + l)2l2
− 2(ū− α)

α

1

(ūq − l)2l2

)

(T (u) − T (u+ α) )

−CF
l2⊥
q · l

(

1

(uq + l)2l2
− 1

(ūq − l)2l2

)

T (u+ α). (193)

In arriving at (193) we have made the change of integration variable l → −l in the
second line of (179) and have used partial fractions to obtain the second line in (193)
from (192). From now on we will assume that T (u) contains the integration over the
hard momentum k, so that it equals T (1) according to (181). We now need to convert

S into an expression of the form F
(0)
B→D · T (1) ∗ Φ(1)

π .
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We would like to write
∫

l S as a convolution in α and hence need to do the
integrations over β and l⊥. The β integration can be done using Cauchy’s theorem,
and vanishes if α > ū and α < −u, since in that case all the poles in β are on the
same side of the contour. Including the factors of i and gs from the Feynman rules
for the propagators and vertices (which we have been neglecting until now), we find
that the total contribution is

−CF
αs

2π

∫ d l2⊥
l2⊥

dα
{

θ(−α)θ(u+ α)
(

−u+ α

u
T (u+ α) +

u+ α

uα
[T (u+ α) − T (u)]

)

−θ(α)θ(ū− α)
(

ū− α

ū
T (u+ α) +

ū− α

ūα
[T (u+ α) − T (u)]

)}

. (194)

In (194) we have switched metric so that l2⊥ is positive. The integral over transverse
momentum is both ultraviolet and infrared divergent. The ultraviolet divergence is
an artefact of the collinear approximation and is absent in the exact expression for
the amplitude. We write the integral over transverse momentum as

∫

dl2⊥
l2⊥

= 2 ln
µUV

µIR

, (195)

introducing an ultraviolet and an infrared scale, µUV and µIR, respectively. Then we
change the longitudinal integration variable from α to w = u+ α to write (194) as

CF
αs

π
ln
µUV

µIR

∫

dw

{

θ(w)θ(u− w)

(

w

u
T (w) +

w

u(u− w)
[T (w) − T (u)]

)

+ θ(w − u)θ(w̄)

(

w̄

ū
T (w) +

w̄

ū(ū− w̄)
[T (w) − T (u)]

)}

. (196)

We rewrite this as

CF
αs

π
ln
µUV

µIR

∫ 1

0
dw T (w)V (w, u), (197)

where

V (w, u) = θ(u−w)
w

u
+

[

θ(u− w)
w

u(u− w)

]

+

+ θ(w−u)w̄
ū

+

[

θ(w − u)
w̄

ū(ū− w̄)

]

+

(198)
with [f ]+ defined by

[f(w, u)]+ ≡ f(w, u) − δ(w − u)
∫ 1

0
dv f(v, u). (199)

This is almost the correct expression for the total hard-collinear contribution, except
for δ-function terms at u = w. These come from the diagrams with wave-function
renormalization on external light-quark lines, which we have not considered so far.
They modify the expression for V to

V (w, u) =
[

θ(u− w)
w

u

(

1 +
1

u− w

)

+ θ(w − u)
w̄

ū

(

1 +
1

ū− w̄

) ]

+
, (200)
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and hence ensure that
∫

dwV (w, u) = 0 as required by current conservation.
Finally, including the convolution with the pion distribution amplitude and writ-

ing explicitly also the B → D form factor (omitted so far for simplicity) the total
contribution S takes the form

S = F
(0)
B→D · CF

αs

π
ln
µUV

µIR

∫ 1

0
dw du T (w)V (w, u) Φ(0)

π (u), (201)

with V (w, u) as defined in (200). We next recall that the infrared singular contribu-
tion to the pion distribution amplitude is determined by [7]

Φ(1)
π (w) = CF

αs

π
ln
µUV

µIR

∫ 1

0
du V (w, u) Φ(0)

π (u). (202)

This expression is equivalent to the familiar evolution equation for the pion distribu-
tion amplitude Φπ(w) = Φ(0)

π (w) + Φ(1)
π (w) to order αs

d

d lnµUV

Φπ(w) = CF
αs

π

∫ 1

0
du V (w, u) Φπ(u). (203)

Using (202) and T (w) ≡ T (1)(w), Eq. (201) reduces to

S = F
(0)
B→D ·

∫ 1

0
dw T (1)(w) Φ(1)

π (w). (204)

We see that the collinearly divergent contribution S corresponds precisely to the part
of A

(2)
non−fact. in (108) that is subtracted by the second term F

(0)
B→D · T (1) ∗ Φ(1)

π . This
completes our demonstration of the validity of the factorization formula for B → Dπ
decays at two-loop order in perturbation theory.

5.7 Summary

The result of Sects. 5.2-5.6 is that the non-cancelling infrared divergences are precisely
those which are necessary to cancel the infrared singularities in the perturbative
expansion of the semi-leptonic form factor and pion light-cone distribution amplitude.
In this way we have explicitly verified the factorization formula to two-loop order.

The natural question to ask now is whether our arguments can be generalized
to higher orders of perturbation theory. Although for some of the singular regions
such a generalization is straightforward (e.g. the eikonal combinatorics for soft gluons
discussed in Sect. 5.2, or the combinatorics for collinear gluons discussed in Sect. 5.4)
we have not yet tried to carry out such a program for all singular regions. This
remains an interesting challenge.

Another important extension concerns B decays into two light mesons, for ex-
ample B̄d → π+π−. Most of the arguments we used apply directly to this case as
well. In addition, however, one has to consider singularities that arise in momentum
configurations collinear to the recoil pion. The same method that was applied to
D+π− final states should prove that these singularities cancel in the sum over all
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diagrams or can be absorbed into the B → π form factor. A further complication
for final states of two light mesons comes from the hard spectator interaction in the
factorization formula (4). Because the characteristic hard gluon virtuality in hard
spectator interactions is order mbΛQCD, this term requires an analysis of momentum
configurations different from those considered for heavy-light final states. We plan to
return to the extension of the factorization proof to light-light final states in a future
publication.

6 Phenomenology of B → D(∗)L decays

The matrix elements we have computed in Sect. 4.4 provide the theoretical basis
for a model-independent calculation of the class-I non-leptonic decay amplitudes for
decays of the type B → D(∗)L, where L is a light meson, to leading power in ΛQCD/mb

and at next-to-leading order in renormalization-group improved perturbation theory.
In this section we will discuss phenomenological applications of this formalism and
confront our numerical results with experiment. We will also provide some simple
estimates of power-suppressed corrections to the factorization formula.

6.1 Basic input

The results for the class-I decay amplitudes for B → D(∗)L are obtained by evaluating
the (factorized) hadronic matrix elements of the transition operator T defined in (92).
They are written in terms of products of CKM matrix elements, light-meson decay
constants, B → D(∗) transition form factors, and the QCD parameters a1(D

(∗)L),
whose explicit expressions at next-to-leading order have been given in (95) and (96).

The decay constants of light pseudoscalar and vector mesons are defined as

〈P−(q)|d̄γµγ5u|0〉 = −ifP qµ, (205)

〈V −(q)|d̄γµu|0〉 = −ifVmV η
∗
µ, (206)

where ηµ is the polarization vector of the vector meson. The decay constants can be
determined experimentally using data on the weak leptonic decays P− → l−ν̄l(γ),
hadronic τ− → M−ντ decays, and the electromagnetic decays V 0 → e+e−. Follow-
ing [26], we use fπ = 131MeV, fK = 160MeV, fρ = 210MeV, fK∗ = 214MeV, and
fa1 = 229MeV. Here a1 is the pseudovector meson with mass ma1 ' 1230MeV. Its
decay constant is defined in analogy with (206), but in terms of a matrix element of
an axial vector current.

The B → D(∗) transition form factors of vector and axial vector currents are
defined as (q ≡ p− p′)

〈D(p′)|c̄γµb|B̄(p)〉 = F+(q2)

[

(p+ p′)µ − m2
B −m2

D

q2
qµ

]

+ F0(q
2)
m2

B −m2
D

q2
qµ,

(207)

〈D∗(p′, ε)|c̄γµb|B̄(p)〉 =
2iV (q2)

mB +mD∗

εµνρσp′νpρε
∗
σ, (208)
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〈D∗(p′, ε)|c̄γµγ5b|B̄(p)〉 = (mB +mD∗)A1(q
2) ε∗µ − A2(q

2)
ε∗ · q

mB +mD∗

(p+ p′)µ

− ε∗ · q
q2

qµ
[

(mB +mD∗)A1(q
2) − (mB −mD∗)A2(q

2) − 2mD∗A0(q
2)
]

. (209)

Here the sign conventions are chosen such that all form factors are positive (in par-
ticular ε0123 = −1).

6.2 Non-leptonic amplitudes and decay rates

Using these definitions, the non-leptonic B̄d → D(∗)+L− decay amplitudes for L = π,
ρ can be expressed as

A(B̄d → D+π−) = i
GF√

2
V ∗

udVcb a1(Dπ) fπ F0(m
2
π) (m2

B −m2
D), (210)

A(B̄d → D∗+π−) = −iGF√
2
V ∗

udVcb a1(D
∗π) fπA0(m

2
π) 2mD∗ ε∗ · p, (211)

A(B̄d → D+ρ−) = −iGF√
2
V ∗

udVcb a1(Dρ) fρ F+(m2
ρ) 2mρ η

∗ · p. (212)

The decay mode B̄d → D∗+ρ− has a richer structure than the decays with at least
one pseudoscalar in the final state and deserves a more detailed discussion. The most
general Lorentz invariant decomposition of the corresponding decay amplitude can
be written as

A(B̄d → D∗+ρ−) = i
GF√

2
V ∗

udVcb ε
∗µη∗ν

(

S1 gµν − S2 qµp
′
ν + iS3 εµναβ p

′αqβ
)

. (213)

It is convenient to introduce helicity amplitudes corresponding to the polarization of
the vector mesons in the B rest frame. We find

H0 =
1

2mD∗mρ

[

(m2
B −m2

D∗ −m2
ρ)S1 − 2m2

B|~q |2S2

]

, (214)

H± = S1 ∓mB|~q |S3, (215)

where

|~q | =
1

2mB

√

(m2
B −m2

1 −m2
2)

2 − 4m2
1m

2
2 (216)

is the momentum of the two final-state mesons in the parent rest frame (with m1 =
mD∗ , m2 = mρ in the present case). The subscript on the helicity amplitudes refers to
the polarization of the D∗ meson. (Our convention for the helicity amplitudes differs
from that usually employed in the analysis of semi-leptonic B̄d → D∗l ν decays by an
overall factor of mρfρ a1(D

∗ρ).) To leading power in ΛQCD/mb, we obtain

S1 = a1(D
∗ρ)mρfρ (mB +mD∗)A1(m

2
ρ), (217)

S2 = a1(D
∗ρ)mρfρ

2A2(m
2
ρ)

mB +mD∗

. (218)
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The contribution proportional to S3 in (213) is associated with transversely polarized
ρ mesons and thus leads to power-suppressed effects, which we do not consider here.
For the helicity amplitudes, it follows that

H0 =
a1(D

∗ρ) fρ

2mD∗

[

(m2
B −m2

D∗ −m2
ρ)(mB +mD∗)A1(m

2
ρ) −

4m2
B|~q |2

mB +mD∗

A2(m
2
ρ)
]

,

(219)

H±

H0
= O(mρ/mB). (220)

The decay rates for the non-leptonic decays B̄d → D(∗)+L− are given by

Γ(B̄d → D+π−) =
G2

F (m2
B −m2

D)2|~q |
16πm2

B

|V ∗
udVcb|2 |a1(Dπ)|2 f 2

π F
2
0 (m2

π), (221)

Γ(B̄d → D∗+π−) =
G2

F |~q |3
4π

|V ∗
udVcb|2 |a1(D

∗π)|2 f 2
π A

2
0(m

2
π), (222)

Γ(B̄d → D+ρ−) =
G2

F |~q |3
4π

|V ∗
udVcb|2 |a1(Dρ)|2 f 2

ρ F
2
+(m2

ρ), (223)

Γ(B̄d → D∗+ρ−) =
G2

F |~q |
16πm2

B

|V ∗
udVcb|2

(

|H0|2 + |H+|2 + |H−|2
)

. (224)

The decay rate for the process B̄d → D∗+ρ− with two vector mesons in the final state
has a non-trivial angular distribution given by [31, 32]

dΓ

d cos θ1d cos θ2dφ
∼ cos2 θ1 cos2 θ2|H0|2 +

1

4
sin2 θ1 sin2 θ2(|H+|2 + |H−|2)

+
1

4
sin 2θ1 sin 2θ2 [cosφRe(H∗

0H+ +H∗
0H−) − sin φ Im(H∗

0H+ −H∗
0H−)]

+
1

2
sin2 θ1 sin2 θ2

(

cos 2φReH∗
+H− + sin 2φ ImH∗

+H−

)

. (225)

Here θ1 is the angle between the direction of flight of the decaying D∗ meson and
the daughter particle D0, measured in the D∗ rest frame, θ2 is the angle between the
direction of flight of the decaying ρ meson and the daughter particle π−, measured in
the ρ rest frame, and φ is the angle between the decay planes of D∗ and ρ in the rest
frame of the B meson. The variables cos θ1,2 are to be integrated from −1 to 1 and
φ from 0 to 2π. Note that in the heavy-quark limit only the first term (proportional
to |H0|2) remains. Likewise, this term dominates in the total decay rate in (224).

The CLEO collaboration has studied the angular distribution in B̄d → D∗+ρ− de-
cays [32]. A particular focus of this investigation was the search for non-trivial com-
plex phases in the helicity amplitudes. Such phases arise from strong final-state inter-
actions and can manifest themselves in the terms proportional to sin 2θ1 sin 2θ2 sinφ
and sin2 θ1 sin2 θ2 sin 2φ in the angular distribution (225). From our discussion above
it follows that these interference terms are power suppressed in the heavy-quark limit.
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We expect them to be small and will not discuss them further here. (Experimentally,
one finds |H+/H0| ≈ 0.15 and |H−/H0| ≈ 0.3 with large uncertainties [32].)

The various B → D(∗) form factors entering the expressions for the decay rates
in (221)-(224) can be determined by combining experimental data on semi-leptonic
decays with theoretical relations derived using heavy-quark effective theory [2, 26].
Since we work to leading order in ΛQCD/mb, it is consistent to set the light meson
masses to zero and evaluate these form factors at q2 = 0. In this case the kinematic
relations

F0(0) = F+(0), (mB +mD∗)A1(0) − (mB −mD∗)A2(0) = 2mD∗A0(0), (226)

the second of which implies

H0

∣

∣

∣

m2
ρ=0

= a1(D
∗ρ) fρ (m2

B −m2
D∗)A0(0), (227)

allow us to express the two B̄d → D+L− rates in terms of F+(0), and the two
B̄d → D∗+L− rates in terms of A0(0). Heavy-quark symmetry implies that these two
form factors are equal to within a few percent [33]. Below we adopt the common
value F+(0) = A0(0) = 0.6. All our predictions for decay rates will be proportional
to the square of this number.

6.3 Meson distribution amplitudes and predictions for a1

Let us now discuss in more detail the ingredients required for the numerical analysis
of the coefficients a1(D

(∗)L). The Wilson coefficients Ci in the effective weak Hamilto-
nian depend on the choice of the scale µ as well as on the value of the strong coupling
αs, for which we take αs(mZ) = 0.118 and two-loop evolution down to a low scale
µ ∼ mb. To study the residual dependence of the results, which remains because the
perturbation series are truncated at next-to-leading order, we vary µ between mb/2
and 2mb. The hard-scattering kernels depend on the ratio of the heavy-quark masses,
for which we take z = mc/mb = 0.30 ± 0.05.

Hadronic uncertainties enter the analysis also through the parameterizations used
for the meson light-cone distribution amplitudes. It is convenient and conventional
to expand the distribution amplitudes in Gegenbauer polynomials:

ΦL(u) = 6u(1 − u)

[

1 +
∞
∑

n=1

αL
n(µ)C3/2

n (2u− 1)

]

, (228)

where C
3/2
1 (x) = 3x, C

3/2
2 (x) = 3

2
(5x2−1), etc. Then the Gegenbauer moments αL

n(µ)
are multiplicatively renormalized. The scale dependence of these quantities would,
however, enter the results for the coefficients only at order α2

s, which is beyond the
accuracy of our calculation. We assume that the leading-twist distribution amplitudes
are close to the asymptotic form and thus truncate the expansion at n = 2. However,
it would be straightforward to account for higher-order terms if desired. For the
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Table 3: Numerical values for the integrals
∫ 1
0 duF (u, z) ΦL(u) (upper portion) and

∫ 1
0 duF (u,−z) ΦL(u) (lower portion) obtained including the first two Gegenbauer

moments.

z Leading term Coefficient of αL
1 Coefficient of αL

2

0.25 −8.41 − 9.51i 5.92 − 12.19i −1.33 + 0.36i
0.30 −8.79 − 9.09i 5.78 − 12.71i −1.19 + 0.58i
0.35 −9.13 − 8.59i 5.60 − 13.21i −1.00 + 0.73i

0.25 −8.45 − 6.56i 6.72 − 10.73i −0.38 + 0.93i
0.30 −8.37 − 5.99i 6.83 − 11.49i −0.21 + 0.85i
0.35 −8.24 − 5.44i 6.81 − 12.29i −0.08 + 0.75i

asymptotic form of the distribution amplitude, ΦL(u) = 6u(1 − u), the integral in
(95) yields

∫ 1

0
duF (u, z) ΦL(u) = 3 ln z2 − 7

+

[

6z(1 − 2z)

(1 − z)2(1 + z)3

(

π2

6
− Li2(z

2)

)

− 3(2 − 3z + 2z2 + z3)

(1 − z)(1 + z)2
ln(1 − z2)

+
4 − 17z + 20z2 + 5z3

2(1 − z)(1 + z)2
+ {z → 1/z}

]

, (229)

and the corresponding result with the function F (u,−z) is obtained by replacing
z → −z. More generally, a numerical integration with a distribution amplitude
expanded in Gegenbauer polynomials yields the results collected in Table 3. We
observe that the first two Gegenbauer polynomials in the expansion of the light-cone
distribution amplitudes give contributions of similar magnitude, whereas the second
moment gives rise to much smaller effects. This tendency persists in higher orders.
For our numerical discussion, it is a safe approximation to truncate the expansion
after the first non-trivial moment. The dependence of the results on the value of the
quark mass ratio z = mc/mb is mild and can be neglected for all practical purposes.
We also note that the difference of the convolutions with the kernels for a pseudoscalar
D and vector D∗ meson are numerically very small. This observation is, however,
specific to the case of B → D(∗)L decays and should not be generalized to other decay
modes.

Next we evaluate the complete results for the parameters a1 at next-to-leading
order, and to leading power in ΛQCD/mb. We set z = mc/mb = 0.3. Varying z
between 0.25 and 0.35 would change the results by less than 0.5%. The results are
shown in Table 4. Note that the contribution proportional to the second Gegenbauer
moment αL

2 has coefficients of order 0.2% or less. There is now increasing evidence
that the leading-twist light-cone distribution amplitudes of light mesons are close to
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Table 4: The QCD coefficients a1(D
(∗)L) at next-to-leading order for three differ-

ent values of the renormalization scale µ. The leading-order values are shown for
comparison.

µ = mb/2 µ = mb µ = 2mb

a1(DL) 1.074 + 0.037i 1.055 + 0.020i 1.038 + 0.011i
−(0.024 − 0.052i)αL

1 −(0.013 − 0.028i)αL
1 −(0.007 − 0.015i)αL

1

a1(D
∗L) 1.072 + 0.024i 1.054 + 0.013i 1.037 + 0.007i

−(0.028 − 0.047i)αL
1 −(0.015 − 0.025i)αL

1 −(0.008 − 0.014i)αL
1

aLO
1 1.049 1.025 1.011

their asymptotic form, and that the Gegenbauer moments αL
n take values at most

of order 1 in magnitude. It then follows that the contributions proportional to αL
2

can be safely neglected. The contributions associated with αL
1 are present only for

the strange mesons K and K∗, but not for π and ρ. Moreover, the imaginary parts
of the coefficients contribute to their modulus only at order α2

s, which is beyond the
accuracy of our analysis. To summarize, we thus obtain

|a1(DL)| = 1.055+0.019
−0.017 − (0.013+0.011

−0.006)α
L
1 , (230)

|a1(D
∗L)| = 1.054+0.018

−0.017 − (0.015+0.013
−0.007)α

L
1 , (231)

where the quoted errors reflect the perturbative uncertainty due to the scale ambiguity
(and the negligible dependence on the value of the ratio of quark masses and higher
Gegenbauer moments), but not the effects of power-suppressed corrections. These
will be estimated later. It is evident that within theoretical uncertainties there is
no significant difference between the two a1 parameters, and moreover there is only
a very small sensitivity to the differences between strange and non-strange mesons
(assuming that |αK(∗)

1 | < 1). In our numerical analysis below we take the fixed value
|a1| = 1.05 for all decay modes.

6.4 Tests of factorization

The main lesson from the previous discussion is that corrections to naive factorization
in the class-I decays B̄d → D(∗)+L− are very small. The reason is that these effects
are governed by a small Wilson coefficient and, moreover, are colour suppressed by a
factor 1/N 2

c . For these decays, the most important implications of the QCD factor-
ization formula are to restore the renormalization-group invariance of the theoreti-
cal predictions, and to provide a theoretical justification for why naive factorization
works so well. On the other hand, given the theoretical uncertainties arising, e.g.,
from unknown power-suppressed corrections, there is clearly no hope to confront the
extremely small predictions for non-universal (process-dependent) “non-factorizable”
corrections with experimental data. Rather, what we may do is ask whether data
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supports the prediction of a quasi-universal parameter |a1| ' 1.05 in these decays.
If this is indeed the case, it would support the usefulness of the heavy-quark limit
in analyzing non-leptonic decay amplitudes. If, on the other hand, we were to find
large non-universal effects, this would point towards the existence of sizeable power
corrections to our predictions.

We will see that with present experimental errors the data are in good agreement
with our prediction of a quasi universal a1 parameter. However, a reduction of the
experimental uncertainties to the percent level would be very desirable for obtaining
a more conclusive picture.

6.4.1 Ratios of non-leptonic decay rates

We start by reconsidering the ratios of non-leptonic rates in (98) and (100). The
calculable perturbative corrections to naive factorization are below the percent level.
In the comparison of B → Dπ and B → D∗π decays one is sensitive to the difference
of the values of the two a1 parameters shown in (230) and (231) evaluated for αL

1 = 0.
This difference is at most few times 10−3. Likewise, in the comparison of B → Dπ
and B → Dρ decays one is sensitive to the difference in the light-cone distribution
amplitudes of the pion and the ρ meson, which start at the second Gegenbauer
moment αL

2 . These effects are suppressed even more strongly.
From the explicit expressions for the decay rates in (221)-(223) it follows that

Γ(B̄d → D+π−)

Γ(B̄d → D∗+π−)
=

(m2
B −m2

D)2|~q |Dπ

4m2
B|~q |3D∗π

(

F0(m
2
π)

A0(m2
π)

)2 ∣
∣

∣

∣

∣

a1(Dπ)

a1(D∗π)

∣

∣

∣

∣

∣

2

, (232)

Γ(B̄d → D+ρ−)

Γ(B̄d → D+π−)
=

4m2
B|~q |3Dρ

(m2
B −m2

D)2|~q |Dπ

f 2
ρ

f 2
π

(

F+(m2
ρ)

F0(m2
π)

)2 ∣
∣

∣

∣

∣

a1(Dρ)

a1(Dπ)

∣

∣

∣

∣

∣

2

. (233)

Using the experimental values for the branching ratios reported by the CLEO Col-
laboration in [34] we find (taking into account a correlation between some systematic
errors in the second case)

∣

∣

∣

∣

∣

a1(Dπ)

a1(D∗π)

∣

∣

∣

∣

∣

F0(m
2
π)

A0(m2
π)

= 1.00 ± 0.11, (234)

∣

∣

∣

∣

∣

a1(Dρ)

a1(Dπ)

∣

∣

∣

∣

∣

F+(m2
ρ)

F0(m2
π)

= 1.16 ± 0.11. (235)

Within errors, there is thus no evidence for any deviations from naive factorization.

6.4.2 Ratios of non-leptonic and semi-leptonic decay rates

Our next-to-leading order results for the quantities a1(D
(∗)L) allow us to make the-

oretical predictions which are not restricted to ratios of hadronic decay rates. A
particularly clean test of these predictions, which is essentially free of hadronic un-
certainties, is obtained by relating the B̄d → D(∗)+L− decay rates to the differential
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semi-leptonic B̄d → D(∗)+ l−ν decay rate evaluated at q2 = m2
L [11]. In this way the

parameters |a1| can be measured directly. One obtains

R
(∗)
L =

Γ(B̄d → D(∗)+L−)

dΓ(B̄d → D(∗)+l−ν̄)/dq2|q2=m2
L

= 6π2|Vud|2f 2
L |a1(D

(∗)L)|2X(∗)
L , (236)

where Xρ = X∗
ρ = 1 for a vector meson (because the production of the lepton pair via

a V −A current in semi-leptonic decays is kinematically equivalent to that of a vector
meson with momentum q), whereas Xπ and X∗

π deviate from 1 only by (calculable)
terms of order m2

π/m
2
B, which numerically are below the 1% level [26]. We emphasize

that with our results for a1 in (95) and (96), Eq. (236) becomes a prediction based
on first principles of QCD. This is to be contrasted with the usual interpretation of
this formula, where a1 plays the role of a phenomenological parameter that is fitted
from data.

The most accurate test of factorization is at present possible for the class-I pro-
cesses B̄d → D∗+L−, because the differential semi-leptonic decay rate in B → D∗

transitions has been measured as a function of q2 with good accuracy. The results of
such an analysis, performed using the most recent CLEO data, have been reported
in [35]. One finds

R∗
π = (1.13 ± 0.15) GeV2 ⇒ |a1(D

∗π)| = 1.08 ± 0.07, (237)

R∗
ρ = (2.94 ± 0.54) GeV2 ⇒ |a1(D

∗ρ)| = 1.09 ± 0.10, (238)

R∗
a1

= (3.45 ± 0.69) GeV2 ⇒ |a1(D
∗a1)| = 1.08 ± 0.11. (239)

This is consistent with our theoretical result in (231). In particular, the data show no
evidence for large power corrections to our predictions obtained at leading order in
ΛQCD/mb. However, a further improvement in the experimental accuracy would be
desirable in order to become sensitive to process-dependent, non-factorizable effects.

6.5 Predictions for class-I decay amplitudes

We now consider a larger set of class-I decays of the form B̄d → D(∗)+L−, all of
which are governed by the transition operator (92). In Table 5 we compare the QCD
factorization predictions with experimental data. As previously we work in the heavy-
quark limit, i.e. our predictions are model independent up to corrections suppressed
by at least one power of ΛQCD/mb. We keep the light meson masses in the phase
space factors in (221)-(224), but we neglect them in the form factors, i.e. we relate
the various form factors to each other using the kinematic relations in (226).

The results show good agreement within the experimental errors, which are still
rather large. It would be desirable to reduce these errors to the percent level. Note
that we have not attempted to adjust the semi-leptonic form factors F+(0) and A0(0)
so as to obtain a best fit to the data. In this context we stress that the fact that
with F+(0) = A0(0) = 0.6 our predictions for the B̄d → D(∗)+π− branching ratios
come out higher than the central experimental results must not be taken as evidence
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Table 5: Model-independent predictions for the branching ratios (in units of 10−3) of
class-I, non-leptonic B̄d → D(∗)+L− decays in the heavy-quark limit. All predictions
are in units of (Vcb/0.04)2×(|a1|/1.05)2×(τBd

/1.56 ps). The last two columns show the
experimental results reported by the CLEO Collaboration [34], and by the Particle
Data Group [36].

Decay mode Theory (HQL) CLEO data PDG98

B̄d → D+π− 3.27 2.50 ± 0.40 3.0 ± 0.4
B̄d → D+K− 0.25 — —
B̄d → D+ρ− 7.64 7.89 ± 1.39 7.9 ± 1.4
B̄d → D+K∗− 0.39 — —
B̄d → D+a−1 7.76 8.34 ± 1.66 6.0 ± 3.3

×[F+(0)/0.6]2

B̄d → D∗+π− 3.05 2.34 ± 0.32 2.8 ± 0.2
B̄d → D∗+K− 0.22 — —
B̄d → D∗+ρ− 7.59 7.34 ± 1.00 6.7 ± 3.3
B̄d → D∗+K∗− 0.40 — —
B̄d → D∗+a−1 8.53 11.57 ± 2.02 13.0 ± 2.7

×[A0(0)/0.6]2

against QCD factorization in the heavy-quark limit. On the contrary, we have seen
earlier in (237) that the value of |a1(D

∗π)| extracted in a form-factor independent
way is in very good agreement with our theoretical result.

We take the observation that, within errors, the experimental data on class-I de-
cays into heavy-light final states show good agreement with our predictions obtained
in the heavy-quark limit as (weak) evidence that in these decays there are no un-
expectedly large power corrections. We will now address the important question of
the size of power corrections theoretically. To this end we provide rough estimates
of two sources of power-suppressed effects: weak annihilation and spectator interac-
tions. We stress that a complete account of power corrections to the heavy-quark
limit cannot be performed in a systematic way, since these effects are no longer dom-
inated by hard gluon exchange. In other words, factorization breaks down beyond
leading power. We believe that the estimates presented here are both instructive and
realistic. Yet, it is important to keep in mind that there are other sources of power
corrections, e.g., contributions from higher Fock states in the light-cone expansion of
meson wave functions, which we will not address here.

To obtain an estimate of the power corrections we adopt the following, heuristic
procedure. We treat the charm quark as light compared to the large scale provided
by the mass of the decaying b quark (mc � mb and mc fixed as mb → ∞) and use
a light-cone projection similar to that of the pion also for the D meson. In addition
we assume that mc is still large compared to ΛQCD. We implement this by using a
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highly asymmetric D-meson wave function, which is strongly peaked at a light-quark
momentum fraction of order ΛQCD/mD. This guarantees correct power counting
for the heavy-light final states we are interested in and allows us to obtain simple,
semi-quantitative estimates. As discussed in Sect. 3.3.6 there are four annihilation
diagrams with single gluon exchange (see Fig. 9 (a)-(d)). The first two diagrams are
“factorizable” and their contributions vanish because of current conservation in the
limit mc → 0. For non-zero mc they therefore carry an additional suppression factor
m2

D/m
2
B ≈ 0.1. Moreover, their contributions to the decay amplitude are suppressed

by small Wilson coefficients. Diagrams (a) and (b) can therefore safely be neglected.
From the non-factorizable diagrams (c) and (d) in Fig. 9, the one with the gluon
attached to the b quark turns out to be strongly suppressed numerically, giving a
contribution of less than 1% of the leading class-I amplitude. We are thus left with
diagram (d), in which the gluon couples to the light quark in the B meson. This
mechanism gives the dominant annihilation contribution. (Note that by deforming
the light spectator-quark line one can redraw this diagram in such a way that it can
be interpreted as a final-state rescattering process.)

Adopting a common notation, we parameterize the annihilation contribution to
the B̄d → D+π− decay amplitude in terms of a (power-suppressed) amplitude A such
that

A(B̄d → D+π−) = T + A, (240)

where T is the “tree topology”, which contains the dominant factorizable contribu-
tion. A straightforward calculation using the approximations discussed above shows
that the contribution of diagram (d) is (to leading order) independent of the momen-
tum fraction ξ of the light quark inside the B meson:

A ∼ fπfDfB

∫

du
Φπ(u)

u

∫

dv
ΦD(v)

v̄2
' 3fπfDfB

∫

dv
ΦD(v)

v̄2
. (241)

The B-meson wave function simply integrates to fB, and the integral over the pion
distribution amplitude can be performed using the asymptotic form of the wave func-
tion. We take ΦD(v) in the form of (228) with the coefficients αD

1 = 0.8 and αD
2 = 0.4

(αD
i = 0, i > 2). With this ansatz ΦD(v) is strongly peaked at v̄ ∼ ΛQCD/mD. The

integral over ΦD(v) in (241) is divergent at v = 1, and we regulate it by introducing
a cut-off such that v ≤ 1 − Λ/mB, where Λ ≈ 0.3GeV. Then

∫

dvΦD(v)/v̄2 ≈ 34.
Evidently, the proper value of Λ is largely unknown and our estimate will be corre-
spondingly uncertain. Nevertheless, this exercise will give us an idea of the magnitude
of the effect. For the ratio of the annihilation amplitude to the leading, factorizable
contribution we obtain

A

T
' 2παs

3

C+ + C−

2C+ + C−

fDfB

F0(0)m2
B

∫

dv
ΦD(v)

v̄2
≈ 0.04. (242)

We have evaluated the Wilson coefficients at µ = mb and used fD = 0.2GeV, fB =
0.18GeV, F0(0) = 0.6, and αs = 0.4. This value of the strong coupling constant
reflects that the typical virtuality of the gluon propagator in the annihilation graph
is of order ΛQCDmB. We conclude that the annihilation contribution is a correction
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of a few percent, which is what one would expect for a generic power correction to the
heavy-quark limit. Taking into account that fB ∼ Λ

3/2
QCDm

−1/2
B , F0(0) ∼ Λ

3/2
QCDm

−3/2
B

and fD ∼ ΛQCD, we observe that in the heavy-quark limit the ratio A/T indeed
scales as ΛQCD/mb, exhibiting the expected linear power suppression. (Recall that we
consider the D meson as a light meson for this heuristic analysis of power corrections.)

Using the same approach we may also derive a numerical estimate for the non-
factorizable spectator interaction in B̄d → D+π− decays, discussed in Sect. 3.3.5.
Adapting the corresponding result derived in [1] for the spectator interaction in B̄d →
π+π− decays we find

Tspec

Tlead
' 2παs

3

C+ − C−

2C+ + C−

fDfB

F0(0)m2
B

mB

λB

∫

dv
ΦD(v)

v̄
≈ −0.03, (243)

where the hadronic parameter λB = O(ΛQCD) is defined as
∫ 1
0 (dξ/ξ) ΦB(ξ) ≡ mB/λB.

For the numerical estimate we have assumed that λB ≈ 0.3GeV. With the same model
for ΦD(v) as above we have

∫

dvΦD(v)/v̄ ≈ 6.6, where the integral is now convergent.
The result (243) exhibits again the expected power suppression in the heavy-quark
limit, and the numerical size of the effect is at the few percent level.

We conclude from this discussion that the typical size of power corrections to
the heavy-quark limit in class-I decays of B mesons into heavy-light final states is
at the level of 10% or less, and thus our prediction for the near universality of the
parameters a1 governing these decay modes appears robust.

6.6 Remarks on class-II and class-III decay amplitudes

In the class-I decays B̄d → D(∗)+L− considered above, the flavour quantum numbers
of the final-state mesons ensure that only the light meson L can be produced by the
(d̄u) current contained in the operators of the effective weak Hamiltonian in (42). The
QCD factorization formula then predicts that the corresponding decay amplitudes are
factorizable in the heavy-quark limit. The formula also predicts that other topologies,
in which the heavy charm meson would be created by a (c̄u) current, are power
suppressed. To study these topologies we now consider decays with a neutral charm
meson in the final state. In the class-II decays B̄d → D(∗)0L0 the only possible
topology is to have the charm meson as the emission particle, whereas for the class-
III decays B− → D(∗)0L− both final-state mesons can be the emission particle. The
factorization formula predicts that in the heavy-quark limit class-II decay amplitudes
are power suppressed with respect to the corresponding class-I amplitude, whereas
class-III amplitudes should be equal to the corresponding class-I amplitudes up to
power corrections.

It is convenient to introduce two common parameterizations of the decay ampli-
tudes, one in terms of isospin amplitudes A1/2 and A3/2 referring to the isospin of the
final-state particles, and one in terms of flavour topologies (T for “tree topology”, C
for “colour suppressed tree topology”, and A for “annihilation topology”). Taking
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Table 6: CLEO data on the branching ratios for the decays B → D(∗)L in units of
10−3 [34, 37]. Upper limits are at 90% confidence level. See text for the definition of
the quantities δ and R.

B → Dπ B → Dρ B → D∗π B → D∗ρ

Class-I (D(∗)+L−) 2.50 ± 0.40 7.89 ± 1.39 2.34 ± 0.32 7.34 ± 1.00
Class-II (D(∗)0L0) < 0.12 < 0.39 < 0.44 < 0.56
Class-III (D(∗)0L−) 4.73 ± 0.44 9.20 ± 1.11 3.92 ± 0.63 12.77 ± 1.94

δ < 22◦ < 30◦ < 57◦ < 31◦

R 1.34 ± 0.13 1.05 ± 0.12 1.26 ± 0.14 1.28 ± 0.13

the decays B → Dπ as an example, we have

A(B̄d → D+π−) =

√

1

3
A3/2 +

√

2

3
A1/2 = T + A, (244)

√
2A(B̄d → D0π0) =

√

4

3
A3/2 −

√

2

3
A1/2 = C − A, (245)

A(B− → D0π−) =
√

3A3/2 = T + C. (246)

A similar decomposition holds for the other B → D(∗)L decay modes. Note that
isospin symmetry of the strong interactions implies that the class-III amplitude is a
linear combination of the class-I and class-II amplitudes. (In the case of final states
containing two vector mesons, this statement applies separately for each of the three
helicity amplitudes.) In other words, there are only two independent amplitudes,
which can be taken to be A1/2 and A3/2, or (T +A) and (C −A). These amplitudes
are complex due to strong-interaction phases from final-state interactions. Only the
relative phase of the two independent amplitudes is an observable. We define δ to
be the relative phase of A1/2 and A3/2, and δTC the relative phase of (T + A) and
(C − A). The QCD factorization formula implies that

A1/2√
2A3/2

= 1 +O(ΛQCD/mb), δ = O(ΛQCD/mb), (247)

C − A

T + A
= O(ΛQCD/mb), δTC = O(1). (248)

In the remainder of this section, we will explore to what extent these predictions are
supported by data.

In Table 6 we show the experimental results for the various B → D(∗)L branching
ratios reported by the CLEO Collaboration [34, 37]. We first note that no evidence
has been seen for any of the class-II decays, in accordance with our prediction that
these decays are suppressed with respect to the class-I modes in the heavy-quark
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limit. Below we will investigate in more detail how this suppression is realized. The
fourth line in the table shows upper limits on the strong-interaction phase difference
δ between the two isospin amplitudes. These bounds follow from the relation [26]

sin2δ <
9

2

τ(B−)

τ(Bd)

Br(B̄d → D0π0)

Br(B− → D0π−)
, (249)

where we use τ(B−) = 1.65 ps and τ(Bd) = 1.56 ps for the B-meson lifetimes [36].
The strongest bound arises in the decays B → Dπ, where the strong-interaction
phase is bound to be less than 22◦. This confirms our prediction that the phase δ is
suppressed in the heavy-quark limit.

Let us now study the suppression of the class-II amplitudes in more detail. We
have already mentioned in Sect. 3.7.3 that the observed smallness of class-II am-
plitudes is more a reflection of colour suppression than power suppression. This is
already apparent in the naive factorization approximation, because the appropriate
ratios of meson decay constants and semi-leptonic form factors exhibit large devi-
ations from their expected scaling laws in the heavy-quark limit, see (41). Indeed,
it is obvious from Table 6 that there are significant differences between the class-I
and class-III amplitudes, indicating that some power-suppressed contributions are
not negligible. In the last line in the table we show the experimental values of the
quantity

R =

∣

∣

∣

∣

∣

A(B− → D(∗)0L−)

A(B̄d → D(∗)+L−)

∣

∣

∣

∣

∣

=

√

√

√

√

τ(Bd)

τ(B−)

Br(B− → D(∗)0L−)

Br(B̄d → D(∗)+L−)
, (250)

which parameterizes the magnitude of power-suppressed effects at the level of the
decay amplitudes. If we ignore the decays B → D∗ρ with two vector mesons in the
final state, which are more complicated because of the presence of different helicity
amplitudes, then the ratio R is given by

R =

∣

∣

∣

∣

1 +
C − A

T + A

∣

∣

∣

∣

=

∣

∣

∣

∣

1 + x
a2

a1

∣

∣

∣

∣

, (251)

where a1 are the QCD parameters entering the transition operator in (92), and

a2 =
Nc + 1

2Nc

C+ − Nc − 1

2Nc

C− + “non-factorizable corrections” (252)

are the corresponding parameters describing the deviations from naive factorization
in the class-II decays (see e.g. [26]). All the quantities in (251) depend on the nature
of the final-state mesons. In particular, the parameters

x(Dπ) =
(m2

B −m2
π) fD F

B→π
0 (m2

D)

(m2
B −m2

D) fπ FB→D
0 (m2

π)
≈ 0.9, (253)

x(Dρ) =
fD A

B→ρ
0 (m2

D)

fρ FB→D
+ (m2

ρ)
≈ 0.5, (254)

x(D∗π) =
fD∗FB→π

+ (m2
D∗)

fπ AB→D∗

0 (m2
π)

≈ 0.9, (255)
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account for the ratios of decay constants and form factors entering in the naive
factorization approximation. For the numerical estimates we have assumed that the
ratios of heavy-to-light over heavy-to-heavy form factors are approximately equal to
0.5, and we have taken fD = 0.2GeV and fD∗ = 0.23GeV for the charm meson
decay constants. Note that in (251) it is the quantities x that are formally power
suppressed (by a factor of order Λ2

QCD/m
2
b) in the heavy-quark limit, not the ratios

a2/a1. For the final states containing a pion the power suppression is clearly not
operative, mainly due to the fact that the pion decay constant fπ is much smaller
than the quantity (fD

√
mD)2/3 ≈ 0.42GeV. To reproduce the experimental values of

the ratios R shown in Table 6 requires values of a2/a1 of order 0.1–0.4 (with large
uncertainties), which is consistent with the fact that these ratios are of order 1/Nc in
the large-Nc limit, i.e. they are colour suppressed.

The QCD factorization formula (4) allows us to compute the coefficients a1 in the
heavy-quark limit, but it does not allow us to compute the corresponding parameters
a2 in class-II decays. The reason is that in class-II decays the emission particle is
a heavy charm meson, and hence the mechanism of colour transparency, which was
essential for the proof of factorization, is not operative. For a rough estimate of a2

in B → πD decays we consider as previously the limit in which the charm meson is
treated as a light meson (mc � mb), however with a highly asymmetric distribution
amplitude. In this limit we can adapt our results for the class-II amplitude in B → ππ
decays derived in [1], with the only modification that the hard-scattering kernel must
be generalized to the case where the leading-twist light-cone distribution amplitude
of the emission meson is not symmetric. We find that

a2 ' Nc + 1

2Nc

C̄+(µ) − Nc − 1

2Nc

C̄−(µ)

+
αs

4π

CF

2Nc

[C̄+(µ) + C̄−(µ)]

(

−6 ln
µ2

m2
b

+ fI + fII

)

, (256)

where

fI =
∫ 1

0
dvΦD(v)

[

ln2v̄ + ln v̄ +
π2

3
− 6 + iπ(2 ln v̄ − 3) +O(v̄)

]

, (257)

fII =
12π2

Nc

fπfB

FB→π
0 (m2

D)m2
B

mB

λB

∫

dv
ΦD(v)

v̄
. (258)

The contribution from fII describes the hard, non-factorizable spectator interaction.
Note that this term involves

∫

dvΦD(v)/v̄, which can be sizeable but remains constant
in the heavy-quark limit implied here (mb → ∞ with mc constant). Using the
same numerical inputs as previously, we find that fII ≈ 13 and fI ≈ −1 − 19i. In
writing the hard-scattering kernel for fI we have only kept the leading terms in v̄, in
accordance with the strongly asymmetric shape of ΦD(v). Note the large imaginary
part arising from the “non-factorizable” vertex corrections with a gluon exchange
between the final-state quarks. Combining all contributions, and taking µ = mb for
the renormalization scale, we find

a2 ≈ 0.25 e−i41◦, (259)
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which is significantly larger in magnitude than the leading-order result aLO
2 ≈ 0.12

corresponding to naive factorization. We hasten to add that our estimate (259) should
not be taken too seriously since it is most likely not a good approximation to treat
the charm meson as a light meson. Nevertheless, we find it remarkable that in this
idealized limit one obtains indeed a very significant correction to naive factorization,
which gives the right order of magnitude for the modulus of a2 and, at the same
time, a large strong-interaction phase. For completeness, we note that the value for
a2 in (259) would imply a strong-interaction phase difference δ ≈ 10◦ between the
two isospin amplitudes A1/2 and A3/2 in B → Dπ decays, and hence is not in conflict
with the experimental upper bound on the phase δ given in Table 6. The phase δTC ,
on the other hand, is to leading order simply given by the phase of a2 and is indeed
large, in accordance with (248).

7 Comparison with previous approaches

The theoretical understanding of non-leptonic weak decays has always been a chal-
lenge for theorists. Because of the complexity of the corresponding hadronic matrix
elements progress in this field has been very slow, and most of the phenomenological
work was based on simple models and assumptions. In the present work we have
presented, for the first time, a consistent theoretical framework allowing us to per-
form a systematic, model-independent study of a large class of two-body B decays
in the heavy-quark limit. For the particular case of B decays into a heavy-light final
state such as Dπ, a factorization formula of the form (88) has been used previously
by Politzer and Wise [13]. Although in their work no attempt is made to prove fac-
torization, the underlying physical motivation for their approach was the same as in
our case. The extension of the factorization formula to a wider class of decay modes,
including in particular those with two light mesons in the final state, is however
non-trivial and has been presented here and in [1] for the first time.

We will now set our approach in perspective with previous attempts to tackle
the problem of non-leptonic decays. These can be grouped into three classes: phe-
nomenological models, dynamical approaches, and methods based on classifications
in terms of flavour topologies or Wick contractions. The first class consists of various
formulations and generalizations of the naive factorization hypothesis, which typi-
cally introduce a small set of phenomenological parameters in order to parameterize
important non-factorizable effects. No attempt is made to calculate these parameters
from a fundamental theory. The second class consists of several different approaches
aiming at a dynamical understanding of non-leptonic weak decays starting from QCD
and making a controlled set of approximations. We will briefly discuss the large-Nc

expansion, lattice field theory, QCD sum rules, large-energy effective theories, and
hard-scattering approaches in this category. We also comment on previous treatments
of final-state rescattering phases. The third class of approaches aims at a convenient
parameterization of non-leptonic amplitudes rather than at a dynamical calculation.
To this end, the amplitudes are decomposed into invariant subamplitudes, which
are either associated with certain flavour topologies and classified according to their
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transformation properties under isospin or SU(3) flavour symmetries, or chosen to
correspond to certain Wick contractions of operators in the effective weak Hamilto-
nian, defined in a renormalization-scheme invariant way. Apart from flavour sym-
metry relations, these amplitudes are treated as phenomenological parameters to be
determined from experiment.

7.1 Phenomenological approaches

Here we summarize different formulations and generalizations of the concept of naive
factorization in non-leptonic B decays, taking as an example the decays B̄d → D+π−

and B̄d → D0π0. The non-factorizable effects in these decays can be parameterized
in terms of quantities a1 and a2, respectively. The QCD factorization formula applies
only in the first case and leads to a calculable expression for a1 given in (95), which
is valid to leading power in ΛQCD/mb.

We have already mentioned that for class-I decays into heavy-light final states
(and all decays into two light mesons) the naive factorization model [38, 39, 40],
in which all non-factorizable gluon exchanges are ignored, is contained as the lead-
ing term in our approach. In this model the parameters a1 = C1(µ) + C2(µ)/Nc

and a2 = C2(µ) + C1(µ)/Nc carry a renormalization-scale and -scheme dependence,
which remains uncompensated because the factorized amplitudes multiplying these
quantities are scale and scheme independent. (In this section we adopt the standard
parameterization of the effective weak Hamiltonian. The coefficients C0 and C8 of
the singlet-octet basis used in Sects. 4-6 are related to the standard coefficients by
C0 = C1 + C2/Nc and C8 = 2C2.) Without knowing that “non-factorizable” correc-
tions are actually dominated by hard scattering the scale µ could be of order ΛQCD, in
which case the scale-dependent terms would not be suppressed by any small param-
eter. This indicates that an important aspect of the physics (i.e. “non-factorizable”
exchanges) is missing in this model.

Several phenomenological recipes have been proposed for fixing this deficiency.
Typically, they aim at parameterizing (rather than ignoring) the dominant part of
the non-factorizable corrections by introducing a small number of phenomenological
parameters. To maintain predictive power, it is assumed that these parameters are
universal (i.e. process independent) for classes of decays sharing similar kinematics.
This treatment is known as the “generalized factorization hypothesis”. The first pro-
posal in this direction was the basis of the Bauer-Stech-Wirbel model for non-leptonic
decays [41], in which one sets a1 = C1(mb) + ξ C2(mb) and a2 = C2(mb) + ξ C1(mb)
with the quantity ξ of order 1/Nc treated as a free parameter. A phenomenological
analysis of charm meson decays indicated that setting ξ ≈ 0 provided a successful
description of two-body D decays. This observation found theoretical support in the
framework of a systematic 1/Nc expansion [42]. However, it was soon realized that the
“rule of discarding the 1/Nc terms” would not work in B decays [43, 44]. An equiv-
alent formulation uses the notion of an “effective number of colours”, ξ → 1/N eff

c ,
where typically N eff

c is varied between 2 and infinity [45]. To some extent, the gen-
eralized factorization ansatz was motivated by the large-Nc counting rules of QCD,
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which show that non-factorizable effects are of the same order as the 1/Nc terms kept
in the naive factorization approach. Hence, it was natural to replace these terms
by a more flexible parameterization. However, using the same parameter ξ in the
expressions for a1 and a2, and assuming that ξ should be the same in K, D and B
decays, was an oversimplification lacking any theoretical justification.

A refined version of generalized factorization has been proposed, in which non-
factorizable contributions are classified according to their behaviour in the large-Nc

limit [26]. For B decays one finds the simple relations a1 = 1 + O(1/N 2
c ) and a2 =

C2(mb)+ξ C1(mb)+O(1/N 3
c ), where ξ = 1/Nc+ε8(mb) is related to a non-factorizable

colour-octet matrix element of order 1/Nc, which in general is a process-dependent
quantity [46, 47, 48, 49]. In the next step, the colour-transparency argument [11] was
invoked to argue that for renormalization scales of order mb the process dependence
of this matrix element is expected to be a small effect [26]. This led to a successful
phenomenological description of a large class of Cabibbo-favoured two-bodyB decays.
However, it remained unclear if (and why) a similar treatment should work for more
complicated, rare decay processes, in which penguin operators play an important
role. In the literature, it has often been assumed that the same effective parameter
N eff

c can be used to account for non-factorizable contributions to the matrix elements
of all operators in the effective weak Hamiltonian [50, 51], or that two parameters
N eff

c (LL) and N eff
c (LR), referring to operators with chiral structure (V −A)⊗(V −A)

or (V −A)⊗(V +A) respectively, would suffice to account for these effects [45]. In the
present paper and in our previous work [1], we have shown that even at leading power
in ΛQCD/mb the “non-factorizable” effects in rare B decays have a richer structure
than assumed in these analyses.

Because of the renormalization-scale and -scheme dependence of the Wilson coef-
ficients C1(µ) and C2(µ), the parameters ξ and N eff

c introduced in generalized factor-
ization are unphysical quantities, which carry a scale and scheme dependence in such
a way that the resulting expressions for the quantities a1 and a2 are renormalization-
group invariant. One must therefore be careful when trying to give physical signifi-
cance to the values extracted for ξ and N eff

c from a fit to data [52]. The parameters a1

and a2, however, are physical by definition. In many recent phenomenological anal-
yses based on generalized factorization the authors have tried to avoid the problems
of renormalization-group dependence of the Wilson coefficients by using so-called
“effective, scheme-independent Wilson coefficients” Ceff

i [53, 45, 50, 51, 49]. These
coefficients are related to the original ones by an equation of the form

Ceff
i = Ci(µ) +

αs(µ)

4π

(

γT
V ln

mb

µ
+ rT

V

)

ij

Cj(µ), (260)

where the matrix (. . .)ij contains the ultraviolet logarithms and certain process-
independent parts of the vertex-correction diagrams of the operators in the effective
weak Hamiltonian [54]. (In addition, for i 6= 1, 2 the penguin contractions of the lo-
cal operators were evaluated in perturbation theory and their contributions absorbed
into the definition of the effective coefficients.) These matrices are chosen in such a
way that the resulting expressions for Ceff

i are formally scale and scheme indepen-
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dent. It is important to realize, however, that such a treatment does not achieve
an improvement of the accuracy of naive or generalized factorization in a paramet-
ric way. Non-trivial, process-dependent corrections of the same order as the extra
terms in (260) are neglected. In practice, the definition of the effective coefficients is
nothing but the choice of a particular renormalization scheme V , defined such that
µ = mb and rV = 0. It has also been pointed out that, in general, the values of
the effective coefficients depend on the gauge and infrared regulator, and as such are
unphysical [52]. All of these shortcomings are resolved in our approach, where all
“non-factorizable” terms of leading power are retained.

7.2 Dynamical approaches

Because of the complexity of non-leptonic weak decays, dynamical calculations start-
ing from first principles of QCD have not been very successful so far in producing
useful predictions for the decay amplitudes, or even in providing a semi-quantitative
understanding of the hadronic dynamics involved in these processes. Indeed, most
of the approaches face difficult conceptual problems, which cannot be overcome in a
straightforward way by increasing the level of technical sophistication.

The factorization formula established in the present work changes this situation
in that it provides a systematic basis for a discussion of most non-leptonic B decays
in a well-defined approximation given by the heavy-quark limit, i.e. an expansion in
powers of ΛQCD/mb. In the following we summarize earlier dynamical approaches and
compare them to our results obtained in the heavy-quark limit where appropriate.

7.2.1 Large-Nc expansion

An expansion around the limit of a large number of colours is an important theo-
retical tool in the study of non-perturbative properties of QCD, which in particular
has led to insights into the dynamics of hadronic weak decays. Factorization of
non-leptonic decay amplitudes becomes exact in the large-Nc limit, and hence an
expansion in powers of 1/Nc provides a natural framework in which to discuss the
structure of non-factorizable corrections [42]. For kaon decays, detailed calculations
of non-factorizable effects have been performed by combining the 1/Nc expansion with
methods of chiral perturbation theory [55]. An important outcome of this analysis
was that at subleading order in 1/Nc there are, in general, two types of contributions:
1/Nc terms present in naive factorization (which result from a colour Fierz-reordering
of the operators in the effective Hamiltonian), and non-factorizable effects that are
genuinely non-perturbative. As a consequence, naive factorization, where the second
type of contribution is neglected, cannot be justified theoretically beyond the large-
Nc limit. This observation initiated attempts to generalize the naive factorization
approach by treating the terms of order 1/Nc as phenomenological parameters [41].

The large-Nc counting rules were useful also in the analysis of non-leptonic B
decays, despite the fact that chiral perturbation theory does not apply in this case.
For so-called class-I and class-II decays governed by phenomenological parameters
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a1 ∼ 1 and a2 ∼ 1/Nc, respectively, one can show that

a1 = C1(mb) +O(1/N 2
c ) , a2 = C2(mb) + ξ C1(mb) +O(1/N 3

c ), (261)

where ξ = 1/Nc + ε8(mb) is a non-perturbative, process-dependent hadronic matrix
element of a colour octet-octet operator [26]. In addition to the arguments based
on the heavy-quark limit presented in this paper, this discussion shows that non-
factorizable corrections in class-I decays are generally suppressed by two powers of
1/Nc. The situation is, however, different for other decays, where such a suppression
does not persist. For instance, in class-II decays non-factorizable corrections have the
same 1/Nc scaling as the leading factorizable contributions. On the other hand, our
discussion based on the heavy-quark limit still applies to class-II decays, provided
there are two light mesons in the final state.

7.2.2 Lattice field theory

The evaluation of the matrix elements corresponding to exclusive non-leptonic B
decays represents a major challenge for lattice field theory. No results have been
obtained up to now and new theoretical ideas have to be developed and tested be-
fore amplitudes which are sufficiently precise to be phenomenologically useful can be
computed. Lattice determinations of matrix elements traditionally follow from com-
putations of correlation functions of two or more local operators, separated by large
time distances in order to isolate the lightest hadrons with the required quantum
numbers. In general, therefore, energy is not conserved in such correlation functions.
For example, if we consider a decay of a B meson at rest into two hadrons, then the
lowest energy final state is the one in which the two hadrons are also both at rest.
The correlation functions at large time separations are therefore dominated by the
unphysical process of a B meson decaying into two hadrons, all at rest.

For kaon decays the use of chiral perturbation theory allows one to estimate
the physical K → ππ amplitude from the computed value of the matrix element
obtained with all three particles at rest (for a theoretical introduction and references
to the original literature see e.g. [56], and for a review of recent numerical results see
[57]). For B decays this is clearly not applicable. Moreover for K → ππ decays the
momenta of the final-state pions are sufficiently small that one can hope to compute
the matrix elements corresponding to physical kinematics in the foreseeable future
(see for example [58] for a discussion of the applications of finite-volume techniques
to kaon decays).

When, as in physical decay amplitudes, the two final-state hadrons have non-
zero momenta, final-state interactions are present and the corresponding scattering
phases need to be evaluated. There is considerable effort currently being devoted
to developing efficient techniques for the computation of scattering phases in lattice
simulations (which are performed in Euclidean space so that the dependence of the
correlation functions on the scattering phases is different than in Minkowski space),
with a realistic expectation of success, at least for kaon decays [59, 60].

It is an intriguing question whether the results of this paper might be potentially
helpful for lattice computations of the amplitudes for exclusive B meson non-leptonic
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decays. Since we have shown above that the strong phases in leading order of the
heavy-quark expansion are perturbative, it should be investigated whether rescat-
tering effects are sufficiently small to enable the extraction of the amplitude into
final-state hadrons with non-zero momenta. At least for those B decays in which
penguin diagrams do not contribute significantly, this becomes a realistic and inter-
esting possibility (although extrapolations in the mass of the b quark would have to
be performed). This can be checked by studying the time behaviour of the correla-
tion functions to see if it is indeed given by energies corresponding to hadrons with
the expected non-zero momentum. For decays in which penguin diagrams contribute
significantly there remain many technical difficulties. These are being studied in-
tensively for K → ππ decays, and, before turning to B decays, one needs first to
establish that these kaon decays can be controlled.

7.2.3 QCD sum rules

QCD sum rules provide a powerful field-theoretic approach with which to study the
properties of hadronic bound states, incorporating essential non-perturbative features
of QCD, such as chiral symmetry breaking, vacuum condensates, unitarity and dis-
persion relations. They have been used extensively to compute the masses, decay
constants, form factors and other strong-interaction couplings of mesons and baryons
[61]. In many areas, sum rules have been established as a serious competitor to lattice
gauge theory computations.

QCD sum rules have also been applied to the difficult problem of non-leptonic
weak decays. The first such applications were presented in the pioneering work by
Blok and Shifman dealing with decays of charm mesons [62]. Later, the same authors
studied non-factorizable effects in B → Dπ decays and identified a long-distance,
non-factorizable contribution to the decay amplitude which shows a tendency to
reduce the 1/Nc terms arising in naive factorization [63]. In terms of the parameter
ξ introduced earlier in this section, they found that ξ = 1/Nc − x · 3λ2/(4π

2f 2
π),

where λ2 ≈ 0.12GeV2 is determined from the B-B∗ mass splitting, and x ≈ 1 is a
parameter of the model. Note that the presence of such a non-perturbative term at
leading power would contradict the factorization formula (4), according to which ξ
is calculable up to corrections of order ΛQCD/mb. (With the definition of ξ above,
its value can be determined from (95).) The resolution is that in [63] the authors
worked in a special kinematic regime, where the pion energy Eπ in the B-meson rest
frame is assumed to stay of order ΛQCD as mb → ∞. However, this would require
that mb −mc = O(ΛQCD) in the heavy-quark limit. This scaling is different from the
one we assumed in the derivation of the factorization formula, which crucially relies
on having Eπ � ΛQCD.

Khodjamirian and Rückl have applied QCD sum rules to the study of non-factor-
izable effects in the decays B → J/ψKS, first using the conventional approach based
on three-point vacuum correlation functions [27], and more recently using the method
of light-cone sum rules [64]. Earlier, Halperin had applied light-cone sum rules to
estimate soft non-factorizable gluon exchanges in the colour-suppressed decay B̄d →
D0π0 [65].
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A problem common to all QCD sum-rule calculations of non-leptonic decay am-
plitudes is that, because of the technical complexity, up to now “non-factorizable”
corrections to the amplitudes arising from hard gluon exchange have not been in-
cluded. These are, however, the leading “non-factorizable” effects in the heavy-quark
limit. The non-factorizable contributions which have been included are those due to
vacuum condensates or higher-dimensional form factors involving gluon fields, which
correspond to formally subleading corrections in the heavy-quark limit. As in the lat-
tice calculations described above, in addition to technical problems, QCD sum rule
applications to non-leptonic decays also face conceptual limitations. In particular, it
will not be possible to obtain a realistic description of final-state interactions if the
projection on the external hadron states is, as is usually the case, performed using
an ad hoc continuum subtraction.

We also mention that the sum rule technique has not yet been applied to heavy-
light final states in which the light meson is emitted and energetic, as well as to decays
into two light particles, because the current that couples to the emitted meson cannot
be expanded in a series of local operators in these cases. These are exactly the cases
for which the theoretical description discussed in this paper is most useful.

7.2.4 Large-energy effective theories

We have seen that the physical principle of colour transparency plays an important
role in our approach, as it implies a systematic cancellation of soft divergences in
the “non-factorizable” diagrams. The notion that colour transparency would imply
an approximate factorization (in the sense that a1 is close to 1) in energetic two-
body B decays in which the emission particle is a light meson was introduced by
Bjorken [11] and subsequently used to argue in favour of an approximate universality
of the parameters ai in energetic B decays [26]. Dugan and Grinstein made a first
step towards formalizing the concept of colour transparency by introducing a “large-
energy effective theory” (LEET) to describe the soft interactions of gluons with a
pair of fast-moving quarks inside a pion [12]. The effective theory was derived in
analogy with heavy-quark effective theory by considering the Feynman rule for the
gluon-quark coupling in the soft limit kµ = O(ΛQCD), k · pπ = O(ΛQCDmb), in much
the same way as we did in Sect. 4.2. However, since collinear gluon exchanges provide
another source of infrared singularities, the decoupling of soft gluons is not sufficient
to establish factorization.

The LEET gives, essentially, an operator description of what is often called the
eikonal approximation for the coupling of soft particles to energetic ones. But since
the eikonal approximation does not apply to hard-collinear lines, it cannot be univer-
sally used in infrared factorization proofs for hard processes. This is a very general
feature of all factorization theorems in QCD for processes which involve (nearly)
massless, hard particles. It raises the important conceptual question of whether it is
possible to perform a consistent matching of QCD onto the LEET, in other words,
whether the LEET correctly represents the long-distance dynamics of QCD in B
decays into at least one light particle. Due to collinear singularities, the answer to
this question is negative. (In a somewhat different language, this point was already
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discussed in [66].) In the particular situation of non-leptonic B decays, we should
distinguish collinear singularities which cancel in non-leptonic decay amplitudes from
those which do not. For example, the non-factorizable collinear singularities cancel,
and this is crucial for the validity of (4), but because of their cancellation they do not
invalidate a description provided by the LEET. On the other hand, as seen explicitly
in Sect. 5, factorizable collinear singularities do not cancel. This is perfectly consistent
with (4), since these singularities can be factorized into the light-cone distribution
amplitudes. However, one cannot introduce light-cone distribution amplitudes in the
context of the LEET effective Lagrangian, and therefore the LEET provides no means
for absorbing these collinear singularities into non-perturbative parameters. This is
a particular example of the statement that the LEET is not the correct low-energy
theory for non-leptonic B decays.

Let us be more specific and compare our result for the “non-factorizable” correc-
tions to the B̄d → D+π− decay amplitude with the corresponding results obtained
by Dugan and Grinstein in [12]. Using the LEET, these authors have resummed
large logarithms in two different kinematic regimes: mb

>∼ mc � Eπ (case 1), and
mb

>∼ Eπ � mc (case 2). Because of the kinematic relation 1 − 2Eπ/mb ≈ (mc/mb)
2

it follows that mc/mb = O(1) in case 1, whereas Eπ/mb = O(1) in case 2. Hence, for
consistency the ratios αs(mc)/αs(mb) (case 1) or αs(Eπ)/αs(mb) (case 2) must be set
to 1 in the leading-logarithmic approximation. With these replacements the results
of Dugan and Grinstein precisely correspond to the result of naive factorization with
the Wilson coefficients evaluated at a scale of order mb. In the present work, we have
developed a general formalism that allows us to calculate in a systematic way the
leading non-trivial corrections to this picture.

Aglietti and Corbò have argued that the correct way of dealing with the collinear
singularities missed in the Dugan-Grinstein approach is to consider, instead of the
exclusive decay B → Dπ, a semi-inclusive process such as B → D + jet [67]. Then
the collinear singularities may cancel by virtue of the KLN theorem, and the LEET
can be applied to prove the factorization of the soft contributions. Here we have
shown that in the heavy-quark limit a stronger form of factorization holds even for
the exclusive process B → Dπ. The reason for this is the cancellation of collinear
singularities in the sum of all “non-factorizable” diagrams.

Another interesting analysis related to our work is a study of B → Dπ decays
by Donoghue and Petrov [68], in which they calculate the non-factorizable one-gluon
corrections in a background gluon field. Their ansatz is equivalent to the calculation
of soft non-factorizable one-gluon contributions performed in Sect. 4.3. They find
that this contribution vanishes exactly. This contradicts our result (75), which shows
that the resulting contribution is power suppressed in ΛQCD/mb but not vanishing.
The origin of this discrepancy is that the Lorentz decomposition of a certain matrix
element in Eq. (22) of [68] misses a term proportional to the ε-tensor, which gives
rise to the non-vanishing result.
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7.2.5 Hard-scattering approaches

Methods familiar from the hard-scattering approach play an important role in our
analysis. Yet, as we have emphasized the presence of a soft spectator quark in the B
meson prevents us from describing its weak decays exclusively using the language of
perturbative QCD. In fact, the semi-leptonic form factors governing B → M decays
receive dominant soft contributions by power counting. This is evident for heavy-to-
heavy transitions, where the dominance of the soft contribution is the basis for the
validity of an approximate heavy-quark symmetry and leads to the construction of
the heavy-quark effective theory [69, 70, 71, 33]. Only at very large recoil, such that
v · v′ ∼ mb/ΛQCD, are the form factors dominated by hard gluon exchange [72].

For heavy-to-light transitions hard and soft contributions have the same power
behaviour in ΛQCD/mb, as discussed in Sect. 3.2, so the soft contribution is a leading
effect again [16, 10, 73, 74]. Contrary to familiar applications of the hard-scattering
approach, such as to the pion form factor at large momentum transfer, the endpoint
suppression of the light-cone distribution amplitude of the light meson is not sufficient
to render the soft contribution power suppressed. (In fact, the hard gluon correction

is suppressed by one power of αs(
√

ΛQCDmb) relative to the soft one.) This discus-
sion refers to counting powers only. It ignores the possibility that a resummation of
Sudakov logarithms may suppress the soft contribution beyond naive power count-
ing (see e.g. [20]). This possibility deserves further investigation. In this paper we
have taken the point of view that Sudakov suppression is not sufficiently effective
for realistic B mesons and showed that a useful factorization formula holds even in
the presence of soft contributions to the form factor. This also provides a common
framework to discuss decays into light-light final states and heavy-light final states,
while the hard-scattering approach is never an option for heavy-light final states.

Several authors have analyzed exclusive, semi-leptonic and non-leptonic B decays
using a perturbative hard-scattering approach [17, 18, 75, 76, 77, 78, 79, 80, 81]. The
basic assumption in these studies is that non-leptonic B decays are indeed dominated
by hard gluon exchange, either because soft exchanges are Sudakov suppressed, or
because they are negligible for other dynamical reasons. A systematic formulation of
this approach can be found in [79, 82], which adapts the “modified hard-scattering
approach” of [83] to the case of non-leptonic B decays. The decay amplitudes are
expressed as a convolution of a hard-scattering amplitude, containing a resummed
Sudakov factor, and meson wave functions, e.g.

A(B → ππ) = T ∗ ΦB ∗ Φπ ∗ Φπ. (262)

The structure of this equation is similar to the hard spectator-interaction term in
(4), because the hard-scattering approach assumes that the spectator quark in the
B meson always participates in a hard interaction. However, here T also contains
a convolution in impact parameter space with a Sudakov form factor and therefore
takes a more complicated form than in our approach. Because the hard subamplitudes
are evaluated with on-shell quark states, each term in the factorization formula is
separately gauge invariant (as in our approach). The authors of [82] also observed the
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cancellation of the infrared double poles (∼ 1/ε2IR) in the sum of all “non-factorizable”
diagrams. In their scheme, the remaining single poles are absorbed into the definition
of the B-meson wave function.

Although this approach shares some similarities with our method, and is intrin-
sically self-consistent, it is important to note that it is based – in addition to the
heavy-quark limit – on the further assumption that soft contributions to the B →M
form factors are negligible. As mentioned in Sect. 3.2 and above, the theoretical
framework proposed in this work is more general. It does in fact include the (modi-
fied) hard-scattering approach as the special case when the form factors that appear
as parameters in (4) are assumed to be perturbatively calculable. This amounts to
a slightly different power-counting scheme than the one adopted throughout our dis-
cussion, since for instance the leading-order diagram in Fig. 4 is absent altogether.
(It does not contain a hard interaction with the spectator quark.) As a consequence
the form-factor term in the factorization formula is suppressed relative to the hard
spectator interaction. In particular, this means that naive factorization is not recov-
ered in any limit, because the “non-factorizable” hard spectator interaction is always
as important as the form-factor term.

7.2.6 Models of final-state interactions

Whereas final-state interactions may be of little importance in Cabibbo-allowed B
decays into heavy-light final states such as B → Dπ, their understanding is crucial
for studies of CP violation in rare B decays, such as decays into two light mesons.
The reason is that interference of at least two contributions to the decay amplitude
which differ in both their weak (CP-violating) and strong (rescattering) phases is
necessary for observing a CP-violating rate asymmetry. Hence, in the study of direct
CP-violation final-state interactions are a crucial ingredient, and a theoretical handle
on the corresponding strong-interaction phases is of great importance. In the recent
literature there have been numerous attempts to estimate these phases in decays such
as B → ππ or B → πK, where they directly affect the determination of the angles α
and γ of the unitarity triangle [84, 85, 86, 87, 88, 89, 90, 91]. Our approach provides
a first systematic attempt to calculate these phases in a heavy-quark expansion.

We have stressed in Sect. 3.4 that the dominance of hard rescattering in the
heavy-quark limit justifies the use of both a partonic and a hadronic language when
discussing final-state rescattering effects. However, the large number of intermediate
states makes it intractable to observe systematic cancellations using a hadronic de-
scription. (An example of this is familiar from other applications of the heavy-quark
expansion such as to the inclusive semi-leptonic decay width of a heavy quark. Here
the leading term is given by the free quark decay, but the attempt to reproduce
this obvious result by summing exclusive modes has been successful only in solvable
two-dimensional toy models, but not in QCD [92, 93].) In many phenomenological
discussions of final-state interactions, it has been assumed that such cancellations are
absent. It is then reasonable to consider the size of rescattering effects for a subset
of intermediate states (such as the two-body states), assuming that this will provide
a correct order-of-magnitude estimate for the total rescattering effect. This strategy
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underlies all estimates of final-state phases using dispersion relations and Regge phe-
nomenology [22, 89, 91]. Such approaches suggest that soft rescattering phases do
not vanish in the heavy-quark limit. However, they also leave open the possibility of
systematic cancellations.

In the present work, we have shown (implicitly) that systematic cancellations do
indeed occur in the sum over all intermediate states. It is worth recalling that similar
infrared cancellations are not uncommon for hard processes, such as e+e− → hadrons
at large center-of-mass energy. In a somewhat more remote context, cancellations
among many individually large contributions from hadronic intermediate states are
also known to occur for hadronic loop corrections to the Okubo-Zweig-Iizuka (OZI)
rule [94]. In our case, the underlying physical reason is that the sum over all states
is accurately represented by a qq̄ fluctuation in the emitted light meson of small
transverse size of order 1/mb. Because the qq̄ pair is small, the physical picture
of rescattering is very different from elastic ππ scattering – and hence the Regge
phenomenology applied to B decays is difficult to justify in the heavy-quark limit. We
stress that this important result of our analysis is not in conflict with the findings of
[22] that individual intermediate states give rise to large rescattering effects. However,
we have identified a dynamical mechanism for systematic cancellations among all
intermediate states that contribute to the decay. Because of these cancellations,
the numerical estimates for rescattering effects and final-state phases obtained using
Regge models are likely to overestimate the correct size of the effects.

An alternative proposal to deal with the large number of accessible hadronic in-
termediate states in B decays was made by Suzuki and Wolfenstein [95], who stress
the importance of multi-channel final-state interactions. The key element of their
analysis is the postulate of a randomness (under variation of n) of the relative strong
phases between the weak decay matrix elements MB→n and the elements Snf of the
strong-interaction S matrix, which connect an intermediate state n to a particular
final state f . The elastic contribution Sff is again estimated on the basis of pomeron
exchange. Although the randomness assumption implies some degree of cancella-
tions at a statistical level, it does not incorporate the QCD dynamics that results in
systematic cancellations of the kind observed in the present work.

7.3 Classifications in terms of flavour topologies or Wick con-
tractions

In the absence of reliable field-theoretic methods for calculating non-leptonic weak
decay amplitudes, strategies have been developed to classify the various contribu-
tions to these amplitudes in a convenient way, and then to use symmetry arguments
or “plausible dynamical assumptions” to derive relations between different decay pro-
cesses. The most common classification scheme is based on SU(3) flavour topologies,
providing a catalogue of invariant amplitudes classified according to their transfor-
mation properties under SU(3) flavour symmetry [96, 97, 98, 99]. Sometimes, SU(3)
subgroups such as isospin, U- or V-spin provide useful classification schemes, too. Ne-
glecting flavour-symmetry breaking, it is then possible to derive model-independent
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Table 7: Summary of the scaling properties of the various amplitudes contributing
to B → Dπ and B → ππ decays with respect to the large-Nc and heavy-quark limits
(Λ ≡ ΛQCD). The scaling laws for the leading hard (and computable) and soft (and
incalculable) non-factorizable corrections to naive factorization are given separately.
The scaling laws refer to the amplitude without a factor GFfπm

2
B.

Topology E1 E2 A2 P1, P
GIM
1 P3, P

GIM
3

Large-Nc counting 1 1/Nc 1/Nc 1/Nc 1/N2
c

B → Dπ:

Hard non-fact. cor. 1 (Λ/mb)
2 Λ/mb — —

Soft non-fact. cor. Λ/mb (Λ/mb)
2 Λ/mb — —

B → ππ:

Hard non-fact. cor. (Λ/mb)
3/2 (Λ/mb)

3/2 (Λ/mb)
5/2 (Λ/mb)

3/2 (Λ/mb)
5/2

Soft non-fact. cor. (Λ/mb)
5/2 (Λ/mb)

5/2 (Λ/mb)
5/2 (Λ/mb)

5/2 (Λ/mb)
5/2

relations between different decay amplitudes (e.g. isospin triangles or more compli-
cated constructions).

More recently, some authors have pointed out that the diagrammatic approach,
though perfectly correct, may not provide the most suitable classification scheme,
because the amplitudes defined there are in general not renormalization-scheme in-
variant. It is possible, however, to modify the approach in order to deal with this
problem. To this end, one classifies the various contributions to non-leptonic ampli-
tudes in terms of Wick contractions of the various operators in the effective weak
Hamiltonian [100, 86]. This can be done in such a way that operators that mix under
renormalization are grouped together. It has been argued that some Wick contrac-
tions that had previously been neglected may play an important role in some cases.
In particular, the so-called “charming penguins”, referring to penguin contractions of
four-quark operators containing a cc̄ pair of quark fields, may be of relevance for many
rare B decays [100, 101]. A complete classification of all possible Wick contractions
to two-body hadronic B decays can be found in [102].

In their most general form, such complete parameterizations are of a limited use
for phenomenological analyses, since they do not provide any dynamical insight into
the underlying strong-interaction phenomena governing non-leptonic decays. For in-
stance, in [102] the authors define up to fourteen process-dependent phenomenological
parameters for a single B decay. Only when combined with a dynamical approach
such as the heavy-quark expansion presented in the present work, one can make state-
ments about the relative importance of these parameters. To illustrate this point,
we summarize in Table 7 the properties of the various amplitudes defined in terms
of Wick contractions of the operators relevant to B → Dπ and B → ππ decays, as
defined by Buras and Silvestrini [102]. In their notation, E1 and E2 are “exchange
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amplitudes”, A2 are “annihilation amplitudes”, P1 (P3) are “penguin (annihilation)
amplitudes”, and PGIM

1 (PGIM
3 ) are “GIM-penguin (annihilation) amplitudes”. There

are many other amplitudes defined in this reference, which however are not relevant
to our discussion here. The table shows that in B → Dπ decays the exchange ampli-
tude E1 is parametrically enhanced with respect to the other amplitudes, and that
the “non-factorizable” contributions to this amplitude are calculable in perturbation
theory. This allows us to obtain model-independent predictions for the B̄d → D+π−

and B− → D0π− decay amplitudes in the heavy-quark limit. On the other hand,
since only E2 and A2 contribute to the B̄d → D0π0 decay amplitude, we do not
obtain a model-independent prediction in this case. In the case of B → ππ decays a
significantly larger number of amplitudes contributes. We find that the annihilation
amplitudes A2, P3 and PGIM

3 are power suppressed, whereas all other amplitudes are
of the same order in the heavy-quark expansion and only receive calculable “non-
factorizable” contributions at leading power.

8 Conclusion

With the recent commissioning of the B factories and the planned emphasis on heavy-
flavour physics in future collider experiments, the role of B decays in providing fun-
damental tests of the standard model and potential signatures of new physics will
continue to grow. In many cases the principal source of systematic uncertainty is a
theoretical one, namely our inability to quantify the non-perturbative QCD effects
present in these decays. This is true, in particular, for almost all measurements of
CP violation at the B factories. In this paper we have presented a rigorous frame-
work for the evaluation of strong-interaction effects for a large class of exclusive,
two-body non-leptonic decays of B mesons. Our main results are contained in the
factorization formula (4), which expresses the amplitudes for these decays in terms
of experimentally measurable semi-leptonic form factors, hadronic light-cone distri-
bution amplitudes, and hard-scattering functions that are calculable in perturbative
QCD. For the first time, therefore, we have a well founded field-theoretic basis for
phenomenological studies of exclusive hadronic B decays, and a formal justification
for the ideas of factorization. In this work we have focused on B → Dπ decays. A de-
tailed discussion of B decays into two light mesons will be presented in a forthcoming
paper.

It is our belief that the factorization formula (4) will form the foundation for future
phenomenological studies of non-leptonic two-body decays of B mesons. We stress,
however, that a considerable amount of conceptual work remains to be completed.
This includes proving the validity of the factorization formula to all orders in pertur-
bation theory. In particular, the two-loop proof for heavy-light final states presented
in this paper must be extended to the more complicated case of B decays into final
states containing two light mesons. Next, it will be important to investigate better
the limitations on the numerical precision of the factorization formula, which are valid
in the formal heavy-quark limit. We have presented some preliminary estimates of
power-suppressed effects in the present work, but a more complete analysis would be
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desirable. In particular, for rare B decays into two light mesons it will be important
to understand the role of chirally-enhanced power corrections. Finally, we mention
that at present there are still large uncertainties associated with the description of
the hard spectator interactions, which enter the factorization formula for B decays
into two light mesons. Some of these uncertainties are related to the fact that only
little in known about the light-cone structure of heavy mesons and the properties of
their wave functions.

Theoretical investigations along these lines should be pursued with great vigour.
We are confident that, ultimately, this research will result in a theory of non-leptonic
B decays, which should be as useful for this area of heavy-flavour physics as the
large-mb limit and heavy-quark effective theory were for the phenomenology of semi-
leptonic weak decays.

Note added: While this paper has been written, Ref. [103] appeared, in which the
matrix elements for B̄d → D(∗)π− are also computed to next-to-leading order. The
result for the symmetric part of the hard-scattering kernel disagrees with our result
(80) and (83). (The asymmetric part of the kernel is not needed for the pion final
state and has not been computed in [103].) The correct result is obtained if the sign
of the imaginary parts in f1(x) and g1(x) defined in [103] is inverted, and a term
−r2 ln r2 is added to the square bracket in the expression for f1(x).
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[67] U. Aglietti and G. Corbò, Int. J. Mod. Phys. A15 (2000) 363; Phys. Lett. B431
(1998) 166.

[68] J.F. Donoghue and A.A. Petrov, Phys. Lett. B393 (1997) 149.

[69] E. Eichten and B. Hill, Phys. Lett. B234 (1990) 511.

[70] B. Grinstein, Nucl. Phys. B339 (1990) 253.

[71] H. Georgi, Phys. Lett. B240 (1990) 447.

[72] A.G. Grozin and M. Neubert, Phys. Rev. D55 (1997) 272.

[73] J. Charles et al., Phys. Rev. D60 (1999) 014001; Phys. Lett. B451 (1999) 187.

[74] T. Feldmann and P. Kroll, Eur. Phys. J. C12 (2000) 99.

[75] H. Simma and D. Wyler, Phys. Lett. B272 (1991) 395.

[76] C.E. Carlson and J. Milana, Phys. Lett. B301 (1993) 237.

[77] B.F. Ward, Phys. Rev. D51 (1995) 6253.

[78] M. Dahm, R. Jakob and P. Kroll, Z. Phys. C68 (1995) 595.

[79] C.-H.V. Chang and H.-n. Li, Phys. Rev. D55 (1997) 5577;
T.-W. Yeh and H.-n. Li, Phys. Rev. D56 (1997) 1615.

[80] L.-B. Guo, L.-S. Liu and D.-S. Du, J. Phys. G25 (1999) 1.
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