
EXT-2000-158
01/12/1999

F
in
ite

tim
e
b
low

-u
p
fo
r
th
e
Y
a
n
g
-M

ills
h
ea
t


ow

in

h
ig
h
er

d
im

en
sio

n
s

J
o
sep

h
F
.
G
ro
to
w
sk
i

A
b
s
t
r
a
c
t

W
e
con

sid
er

th
e
L
2-grad

ien
t


ow

asso
ciated

w
ith

th
e
Y
an

g-M
ills

fu
n
ction

al,

th
e
so
-called

Y
an

g-M
ills

h
eat



ow

.
In

th
e
settin

g
of

a
triv

ial
p
rin

cip
al
S
O
(
n
)-

b
u
n
d
le

ov
er

R
n
in

d
im

en
sion

n
g
reater

th
an

4,
w
e
sh
ow

b
low

-u
p
in

�
n
ite

tim
e

for
a
class

of
S
O
(
n
)-eq

u
ivarian

t
in
itial

con
n
ection

s.

1
In
tr
o
d
u
c
tio

n

W
e
let

E
d
en
ote

a
p
rin

cip
al
�
b
re

b
u
n
d
le
over

an
n
-d
im

en
sion

al
R
iem

an
n
ian

m
an
ifold

M
,
w
ith

stru
ctu

re
grou

p
G
,
a
sem

i-sim
p
le

L
ie

grou
p
,
an
d
can

on
ical

p
ro
jection

�
.

W
e
d
en
ote

b
y
G
th
e
L
ie

algeb
ra

of
G
,
an
d
b
y
[�;�]

its
P
oisson

b
racket.

A
(sm

o
oth

)
con

n
ection

on
E

is
a
(sm

o
oth

)
m
ap

from
M

in
to

A
d
E


T
�M

,
w
h
ere

A
d
E

d
en
otes

th
e
ad
join

t
b
u
n
d
le
to

E
.
L
o
cally,

a
con

n
ection

can
b
e
con

sid
ered

as
aG

-valu
ed

1-form
A

d
e�
n
ed

on
th
e
co
ord

in
ate

p
atch

es
U
�
of

M
,
A

=
A
� (x

)
d
x
�,

w
ith

A
�
:
U
�
!

G
,

i.e.
for

v
2
T
x M

w
e
h
ave

A
(x
;u
)
=
A
� (x

)v
�.

A
(sm

o
oth

)
gau

ge
tran

sform
ation

is
a

(sm
o
oth

)
section

of
th
e
b
u
n
d
le
A
u
t(E

)
of
au
tom

orp
h
ism

s
of
E
actin

g
on

con
n
ection

s
b
y

con
ju
gation

:
a
gau

ge
tran

sform
ation

g
:
U
� \

U
� !

G
ch
an
gin

g
co
ord

in
ates

on
�
b
res

in
th
e
in
tersection

of
th
e
triv

ialization
s
�
�
1(U

� )
an
d
�
�
1(U

� )
acts

on
A
as

d
e�
n
ed

ab
ove

b
y

g
�A

�
=
g
�
1A

� g
+
g
�
1@

� g
:

(1.1)

T
h
e
cu
rvatu

re
F
A
of
a
con

n
ection

A
is
d
e�
n
ed

b
y
F
A
=
D
A
A
,
w
h
ere

D
A
is
th
e
covarian

t
d
erivative

asso
ciated

w
ith

A
,
an
d
is
given

lo
cally

b
y
th
eG

-valu
ed

2-form
F
�
� d
x
�d
x
�,

w
h
ere

F
�
�
=
@
� A

� �
@
� A

�
+
[A

� ;A
� ]:

(1.2)

T
h
e
cu
rvatu

re
tran

sform
s
u
n
d
er

g
v
ia

g
�F

�
�
=
g
�
1F

�
� g
:

(1.3)

1



This means that the Yang-Mills functional (or Yang-Mills action) F , de�ned by

F(A) =
Z
M
F��F

�� dvolM ; (1.4)

is invariant under gauge transformations. Critical points of F are Yang-Mills connec-
tions; they solve the system

D�F�� = 0 (1.5)

where D� = @� + [A�; �].
One approach to �nding Yang-Mills connections is to study the L2- gradient 
ow as-
sociated with F , the so-called Yang-Mills heat 
ow, i.e. the initial value problem

@tA�(t; x) = �D�F��(t; x) ;
A�(0; x) = A0�(x)

)
(1.6)

for some given initial connection A0.
In this paper we wish to concentrate on one particular aspect of the study of (1.6),
and refer the reader to [St1] and the references contained therein for a discussion of
other results. Precisely, we wish to consider the phenomenon of blow-up for solutions
of (1.6), i.e. the question of whether smooth initial data A0 can be found such that the
solution to (1.6) fails to be smooth after some �nite, positive time T . Before discussing
existing results concerning blow-up for solutions of (1.6), it is instructive to consider
this phenomenon for a related problem, namely that of the harmonic map heat-
ow.
The harmonic map heat 
ow between Riemannian manifolds X and N is the L2-
gradient 
ow associated with the energy functional

E(u) =
Z
X
jDuj2 dvolX (1.7)

for u : X ! N (where for convenience, N is taken as isometrically embedded in
R
k for some k); critical points of E are called harmonic maps. We refer the reader
to the reports [EL1], [EL2] and the article [St2] for general results concerning this
evolution problem, and concentrate again on the aspect of blow-up; we note, however
that the success of harmonic map heat-
ow in producing harmonic maps in a variety
of circumstances (meaning appropriate restrictions on X, N and the initial map), as
well as the large number of interesting problems arising from the system (including
existence and uniqueness for various types of weak solutions, rates of convergence or
blow-up as applicable) was one of the original motivations for considering the evolution
problem (1.6).
The �rst examples of �nite-time blow-up for the harmonic map heat 
ow were given
by Coron and Ghidaglia ([CG]), who showed that this occurred for certain symmetric
initial data for the heat 
ow from R

n or Sn to Sn, for n � 3. It was also shown by
Chen and Ding ([CD]) that, for dimX � 3, �nite-time blow-up is guaranteed if the
initial map u0 is homotopically nontrivial and has su�ciently small energy, provided
that the homotopy class of u0 contains maps of arbitrarily small energy. The situation
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dimX = 2 is particularly interesting in the study of harmonic maps and the harmonic
map heat 
ow, due to the fact that the energy functional is conformally invariant in
this case. It was shown by Chang, Ding and Ye ([CDY]) that blow-up can occur in
this setting.
The Yang-Mills functional F is conformally invariant if dimM = 4. R�ade showed in
[R] that, in dimensions 2 and 3, the system (1.6) will not blow up. In dimension 4 the
situation appears to be even more delicate than the analogous case of the harmonic
map heat 
ow from a 2-dimensional manifold, and the general question of whether
blow-up can occur remains open; however Schlatter, Struwe and Tahvildah-Zadeh have
recently shown in [SST] that, under a symmetry Ansatz which is the natural analogue
of that that considered in [CDY], solutions to (1.6) will not blow up in �nite time.
For dimM � 5, Naito gave the �rst proof of �nite-time blow-up, with an approach
analogous to that of [CD]: he showed

Theorem 1.1 ([N, Theorem 1.3]) Let G � SO(n), for n � 5. For E a nontrivial
principal G-bundle over Sn there exists "1 > 0 such that jjF (A0)jjL2(Sn) < "1 implies
that the solution of (1.6) blows up in �nite time.

The purpose of the current paper is to give another approach to showing the occurence
of �nite-time blow-up in dimensions 5 and above. In contrast to [N] we show this in the
case of a trivial bundle (over Rn); i.e. our blow-up occurs as a result of the geometric
nature of the symmetry and the analytic properties of the initial data, rather than
being induced by topology. In addition our arguments are simpler than those in [N].
Our basic strategy is to �nd an analogue of the procedure used in [CG] for harmonic
maps in order to produce �nite-time blow-up in the setting of a trivial principal SO(n)-
bundle over Rn for a suitable SO(n)-equivariant initial connection; see Theorem 2.1 for
a precise statement.
The remainder of the paper is organized as follows: in Section 2 we describe the
symmetry we use, and state our main theorem, Theorem 2.1; in Section 3 we show how
(1.6) reduces to a scalar-valued initial value problem; and in Section 4 we complete the
proof of the main theorem.

Acknowledgements
The author wishes to thank Thomas Friedrich, Pedro Paulo Schirmer and Jalal Shatah
for helpful discussions. This work was partially supported by SFB288 \Di�erentialge-
ometrie und Quantenphysik" of the DFG (German Research Association).

2 Equivariant connections

The situation we consider is similar to that given in [CST, Section 1.2], cf. also [SST,
Section 2], [W]; in all cases (including the current paper) the authors draw on earlier
results of [Du] and [I].
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We assume that a symmetry group S acts on M , the action 
 : S �M ! M being
given by (s; x) 7! sx. We further suppose that 
 lifts to an action 
 on the bundle E,
i.e. 
 : S � E ! E, such that: 
 � � = � � 
, i.e.


(s; �(z)) = �(
(s; z)) for all s 2 S, z 2 E ;

and such that 
 commutes with the right action of G on E. In this situation we
have from [I, Section 2] (cf. [KN, Theorem 11.5]) the existence of a homomorphism
� : S ! G such that, for U a neighbourhood of x 2 M , on the trivialization ��1(U)
we have


(s; (y; g)) = (sy; �(s)g)) for all s 2 S, y 2 U and g 2 G.

The action 
 induces an action on connections. If this action has the e�ect of a (global)
gauge transformation on the local G-valued 1-forms A de�ned in the introduction, i.e.
if

A(x; v) = (�(s))�A(sx; s�v) for all s 2 S, x 2M and v 2 TxM ,

(where here s� : TxM ! TsxM is the push-forward s�v = d
(s; v)), then the connection
is called equivariant with respect to the S-action 
.
In particular in this paper we consider the situation M = R

n , n � 5, S = G = SO(n)
and E is the trivial bundle Rn � SO(n). In this case the homomorphism � is simply
idG, and leads, as in [Du], to A being given by

A�(x) =
�h(r)
r2

��(x) (2.1)

for r = jxj, and h a real-valued function on [0;1). Here the f��gn(n�1)=2�=1 are a basis
for the Lie-algebra so(n), given by

�ij� (x) = �i�x
j � �j�x

i for 1 � i; j;� n. (2.2)

We will refer to connections satisfying (2.1) simply as SO(n)-equivariant connections.
We are now in a position to state the main result of the paper.

Theorem 2.1 Fix n � 5, and consider the trivial SO(n)-bundle over R
n . Consider

an SO(n)-equivariant connection given by

A0 = A0� dx
� ; (2.3)

with

A0�(x) =
�h0(r)
r2

��(x) (2.4)

for r = jxj, h0 : [0;1)! R and f��gn(n�1)=2i=1 a basis for the Lie algebra so(n) as given
by (2.2). Then there exists smooth h0 such that the Yang-Mills action of the curvature
of A0 is �nite, and such that the Yang-Mills heat 
ow with initial data A0 blows up in
�nite time.
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3 The reduced equation

We �rst note that if we have a smooth SO(n)-equivariant solution of the Yang-Mills
heat 
ow (1.6) on [0; T ) then a straightforward calculation (cf. [Du, Section 3], [W,
Chapter 2]), shows that the system can be rewritten as

���(x)r�2ht = ���(x)r�2hrr + (n� 3)
hr
r
� (n� 2)

h(h� 1)(h� 2)

r2
;

���(x)r�2h(0; r) = ���(x)r�2h0(r)

9=;(3.1)
for some smooth h : [0; T )� [0;1)! R and h0 : [0;1)! R. Setting

`h = hrr + (n� 3)
hr
r
� (n� 2)

h(h� 1)(h� 2)

r2
;

the system (3.1) (and hence (1.6)) will be satis�ed on [0; T ) if we can �nd a smooth h
satisfying

ht = `h (3.2)

subject to the initial condition

h(0; �) = h0(�) : (3.3)

In order to justify restricting our attention to (3.2) (3.3), we need to show that SO(n)-
equivariant initial data leads to an SO(n)-equivariant 
ow, i.e. we need to show that
SO(n)-equivariance is preserved by the 
ow (1.6). The approach we take is comparable
to that of [Sch, Section 9]; there the author was concerned with symmetry preservation
for the hyperbolic Yang-Mills 
ow.
We begin by giving an alternative characterization of SO(n)-equivariance; for a proof
of the �rst part, see [FM], and cf. [Sch, Section 4]. The second part follows directly
from the linearity of the in�nitesimal generators of so(n), again see [FM].

Lemma 3.1 A connection A characterized by the so(n)-valued 1-forms A� given in
Section 1 is SO(n)-equivariant if and only if the Lie derivatives of A along the in-
�nitesimal generators 
�� = x�@� � x�@� of so(n) satisfy

L
��A� + [���; A�] = 0 ; (3.4)

here ��� = �i��
j
� � �i��

j
�. Further we have, for the curvature 2-forms F��:

L
��(@
�F��) = @�(L
��F��) : (3.5)

We denote the operator L
�� + [���; �] by bL
�� . The next lemma gives two useful

properties of bL
�� .
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Lemma 3.2 With A a solution of (1.6) and notation as above, we have that each bL
��

commutes with @t, in particular

@t( bL
��A�) = bL
��(@tA�) : (3.6)

Further there holdsbL
��F�� = D�( bL
��A�)�D�( bL
��A�) : (3.7)

Proof. The commutation relationship (3.6) is immediate from the de�nition of bL
�� .

For ease of notation we set 
 = 
��, � = ��� and write B� for bL
A�. Recalling that
L
 commutes with the exterior derivative, and using (1.2) and the Jacobi identity we
calculatebL
F�� = L
F�� + [�; F�� ]

= L
(@�A� � @�A� + [A�; A�]) + [�; F�� ]

= @�(L
A�)� @�(L
A�) + [L
A�; A�] + [A�;L
A�] + [�; F�� ]

= D�(B� � [�;A� ])�D�(B� � [�;A�]) + [�; F�� ]

= D�B� �D�B� � @�[�;A� ]� [A�; [�;A� ]] + @� [�;A�]

+ [A�; [�;A�]] + [�; F�� ]

= D�B� �D�B� � [�; @�A� � @�A�]� [�; [A�; A�]] + [�; [A�; A�]]

+ [A�; [A�; �]] + [A�; [�;A�]]

= D�B� �D�B� ;

showing (3.7). �

With this preparation, we are now able to show the desired result concerning the
preservation of the equivariance.

Lemma 3.3 Let A�(t; �) be a smooth solution to (1.6) on (0; T ]. If the initial data A0�

is SO(n)-equivariant, then the solution A�(t; �) is also SO(n)-equivariant on (0; T ].

Proof. For the given solution A�(t; �) we retain the notation of Lemma 3.2, and further
abbreviate bL
F�� by G�� . We will show that each B� (initially zero by assumption)
stays zero on (0; T ]. We then have

@tB� = bL
(@tA�) via (3.6)

= bL
(�D�F��) via (1.6)

= L
(�D�F��) + [�;�D�F��]

= L
(�@�F�� � [A�; F�� ]) + [�;�@�F�� � [A� ; F��]]

= �@�L
F�� � [L
A
�; F�� ]� [A� ;L
F�� ]� [�; @�F��]

� [�; [A� ; F��]] via (3.5)

= �D�L
F�� � [L
A
�; F��]�D�[�; F�� ]� [�; [F�� ; A

�]]� [[�;A� ]; F�� ]

� [�; [A� ; F��]] via the Jacobi identity

= �D�G�� � [B�; F��] : (3.8)
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Using (3.7) and integrating by parts we have (with the norms being the norm in L2(Rn)
unless otherwise noted, and denoting the Killing product of g, h in so(n) by g � h):Z

Rn
D�G�� �B� dx = �

Z
Rn

G�� �D�B� dx

= jjGjj2 �
Z
Rn

G�� �D�B� dx

= jjGjj2 +
Z
Rn

D�G�� �B� dx = jjGjj2 +
Z
Rn

D�G�� �B� dx

= jjGjj2 �
Z
Rn

D�G�� �B� dx ;

i.e.Z
Rn

D�G�� �B� dx = 1
2
jjGjj2 : (3.9)

Thus we have

1
2
@tjjBjj2 = �

Z
Rn

D�G�� �B� dx�
Z
Rn

[B�; F��] �B� dx via (3.8)

= �1
2
jjGjj2 �

Z
Rn

[B� ; F��] �B� dx via (3.9)

� jjF (t; �)jj1 jjB(t; �)jj2 ;
i.e. from Gronwall's inequality

jjB(t; �)jj � jjB(0; �)jj exp
� Z T

0
jjF (s; �)jj1 ds

�
:

Since by assumption the integral on the right-hand side is bounded and jjB(0; �)jj = 0,
this shows the desired result. �

4 Finite time blow-up for the reduced equation

We begin by considering some properties of solutions of the system (3.1), (3.2). Note
�rstly that �niteness of the action (1.4) for a connection of the form (2.4) is equivalent
to �niteness of F (h0), where the functional F (which we will term the energy) is given
by

F (h) =
Z 1

0

�
h2r +

h2(h� 2)2

r2

�
rn�3 dr : (4.1)

Lemma 4.1 Let h be a solution of (3.2) on [0; T ]� [0;1) with F (h0) �nite, and such
that h1(0) = limr!1 h0(r) exists. Then:
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(i) F (h(t; �) is �nite for all t 2 [0; T ];

(ii) h1(t) = limr!1 h(t; r) exists for all t 2 [0; T ];

(iii) there exists positive C depending only on T , h0 and n such that jh(t; r)�h(s; �)j �
Cjr � �j1=4 for all t 2 [0; T ] and r; � 2 [0;1);

(iv) h1(t) = h1(0) for all t 2 (0; T ].

Proof: (i) By multiplying (3.2) by ht and integrating by parts (alternatively, by work-
ing directly with (1.6), cf. [St1, Section 3]) we obtain the energy inequalityZ t

0

Z 1

0
jht(s; r)j2rn�3drds+ F (h(t; �)) � F (h0) ; (4.2)

which shows (i).
(ii) For �xed t 2 (0; T ] we write h(r) for h(t; r) where no confusion arises, and de�ne
� = fr : jh(r)j > 4g. Considering 0 < r` < rm and noting that jh � 2j > 1 on � we
haveZ r`

rm
h2r3�n dr =

Z
[rm;r`]\�

h2r3�n dr +
Z

[rm;r`]\�c

h2r3�n dr

�
Z

[rm;r`]\�

h2(h� 2)2r3�n dr + 16
Z r`

rm
r3�n dr

� r8�2nm

Z 1

0
h2(h� 2)2r3�n dr + 16

n�4
(r4�nm � r4�n` )

� r8�2nm F (h0) +
16
n�4

(r4�nm � r4�n` ) via (4.2). (4.3)

Thus we have, from Cauchy-Schwarz, (4.2) and (4.3),

jh2(r`)�h2(rm)j2 � 4
h Z r`

rm
jhhrj dr

i2
� 4

h Z r`

rm
h2rr

n�3 dr
ih Z r`

rm
h2r3�n dr

i
� 4F (h0)

h
r8�2nm F (h0) +

16
n�4

(r4�nm � r4�n` )
i
: (4.4)

Allowing �rst r` and then rm to tend to 1, we have the desired conclusion from (4.4)
and the continuity of h.
(iii) Note �rstly that �nite energy means that h1(t) = 0 or 2 for all t 2 [0; T ]. Further
by letting r` ! 1 in (4.4) we see that h(t; r) ! h1(t) as r ! 1 uniformly for t 2
[0; T ]. Given this and the energy inequality (4.2) we have that jjh(t; �)�h1(t)jjH1;2([0;1))

is uniformly bounded for t 2 [0; T ], yielding the desired conclusion by the Sobolev
embedding theorem.
(iv) For �xed t 2 [0; T ] and �xed � > 1 we have from (4.2)Z t

0

Z �+1

�
jh2t (s; r)j2rn�3drds � F (h0) ;
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and henceZ t

0

Z �+1

�
jh2t (s; r)j2rn�3drds � (�+ 1)n+3F (h0) :

By Fubini's theorem this means that
R t
0 h

2
t (s; r)ds is �nite for almost all r 2 [�; � + 1].

Since h is continuous there exists c depending only on � and T such that jh(t; r)j � c
for t 2 [0; T ] and r 2 [�; � + 1]. Thus h(�; r) 2 H1;2([0; T ]) for almost all r 2 [�; � + 1]
and in particular is absolutely continuous on [0; T ] for such r. Hence, for " positive to
be �xed later and � > 1, we haveZ �+"

�
jh2(t; r)� h20(r)j dr � 2

Z �+"

�

Z t

0
jh(s; r)j jhr(s; r)j dsdr

� 2
Z t

0

Z �+"

�
jh(s; r)j jhr(s; r)j drds

�
Z t

0

Z �+"

�
h2(r; s)r

7

2
�n drds+

1p
�

Z t

0

Z 1

�
h2t r

n�3 drds

� �9�2nt+
F (h0)p

�
; (4.5)

the estimate for the �rst term in the second-last line following from analolgous argu-
ments to those in the proof of part (ii).
If h1(t) 6= h1(0) then by �niteness of F and by the remarks at the start of the proof
of part (iii) we have, for almost all � su�ciently large:

jh2(t; �)� h20(�)j > 1 :

By part (iii), this means

jh2(t; r)� h20(r)j > 1� 2C2"1=2

for r 2 [�; � + "], i.e. the left-hand side of (4.5) is bounded below by " � 2C2"3=2,
which is strictly positive for " su�ciently small, contradicting (4.5) when � is chosen
su�ciently large. This yields the desired conclusion. �

We next construct a family of self-similar subsolutions to (3.2), which will be used to
show �nite time blow-up. For �xed, positive � > 0 and T we consider '(r) = 2r2

�2+r2
,

and de�ne

�(t; r) = '(�) for � =
rp
T � t

: (4.6)

We have

`� = �rr +
n� 3

r
�r � n� 2

r2
�(� � 1)(� � 2)

=
1

T � t

h
'�� +

n� 3

�
'� � n� 2

�2
'('� 1)('� 2)

i
=

8(n� 4)�2�2

(T � t)(�2 + �2)2
;
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and

�t =
2�2�2

(T � t)(�2 + �2)2

i.e. we see that �t � `�. Further we see that �(t; r0) increases monotonicly to 2 as t
approaches T for all r0 > 0; since �(t; 0) is identically zero, this means that the subso-
lution � blows up at t = T .

We now establish a suitable maximum principle for equation (3.2).

Lemma 4.2 Let h be a solution of (3.2), (3.3) on [0; T )� [0;1) with h0(0) = 0 and
limr!1h0(r) = 2 such that h0 has �nite energy, and let � be a subsolution of (3.2)
given by (4.6) for some � > 0, such that �(0; r) < h(0; r) for 0 < r < 1. Then
�(t; r) < h(t; r) for all t 2 (0; T ), r 2 (0;1).

Proof: We consider � = h� �. From (3.2) and the inequality �t � `� we see

�t � �rr + (n� 3)
�r
r
� (n� 2)

r2

h
h(h� 1)(h� 2)� �(� � 1)(� � 2)

i
= �rr + (n� 3)

�n
r
� n� 2

r2
a�; (4.7)

where a = [(h� 1)(h� 2) + (� � 1)(� � 2) + h� � 2].

If the lemma were false, we could �nd t0 2 (0; T ) such that inf
ft0g�[0;1)

� < 0; then �

de�ned by � = inf
[0;t0]�[0;1)

� is negative. By Lemma 4.1, h(t; r) tends to 2 as r tends to

1 uniformly for t 2 [0; t0]. The same holds for �(t; r) by the above remarks, and hence
�(t; r) tends to 0 as r tends to 1 uniformly for t 2 [0; t0]. This means that � must
take on the value �, a negative minimum, at some point in (0; t0] � (0;1). Now �x
" 2 (0; 1=3). By continuity of the solution and the de�nition of � we can �nd � > 0
such that j�(t; r)j; jh(t; r)j < " for 0 � t � t0, 0 � r � �. This means

a � 2(1� ")(2� ")� "2 � 2 > 0 on [0; t0]� [0; �]:

Further (after again appealing to Lemma 4.1 to obtain uniform L1-bounds on h) there
exists M > 0 such that jaj < M on [0;M ]� [0;1).
Consider � = e�Mt=2�2� : by (4.7) we have

�t � �rr + (n� 2)
�r
r
� (n� 2)�

� a

2r2
+

M

2�2

�
: (4.8)

Since the function � achieves a negative minimum on [0; t0] � [0;1) and the scaling
factor e�Mt=2�2 is bounded above and below away from 0, the function � also achieves
a negative minimum at some point (�; �) 2 (0; t0]� (0;1). We consider two cases:
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(i) � � �. At (�; �) we have �t � 0, �rr � 0, �r = 0, � < 0 and a > 0, which
contradicts (4.8).

(ii) � > �. At (�; �) we have �t � 0, �rr � 0, �r = 0, � < 0 and jaj
2�2

> �M
2�2

, so that

�( a
2r2

+ M
2�2

) < 0, again contradicting (4.8).

This veri�es the claim. �

Proof of Theorem 2.1 Given smooth initial data, the system (1.6) will have a
smooth solution for some positive time interval, see [DK, Section 6.3.1], and cf. [St1,
Section 4.4]. By Lemma 3.3, if we take SO(n)-equivariant initial data, this symme-
try is preserved. Given T > 0, we will construct �nite-action inital data such that
the solution to (1.6) must blow up before t = T . To do this we �x � > 0, and
consider �(t; r) as de�ned by (4.6). For an equivariant initial connection given by
A0�(x) = �h0(r)r�2��(x), It is easy to construct �nite-energy initial data h0 satisfying
the conditions of Lemma 4.2 with respect to the chosen subsolution �(t; r) (for exam-
ple, we could take h0 to be identically equal to 2 for all r su�ciently large). With such
initial data, we can apply Lemma 4.2 to conclude that the solution h(t; �) to (3.2), (3.3)
must blow up at or before time t = T . This means that the same conclusion holds for
the corresponding solution of (3.1), which is the desired result. �

We close by remarking that the approach we use to show blow-up avoided the some-
times delicate question of determining whether the connections arising are generic/
irreducible (see [BF], and cf. [St1, Section 5], [DK, Section 6.3.1]), since we only used
results concerning existence of a short-term solution to (1.6), as opposed to uniqueness
results.
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