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metric ~g 2 [g] in the conformal class of g on M . Since a conformal vector �eld is a Killing
vector �eld on Mnzero(kV k) with respect to the metric ~g = 1

g(V;V ) � g 2 [g], the lenght kV k of

an essential conformal �eld V must vanish somewhere on (M; g). So it is nearby to investigate
the behaviour of essential conformal �elds and curvature properties of the underlying manifold
in the near of the zero set.

On a semi-Riemannian spin manifold (M; g) there is a certain class of conformal vector �elds,
which are related to twistor spinors. A twistor spinor ' 2 �(S) on (M; g) is a solution of the
conformally invariant spinor �eld equation

rS
X'+

1

n
X �D' = 0 8X 2 TM;

where rS is the spinor derivative, D is the Dirac operator and the dot � denotes the Cli�ord
multiplication. This equation was �rst studied by R. Penrose in General Relativity. The as-
sociated vector �eld V' to a twistor spinor ' on a space and time oriented semi-Riemannian
manifold (M; g) given by

V' := (�i)k+1
nX
j=1

"jh'; sj'iSsj;

where (s1; : : : ; sn), "j := g(sj ; sj), is a local orthonormal frame on (M; g), is conformal or
vanishes. The zero set of ' is contained in that of V' and the conformal vector �eld V' satis�es

rV'(p) = 0 8p 2 zero('):

This property implies that a non-trivial, associated conformal �eld to a twistor spinor with zero
is essential. More generally, a pair of twistor spinors ('; ) on a semi-Riemannian manifold
(M; g) generates the complex conformal �eld

V'; =
X

"jh'; sj iSsj:

Example: Every conformal vector �eld on the (pseudo)-Euclidean space Rnk := (Rn ; h ; ink) of
index k is of the form (see [Sch97])

V (x) = 2hx; binkx� hx; xinkb+ �x+ !x+ c;

where b; c 2 Rnk , � 2 R and ! 2 o(n; k). A conformal vector �eld of the form

W (x) = 2hx; binkx� hx; xinkb; b 6= 0;

is essential, since W (0) = 0 and rW (0) = 0. It is

zero(W ) = (b? \ Lnk) [ f0g;

where Lnk := fx 2 Rnk jhx; xi
n
k = 0; x 6= 0g is the lightcone in Rnk . Let �

n
k denote the usual spinor

modul. The twistor spinors on Rnk are given by

'(x) = x � v + w; v; w 2 �n
k ;
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and the associated conformal �eld to a twistor spinor  (x) = x � v with a zero in the origin is

Wv = 2hx; bvi
n
kx� hx; xinkbv; bv := �(�i)k+1

X
"jhv; ejvi�n

k
ej :

One can prove that every conformal vector �eld V on Rnk can be generated by a pair of twistor
spinors on Rnk .

Let us consider the Riemannian case. Essential conformal �elds on a Riemannian manifold have
been investigated by Obata, Lelong-Ferrand and Alekseevskii ([Ale72]). It is well known that
a Riemannian manifold (M; g) is conformally 
at in the neighborhood of a zero of an essential
conformal �eld V . In particular, the zero set of an essential conformal �eld is discrete. More-
over, if the essential conformal �eld V is complete, i.e. there exists an one-parameter group
�Vt of essential conformal transformations on (M; g), then (M; g) is globally conformal to the
Euclidean space Rn or to the standard sphere Sn (see [Yos75]).

Using the result of Alekseevskii and Yoshimata on essential conformal �elds W. K�uhnel and H.-
B. Rademacher proved in [KR94] that a Riemannian spin manifold (M; g) admitting a twistor
spinor with zero, whose associated conformal �eld doesn't vanish, is conformally 
at. They also
showed in [KR195] and [KR96] that there exist conformally non-
at Riemannian spin manifolds
admitting twistor spinors with zeros.

Conformal maps and conformal vector �elds were also intensively studied in pseudo-Riemannian
geometry, especially in General Relativity. The situation in the pseudo-Riemannian case is more
di�cult and the most investigations make special assumptions on the conformal vector �eld or on
curvature properties. We list here some papers and results concerning those cases. K�uhnel and
Rademacher investigated conformal gradient �elds on pseudo-Riemannian manifolds in [KR295]
and [KR197]. They proved that the zero set of a conformal gradient �eld is discrete and the
manifold is conformally 
at in a neighborhood of a zero. They also obtained global results
for pseudo-Riemannian manifolds admitting conformal gradient �elds with zeros. In case that
(M; g) is Einstein and V is a non-homothetic conformal �eld, the gradient �eld

grad(divV ) 2 X (M)

is also conformal on (M; g). Conformal �elds on pseudo-Riemannian Einstein spaces and spaces
with constant scalar curvature are discussed in [KR297]. In [CK78] it is proved that a locally
symmetric Lorentzian manifold admitting a non-homothetic conformal �eld V is conformally 
at.

In general, the zero set of a conformal vector �eld on a pseudo-Riemannian manifold (M; g) is
neither discrete nor a submanifold. But in case that a conformal vector �eld V is linearizable,
the connected components of zero(V ) are submanifolds of (M; g). A homethetic �eld V is al-
ways linearizable. The connected components of zero(V ) are then totally geodesic submanifolds
and if V isn't a Killing vector �eld they are even totally isotropic submanifolds. Several results
on the question when an algebra of conformal �elds on a space-time reduces to an algebra of
homothetic �elds or when a single conformal �eld is linearizable can be found in [Hall90], [HS91]
and [HCB97]. For these problems the algebraic properties of the Weyl tensor W and the confor-
mal 2-form F = d!V ; !V := g(V; �), in a zero of the conformal vector �eld V play an import role.
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On an arbitrary time oriented Lorentzian spin manifold (M; g) it holds generally

zero(V ) = zero( )

for the zero set of the associated conformal �eld V to a twistor spinor  on (M; g) . This fact
is a special feature of Lorentzian geometry. Hence, the associated conformal �eld V satis�es
the condition

(I) rV (p) = 0 8p 2 zero(V ):

Consider again the example above. There are three kinds of conformal vector �elds of the form

Wb(x) = 2hx; bin1x� hx; xin1 b; b 6= 0;

on the Minkowski space Rn1 corresponding to the causal character of the vector b. In case that
b = bs is a spacelike vector the zero set

zero(Wbs) = (b?s \ L
n
1 ) [ f0g

�= Ln�1
1 [ f0g

is not a submanifold of Rn1 . It holds

Wbs(0) = 0; rWbs(0) = 0 and rWbs(x) 6= 0 8x 2 zero(Wbs)nf0g:

If b = bt is a timelike vector we have

zero(Wbt) = f0g and rWbt(0) = 0:

In the third case when b = bl is lightlike, the zero set is identical to the lightlike straight line
R � bl in Rn1 and it holds

rWbl(x) = 0 8x 2 zero(Wbl) = R � bl:

Let

Wv(x) = 2hx; bvi
n
1x� hx; xin1 bv; bv :=

X
"jhv; ejviej ;

be the associated conformal �eld to the twistor spinor  v(x) = x � v; v 2 �n
1 ; on Rn1 . Since

zero( v) = zero(Wv), it follows that

bv 6= 0 and kbvk � 0:

In deed, the map

i : �n
1 ! Kn

1 := fx 2 Rn1 jhx; xi
n
1 � 0; hx; e1i

n
1 > 0g

v 7! bv

is even surjective, i.e. up to a sign every conformal �eld on Rn1 satisfying property (I) is associ-
ated to a twistor spinor.

We investigate in this paper the zero set of conformal �elds on arbitrary curved Lorentzian
manifolds, which satisfy condition (I). Such conformal �elds are neither gradient �elds nor lin-
earizable in the neighborhood of a zero. Our main result states:

Theorem The zero set of a conformal vector �eld satisfying condition (I) on a Lorentzian man-

ifold lies locally on a single lightlike smooth geodesic.

However, there isn't a known example of a conformal �eld, which has a zero and satis�es con-
dition (I), on a Lorentzian manifold that isn't conformally 
at.
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1 Some Lorentzian geometry

We will prove in this section three propositions that contain elementary properties of lightcones
in a Lorentzian manifold. These propositions are the tool for proving our results on the shap of
the zero set of a conformal vector �eld, what we will do in the next section. We use here some
notations and facts concerning causality properties in Lorentzian geometry that can be found
in a detailed manner in [BEE96].

Let Rn1 := (Rn ; h ; in1 ) denote the n-dimensional Minkowski space, where

hx; yin1 := �x1y1 +
X

xiyi; x; y 2 Rn1 ;

and let

Ln1 := fx 2 Rn1 j hx; xi
n
1 = 0; x 6= 0g � Rn1

be the lightcone of the Minkowski space Rn1 . The lightcone L
n
1 is a submanifold in Rn1 of codi-

mension 1. The tangent space TlL
n
1 at every point l 2 Ln1 is lightlike, i.e. the restriction of the

metric h ; in1 to TlL
n
1 is degenerate. The line R � l is the only totally lightlike subspace in TlL

n
1 .

LetMn
1 := (Mn; g), n � 3, be a n-dimensional Lorentzian manifold. Let Lp denote the lightcone

in the tangent space TpM
n
1 at p 2Mn

1 and

expp : Dp � TpM
n
1 !Mn

1

the exponential map in the point p 2Mn
1 , where Dp is the maximal domain of de�nition, which

is an open starshaped neighborhood of the origin 0 2 TpM . The lightcone Lp in M
n
1 to p 2Mn

1

is then de�ned by

Lp := expp(Dp \ Lp) �Mn
1 ;

i.e. Lp is exactly the set of points that can be connected with p by a smooth lightlike geodesic.
In general, Lp isn't a submanifold of Mn

1 .

Now, let U be a convex set in Mn
1 . We remember that every point in a Lorentzian (semi-

Riemannian) manifold admits a convex neighborhood. In a convex set U for any two points
p; q 2 U an unique C1-geodesic 
pq exists such that


pq(0) = p; 
pq(1) = q and 
pq([0; 1]) � U:

The quadratic distance function

�U : U � U ! R

(p; q) 7! k
0pqk
2 = g(
0pq(0); 


0
pq(0))

is a well de�ned and smooth function. In a time oriented open set U a causal vector 0 6= v 2
TU; g(v; v) � 0, is either future directed ("-vector) or past directed (#-vector). We de�ne the
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following subsets of a time oriented convex set U �Mn
1 to a point p 2 U :

I+(�)(p; U) := fq 2 U : k
0pqk < 0; 
0pq(0) " (#) � vectorg

J+(�)(p; U) := fq 2 U : k
0pqk � 0; 
0pq(0) " (#) � vectorg [ fpg

LU
+(�)

p := fq 2 U : k
0pqk = 0; 
0pq(0) " (#) � vectorg

LUp := LU
+

p [ LU
�

p :

The sets I+(p; U), I�(p; U) are open and it holds

J�(p; U) = I�(p; U)
U

LU
�

p = @UI
�(p; U) r fpg

LUp � Lp \ U:

Notice that if q 2 I+(p; U) then J+(q; U) � I+(p; U) and if q 2 J+(p; U) then I+(q; U) �
I+(p; U) (see [Pen72]). Furthermore, there exists an open set Vp � TpM such that expp : Vp ! U
is a di�eomorphism. Then it holds

LUp = expp(Vp \ Lp)

and LUp is a submanifold in Mn
1 of codimension 1. From the Gauss lemma it follows that the

induced symmetric bilinear form of g on TLUp is degenerate in every point l 2 LUp .

This is the �rst of the announced propositions:

Proposition 1 Let U �Mn
1 be convex and p; q 2 U , p 6= q. For the intersection LUpq := LUp \L

U
q

of the lightcones to p and q one of the following assertions is true:

i) LUpq = ;,

ii) LUpq 6= ;, k
0pqk 6= 0 and LUpq is a (n� 2)-dimensional spacelike submanifold of M ,

iii) LUpq 6= ;, k
0pqk = 0 and LUpq = Im
pq \ U is a 1-dimensional totally isotropic submanifold

of M .

Proof: Suppose that LUpq 6= ; and k
0pqk 6= 0. Then we have


0pl(1) , 

0
ql(1) 8l 2 LUpq;

which implies


0pl(1) =2 TlL
U
q 8l 2 LUpq:

Hence, the submanifolds LUp and LUq in Mn
1 are transversal and LUpq is a (n � 2)-dimensional

submanifold in Mn
1 . The tangent space

Tl(L
U
pq) = Tl(L

U
p ) \ Tl(L

U
q )

is spacelike for every l 2 LUpq.

6



Suppose now that LUpq 6= ; and k
0pqk = 0. Obviously, it holds Im
pq \ U � LUpq. In a con-
vex set of a Lorentzian manifold there are never lightlike triangles, i.e. if p; q; r 2 U and
k
0pqk = k
0prk = k
0qrk = 0, then r 2 Im
pq\U . Therefore equality holds: Im
pq\U = LUpq: 2

The intersection LUpq, p; q 2 U , of cones in a convex set U isn't empty, if p and q are su�ciently
close together:

Proposition 2 Let p 2 Mn
1 . There is a neighborhood U(p) of p contained in a convex set U

with the property

LUqr 6= ; 8q; r 2 U(p):

Proof: Let U be a time oriented convex neighborhood of p 2Mn
1 . In an arbitrary neighborhood

V (p) � U exist points u; v 2 V (p) such that the open set hu; viU := I+(u;U) \ I�(v; U) is a
neighborhood of p in V (p):

p 2 hu; viU � V (p) � U

(see [Gun88] p. 15 or [Fri75]). So let ~V (p) � intU be a relative compact neighborhood of p and
a; b 2 ~V (p) such that p 2 ha; biU � ~V (p). We show that the neighborhood U(p) := ha; biU � U
has the desired property.

1) Suppose that q; r 2 ha; biU and k
0qrk > 0. Consider the geodesic 
qb. It holds k

0
qrk > 0

and k
0brk < 0. Therefore, it exists a t 2 [0; 1], ~b := 
qb(t), with k

0
~br
k = 0. Similar, one

can �nd a t̂ 2 [0; 1] such that k
0


r~b(t̂)q

k = 0 and then 

r~b(t̂) 2 L

U
qr.

2) Suppose that q; r 2 ha; biU , k

0
qrk < 0 and 
0qr(0) a "-vector. The set ha; riU � U is

compact. Let 
q : I
U
q ! U be an arbitrary maximal lightlike "-geodesic in U with 
q(0) = q.

Since q 2 I+(a; U) and 
q(t) 2 J
+(q; U) for every t 2 IUq \ R+ , it holds


q(I
U
q \ R+) � I+(a; U):

The set 
q(I
U
q \ R+) isn't contained in a compact subset of U and therefore it exists a

t 2 IUq \ R+ with


q(t) =2 J
�(r; U) and k
0r
q(t)k > 0:

But then t̂ 2 IUq \ R+ exists such that k
0
r
q(t̂)

k = 0, which implies LUqr 6= 0.

Obviously, it is LUqr 6= ; for q; r 2 ha; biU with k
0qrk = 0. 2

Proposition 3 Let N1 � Mn
1 be a 1-dimensional, spacelike submanifold. Then an open set

UN �Mn
1 exists with the property that for every point r 2 UN there are lightlike vectors

vr , wr 2 TrM with expr vr; expr wr 2 N:

The proposition isn't true in general for a lightlike, 1-dimensional submanifold N1 � Mn
1 . To

prove it we need some preparation.
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Lemma 1 Let U � Mn
1 be a time oriented convex set, r 2 U and a; b; c 2 LU

�

r points in the

lightcone of the past with

k
0abk; k

0
ack; k


0
bck > 0:

Then there exists in every neighborhood U(r) of r a point ~r 2 U(r) such that

a; b 2 I�(~r; U) and c =2 J�(~r; U) [ J+(~r; U):

Proof: It is

r 2 LUabc := LUa \ L
U
b \ L

U
c 6= ;:

For every r̂ 2 LUabc the lightlike vectors


0ar̂(1); 

0
br̂(1); 


0
cr̂(1) 2 Tr̂M

n
1

aren't pairwise parallel by assumption and thus they are linearly independent. It follows

Tr̂L
U
ab = spanf
0ar̂(1); 


0
br̂(1)g

? 6� (
0cr̂(1))
? = Tr̂L

U
c

and the submanifolds LUc and LUab of M
n
1 are transversal. Hence, LUabc is a submanifold in L

U
ab of

codimension 1. This implies the existence of a C1-curve � : (��; �) ! LUab �Mn
1 with �(0) = r

and �0(0) =2 TrL
U
c , i.e. the curve � intersects the lightcone LUc at the point r. Then there must

be a t̂ 6= 0 such that c =2 J�(�(t̂); U) [ J+(�(t̂); U). Since �(t̂) 2 LUab, we can �nd a point
~r 2 I+(�(t̂); U) in the near of �(t̂) such that c =2 J�(~r; U) [ J+(~r; U) and a; b 2 I�(~r; U). The
point ~r can be chosen arbitrary close to r. 2

We use the following notation. Let a; b; r 2 U points in a convex set such that

#( fa; bg \ I�(r; U) ) = 1

#( fa; bg \ (J�(r; U) [ J+(r; U)) ) = 1:

Then we call r 2 U an (a; b)-separating point in U .

Lemma 2 Let U 2 Mn
1 be a time oriented convex set, r 2 U and a1; a2; b1; b2 2 I�(r; U) such

that

k
0xyk > 0 8x; y 2 fa1; a2; b1; b2g; x 6= y:

Then there exists a point s 2 U , which separates the pairs (a1; a2) and (b1; b2) in U .

Proof: Consider the geodesic 
a1r. There are real numbers ta2 ; tb1 ; tb2 2 (0; 1) such that

x 2 LU
�


a1r(tx)
8x 2 fa2; b1; b2g:

1. case: One of the numbers ta2 ; tb1 ; tb2 is greater then the others. Then clearly t̂ < maxfta2 ; tb1 ; tb2g
exists such that for ~r := 
a1r(t̂)

#( fa1; a2; b1; b2g \ I
�(~r; u) ) = #( fa1; a2; b1; b2g \ (J�(~r; u) [ J+(~r; u) ) = 3: (*)

8



2. case: It is ta2 = tb1 = tb2 . Then by Lemma 1 there exists a ~r 2 U such that (*) is satis�ed.

In case that two of the numbers ta2 ; tb1 ; tb2 are equal and greater then the third, Lemma 1 is all
the more applicable. Altogether, we have in any case a point ~r 2 U such that after eventually
changing the notation

a1; b1; b2 2 I
�(~r; U); a2 =2 J

�(~r; U) [ J+(~r; U):

With the same procedure as before applied to the points fa1; b1; b2g it follows the existence of a
point s 2 U such that

a1; b1 2 I
�(s; U); b2 =2 J

�(s; U) [ J+(s; U)

or a1; b2 2 I
�(s; U); b1 =2 J

�(s; U) [ J+(s; U):

The point s can be chosen such that still a2 =2 J
�(s; U) [ J+(s; U). 2

Proof of Proposition 3: Let U �Mn
1 be a convex set and s 2 U �Mn

1 such that

N1 \ I�(s; U) 6= ;:

Since N1 is spacelike, there is a spacelike C1-curve � : (�1; 1) ! N1 \ I�(s; U). An easy
consideration shows that there are real numbers t1; t2; t3; t4 2 (�1; 1); t1 < t2 < t3 < t4, such
that

k
0�(t1)�(t2)k; k

0
�(t3)�(t4)

k > 0 and

k
0xyk > 0 8x 2 �([t1; t2]); y 2 �([t3; t4]):

From Lemma 2 it follows the existence of a point ~s 2 U , which separates the pairs (�(t1); �(t2))
and (�(t3); �(t4)) in U . Moreover, there is a neighborhood UN of ~s such that every point ŝ 2 UN
separates these pairs in U . This shows for every ŝ 2 UN the existence of points

xŝ 2 L
U�

ŝ \ �([t1; t2]) and yŝ 2 L
U�

ŝ \ �([t3; t4]):

Since k
0xŝyŝk > 0, it follows


0ŝxŝ(0) , 

0
ŝyŝ

(0): 2

2 The zero set of a conformal vector �eld

Let Mn
1 := (Mn; g), n � 3, be a n-dimensional Lorentzian manifold. A vector �eld V 2 X (Mn

1 )
is called conformal, if

LV g = 2� � g

for some function � 2 C1(Mn
1 ). A conformal vector �eld V on a connected Lorentzian manifold

Mn
1 is uniquely determined by the values of

V (xo); rV (xo); �(xo); d�(xo)

9



at an arbitrary point xo 2 Mn
1 . Let �

V : AV � R �Mn
1 ! Mn

1 denote the maximal local 
ow
of the conformal vector �eld V , i.e. for every point p 2Mn

1 the map

�p(t) := �Vt (p) = �V (t; p); t 2 Ip := AV \ (R � fpg);

is the maximal integral curve of the �eld V through the point p 2Mn
1 . In case that the 
ow �V

is de�ned on an open subset W �Mn
1 for all t 2 (�"; "); " > 0, the mapping

�Vt : W ! �Vt (W ) �Mn
1

is a conformal di�eomorphism for every t 2 (�"; "). The zero set of the conformal vector �eld V
is denoted by zero(V ). The property rV (p) = 0 for a conformal vector �eld V in p 2 zero(V )
implies for the maximal local 
ow �V in p that d�Vt (p) = idjTpM for all t 2 Ip holds.

Lemma 3 Let V be a conformal vector �eld on a Lorentzian manifold Mn
1 and p 2Mn

1 a zero of

V with rV (p) = 0. For every point q 2 Lp and every lightlike smooth geodesic 
q : [0; 1]!Mn
1 ,


q(0) = p, 
q(1) = q, it holds

V (q) k 
0q(1) 2 TqM
n
1 or V (q) = 0:

Proof: Let W
q be an open neighborhood of the compact set 
q([0; 1]) � Mn
1 and " > 0 such

that the 
ow �Vt onW
q is de�ned for every t 2 (�"; "). Because �Vt : W
q !Mn
1 is a conformal

transformation for every t 2 (�"; "), every C1-curve 
qt := �Vt � 
q : [0; 1] ! Mn
1 is a lightlike

pregeodesic in Mn
1 with 
qt(0) = p. Since

d�Vt (p) = idjTpM 8t 2 (�"; ");

it holds


0qt(0) = 
0q(0) 8t 2 (�"; ");

which implies the existence of a smooth function � : (�"; ")! R with

�Vt (q) = 
qt(1) = expp(�(t)

0
q(0)):

It follows V (q) = d
dt
jt=0�

V
t (q) = �0(0)
0q(1). 2

We call a point q 2Mn
1 lightlike conjugated to p 2Mn

1 , if there exist lightlike C
1-geodesics


i : [0; 1]!Mn
1 ; 
i(0) = p; 
i(1) = q; i = 1; 2;

with 
01(1) , 

0
2(1) (comp. [BEE96], Chap. 9 and 10) and let lc(p) denote the set of lightlike

conjugated points to p in Mn
1 . Lemma 3 implies the

Conclusion: If p 2Mn
1 is a zero of a conformal vector �eld V on Mn

1 with rV (p) = 0 then

lc(p) � zero(V ):

With the results of the �rst section we prove now:

10



Theorem 1 Let 0 6� V be a conformal vector �eld on a connected Lorentzian manifold Mn
1 with

the property

rV (p) = 0 8p 2 zero(V ):

Then there exists for every p 2 zero(V ) a neighborhood U(p) �Mn
1 and a lightlike C1-geodesic


p such that

zero(V ) \ U(p) � Im
p \ U(p):

Proof: From Proposition 2 it follows the existence of a neighborhood U(p) of p, which is
contained in a convex set U , such that

LUqr 6= ; 8q; r 2 U(p):

Suppose that there are points q; r 2 zero(V ) \ U(p) with k
0qrk 6= 0. Then we have


0ql(1) , 

0
rl(1) 8l 2 LUqr

and by Lemma 3 it follows V (l) = 0 for l 2 LUqr. Proposition 1 says that LUqr � zero(V ) is
a spacelike submanifold of Mn

1 . But then Proposition 3 implies the existence of an open set
Uqr � zero(V ). This isn't possible, since Mn

1 is connected and V 6� 0. We can conclude that

k
0qrk = 0 8q; r 2 zero(V ) \ U(p):

We mentioned already that lightlike triangles don't exist in a convex subset of a Lorentzian
manifold. Hence, the set zero(V ) \ U(p) must be contained in the image of a single lightlike
C1-geodesic 
p. 2

On the Minkowski space Rn1 we know from the explicit form of the conformal vector �elds given
in the introduction that the zero set of a conformal vector �eld V with

rV (p) = 0 8p 2 zero(V )

is a lightlike straight line or a single point. The assertion of Theorem 1 for arbitrary curved
Lorentzian manifolds is only a bit weeker. We can also prove a more global version of Theorem 1:

Theorem 2 Let Mn
1 be a connected Lorentzian manifold and V 2 X (Mn

1 ) a conformal vector

�eld. If p; q 2 zero(V ) and lightlike vectors vp 2 TpM , vq 2 Tq(M) exist with

i) rg(d expp(vp)) = rg(d expq(vq)) = n

ii) r := expp(vp) = expq(vq) 2M
n
1

iii) d
dt
jt=1 expp tvp ,

d
dt
jt=1 expq tvq,

then the conformal vector �eld V vanishes identically.

Proof: The three assumptions imply the existence of neighborhoods Vp � TpM of vp and
Vq � TqM of vq such that

L1 := expp(Vp \ Lp) and L2 := expp(Vq \ Lq)

are transversal submanifolds inMn
1 and Wpq := L1\L2 is a spacelike submanifold ofM

n
1 . With

the same arguments as in the proof of Theorem 1 we can conclude that V � 0 on Mn
1 . 2
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3 The zero set of a twistor spinor

Every twistor spinor on a time oriented Lorentzian spin manifold induces a conformal vector
�eld. Since the zero sets of the twistor spinor and the associated conformal �eld are identical,
the results of the previous section can be applied to twistor spinors. That will be done here.
We start with recalling brie
y the de�nition of a twistor spinor and its main properties (comp.
[Baum198] and [BFGK91]).

Let Mn
1 , n � 3, be a Lorentzian spin manifold with spin structure (Q; f) and let S be the

associated spinor bundle over Mn
1 , r := dimC S = 2[

n
2
]. We denote by

rS : �(S)! �(TM 
 S)

the spinor derivative and by

� : TM 
 S ! S

the Cli�ord multiplication. In case that Mn
1 is time oriented, there exists a non-degenerate,

inde�nite Hermitian product

h�; �iS : S � S ! C

on the spinor bundle S. It holds

hX � '; iS = h';X �  iS ;

Xh'; iS = hrS
X'; iS + h';rS

X iS

for all X 2 �(TM) and '; 2 �(S). The Dirac operator is de�ned by

D : � � rS : �(S)! �(S)

and the twistor operator is de�ned by

D := projker� � r
S : �(S)! �(ker�);

where projker� : TM 
S ! ker� denotes the projection onto the kernel of the Cli�ord multipli-

cation. A spinor �eld ' 2 �(S), which satis�es D' = 0, is called twistor spinor. For a twistor
spinor ' 2 �(S) holds

1) rS
X'+ 1

n
X �D' = 0

2) D2' = 1
4R

n
n�1'

3) rS
XD' = n

2L(X)',

where R is the scalar curvature and L is the Schouten tensor. A twistor spinor ' on a connected
spin manifold Mn

1 is uniquely determined by the values of '(xo) and D'(xo) in an arbitrary
point xo 2M

n
1 .

To every spinor �eld  2 �(S) on a time oriented spin manifold Mn
1 there is a vector �eld V 

associated by

V := ��"ih ; si iSsi;

where (s1; : : : ; sn) is a local orthonormal frame on Mn
1 . If ' 2 �(S) is a twistor spinor, then

the associated �eld V' is conformal on Mn
1 and it has the properties

12



1) zero(V') = zero(')

2) rV'(p) = 0 8p 2 zero(V') (see [Baum198]).

Consider now a smooth geodesic 
(t) on a Lorentzian spin manifold Mn
1 admitting a twistor

spinor ' 2 �(S). Let Im
 denote the image of the geodesic 
 in Mn
1 . Let p 2 Im
 be a point.

The set U
 := expp(Dp) � Mn
1 is a time orientable neighborhood of Im
 in Mn

1 . Furthermore,
let ffi(t) : i 2 f1; : : : ; rgg be a parallel basis �eld of S along the geodesic 
(t):

rS
_
 fi = 0 8i 2 f1; : : : ; rg:

We choose on U
 a time orientation and de�ne the functions

ui(t) := h'(
(t)); fi(
(t))iS ; i 2 f1; : : : ; rg:

It holds

dui
dt

= _
(ui) = hrS
_
'; fiiS = �

1

n
h _
D'; fiiS ;

d2ui
dt2

= _
 _
(ui) = �
1

n
hrS

_
 ( _
D'); fiiS = �
1

2
h _
L( _
)'; fiiS

= �
1

2
h';L( _
) _
fiiS 8i 2 f1; : : : ; rg:

For the vector U(t) :=

0
B@

u1(t)
...

ur(t)

1
CA we obtain the linear di�erential equation system

U 00 = �
1

2
C � U;

where C(t) 2M(r; C ) is the complex matrix of the endomorphism s 2 S
(t) 7! L( _
) _
(t)s 2 S
(t)
with respect to the basis ffi(t)g.

Lemma 4 Let Mn
1 be a Lorentzian spin manifold, ' 2 �(S) a twistor spinor on Mn

1 , p 2 zero(')
and 
p(t) a C

1-geodesic on Mn
1 with 
p(0) = p.

i) If _
p(0) �D'(p) = 0, then Im
p � zero(').

ii) If _
p(0) �D'(p) 6= 0, then there exists a neighborhood U(p) of p with

zero(') \ Im
p \ U(p) = fpg:

Proof: With the notations as above we have the di�erential equation system

U 00 = �
1

2
C � U; U(0) = 0;

for the functions ui(t) := h'(
(t)); fi(
(t))iS with respect to a parallel frame ffi(t)g. It holds

U 0(0) = 0 i� _
p(0)D'(p) = 0: 2

13



De�nition 1 Let Mn
1 be a Lorentzian spin manifold, ' 2 �(S) a twistor spinor and


p : ft 2 R : tvp 2 Dpg !Mn
1 ; vp 2 TpM;

a maximal geodesic such that Im
p � zero('): Then the set Z
p := Im
p is called a zero set

geodesic of '.

Obviously, the image Im
 of a maximal C1-geodesic 
 inMn
1 is a zero set geodesic to a twistor

spinor ' 6� 0 i� there is a point p 2 Im
 \ zero(') with _
 �D'(p) = 0.

Theorem 3 Let Mn
1 be a connected Lorentzian spin manifold and 0 6� ' 2 �(S) a twistor spinor

on Mn
1 .

i) Every zero set geodesic to ' in Mn
1 is a totally lightlike, 1-dimensional submanifold of Mn

1 .

ii) Every zero set geodesic to ' is isolated, i.e. for every zero set geodesic Z
 = Im
 there is

an open set U(
) with

zero(') \ U(
) = Im
:

iii) The zero set zero(') is the countable union of isolated points and isolated zero set geodesics:

zero(') =
[
i2N

Im
i [
[
i2N

fpig:

Proof: By Theorem 1, it exists a time oriented neighborhood U(p) of p 2 zero(') and a
C1-geodesic 
p with

zero(') \ U(p) = zero(V') \ U(p) � Im
p;

where V' is the associated conformal �eld to ' on U(p). Moreover, from Lemma 4 it follows the
existence of an open neighborhood ~U(p) � U(p) of p with

zero(') \ ~U(p) = Im
p or

zero(') \ ~U(p) = fpg:

This proves that every zero set geodesic Z
 = Im
 of ' is a submanifold in Mn
1 and Z
 = Im


is isolated. In particular, the third assertion is then clear. It remains to prove that a zero set
geodesic is lightlike. So let Im
 be a zero set geodesic, then for p 2 Im
 we have

_
D'(p) = 0 and D'(p) 6= 0:

It follows k _
k = 0 2

One should notice that we used Theorem 1 in the proof. Theorem 3 isn't a direct consequence
of Lemma 4, which is proved only using spinor calculus.

For arbitrary vectors X;Y 2 TpM
n
1 the mapping

s 2 Sp 7! X � Y � s 2 Sp
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is a complex linear endomorphism. Let w 2 Sp be an eigenspinor of X � Y to the eigenvalue
c 6= 0. We have

XY w = cw; Y Xw =
g(X;X)g(Y; Y )

c
w = (�c� 2g(X;Y ))w and

c = �g(X;Y )�
p
g(X;Y )2 � g(X;X)g(Y; Y ) 2 C :

If there is in addition a spinor v 2 Sp with XY v = 0, then g(X;X)g(Y; Y ) = 0. Hence, the
endomorphism XY 2 End(Sp), X;Y 2 TpM , has at most the eigenvalues

C+
XY := �g(X;Y ) +

p
g(X;Y )2 � g(X;X)g(Y; Y );

C�
XY := �g(X;Y )�

p
g(X;Y )2 � g(X;X)g(Y; Y ):

The endomorphism X � Y 2 End(Sp) has no positive eigenvalues if and only if

g(X;Y )2 � g(X;X) � g(Y; Y ) < 0 or

kXk � kY k � 0; g(X;Y ) � 0:

Theorem 4 Let Mn
1 be a Lorentzian spin manifold with rRic = 0, 0 6� ' 2 �(S) a twistor

spinor on Mn
1 , p 2 zero(') and 
p(t) a C

1-geodesic with 
p(0) = p and _
pD'(p) 6= 0. If

g( _
p; L( _
p))
2 � g( _
p; _
p) � g(L( _
p); L( _
p)) < 0 or

k _
pk � kL( _
p)k � 0; g( _
p; L( _
p)) � 0;

then Im
p \ zero(') = fpg.

Proof: Let ffi(t) : i 2 f1; : : : ; rgg be a parallel basis �eld along 
p(t). From rRic = 0 it
follows that the scalar curvature R is constant and therefore rL = 0. Then

_
phL( _
p) _
pfi; fjiS = 0;

i.e. the matrix function C(t) � C is constant and it exists a parallel eigenspinor �eld s(t) on
Im
p such that the function us(t) := h'(
p(t); s(t)iS 6� 0 satis�es

d2us(t)

dt2
= �

1

2
c � us;

where C 3 c = const. is an eigenvalue of C. Hence, the function us is of the form

us(t) = A

�
e

q
� 1

2
c�t
� e

�
q
� 1

2
c�t
�
; A 6= 0:

If us(t) = 0 for t 6= 0, then
q
�1

2c 2 iR and thus c > 0. But L( _
p) _
p has no positive eigenvalues

and such a t 6= 0 doesn't exist. 2

Theorem 5 Let Mn
1 be a Lorentzian Einstein spin manifold, 0 6� ' 2 �(S) a twistor spinor on

Mn
1 , p 2 zero(') and 
p(t) a C

1-geodesic with 
p(0) = p and _
pD'(p) 6= 0.

i) If g( _
p; _
p) � R � 0, then

zero(') \ Im
p = fpg:
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ii) If g( _
p; _
p) � R > 0, then

zero(') \ Im
p = f
p
�n � �
d

�
jn 2 Ng; d =

s
R � g( _
p; _
p)

4n(n� 1)
;

i.e. the zero set is periodic on Im
p.

Proof: On an Einstein space the Schouten tensor L equals �R
2n(n�1) id and therefore

L( _
p) _
p =
R � g( _
p; _
p)

2n(n� 1)
idS :

The �rst assertion is a special case of Theorem 4. If g( _
p; _
p) � R > 0, then the solution of

U 00 = �
R � g( _
p; _
p)

4n(n� 1)
U; U =

0
@ u1(t)

..

.
ur(t)

1
A 2 C r ;

is given by

U = sin(dt) � U 0(0); d =

s
R � g( _
p; _
p)

4n(n� 1)
:

This proves the second assertion. 2

There is a direct consequence of Theorem 5. In case that Mn
1 is an Einstein spin manifold

admitting a twistor spinor ' 6� 0 and the points p; q 2 zero(') don't lie on a common zero set
geodesic of ', then the intersection of the lightcones to p and q is empty:

Lp \ Lq = ;:

Example: The pseudosphere

� : S2n
1 := fx 2 R2n+1

1 jhx; xi2n+1
1 = 1g ,! R2n+1

1

is a totally umbilic hypersurface in R2n+1
1 . The spin structure on R2n+1

1 induces via the embed-
ding � a spin structure on S2n

1 . The zero set of a twistor spinor ' on R2n+1
1 is empty, a single

point or a lightlike straight line. The restriction 'j
S
2n+1
1

to the totally umbilic hypersurface S2n
1

of a twistor spinor ' on R2n+1
1 is again a twistor spinor (comp. [Baum298]) and the zero set

zero('jS2n1 ) = zero(')\S2n
1 is also empty, a single point or a lightlike geodesic (that is a straight

line in S2n
1 � R2n+1

1 ). Consider now a twistor spinor 'jS2n1 on S2n
1 with e2 2 zero('jS21 ) and the

spacelike geodesic 
(t) = cos(t)e2 + sin(t)e3. It is d =
q

R�g( _
; _
)
4n(n�1) =

1
2 and in fact


(t) 2 zero('jS2n1 ) i� t = 2� � n =
� � n

d
:

This is in accordance with Theorem 5, since S2n
1 is Einstein.
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Consider the universal covering

� : ~S2
1 ! S2

1

with induced metric g ~S21
and induced spin structure. The space ~S2

1 is geodesically complete and

conformally 
at. Every twistor spinor ~' on ~S2
1 is induced by a twistor spinor 'jS21 on S2

1 :

��( ~') = 'jS21 :

If 'jS21 on S2
1 admits a zero or a zero set geodesic, then ~' on ~S2

1 admits in�ntely many zeros

or zero set geodesics. The product R � ~S2
1 with metric dt � g ~S21

is a geodesically complete and

conformally 
at Lorentzian spin manifold of dimension 3. On R � ~S2
1 a set of twistor spinors

with maximal dimension 4 exists. Every twistor spinor ~' on ~S2
1 can be extended to a twistor

spinor  on R� ~S2
1 such that  jf0g� ~S21

= ~' (comp. [BFGK91]). The space R� ~S2
1 is an example

of a geodesically complete Lorentzian spin manifold that admits twistor spinors with in�netly
many zero set geodesics.
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