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1. Introduction

The West Area started operation in 1971 as an experimental area at the CERN PS with top beam

momenta of 28 GeV/c. In 1975 the zone was transformed into a SPS area, providing 7 different

beam lines of initially up to 200 and later up to 240 GeV/c, delivering particles to various

experiments and facilities, such as BEBC and the Omega spectrometer.

In 1983 the area was rebuilt again to provide two physics beams of up to 450 GeV/c (H1),

respectively 400 GeV/c (H3). The H1 beam served a large number of experiments in the Omega

spectrometer with secondary beams, attenuated primary proton beams and various species of heavy

ions. The successes of the Omega programme were recently summarised in [1]. One interesting

variant of the H1 beam was a dedicated hyperon beam exploited for hadron spectroscopy [2]. The

H3 beam served mainly a series of heavy ion experiments, ending with the WA98 experiment [3] in

the 400 GeV/c lead beam. In addition the H3 beam served as a parent beam for the four West Area

test beams X1, X3, X5 and X7. These were versatile tertiary beams, optimised for good quality and

maximum flexibility, adapted to tests and calibrations of the LEP experiments.  The top momentum

was limited to 100 GeV/c for the X5 and X7 beams, 80 GeV/c for X1 and 50 GeV/c for the X3

beam, well matched to the LEP beam momenta.

When the future of CERN turned towards the Large Hadron Collider, it seemed attractive to stop the

West Area altogether, thus liberating resources and space in favour of the LHC project. However, it

was pointed out that without any of the West Area beams, the need for test beams by the LHC

experiments themselves and for all other experiments in addition, could not be satisfied [4].

Therefore it was decided to keep two test beams in the West Area, namely the X5 and X7, but

upgrade them to a top momentum of 250 GeV/c [5], better suited to the test requirements of LHC

and SPS experiments. The X5 upgrade was performed in the 1996-1997 shutdown, whereas the X7

upgrade was done a year later, after the termination of the CHORUS neutrino experiment1.

The equipment liberated by the H1, X1 and X3 beams served both to upgrade the X5 and X7 beams

and to reconstitute a stock of spare elements for other beam lines. As the X5 and X7 beams are

situated on the extreme North side of the West Hall, still a large fraction (≥ 70%) of the hall space

could be liberated for the LHC project.

In this note we describe the design, operational modes and performance of the new West Area

beams and their associated facilities. This description includes the modifications [6] of the H3 beam

                                                          
1 In case the X7 would be operated at a high fraction (>57%) of the H3 momentum, muons from decay of pions in the
H3 beam would be transported by the X7 beam and a significant number would traverse the emulsions installed in the
CHORUS experiment. To avoid an over-exposure of the emulsions, the X7 beam had to be run at very low momenta
during the full duration of this neutrino experiment.
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in the 1999/2000 shutdown to make the West Area compatible with the injection line TI2 from the

SPS into the LHC, which would have interfered with the shielding of the T1 primary target.

2. General organisation of the West Area

Primary protons of momentum up to 450 GeV/c are slow-extracted from the CERN SPS to two

experimental zones, the North Area in Prévessin (France) and the West Area on the Meyrin site.

Every SPS cycle (typically 2.58 seconds, repeated every 14.4 seconds), some 1.5.1012 protons are

transported to the T1 primary target in the West Area. Secondary particles produced by interactions

in this target are momentum selected by the H3 beam - see chapter 3 - and transported to a pair of

septum magnets, from which two branches emerge, that deliver up to ≈ 2.107 particles per SPS cycle

onto each of two secondary targets. From these targets, the two test beams X5 and X7 are derived,

which are described in detail in chapters 4 and 5, respectively. Each of the beams can operate either

in secondary or in tertiary mode. In secondary mode they can deliver up to 106 particles per SPS

cycle, limited only by radio-protection guidelines. In tertiary mode the maximum achievable fluxes

are lower by typically two orders of magnitude, but the user has more flexibility, in particular the

free choice of beam momentum and particle type.

Each of the test beams serves two main test facilities, called X5A (X7A) and X5B (X7B). As safe

access conditions to the downstream (B-) area are guaranteed by a mobile dump, the upstream area

can be operated with beam, while installation work is taking place in the downstream zone.

A schematic layout of the three beams H3, X5 and X7 with their respective test facilities is shown in

figure 1. Details of the test facilities are given in chapter 6.

At the end of the X5 beam, downstream of its final dump, the so-called Gamma Irradiation Facility

(GIF), is installed [7]. This facility houses a strong gamma source, that irradiates large detectors (up

to 3x6 m2) of LHC experiments with an intense and adjustable photon flux. A small muon flux

accompanying the X5 beam, tagged by scintillators and two drift chambers, is used to measure the

efficiency and resolution of the detectors as a function of the photon background. A short

description of the Gamma Irradiation Facility is given in chapter 7.

3. The H3 secondary beam

The H3 secondary beam is derived from the T1 primary target. A slow-extracted primary proton

beam of typically 1.5 - 2.1012 protons per SPS cycle impinge on one out of five Beryllium target

plates, housed in a heavily shielded target box. The dimensions of the five plates (the so-called

target heads) are listed2 in Table 1.

                                                          
2 The target box has been replaced in the 1999-2000 shutdown. This has lead to different target lengths.
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For maximum useful secondary particle flux, a suitable compromise has to be made between

particle production rate and re-absorption inside the target. Therefore, usually a target length close

to the optimum (300 to 500 mm) is chosen, but shorter targets are preferred in case of high

production rates e.g. for high-momentum positive beams.

Figure 1: Schematic layout of the West Area beams and test facilities
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In the 1999-2000 shutdown the primary target was displaced downstream by about 12 metres and

sideways by almost 1.5 metres to make space for the future TI2 injection line from the SPS into the

LHC. As a consequence the wobbling station, previously required to serve simultaneously the H1

and H3 secondary beams, has been suppressed. Also the mobile dump-collimators (TAX) are no

longer required.

The primary target is now immediately followed by a pair of MTR-type dipoles, a ≈13 metres long

drift space and a fixed dump (TCX) with a 64 mm diameter hole aligned on the passage of the

beam. Special handling tools have been installed to manipulate the highly radio-active MTR

magnets in the absence of a crane, see figure 2. The current of B1 is limited such that the primary

protons can never traverse the hole. However, charged secondaries of the desired momentum will

pass through the hole in the direction of the H3 line. A horizontal dipole magnet (B2) allows to

compensate for any skew of the beam leaving the primary target through the hole in the TCX dump.

The H3 beam itself is a high-transmission transport system with momentum definition in the vertical

plane. The optics of the beam, including (as an example) the branch towards the X5 target, is shown

in figure 3. The beam emerges from the primary target at an upward vertical slope of 43 mrad. A

first group of 5 dipoles (B3) increases the vertical angle by another 42 mrad, which is compensated

later by B4, situated some 400 metres further down the beam line. The optics in between B3 and B4

is calculated to have a dispersion-free beam downstream of B4. In the section between B3 and B4

one finds a vertical momentum slit (COLL4), located in a dispersive focus, that allows a precise

momentum definition with an intrinsic resolution of 0.3‰ and a maximum momentum byte of

about ±2%. The horizontal and vertical acceptances of the beam are about ±1.1 and ±0.5 mrad, but

may be reduced by COLL2 and COLL1, respectively. Centred in between the four tilted MBE

dipoles of B4, a pair of horizontal MCB-type dipoles (B5) helps to deflect the H3 beam towards its

old trajectory (before the T1 displacement).

Head # Material

Horizontal

(mm)

Vertical

(mm)

Length

(mm)

0 Empty position

1 Be 160 2 300

2 Be 160 2 500

3 Be 160 2 200

4 Be 160 2 100

5 Be 160 2 40

Table 1: T1 target heads
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B4 and B5 are almost immediately followed by another group of four tilted dipole magnets (B6),

that renders the beam exactly horizontal. These dipole magnets are interspersed with quadrupoles to

keep the beam free of dispersion and a pair of horizontal MCB dipoles (B7) to adjust the angle of

the beam to the one of the old H3 beam (i.e. the one from the old T1 location).

At the exit of B6 and B7 the beam is wide and parallel in the vertical plane, whereas in the

horizontal plane it converges to a focus a few metres further downstream. Around this horizontal

focus a pair of magnetic septa (B8) allows to split the lower part of the beam away towards the X7

target, whereas the upper part follows a straight path towards the X5 target.

The beam intensities on the secondary targets are restricted by radiation level limits and should not

exceed 2.107 particles per SPS cycle. The overall beam intensity is controlled by the momentum slit

COLL-4 and, if necessary, the horizontal acceptance collimator, COLL2. The beam at the splitter is

an inverted image (at 540o phase advance) of the beam at the vertical acceptance collimator,

COLL1. Therefore, closing the upper jaw of COLL1 will reduce the flux on the X7 target, whereas

the lower jaw will only affect the flux onto the X5 target. Additional 4-jaw collimators in each of

the branches allow to clean the beam and reduce even further the intensity per branch, if so required.

The spot size at each of the secondary targets is measured using wire chambers located about

0.5 metres upstream of the focus at each target. The RMS widths (horizontal x vertical) are

0.7x 3.8 mm2 for X5 and 1.0x 3.0 mm2 for X7, almost independent of H3 collimator settings. The

total length of the H3 beam from T1 to the X5 target is ≈680 metres. The maximum momentum that

can be transported to the two targets is just above 250 GeV/c. The main design parameters of the H3

beam are summarised in table 2.
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H3 X5 X7

Maximum beam momentum (GeV/c) 250 250 250

Minimum beam momentum (GeV/c) 20 5 5

Dispersion at momentum slit (mm/%) 48 6.2 4.3

Intrinsic momentum resolution ∆p/p ±0.03% ±0.5% ±0.8%

Spectrometer momentum resolution ∆p/p — ±0.16% ±0.22%

Maximum momentum byte ∆p/p transported ±1.9% ±7.7% ±9.6%

Horizontal acceptance (mrad) ±1.1 ±2.6 ±3.2

Vertical acceptance (mrad) ±0.5 ±0.85 ±0.78

Total acceptance (µsterad) 1.7 7 12

Maximum authorised flux per SPS cycle — 106 106

Beam length (m) 684 (T1→X5)

658 (T1→X7)

196 168

Beam height (m) 1.26 1.26 → 3.66 1.26 → 3.66

Table 2: Design parameters of the West Area beam lines



EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN    SL DIVISION

9

Figure 2: Schematic design of mobile support structures for MTR magnets and shielding in TCC6.
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Figure 3: The optics of the H3 beam
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4. The X5 beam

The X5 beam starts at the X5 target and transports particles to two test facilities, called X5A and

X5B. Two groups of dipole magnets transport the beam into the wanted direction and, together with

the (horizontal) momentum slit COLL1, they also define the beam momentum. The first group

consists of 6 magnets, 3 metres long each. The two central ones and the two extremes are powered

in series as B1, and the second and fifth are powered as B2. This allows to user either all 6 magnets

at identical fields or only the B1 magnets at 50% higher field (with B2 switched off). The latter

option is of interest when running at very low beam momenta, where a 50% higher current is easier

to control precisely. Similarly the second group of dipoles is powered by two independent power

supplies. B3 consists of the two outer magnets, whereas B4 is the central magnet. The optics, shown

in figure 4, contains an acceptance section with 4 quadrupoles upstream of B1, a field lense in

between B1-B2 and B3-B4 (for dispersion recombination) and two more groups of quadrupoles to

focus the beam at the experiment or test set-up. Four correction magnets (indicated as “Trims” in

figure 4) allow to adjust the steering through apertures and onto the test apparatus.

The intrinsic momentum resolution of the beam is about 7‰ and the maximum accepted

momentum byte ±7.5%. The useful momentum range of the beam line runs from about 5 GeV/c up

till 250 GeV/c. The angular acceptance is ±2.6 mrad in the horizontal plane and ±0.9 mrad in the

vertical plane.

The particle composition is a strong function of the beam momentum. The non-leptonic

composition can be calculated from a formula given in [8]. At -120 GeV/c, some 10% of the

beam are electrons (for the longest target heads). At momenta above ≈150 GeV/c, electrons loose

so much energy by synchrotron radiation that they are lost from the beam before getting to the

secondary targets. The calculated beam composition at some typical beam momenta is listed in

table 3.

Momentum (GeV/c) e± π± K± p, p

-120 10% 83% 5.5% 1.5%

-250 0 95.5% 4% 0.5%

+120 3.5% 59% 5.5% 32%

+160 0 46% 5% 49%

+250 0 15% 2% 83%

Table 3: Estimated particle composition of the H3 beam at some typical momenta
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The beam can be operated in three rather different ways, namely as a secondary beam, as a versatile

tertiary beam or as a muon beam:

1. For secondary beam operation the empty target head is selected and the X5 beam is tuned to the

same momentum as the H3 parent beam. The maximum allowed intensity in this mode is

defined by radioprotection considerations and is 106 particles per SPS cycle. The momentum

resolution is in this case defined by collimator settings (COLL-4) in the H3 parent beam.

2. In tertiary mode the target head defines the particle type. Three different target heads are

available, namely Lead (4 mm), Copper (400 mm) or Beryllium (400 mm). Pion beams are

obtained using the Copper target. Any remaining electrons (due to conversion of photons from

πo decay) can be removed from the beam by inserting a lead absorber plate (3 or 8 mm of Lead)

at the location of the momentum slit. Depending on the H3 momentum, electrons can be

obtained either via Bremsstrahlung of electrons from H3 in the Lead target (for H3 momenta

below some 150 GeV/c) or by conversion of photons from π’s produced in the Beryllium target

(for higher H3 momenta). In the latter case, TRIM1, situated immediately downstream of the X5

target, operates at full current as a sweeping magnet. Photons, unaffected by the magnetic field,

continue along a straight line and convert in a converter (4 or 6 mm of Lead) downstream of the

fixed collimator following the TRIM1 magnet.

3. Muons from decays of pions in the final straight section of the H3 secondary beam will be

transported along the X5 beam, if this beam is tuned to a momentum above 57% of the H3

momentum3. These muons will be an unavoidable background for high-momentum tertiary

hadron or electron beams. On the other hand the hadrons and electrons can be stopped in

collimators or in the mobile dumps upstream of the test areas, in which case a useful flux of up

to ≈ 104 muons per SPS cycle is available in the test facilities. This mode of operation is

frequently used for tracking tests.

The X5 beam is equipped with a variety of detectors for tuning, tracking and particle identification.

A scintillator counter and a wire chamber allow to monitor the beam incident on the X5 target. Five

additional scintillators along the beam line allow to measure the flux in the X5 beam and to strobe

the more sophisticated detectors in the beam.

Four drift chambers of the Delay Wire Chamber type [9] around B3 and B4 allow to measure the

momentum of each individual beam particle to better than 2 permille. Two Threshold Cerenkov

counters, 10 metres long each and filled with either Helium or Nitrogen, allow particle identification

for large momentum ranges. Finally Delay Wire Chambers with 2-plane readout and 200 µm

resolution are installed in each of the test facilities. Signals from these detectors are available both

for the Experimental Area computers and for direct readout by the experimental teams.

                                                          
3 Due to the kinematics of the decay of relativistic pions into a muon and a neutrino, the muon carries at least 57% of the
pion momentum.
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Figure 4: The optics of the X5 beam
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At the high fluxes possible with secondary beams, the Delay Wire Chambers become very

inefficient. To facilitate beam tuning under those conditions, wire chambers with analogue readout

are available in each of the test facilities.

The total length of the X5 beam from the X5 target till the end of the X5B test facility is about 200

metres. Its main characteristics are listed in table 2. A user manual for the X5 beam is available [10].

5. The X7 beam

From a conceptual point of view, the X7 beam is identical to the X5 beam. It starts at the X7 target

and serves two test facilities, called X7A and X7B. It differs from the X5 beam only in the exact

positions, dimensions and types of magnetic elements. Its schematic layout and optics are shown in

figure 5. The angular acceptance is ±3.2 mrad in the horizontal plane and ±0.78 mrad in the vertical

plane. The intrinsic momentum resolution is 0.8 permille (a spectrometer measurement allows a

precision of about 2 permille) and the maximum transportable momentum byte is ±9 %. These

characteristics are very similar to those of the X5 beam.

Optionally the X7 beam can be equipped with a CEDAR Cerenkov counter [11] for particle

identification at high momenta, where the threshold counters are no longer selective. Note that, for

good performance of CEDAR counters, the beam should be as parallel as possible. As the counter is

installed close to the experiments, namely in the upstream part of the X7A test facility, there is no

space for focusing downstream of the CEDAR and the beam spot will therefore be relatively wide in

the test facilities, whenever the CEDAR is used.

The total length of the X7 beam from the X7 target to the end of the X7B test facility is about 170

metres. Its main characteristics are summarised in table 2. A user manual for the X7 beam is

available [12].

In the past the X7 beam sloped down at 6 mrad towards the centre of BEBC. At the time of the

upgrade the beam was put horizontal for a number of reasons, among we list the following two:

1. The downward slope would lead to a loss of beam height of about 1.5 metres in the X7B area.

This might compromise the test of large detectors, e.g. of LHC experiments.

2. It is more convenient to install and align detectors or test set-ups on a horizontal line than on a

6 mrad slope.

With this modification the X7 beam has the same beam height as the X5 beam, namely 3.66 metres

above the West Hall floor. The horizontal position of the beam has not been changed.
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Figure 5 : The optics of the X7 beam
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6. The test facilities

Each beam serves two test facilities, namely X5A (X7A) and X5B (X7B). A test facility consists of

an experimental area and a user barrack and may be shared by different user groups. As mentioned

in the previous chapters, in each test area a Delay Wire Chamber allows to measure the positions of

the incoming particles with a resolution of about 200 µm. The output signals from this chamber are

delivered to a patch panel in the corresponding user barracks. Also available in the barracks are the

outputs from the two threshold Cerenkov counters in each beam and from the four spectrometer

Delay Wire Chambers for particle momentum measurements. The gas pressures of the Cerenkov

counters can be adjusted by the users from their beam control terminals, which are available in the

user barracks. Note that these are X-terminals connected to the public Ethernet, which is anyway

available for connecting the computers of the experiments. Further facilities in each user barrack

include:

1. A patch panel with TTL timing signals (1 second before the start of the slow extraction,

1 msec before the start and at the end of the extraction).

2. A patch panel with four inputs to so-called ‘experimental scalers’, i.e. scalers connected to the

area computers, that count NIM signals from the detectors of the user groups.

3. A so-called ‘Page-1’ monitor, showing the actual status of the SPS machine.

The dimensions of experimental zones, user barracks and other parameters of interest are listed in

table 4.

X5A X5B GIF X7A X7B

Useful length of

beam area

17 m 11 m 3.2 m 12 m 21 m

Width of beam area 6 m 6.4 m 6 m 6.4 m 8 m

Surface of beam area 106 m2 75 m2 30 m2 90 m2 180 m2

Standard beam height 1.26 m 1.26 m 1.26 m 1.26 m 1.26 m

Maximum beam height 3.66 m 3.66 m 3.66 m 3.66 m 3.66 m

Dimensions of barrack 28 m2 60 m2 88 m2 64 m2 80 m2

Minimum cable length 20 m 12 m 30 m 20 m 15 m

Typical cable length 30 m 30 m 40 m 40 m 40 m

Ethernet available ? Yes Yes Yes Yes Yes

# Experimental scalers 4 4 4 4 4

EA counter signals

available

Spectro

2 XCET

XDWC158

Spectro

2 XCET

XDWC185

XDWC214

XDWC217

XTRI215

Spectro

2 XCET

XDWC120

Spectro

2 XCET

XDWC149

Table 4:  Test facility dimensions and other parameters of interest
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Transfer of data from the area computers to the user computers and vice versa is possible via

Ethernet. At the end of every SPS cycle a so-called ‘Standard Block’ with data about beam

intensities is made available for the users. A ‘Non-Standard Block’ with detailed status of all

magnet currents, collimator settings and specific, user-dependent information can be made available

on request, with a frequency typically not exceeding once per 10 minutes.

The access to the downstream areas is controlled by means of a mobile dump (TDX) located in

between the two areas. Therefore installation work in the downstream area can go on during data-

taking in the upstream area. This lead to the operational choice of attributing the downstream test

facilities X5B and X7B to large tests of major experiments, whereas the X5A and X7A areas are

reserved for smaller tests that can be (dis-)mounted within a short period of time, e.g. during the

weekly 8-hour machine development sessions.

7. The Gamma Irradiation Facility (GIF)

The Gamma Irradiation Facility (GIF) [7] is a test area in which high-energy particle detectors are

exposed to a particle beam in the presence of a strong background flux of photons, simulating the

conditions that these detectors will suffer in their future operating environment at the Large Hadron

Collider. The GIF is situated at the downstream end of the X5 test beam. The zone is surrounded by

a 8 metres high and 80 cm thick concrete wall. Access is possible through three entry points, namely

two access doors for personnel and one large gate for material. A crane allows to install heavy

equipment into the area. A schematic layout of the GIF zone is shown in figure 6.

The photons are produced by a strong radioactive source (irradiator). It is installed in the upstream

part of the zone, 5 metres away from its downstream end, and housed inside a lead container, which

includes a precisely shaped collimator, designed to permit irradiation of a 6 by 6 m2 area at 5 metres

distance from the source. A filter system, composed of four 1 mm thick lead discs of different

diameters fixed at the exit face of the collimator, serves to render the outcoming flux more uniform

in the vertical plane. At 4 metres distance from the source the flux on the axis is 1.8 105 γ/cm2/s.

A second irradiation area has been foreseen at 90o to the main axis. This area is defined by a

separate collimator, which allows to irradiate detectors with a high flux over a smaller area, e.g.

crystal calorimeters. It can be activated or isolated by means of a separate shutter. If opened, this

channel provides a flux of 6 106 γ/cm2/s at 1 m distance from the source. The two facilities can thus

operate separately or in parallel.

The Gamma irradiator is housed in a rectangular container, 400 mm each side and 900 mm high.

The active element is a radioactive 137Cs source of strength 740 Gbq. This isotope was preferred

above 60Co because of its longer half-life of 30 years and hence less variation of the photon flux

over the years of use of this facility. Also its lower photon energy (662 keV/c) leads to a twice

higher conversion efficiency in the detectors tested.
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The source is protected by a lead shield of 140 mm thickness. The lead is contained in a 5 mm thick

steel envelope. The principal collimator hole provides a conical aperture of 74 steradians solid

angle. This provides a photon flux in a volume of 5 metres maximum length along the axis. A

pneumatic system allows to move the source upwards into its irradiation position or to leave it in its

lower, shielded, position. In case of pressure drop, the source falls naturally, by its own weight, in its

protecting container.

Up to some 104 muons per SPS cycle from the X5 beam enter the Gamma Irradiation Facility and

are tagged by scintillators and a system of two Delay Wire Chambers. The efficiency and/or

resolution of detectors can thus be tested as a function of the background photon flux. Also radiation

resistance measurements with and without beam are now performed on a routine basis by the big

LHC collaborations.

Figure 6:  The layout of the Gamma Irradiation Facility (GIF)
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8. Operational aspects and control software

Like all beams in the SPS experimental areas, the West Area beams are operated by a control tree

program written in the Nodal language[13]. Nodal is a program language written originally for

Norsk Data computers. Recently it has been emulated in C on Unix systems [14]. The control

programme allows to select and monitor magnet currents, collimator positions, to move targets,

absorbers, converters and dumps and to operate the beam instrumentation. It allows the creation,

loading and manipulation of beam files (lists of magnet currents and collimator positions), changes

of beam momentum and particle type. Many actions are available to the users, but certain actions

(e.g. modification of layout descriptions, definition of beam control privileges) are restricted to the

experimental area operators and/or EA physicists.

The control of the X5 and X7 beams is normally restricted to the main user teams as defined in the

SPS Fixed Target Programme. The H3 beam is strictly under control of the EA physicists and the

experimental area operators. This is imposed by password protection on the magnet power supplies

and dump and collimator motors. The only exception relates to those collimators in the H3 beam,

which allow to reduce the flux on the individual secondary target of the main user in question. This

facility is vitally important during changes from tertiary mode to secondary mode and vice versa. In

case of tertiary mode, the H3 acceptance collimators can be left open, whereas for secondary mode,

they have to be closed until the intensity has decreased to below 106 particles per SPS cycle. A

special programme has been written to guide the users in this task.

Whenever a user wants to take access to his experimental area, he can prepare safe conditions from

his beam terminal. Once the conditions are safe, access can be granted and safety is guaranteed by

the normal access interlock hardware. Every person entering the area has to take a key and keep this

until he or she leaves the area. As soon as the access is terminated and all keys are back, the user can

switch on the beam. Only when an area has been put in free access (i.e. access is possible without

taking a key), the experimental area operators have to be involved for enabling beam conditions

again after a search of the area.

9. Performance of the beams

The West Area can be operated under a number of different conditions. The H3 beam itself is run as

a direct charged secondary beam from the T1 at any momentum in a range between ±25 and

±250 GeV/c. Its particle composition and in particularly its electron content is strongly momentum

dependent. The X5 and X7 beams can be operated either as secondary beams or as tertiary hadron,

electron or muon beams.

The H3 beam is essentially unchanged with respect to the past. The only modifications concern the

absence of the wobbling station, the new splitter layout and the alignment of the branches towards
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the X5 and X7 targets. As this alignment could now be optimised for two beams, rather than for

four, the effective transmission to the X5 and X7 targets has improved by more than a factor of two,

leading to a somewhat reduced need of protons onto the T1 target.

In tertiary modes the fluxes are similar to those measured before the upgrade. The secondary beam

operation is a new feature, which allows better momentum definition, higher fluxes and smaller

spots than tertiary mode. In most cases the limit on flux comes from radiation level restrictions,

rather than from particle production and acceptance of the beam line.

In figures 7 and 8 we list the measured fluxes of the X7 beam per 107 particles incident on the X7

target for a H3 beam momentum of -120 GeV/c, one of the more frequently used conditions. For

electron beams the momentum slit was set to ±1% (±5 mm), for the hadron beams to ±4% (±20 mm.

The hadron contamination in electron beams under these conditions is 1% or lower over the full

momentum range, whereas at high negative momenta the muon component is quite important (more

than 50% at -100 GeV/c). For positrons (produced from a negative secondary beam) the hadron

contamination ranges from 2% at low momenta via some 5% at +50 GeV/c up to about 30% at

100 GeV/c). The hadron beams contain a significant electron component, in particular at momenta

below 50 GeV/c. This electron component can be reduced by a factor of 4-40, by introducing a 3,

resp. 8 mm thick lead absorber into the beam. The purity of electron and hadron beams is shown in

figures 9 and 10.

The tertiary hadron fluxes do not depend very strongly on the secondary beam momentum, as long

as this is at least some 120 GeV/c. However, for high or positive beam momenta the tertiary electron

beams are of poor quality and low flux, as the electron content in the secondary beam is suppressed.

The fluxes and beam composition in the X5 beam are very similar to the ones in X7.

A very useful mode of operation is the muon mode. A useful flux of muons (about 104 per SPS

cycle contained in a spot of about 10 cm diameter) is obtained by selecting a high momentum in the

tertiary beam (typically 80% of the H3 momentum or larger) and stopping the hadrons and electrons

in the collimators or dumps. For the X5 beam, often used for tracking tests and radiation hardness

tests in the GIF, this has become a very frequent mode.
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Figure 7: Electron flux in the X7 beam for pH3 = -120 GeV/c

Figure 8 : Tertiary hadron flux in the X7 beam for pH3 = -120 GeV/c
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Figure 9 : The purity of tertiary electron beams from a secondary beam at –120 GeV/c

Figure 10 : The purity of tertiary hadron beams from a secondary beam at –120 GeV/c
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