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Abstract

We study the zero set of conformal vector fields on Lorentzian manifolds that have prop-
erties like the associated conformal vector field of a twistor spinor. We prove that locally the
zero set of such conformal vector fields lies on a lightlike smooth geodesic.
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0 Introduction

Let (M, g) be a semi-Riemannian manifold. A vector field V' € X (M) is called conformal if the
Lie derivative of the metric g in direction of V satisfies

Lyg=2a-g

for some C*-function o on M. In particular, Killing vector fields on (M, g) are conformal. A
conformal vector field V is called essential if V' isn’t a Killing vector field with respect to any
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metric § € [g] in the conformal class of g on M. Since a conformal vector field is a Killing
vector field on M\zero(||V||) with respect to the metric § = ﬁ - g € [g], the lenght ||V of
an essential conformal field V' must vanish somewhere on (M, g). So it is nearby to investigate
the behaviour of essential conformal fields and curvature properties of the underlying manifold
in the near of the zero set.

On a semi-Riemannian spin manifold (M, g) there is a certain class of conformal vector fields,
which are related to twistor spinors. A twistor spinor ¢ € , (S) on (M, g) is a solution of the
conformally invariant spinor field equation

1
Vip+=-X-Dp=0 VX eTM,
n

where V* is the spinor derivative, D is the Dirac operator and the dot - denotes the Clifford
multiplication. This equation was first studied by R. Penrose in General Relativity. The as-
sociated vector field V,, to a twistor spinor ¢ on a space and time oriented semi-Riemannian
manifold (M, g) given by

n
V= (=)t Z%’(% $j)SSjs
i=1

where (s1,...,5,), € = g(sj,5;5), is a local orthonormal frame on (M,g), is conformal or
vanishes. The zero set of ¢ is contained in that of V,, and the conformal vector field V,, satisfies

VVyo(p) =0 Vp € zero(yp).

This property implies that a non-trivial, associated conformal field to a twistor spinor with zero
is essential. More generally, a pair of twistor spinors (¢,%) on a semi-Riemannian manifold
(M, g) generates the complex conformal field

Vow = Z £{p,8j1) 555

Exzample: Every conformal vector field on the (pseudo)-Euclidean space R} := (R",( , )}) of
index k is of the form (see [Sch97])

V() = 2o, B — (0,0)b+ Ao+ ws + ¢,
where b,c € R}, A € R and w € o(n, k). A conformal vector field of the form
W(z) = 2(z,b)fz — (z,z)pb, b#0,
is essential, since W (0) =0 and VW (0) = 0. It is
zero(W) = (b N L}) U {0},

where L} := {z € R} |(z, )} = 0,2 # 0} is the lightcone in R}. Let A} denote the usual spinor
modul. The twistor spinors on R} are given by

px)=z-v+w, v,weAf,



and the associated conformal field to a twistor spinor ¢(z) = x - v with a zero in the origin is
Wy = 2(z,by)pa — (,2)1by, by i= —(—=0)FT1 Y "ej(v, ej0)ape;.

One can prove that every conformal vector field V on R}} can be generated by a pair of twistor
spinors on RY.

Let us consider the Riemannian case. Essential conformal fields on a Riemannian manifold have
been investigated by Obata, Lelong-Ferrand and Alekseevskii ([Ale72]). It is well known that
a Riemannian manifold (M, g) is conformally flat in the neighborhood of a zero of an essential
conformal field V. In particular, the zero set of an essential conformal field is discrete. More-
over, if the essential conformal field V' is complete, i.e. there exists an one-parameter group
®} of essential conformal transformations on (M, g), then (M, g) is globally conformal to the
Euclidean space R” or to the standard sphere S™ (see [Yos75]).

Using the result of Alekseevskii and Yoshimata on essential conformal fields W. Kiihnel and H.-
B. Rademacher proved in [KR94] that a Riemannian spin manifold (M, g) admitting a twistor
spinor with zero, whose associated conformal field doesn’t vanish, is conformally flat. They also
showed in [KR195] and [KR96] that there exist conformally non-flat Riemannian spin manifolds
admitting twistor spinors with zeros.

Conformal maps and conformal vector fields were also intensively studied in pseudo-Riemannian
geometry, especially in General Relativity. The situation in the pseudo-Riemannian case is more
difficult and the most investigations make special assumptions on the conformal vector field or on
curvature properties. We list here some papers and results concerning those cases. Kiithnel and
Rademacher investigated conformal gradient fields on pseudo-Riemannian manifolds in [KR295]
and [KR197]. They proved that the zero set of a conformal gradient field is discrete and the
manifold is conformally flat in a neighborhood of a zero. They also obtained global results
for pseudo-Riemannian manifolds admitting conformal gradient fields with zeros. In case that
(M, g) is Einstein and V' is a non-homothetic conformal field, the gradient field

grad(divV) € X (M)

is also conformal on (M, g). Conformal fields on pseudo-Riemannian Einstein spaces and spaces
with constant scalar curvature are discussed in [KR297]. In [CK78] it is proved that a locally
symmetric Lorentzian manifold admitting a non-homothetic conformal field V' is conformally flat.

In general, the zero set of a conformal vector field on a pseudo-Riemannian manifold (M, g) is
neither discrete nor a submanifold. But in case that a conformal vector field V' is linearizable,
the connected components of zero(V') are submanifolds of (M, g). A homethetic field V is al-
ways linearizable. The connected components of zero(V') are then totally geodesic submanifolds
and if V isn’t a Killing vector field they are even totally isotropic submanifolds. Several results
on the question when an algebra of conformal fields on a space-time reduces to an algebra of
homothetic fields or when a single conformal field is linearizable can be found in [Hall90], [HS91]
and [HCB97]. For these problems the algebraic properties of the Weyl tensor W and the confor-
mal 2-form F' = dwy, wy := g(V,-), in a zero of the conformal vector field V' play an import role.



On an arbitrary time oriented Lorentzian spin manifold (M, g) it holds generally
zero(Vy,) = zero(v)

for the zero set of the associated conformal field V;, to a twistor spinor ) on (M, g) . This fact
is a special feature of Lorentzian geometry. Hence, the associated conformal field Vi, satisfies
the condition

(I) VVy(p) =0 Vp € zero(Vy).
Consider again the example above. There are three kinds of conformal vector fields of the form
Wb(x) = 2<$7 b>?$ - <:I?,:I?>711b, b#0,

on the Minkowski space R} corresponding to the causal character of the vector b. In case that
b = by is a spacelike vector the zero set

zero(Wy,) = (by N LY) U {0} = LT~ u {0}
is not a submanifold of R}. It holds

Wy, (0) =0, VI¥,(0) =0 and VW, (z) #0 Vz € zero(Wy,)\{0}.
If b = b; is a timelike vector we have

zero(Wy,) = {0} and VW, (0)=0.

In the third case when b = b; is lightlike, the zero set is identical to the lightlike straight line
R-b; in R} and it holds

VW, (z) =0 Vz € zero(Wp,) =R b.
Let

Wy(z) = 2(z, b)) x — (x, )by, by := ZEJ(U’ ejv)e;,
be the associated conformal field to the twistor spinor ¢, (z) = z - v, v € A}, on R'. Since
zero (i) = zero(W,), it follows that

by #0 and ||by[| < 0.
In deed, the map

i: A — K :={zeR'|(z,z)] <0, (x,e1)] >0}
v o= by

is even surjective, i.e. up to a sign every conformal field on R} satisfying property (I) is associ-
ated to a twistor spinor.

We investigate in this paper the zero set of conformal fields on arbitrary curved Lorentzian
manifolds, which satisfy condition (I). Such conformal fields are neither gradient fields nor lin-
earizable in the neighborhood of a zero. Our main result states:

Theorem The zero set of a conformal vector field satisfying condition (I) on a Lorentzian man-
ifold lies locally on a single lightlike smooth geodesic.

However, there isn’t a known example of a conformal field, which has a zero and satisfies con-
dition (I), on a Lorentzian manifold that isn’t conformally flat.



1 Some Lorentzian geometry

We will prove in this section three propositions that contain elementary properties of lightcones
in a Lorentzian manifold. These propositions are the tool for proving our results on the shap of
the zero set of a conformal vector field, what we will do in the next section. We use here some
notations and facts concerning causality properties in Lorentzian geometry that can be found
in a detailed manner in [BEE96].

Let R} := (R",(, )) denote the n-dimensional Minkowski space, where

<IL‘,y>? = Ty + Z$ly27 T,y € ]R?a
and let
V= o € B | (3,2)7 = 0,5 £ 0} C B}

be the lightcone of the Minkowski space R}. The lightcone L} is a submanifold in R} of codi-
mension 1. The tangent space T; L} at every point [ € L} is lightlike, i.e. the restriction of the
metric (, )7 to T}L} is degenerate. The line R -/ is the only totally lightlike subspace in T} L.

Let M := (M",g), n > 3, be a n-dimensional Lorentzian manifold. Let L, denote the lightcone
in the tangent space T, M{" at p € M{" and

exp, : D, C T,M{" — M7’

the exponential map in the point p € M{', where D,, is the maximal domain of definition, which
is an open starshaped neighborhood of the origin 0 € T),M. The lightcone £, in M{* to p € M7
is then defined by

L, :=exp,(D, N Ly) C M7,

i.e. £, is exactly the set of points that can be connected with p by a smooth lightlike geodesic.
In general, £, isn’t a submanifold of M7

Now, let U be a convex set in M. We remember that every point in a Lorentzian (semi-
Riemannian) manifold admits a convex neighborhood. In a convex set U for any two points
p,q € U an unique C"*°-geodesic 1,4 exists such that

Ypa(0) =P, pe(1) = ¢ and  7,([0,1]) C U.
The quadratic distance function
U UxU — R
P.a) = [lrpgll? = 9(754(0), 74 (0))

is a well defined and smooth function. In a time oriented open set U a causal vector 0 # v €
TU, g(v,v) <0, is either future directed (f-vector) or past directed (}-vector). We define the



following subsets of a time oriented convex set U C M to a point p € U:

IS p,U) = {g€U: [l < 0,7,(0) T (1) — vector}
TP (p,U) = {g €U : [[hyll < 0,7p,(0) + (1) — vector} U {p}
LU = {q e Ut |yl = 0,7p4(0) 1 (1) — vector}

Vo= ULl

The sets I (p,U), I (p,U) are open and it holds
FpU) = TEp,0)
+
L = oI (p,U)~ {p}
L] c L,NU.

Notice that if ¢ € I'"(p,U) then J*(q,U) C I (p,U) and if ¢ € J*(p,U) then I'*(q,U) C
I (p,U) (see [Pen72]). Furthermore, there exists an open set V,, C T, M such that exp,, : V, = U
is a diffeomorphism. Then it holds

[,II,] = expp(I/;J N Ly)

and [,g is a submanifold in M]* of codimension 1. From the Gauss lemma it follows that the
induced symmetric bilinear form of g on T[,g is degenerate in every point [ € [,g .

This is the first of the announced propositions:

Proposition 1 Let U C M7 be convez and p,q € U, p # q. For the intersection qu = ﬁgﬂEqU
of the lightcones to p and q one of the following assertions is true:

i) L, =10,
it) LY, # 0, vl # 0 and L, is a (n — 2)-dimensional spacelike submanifold of M,

iii) LY, # 0, Il =0 and LY, = Imy,, N U is a I-dimensional totally isotropic submanifold
of M.

) U
PROOF: Suppose that £, # 0 and ||y, || # 0. Then we have
Ypr (1) f 7e(1) vie Ly,
which implies
(1) ¢ LY vieLh,

Hence, the submanifolds Eg and [,qU in M{* are transversal and [,gq is a (n — 2)-dimensional
submanifold in M{*. The tangent space

Ty(Lp,) = Tu(Ly)) NT(LY)

is spacelike for every [ € qu.



Suppose now that qu # 0 and [|y,,[l = 0. Obviously, it holds Tmy,, N U C qu. In a con-
vex set of a Lorentzian manifold there are never lightlike triangles, i.e. if p,q,7 € U and
1¥pgll = 17pell = 17ge | = 0, then r € Imy,,NU. Therefore equality holds: Im~,,\U = qu. O

The intersection qu, p,q € U, of cones in a convex set U isn’t empty, if p and ¢ are sufficiently
close together:

Proposition 2 Let p € M{*. There is a neighborhood U(p) of p contained in a convexr set U
with the property

EqUT #0 Vg,r € U(p).

PROOF: Let U be a time oriented convex neighborhood of p € M{*. In an arbitrary neighborhood
V(p) C U exist points u,v € V(p) such that the open set (u,v)y := IT(u,U) NI~ (v,U) is a
neighborhood of p in V(p):

p € (u,v)yy CV(p) CU

(see [Gun88] p. 15 or [Fri75]). So let V(p) C intU be a relative compact neighborhood of p and
a,b € V(p) such that p € (a,b)y C V(p). We show that the neighborhood U(p) := {(a,b)y C U
has the desired property.

1) Suppose that ¢, € (a,b)rr and ||y, [| > 0. Consider the geodesic . It holds ||y, || > 0
and ||} || < 0. Therefore, it exists a ¢ € [0,1], b := v, (), with [l7;, Il = 0. Similar, one
can find a ¢ € [0, 1] such that H’y’m;(f)qﬂ =0 and then ~,;(t) € L.

2) Suppose that ¢,r € (a,b)v, |7 < 0 and ~;,(0) a f-vector. The set (a,r)y C U is
compact. Let vy, : [ g — U be an arbitrary maximal lightlike T-geodesic in U with y,(0) = ¢.
Since ¢ € I (a,U) and v,(t) € J*(q,U) for every t € IV N R, , it holds

Iy NRy) C If(a,U).

The set 'yq(I;] N R4 ) isn’t contained in a compact subset of U and therefore it exists a
t € I NRy with

20l®) € 77 U) and |, ol > 0.
But then £ € IV N Ry exists such that ||'y;7 (£)|| = 0, which implies L} # 0.
q
Obviously, it is LY. # 0 for ¢, € (a,b)y with ||v},|| = 0. O

Proposition 3 Let N' C M} be a 1-dimensional, spacelike submanifold. Then an open set
Un C M exists with the property that for every point r € Uy there are lightlike vectors

v fwr €T, M with exp, vr,exp, wr € N.

The proposition isn’t true in general for a lightlike, 1-dimensional submanifold N' ¢ MJ. To
prove it we need some preparation.



Lemma 1 Let U C M} be a time oriented convez set, r € U and a,b,c € LY points in the
lightcone of the past with

1Vaslls 1Vaclls 5]l > 0.

Then there exists in every neighborhood U(r) of r a point 7 € U(r) such that

a,be I (F,U) and c ¢ J~(F,U) U J" (7, U).

ProOOF: It is

rell. =clncl ncl #0.

abc

For every 7 € LU, the lightlike vectors
Var (1) b7 (1), ver (1) € Te M7

aren’t pairwise parallel by assumption and thus they are linearly independent. It follows
T Ly = span{7;; (1), % ()} & (3 (1) = TrL7

and the submanifolds £{ and LY, of M are transversal. Hence, LU, is a submanifold in LY, of
codimension 1. This implies the existence of a C®-curve « : (—6,d) — LY € M} with «(0) =r
and o/ (0) ¢ T.LY, i.e. the curve « intersects the lightcone LU at the point r. Then there must
be a t # 0 such that ¢ ¢ J~(a(f),U) U J*(a(f),U). Since a(f) € LY,, we can find a point
7 € IT(af(t),U) in the near of a(f) such that ¢ ¢ J~ (7, U)U J*(#,U) and a,b € I~ (#,U). The
point 7 can be chosen arbitrary close to r. a

We use the following notation. Let a,b,r € U points in a convex set such that

#({a,0} N I~ (r,U))=1
#({a,b} N (J-(nU)UJT(rU)))=1

Then we call 7 € U an (a, b)-separating point in U.

Lemma 2 Let U € M be a time oriented convez set, r € U and ay,a2,b1,ba € I7(r,U) such
that

Vel >0 Yo,y € {a1,a2,01,02}, z#y.

Then there exists a point s € U, which separates the pairs (aq,a2) and (by,bs) in U.

PRrROOF: Consider the geodesic 7,,,. There are real numbers t,,, ¢y, , t, € (0,1) such that

S £U7 (tz) Vx € {GQ,bl,bQ}.

Yaqr

1. case: One of the numbers t,,, ty,, 3, is greater then the others. Then clearly ¢ < max{tq,, s, ,tp, }
exists such that for 7 := v,,,(f)

#( {al,ag,bl,bQ} ﬂIi(f,’u,) ) = #( {al,ag,bl,bg} N (Jf(F,u) U J+(F,u) ) =3. (*)



2. case: It is t,, = tp, = tp,. Then by Lemma 1 there exists a 7 € U such that (*) is satisfied.

In case that two of the numbers ¢,,,1,, %5, are equal and greater then the third, Lemma 1 is all
the more applicable. Altogether, we have in any case a point 77 € U such that after eventually
changing the notation

al,bl,bQEI_(f,U), a2¢J_(f,U)UJ+(f,U).

With the same procedure as before applied to the points {a1, b1, bo} it follows the existence of a
point s € U such that

a1,by € I (s,U), by & J (s,U)UJ"(s5,U)
or  ap,by €1 (s,U), by & J (s,U)UJ(s,U).

The point s can be chosen such that still ap ¢ J (s,U) U J*(s,U). O
PROOF OF PROPOSITION 3: Let U C M7 be a convex set and s € U C M7 such that
N'NI=(s,U) #0.

Since N'! is spacelike, there is a spacelike C®-curve o : (—1,1) — N'N T (s,U). An easy
consideration shows that there are real numbers ¢1,%2,t3,t4 € (—1,1), #; < t2 < t3 < t4, such
that

||7&(t1)a(t2)“a ||7&(t3)a(t4)“ >0 and
1Yyl >0 Vo € alfty, t2]), y € a([ts; ta]).

From Lemma 2 it follows the existence of a point § € U, which separates the pairs («(t1), a(t2))
and (a(t3),a(ts)) in U. Moreover, there is a neighborhood Uy of § such that every point § € Uy
separates these pairs in U. This shows for every § € Uy the existence of points

Ts € £57 N Oz([tl,tg]) and y; € £57 N Oé([tg,t4]).
Since ||y, ,. [l > 0, it follows

Vizs (0) K 73y, (0). D

2 The zero set of a conformal vector field

Let M} := (M",g), n > 3, be a n-dimensional Lorentzian manifold. A vector field V' € X (M}")
is called conformal, if

Lyg=2a-g

for some function a € C*°(M7"). A conformal vector field V on a connected Lorentzian manifold
M7 is uniquely determined by the values of

Vizo), VV(z,), a(z,), da(z,)



at an arbitrary point z, € MP'. Let ®" : AY C R x M]* — M7 denote the maximal local flow
of the conformal vector field V, i.e. for every point p € M{* the map

pp(t) := @} (p) = " (t,p), tel,:=A"N(Rx{p}),

is the maximal integral curve of the field V' through the point p € M. In case that the flow ®"
is defined on an open subset W C M7 for all t € (—¢,¢), € > 0, the mapping

o) W = @) (W) C M}

is a conformal diffeomorphism for every t € (—¢,¢e). The zero set of the conformal vector field V'
is denoted by zero(V'). The property VV(p) = 0 for a conformal vector field V' in p € zero(V)
implies for the maximal local flow ® in p that d®} (p) = id|z, s for all ¢ € I, holds.

Lemma 3 Let V be a conformal vector field on a Lorentzian manifold M{* and p € M{* a zero of
V' with VV (p) = 0. For every point q € L, and every lightlike smooth geodesic vy, : [0,1] — M,

Y4(0) = p, v4(1) = q, it holds

V(g) | 7(1) € T, M or V(g) =0.
PROOF: Let W, be an open neighborhood of the compact set ,([0,1]) C M}* and ¢ > 0 such
that the flow ®}" on W, is defined for every t € (—¢,¢). Because ®}" : W, — M[" is a conformal

transformation for every t € (—¢,¢), every C®-curve 7, := ®) o, : [0,1] — M} is a lightlike
pregeodesic in M{" with v, (0) = p. Since

do) (p) = id|, s Vt € (—¢,¢€),
it holds
Vg (0) = 74(0) VYt € (—¢,6),
which implies the existence of a smooth function A : (—¢,¢) — R with
;' (q) = 74 (1) = exp, (A(t)74(0)).
It follows V (q) = £ |,—=o®} (q) = N (0)v(1). m
We call a point ¢ € M} lightlike conjugated to p € M7, if there exist lightlike C*°-geodesics

¥+ [0,1] = M7, %(0) =p, vi(l) =q, i = 1,2,

with 1 (1) }f ¥4(1) (comp. [BEE96], Chap. 9 and 10) and let lc(p) denote the set of lightlike
conjugated points to p in M{'. Lemma 3 implies the

Conclusion: If p € M7 is a zero of a conformal vector field V' on M[* with VV(p) = 0 then
le(p) C zero(V).

With the results of the first section we prove now:

10



Theorem 1 Let 0 # V be a conformal vector field on a connected Lorentzian manifold M{* with
the property

VV(p) =0 Vp € zero(V).

Then there ezists for every p € zero(V') a neighborhood U(p) C M] and a lightlike C*°-geodesic
Yp such that

zero(V)NU(p) C Imy, NU(p).

PROOF: From Proposition 2 it follows the existence of a neighborhood U(p) of p, which is
contained in a convex set U, such that

E;]r # 0 Vq,r € U(p).
Suppose that there are points ¢,r € zero(V) N U (p) with ||yg, || # 0. Then we have
Y (1) fy5(1) Vie ﬁ([;]r

and by Lemma 3 it follows V() = 0 for [ € [,qu. Proposition 1 says that Eg, C zero(V) is
a spacelike submanifold of M['. But then Proposition 3 implies the existence of an open set
Ugr C zero(V'). This isn’t possible, since M} is connected and V' # 0. We can conclude that

7l =0 Vq,r € zero(V) N U(p).

We mentioned already that lightlike triangles don’t exist in a convex subset of a Lorentzian
manifold. Hence, the set zero(V') N U(p) must be contained in the image of a single lightlike
C*°-geodesic . O

On the Minkowski space R} we know from the explicit form of the conformal vector fields given
in the introduction that the zero set of a conformal vector field V' with

VV(p) =0 Vp € zero(V)

is a lightlike straight line or a single point. The assertion of Theorem 1 for arbitrary curved
Lorentzian manifolds is only a bit weeker. We can also prove a more global version of Theorem 1:

Theorem 2 Let M{* be a connected Lorentzian manifold and V€ X(M{") a conformal vector
field. If p,q € zero(V') and lightlike vectors v, € T,M, v, € T,(M) exist with
i) rg(dexpy(vp)) = rg(dexp,(vg)) =n

ii) v = exp,(vp) = exp,(vy) € M7

i) % |t=1exp,, tvp, }f % |t=1€xp, tvg,
then the conformal vector field V' vanishes identically.
PROOF: The three assumptions imply the existence of neighborhoods V,, C T,M of v, and
Vy C Ty M of vy such that

Ly :=exp,(V, N Ly,) and Ly :=exp,(V;N L)

are transversal submanifolds in M[* and W), := L1 N Ly is a spacelike submanifold of M*. With
the same arguments as in the proof of Theorem 1 we can conclude that V' =0 on M7". O
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3 The zero set of a twistor spinor

Every twistor spinor on a time oriented Lorentzian spin manifold induces a conformal vector
field. Since the zero sets of the twistor spinor and the associated conformal field are identical,
the results of the previous section can be applied to twistor spinors. That will be done here.
We start with recalling briefly the definition of a twistor spinor and its main properties (comp.
[Baum198] and [BFGKO91}).

Let M{', n > 3, be a Lorentzian spin manifold with spin structure (@, f) and let S be the
associated spinor bundle over M, r := dim¢ S = 2l2]. We denote by

Vi, (8) =, (TM®S)
the spinor derivative and by
pw:TM®S—S

the Clifford multiplication. In case that M7 is time oriented, there exists a non-degenerate,
indefinite Hermitian product

(,)s:SxS—=C

on the spinor bundle S. It holds
(X-o,9)s = (o, X 1),
X(p.9)s = (Vie¥)s + (0, Vidls

for all X € , (TM) and ¢, €, (S). The Dirac operator is defined by

D:poV®: (S)—, (S)
and the twistor operator is defined by

D := projkeru oVS:, (S) =, (kerp),

where projkem :TM ®S — keru denotes the projection onto the kernel of the Clifford multipli-
cation. A spinor field ¢ € , (S), which satisfies Dy = 0, is called twistor spinor. For a twistor
spinor ¢ €, (S) holds

1) V3p+1X -Dp=0
2) D2p=1R" ¢
3) ViDy = 2L(X)e,

where R is the scalar curvature and L is the Schouten tensor. A twistor spinor ¢ on a connected
spin manifold M{" is uniquely determined by the values of ¢(x,) and Dp(z,) in an arbitrary
point z, € M.

To every spinor field ¢ €, (S) on a time oriented spin manifold M} there is a vector field Vy
associated by

Vi = —Xei(¢, sih) ssi,

where (s1,...,s,) is a local orthonormal frame on M. If ¢ € , (S) is a twistor spinor, then
the associated field V,, is conformal on M7 and it has the properties

12



1) zero(V,) = zero(yp)
2) VV,(p) =0 Vp € zero(V,) (see [Baum198]).

Consider now a smooth geodesic y(¢) on a Lorentzian spin manifold M{" admitting a twistor
spinor ¢ € , (S). Let Im~y denote the image of the geodesic v in M{*. Let p € Imy be a point.
The set U, := exp,(Dp) C M} is a time orientable neighborhood of Imvy in M7'. Furthermore,
let {fi(t) :4 € {1,...,r}} be a parallel basis field of S along the geodesic y(t):

Vifi=0 Vie{l,...,rh
We choose on U, a time orientation and define the functions
ui(t) = (p(y(t), fi(v(?))s, i€{l,... 1}

It holds
du;
dt
d?u; .. 1 } . .
oz = Vi) =——(V5(1Dy), fi)s = =5 (YL(H)e: fi)s

= e IO Vie{l.. )

= S(w) = (Vi fi)s = —~ (41D, fi)s.

n

u (t)
For the vector U(t) := : we obtain the linear differential equation system

ur(t)
1—
U'=--C-U.
2 )

where C(t) € M(r,C) is the complex matrix of the endomorphism s € S,y = L(§)¥(t)s € Sy
with respect to the basis {fi(¢)}.

Lemma 4 Let M{" be a Lorentzian spin manifold, ¢ € , (S) a twistor spinor on M{", p € zero(yp)
and y,(t) a C*®-geodesic on M]* with v,(0) = p.

i) If 4,(0) - Do(p) = 0, then Imry, C zero(yp).
i) If Yp(0) - Dp(p) # 0, then there exists a neighborhood U(p) of p with

zero(p) N Tmy, NU(p) = {p}.

ProoF: With the notations as above we have the differential equation system

for the functions u;(t) := (p(y(t)), fi(y(t)))s with respect to a parallel frame {f;(¢)}. It holds

U'(0) =0 iff 4,(0)Dy(p)=0. O

13



Definition 1 Let M{* be a Lorentzian spin manifold, ¢ € , (S) a twistor spinor and
Vi {teR:tv, € Dy} = M{", v, € T,M,

a mazimal geodesic such that Imy, C zero(p). Then the set Z.,, := Imvy, is called a zero set
geodesic of .

Obviously, the image Im~y of a maximal C°°-geodesic y in M{" is a zero set geodesic to a twistor
spinor ¢ # 0 iff there is a point p € Im~y N zero(p) with 4 - Dy(p) = 0.

Theorem 3 Let M be a connected Lorentzian spin manifold and 0 # ¢ € , (S) a twistor spinor
on M7
i) Every zero set geodesic to @ in M{" is a totally lightlike, 1-dimensional submanifold of M7 .

i) Every zero set geodesic to ¢ is isolated, i.e. for every zero set geodesic Z., = Imry there is
an open set U(7y) with

zero(p) N U (y

~—

= Imyy.
ii1) The zero set zero(y) is the countable union of isolated points and isolated zero set geodesics:

zero(yp) = | J Tmy; U J{pi}-

iEN iEN
PROOF: By Theorem 1, it exists a time oriented neighborhood U(p) of p € zero(p) and a
C*°-geodesic v, with
zero(y) NU(p) = zero(V,) NU(p) C Imry,,

where V,, is the associated conformal field to ¢ on U(p). Moreover, from Lemma 4 it follows the
existence of an open neighborhood U(p) C U(p) of p with

zero(go)ﬂ(?(p) = Imy, or
zero(p) NU(p) = {p}.

This proves that every zero set geodesic Z, = Imvy of ¢ is a submanifold in M{* and Z, = Imry
is isolated. In particular, the third assertion is then clear. It remains to prove that a zero set
geodesic is lightlike. So let Imy be a zero set geodesic, then for p € Im7y we have

YDp(p) = 0 and De(p) # 0.

It follows ||¥|| =0 O

One should notice that we used Theorem 1 in the proof. Theorem 3 isn’t a direct consequence
of Lemma 4, which is proved only using spinor calculus.

For arbitrary vectors X,Y € T, M the mapping

seS—~X-Y-s€e8,
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is a complex linear endomorphism. Let w € S, be an eigenspinor of X -Y to the eigenvalue
¢ # 0. We have

g(X,X)g(Y,Y)w
c=—g(X,Y)+g(X,Y)2 —g(X,X)g(Y,Y) € C.

XYw=cw, YXw= =(—c—29(X,Y))w and

If there is in addition a spinor v € S, with XYv = 0, then ¢(X,X)g(Y,Y) = 0. Hence, the
endomorphism XY € End(S,), X,Y € T,M, has at most the eigenvalues

C)-'EY = —g(X,Y)+\/g(X,Y)2—g(X,X)g(Y,Y),
Cyy = —9(X,Y) = Vg(X,Y)? — g(X,X)g(YY).

The endomorphism X - Y € End(S),) has no positive eigenvalues if and only if

g(X7Y)2 - g(XaX) g(Y,Y) <0 or

X - [V >0, g(X,Y)>0.
Theorem 4 Let M{" be a Lorentzian spin manifold with VRic = 0, 0 # ¢ € , (S) a twistor
spinor on M, p € zero(p) and y,(t) a C*-geodesic with v,(0) =p and 4,De(p) # 0. If

90, L)) = 90> ) - 9(L(3p), L)) <O or

19pll - ILG) = 0, g(3p, L(p)) 2 0,
then Im-y, Nzero(yp) = {p}.
PRrROOF: Let {f;(t) : ¢ € {1,...,r}} be a parallel basis field along ,(¢). From VRic = 0 it
follows that the scalar curvature R is constant and therefore VL = 0. Then

Yol L(Yp) Vo fis fi)s = 0,

i.e. the matrix function C(t) = C is constant and it exists a parallel eigenspinor field s(¢) on
Imry, such that the function us(t) := (p(v,(t), s(t))s # 0 satisfies

dPug(t 1
u():__E_us,

dt? 2

where C 2 ¢ = const. is an eigenvalue of C. Hence, the function u, is of the form

us(t) = A(e\/?'t — e\/?'t>, A #0.

If ug(t) = 0 for t # 0, then /—1¢ € iR and thus ¢ > 0. But L(4;)¥, has no positive eigenvalues
and such a ¢ # 0 doesn’t exist. O

Theorem 5 Let M7 be a Lorentzian FEinstein spin manifold, 0 # ¢ € , (S) a twistor spinor on
M7, p € zero(p) and v,(t) a C*®-geodesic with v,(0) = p and §,Dp(p) # 0.

7’) If g("}’p,")’p) "R < 07 then

zero(y) N Imy, = {p}.
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i) If g(4p,¥p) - R > 0, then

zero(p) NImry, = {,yp(%) In € N}, d— IZL?T(:’T ’13’;;),

i.e. the zero set is periodic on Im-y,.

PRrROOF: On an Einstein space the Schouten tensor L equals Wlil)id and therefore

L) = Wislds-

The first assertion is a special case of Theorem 4. If g(%,,4,) - R > 0, then the solution of

. . t

vt = : eC,
4dn(n — 1) it
is given by
Rl
U = sin(dr) - U'(0), d =900 )
dn(n — 1)
This proves the second assertion. O

There is a direct consequence of Theorem 5. In case that M{" is an Einstein spin manifold
admitting a twistor spinor ¢ # 0 and the points p, g € zero(¢) don’t lie on a common zero set
geodesic of ¢, then the intersection of the lightcones to p and ¢ is empty:

LyNLy;=0.
Ezxzample: The pseudosphere
v: S i= {z € BT (2, 2) 2T = 1) s REVH!

is a totally umbilic hypersurface in ]R%"'H. The spin structure on ]R%”'H induces via the embed-
ding ¢ a spin structure on S?*. The zero set of a twistor spinor ¢ on ]R%”H is empty, a single

point or a lightlike straight line. The restriction ¢| gontl to the totally umbilic hypersurface S?"

of a twistor spinor ¢ on R ! is again a twistor spinor (comp. [Baum298]) and the zero set
zero (| S%n) = zero(p) N S?" is also empty, a single point or a lightlike geodesic (that is a straight

ine in - . Consider now a twistor spinor 2, ON with ey € zero 2) an e
1 S c R¥"). Consid twist ol S with ¢lg2) and th

R-g(yy) _
dn(n—1) —

spacelike geodesic y(t) = cos(t)es + sin(t)es. It is d = % and in fact

~(t) € zero(<p|5%n) if t=21-n= %

This is in accordance with Theorem 5, since S?" is Einstein.
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Consider the universal covering
m: 5% = 5%

with induced metric 932 and induced spin structure. The space S’% is geodesically complete and

conformally flat. Every twistor spinor ¢ on 5’% is induced by a twistor spinor ¢| 52 On S2.
() = Pl

If o] 52 on S? admits a zero or a zero set geodesic, then ¢ on S7 admits infintely many zeros
or zero set geodesics. The product R x S’% with metric dt & 932 is a geodesically complete and
conformally flat Lorentzian spin manifold of dimension 3. On R x 5’% a set of twistor spinors
with maximal dimension 4 exists. Every twistor spinor ¢ on 52 can be extended to a twistor
spinor 1) on R x S? such that 1/)|{0}X5% = ¢ (comp. [BFGK91]). The space R x S? is an example
of a geodesically complete Lorentzian spin manifold that admits twistor spinors with infinetly
many zero set geodesics.
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