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ABSTRACT. We generalize, to any space-time dimension, the unitarity bounds of high-

est weight UIR’s of the conformal groups with Lie algebras so(2, d). We classify gauge

theories invariant under so(2, d), both integral and half-integral spins. A similar analysis

is carried out for the algebras so∗(2n).

We study new unitary modules of the conformal algebra in d > 4, that have no

analogue for d ≤ 4 as they cannot be obtained by “squaring” singletons. This may

suggest the interpretation of higher dimensional non-trivial conformal field theories as

theories of “tensionless” p-branes of which tensionless strings in d = 6 are just particular

examples.

Introduction.

Extensive work on AdSd+1 and its relation to conformal field theories on Mc
d =

∂ AdSd+1 has found an interesting realization in supergravity and string and M the-

ory by relating the horizon geometry of p-branes to the world-volume dynamics of the

* To be presented to the International Conference dedicated to the memory of Pro-

fessor Efim Fradkin, Moscow June 5-10, 2000, and to the Ninth Marcel Grossmann

meeting, Rome July 2-8 2000.
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brane [GiT]. The conjectured duality [Mal][GKP][W1] between theories of gravity and

boundary conformal field theories is particularly powerful in the case of space-time su-

persymmetric field theories where the p-brane can be “BPS” saturated; that is, when

its world volume dynamics preserves some fraction ≤ N/2 of the original N supersym-

metries. Theories with maximal supersymmetry correspond to p = d − 1 = 2, 5 and 3

respectively in M theory and in IIB string theory compactified on AdSd+1 × SD−d−1

[GuT]. In these theories a peculiar phenomenon already occurs for D = 11, d = 6 where

the world-volume M -theory five brane (2,0) six-dimensional field theory is believed to be

a non-trivial and interacting theory of “tensionless self-dual strings” [W2][SW][Se][St].

The AdS7/CFT6 correspondence [Mal] predicts that such a theory, at least in a cer-

tain regime, must be holographically equivalent to 11D supergravity on AdS7 × S4

and in fact certain 1

2
BPS states of the latter (such as the K-K towers) [GVNW] can

be uniquely identified with short representations of the (2,0) superconformal algebra

[AOY][Ha][Mi][ABS] built up by tensoring supersingletons, ultrashort UIR’s that de-

scribe the supermultiplet of five-brane coordinates transverse to the 5-brane world vol-

ume. [GiT][FeS1,2]

However, the fact that (2,0) conformal field theory is not a theory of point particles

but is believed instead to be a theory of “tensionless strings” [W2][SW] should be

reflected in the spectrum of “observable” conformal fields, possibly not the same as

those that are detected in supergravity in AdS7.

It is the aim of the present paper to emphasize a novel feature of conformal field

theories in d > 4, namely the fact that the spectrum of “short” primary conformal fields;

that is, the limiting Harish Chandra modules that become reducible, is wider than what

is naively obtained by “squaring” singleton representations [FlFr1] (massless conformal

fields) [FFZ]. Tensionless p-branes bring up the subject of combining infinitely many

massless fields with all spins. [Fr7][FV][Gu1][Sz]

A possible interpretation of such new fields is that they are “currents” related to

“extended objects”; that is, that their space integrals measures the flux of an extended

object in the boundary conformal field theory.

In the holographic picture such conformal current fields (of higher rank) should

correspond to a new kind of bulk gauge fields in AdSd+1. Antisymmetric (self-dual
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when d
2

is odd) singleton representations in any even dimension were found by the

present authors [FeFr3] together with a new class of Harish-Chandra limiting unitary

modules for d − k forms of dimension E0 = d − k (1 ≤ k < d
2
). All these modules are

“zero center” modules, meaning that all the Casimirs vanish [FlFr3].

All other singletons (which are not zero center modules) were found by Siegel [Si]

and also by Minwalla [Mi2] and Angelopoulos and Laoues [AL] by studying general

“massless” conformal fields in d dimensions. The latter authors also investigated their

relations with Poincaré and de Sitter groups. These limiting Harish Chandra modules

correspond to thresholds of the unitarity bound; the lowest values of E0.

The general problem of classifying all highest weight modules of the simple Lie

algebras was completed by Enright, Howe and Wallach [EHW]. Many special cases

were known previously. Here we shall adapt the results of that paper to the physically

interesting case of the conformal algebras so(2, d). We also discuss the algebras so∗(2n).

Some of the symplectic algebras have been studied already [Fr5][Gu1,2] , while the

unitary and the exceptional Lie algebras do not seem, at this time, to have found

applications in physics. In the physics literature, the unitarity bounds of the so(2, d)

algebra, corresponding to the limiting Harish Chandra modules classified in [EHW] were

discussed much later: In relation to conformal field theories they were considered in Ref.

[Mi2]. The same algebra in connection with gauge fields in AdS2n+1, and their behavior

in the Poincaré (flat space) limit, was investigated in [DH] and more recently in [BMV].

References to other special results will be given.

There is no generally accepted definition of “masslessness” in higher dimension

[AFFS][FeFr2][FFG][L][Me2]. We propose that the most important property to be used

for classification of field theories is whether or not they are gauge theories. A universal

definition of “gauge theory” that we think is very natural is this: A field theory, invari-

ant under a group or a supergroup G, is a gauge theory if the field or supermultiplet

transforms by a non-decomposable representation of G. Such representations contain a

maximal ideal of states with zero norm that constitutes the subspace of gauge modes.

In 4 dimensions this property is strongly correlated with masslessness. (Exceptions: the

massless scalar field is not a gauge theory and singletons are not massless.) The link

between masslessness and gauge theories is strong in all dimensions whenever the group
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G is the conformal group of the manifold.

It will be seen that there are two quite distinct types of ideals in the limiting

Harish Chandra modules. Those that appear as cases II and III in the enumeration of

[EHW] are of the singleton type. In odd dimensions (d odd) these are precisely the two

singletons. In the bosonic case, both the Harish Chandra module and its ideal have

highest weights that are trivial on the semisimple part of the compact subalgebra. In

the AdSd+1 field theory the full module is carried by the solutions of a Klein Gordon

equation and the physical quotient is distinguished only by the boundary values. The

situation in the fermionic case is similar. Those listed as types I,p include ordinary

gauge theories of the vector/tensor type (Yang-Mills and gravity), in which the ideal

appears as exact tensor fields (gradients). However, most of these are of mixed type.

The ideal is not irreducible and its full characterization requires some specification of

boundary conditions. The extent of complication that can arise may be appreciated by

examining the case of the vector singleton in AdS5, as was done in [FeFr1].

2. SO(2, 2n). Basis, highest weight modules.

2.1. Basis. In this section and in the next one Gn, for n = 2, 3, ... , is the universal

cover of the group SO(δn,R), where δn is a symmetric, nonsingular 2-form with index

(2,2n), and gn is the associated complexified Lie algebra. The compact subalgebra kn

is isomorphic to the direct sum of so(2n,R) and the real, one-dimensional Lie algebra.

Fix an index set I = {0, 0′, 1, ..., 2n}, δn = Diag{−1,−1, 1, ..., 1}, and a basis for

gn,
{Lab = −Lba ; a, b ∈ I, a < b},

(Lab)
d
c = δd

aδbc − a, b, δbc := (δn)bc, a, b, c, d ∈ I.

The commutation relations are [Lab, Lcd] = δbcLda −a, b−c, d. The compact subalgebra

is generated by {Lij, i, j = 1, ..., 2n} and L00′ .

We factor the space M2+2n of 2 + 2n dimensional matrices into a direct product

M2 ⊗M1+n. We introduce the Pauli matrices σ1, σ2, σ3 in M2, and the matrices

(eij)
l
k = δl

iδjk, i, j, k, l ∈ {0, 1, ..., n}

in M1+n.
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A Cartan subalgebra hn is generated by the set

hi = σ2 ⊗ eii, i = 0, 1, ..., n.

Positive/negative Serre generators,

e±i =
1 ± σ2

2
ei,i+1 − δii

1 ∓ σ2

2
⊗ ei+1,i, i = 0, 1, ..., n− 1,

e±n = σ1

1 ∓ σ2

2
⊗ en−1,n −

1 ± σ2

2
σ1 ⊗ en,n−1,

are associated with simple roots ~r(j), j = 0, 1, ..., n, linear functions on hn defined by

[hi, ej ] = ri(j) ej. We find, for i = 0, 1, ..., n,

[hi, ej ] = (δij − δi,j+1)ej , j = 0, 1, ..., n− 1,

[hi, en] = (δin + δi,n−1)en.

The positive roots are ri(j, k) = δij ± δik, 0 ≤ j < k ≤ n, and the half-sum of positive

roots is

ρ =
1

2

∑

~r(j, k) = (n, n− 1, ..., 1, 0).

Finally, we record the relations

[ei, e−j ] = δij(hi+1 − hi), i, j = 0, 1, ..., n− 1,

[en, e−j ] = −δnj(hn + hn−1).

2.2. Weights. A ‘compact weight’ will mean a dominant, integral weight on the Cartan

subalgebra ho
n of so(2n) generated by the set h1, ..., hn, namely

wi = w(hi) = wi, i = 1, ..., n,

where w1, ..., wn are integers or half-integers satisfying

w1 ≥ w2 ≥ ... ≥ wn−1 ≥ |wn|.

Each compact weight ~w is the highest weight of a finite dimensional, irreducible repre-

sentation D(~w) of so(2n). A ‘weight’ is a pair (E, ~w) where E ∈ R is an eigenvalue of

h0 and ~w is a compact weight.
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2.3. Highest weight modules. A g,k module is a representation of gn on a collection

of finite dimensional kn modules. A Harish Chandra module is a g,k module that is

generated from a highest weight (E0, ~w). Since E will have the interpretation of energy,

normally bounded below, “highest” will mean that E0 is the lowest value of E. More

precisely, consider the decomposition

gn = g− + kn + g+,

defined by the grading of gn by the adjoint action of h0. Thus elements of g−(g+) lower

(raise) the energy. Fix (E, ~w) and let V0 be the associated kn module, promoted to a

kn + g− module by letting g− act trivially. Then the Harish Chandra module V (E, ~w)

is the space U(gn) ⊗′ V0, with the natural left action of gn. The prime on ⊗′ means

that ∀x ∈ kn + g−, x⊗
′ = ⊗′ x.

Fix a compact weight ~w. Consider the family of Harish Chandra modules V (E0, ~w)

with highest weight (E0, ~w), E0 ∈ R. For E0 large enough this representation is irre-

ducible and unitarizable. The problem is to determine the values of E0 such that

(a) The Harish Chandra module is reducible, with a maximal ideal I(E0, ~w), and

(b) The quotient D(E0, ~w) = V (E0, ~w)/I(E0, ~w) is unitarizable.

2.4. Results. Complete results for the case n = 2 were obtained long ago by physicists.

[Mac] The general solution is in [EHW]. We need to distinguish a number of different

cases.

Let ∆c(~w) be the set of positive roots ~r such that 〈~w|~r〉 :=
∑

i wiri = 0. It turns

out to be one of the following:

Case I,p: ∆c(~w) is the root system of su(p), p = 1, ..., n. (When p = 1, then

this is the empty set.) Then ∆c(~w) contains the roots generated by the simple roots

~r(1), ..., ~r(p − 1), and this case is characterized by 〈~w,~r(i)〉 = 0, i = 1, ..., p − 1 and

〈~w,~r(p)〉 6= 0, or w1 = w2 = ... = wp > wp+1. (Here and below, when p = n, replace

the last inequality by > 0; when p = n− 1, by |wn|.)

Case II: ∆c(~w) is the root system of so(2n). Then ~w = 0.
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The result is that the following is an exhaustive list of highest weights (E0, ~w) that

satisfy conditions (a),(b) above.

Case I,p: w1 = w2 = ... = wp > wp+1, E0 = 2n − 1 + w1 − p; p = 1, ..., n. The

lowest energy of the maximal ideal is E0 + 1.

Case IIa, IIb: ~w = 0, E0 = n − 1 or 0.The lowest energy of the maximal ideal is

E0 + 2 (when E0 = n− 1) or 1 (in the other case).

In each case, except the case when E0 = 0, this value of E0 marks the lower bound

for unitary representations, and there are no other unitary, irreducible representations.

The special case D(0,~0) is the identity representation; it is isolated in the family of

highest weight, unitarizable representations.

3. S0(2, 2n) invariant gauge theories.

3.1. Field modules. Let M be a Gn homogeneous space, P a vector bundle over M with

finite dimensional fiber F with a structure of Gn module, and ψ a covariant field on M ,

valued in V . We mean by this that we are considering a space V of sections of P that

admits an action of Gn induced by the actions on M and F . Without specifying this

space in detail, we assume that it is a g, k-module, and that there is a subspace that has

the properties of the space V0 in subsection 2.3. Thus V0 is finite dimensional, carries

an irreducible representation of kn with highest weight (E0, ~w), and is annihilated by

g−. Note that here kn may act only on M , only on F , or on both. The problem is to

determine whether the action of gn on V0 generates a decomposable gn module with

a unitary quotient. For this to be the case it is necessary, but not sufficient, that the

highest weight be one of the types listed in subsection 2.4.*

To proceed it is necessary to choose the manifold M . The one that is most likely

to be of interest is the hyperboloid

∑

δaby
ayb = 1,

* This has been our strategy for localizing “ massless” fields in AdS4. See for example

[Fr1][FeFr1].
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in the pseudo-Euclidean space En of dimension 2+2n with metric δn. Instead of functions

on the hyperboloid, it is more convenient to consider homogenous functions on En. The

vector fields that implement the action of gn are

−Lab = ya∂b − a, b, ya := δaby
b, a, b ∈ I.

It is helpful to introduce a time coordinate t, by the polar decomposition

y± := yo ± iyo′

=: Y e±it.

Then

h0 = i
∂

∂t
.

Eigenfunctions of h0 have the form (y+)α(y−)βψ(y1, ..., y2n) with eigenvalue E = β−α.

The subalgebras g± (energy raising and lowering operators) are spanned by

Ej = L0j − iL0′j = 2yj∂+ + y−∂j + Ẽj,

E−j = L0j + iL0′j = y+∂j + 2yj∂− + Ẽ−j ,

where Ẽ±j are the matrices that represent the action in F . Choosing the degree of

homogeneity equal to −E0, we obtain a simple representation for the functions that

belong to the ground states. For example, if F is 1-dimensional it is

(y+)−E0 .

Now we can investigate the Harish Chandra module. From [EHW] we learn that

the highest weight of the ideal is of the form (E0 + 1, ~w′) in case I and in case II when

E0 = 0, and of the form (E0 + 2, ~w′) in case II when E0 = n− 1.

3.2. Case I. The highest weight of the ideal lies in the space obtained from the ground

states by applying one raising operator. At this level of energy kn acts by the represen-

tation D2n ⊗D(~w), where D2n is the defining representation of so(2n). Let {vr} be a

basis for the subspace V0 associated with the highest weight, orthonomal with respect

to the invariant inner product and making the matrices of kn diagonal. Then {Eivr} is

8



a basis for the subspace with energy E0 + 1. In this subspace there are vectors of zero

invariant norm if and only if the determinant of the matrix

M js
ir = 〈vs, E−j Ei vr〉 ∝ δs

r([Ei, E−j])rr.

vanishes. (Since [Ei, E−i] lies in the compact Cartan subalgebra, typically [Ei, E−i] =

hi+1−hi, one easily understands why repetitions among the components of the compact

weights are characteristic of the highest weights of reducible Harish Chandra modules.)

3.3. Case IIa, E0 = n− 1. The highest weight is (n− 1,~0), and the associated function

is

f(y) = (y+)1−n

We apply two raising operators to get

fjk ∝ (y−∂j + 2yj∂+)yk(y+)−n = δjky−(y+)−n − 2n yjyk(y+)−n−1.

The problem is to determine the structure of this space as a kn module. It is a sum of

two irreducible representations, one of them one dimensional and spanned by the trace

∑

j

fjj ∝ (δaby
ayb)(y+)−1−n.

The first factor is the invariant that is constant on the hyperboloid and this function

is the highest weight vector of D(n + 1,~0). The subspace of functions generated from

this one is an ideal and is a space of gauge modes, of zero invariant norm. The Harish

Chandra module has the structure

D(n− 1,~0) → D(n+ 1,~0).

The best known example is: n = 2, the module is a space of solutions of the

covariant Klein Gordon equation in AdS5 [FeFr1]. If, instead of the hyperboloid,

one passes to the cone (Dirac’s cone, conformally compactified Minkowski space), then

the functions in the ideal vanish and the representation becomes irreducible. This

construction generalizes directly to AdS2n+1 [FeFr1].
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3.4. Case IIb, E0 = 0. Here D(E0, ~w) = D(0,~0) is the trivial representation. The

maximal ideal in the Harish Chandra module has highest weight (1, ~α), where ~α is the

highest weight of the defining representation D2n of so(2n) (the vector representation).

There are essentially two different ways that this representation can appear in a field

theory. (a) The basis for the space of functions associated with the highest weight is the

function 1; the trivial representation of gn appears as a direct summand. (b) The basis

for the space of functions associated with the highest weight is the function t ∝ log y+;

the trivial representation is a proper quotient of a nondecomposable representation.

Both cases are familiar from the analysis of conformal QED, n = 2 [BFH1].

4. SO(2, 2n+ 1). Basis, highest weight modules.

4.1. Basis. In this section and in the next one Gn, for n = 1, 2, ... , is the universal

cover of the group SO(δn,R), where δn is a symmetric, nonsingular 2-form with index

(2,2n+1), and gn is the associated complexified Lie algebra. The compact subalgebra

kn is isomorphic to the direct sum of so(2n + 1,R) and the real, one-dimensional Lie

algebra.

Fix an index set I = {0, 0′, 1, ..., 2n, 2n+ 1}, δn = Diag{−1,−1, 1, ..., 1, 1}, and a

basis for gn,
{Lab = −Lba ; a, b ∈ I, a < b},

(Lab)
d
c = δd

aδbc − a, b, δbc := (δn)bc, a, b, c, d ∈ I.

The commutation relations are [Lab, Lcd] = δbcLda−a, b−c, d. The compact subalgebra is

generated by {Lij, i, j = 1, ..., 2n+1} and L00′ . These are square matrices of dimension

2 + 2n+ 1. Let M2+2n+2 be the space of matrices obtained by adding a last row and a

last column. We factor this space into a direct product M2 ⊗M1+n. We introduce the

Pauli matrices σ1, σ2, σ3 in M2, and the matrices

(eij)
l
k = δl

iδjk, i, j, k, l ∈ {0, 1, ..., n, n+ 1}

in M1+n+1. Finally, we remove the last row and the last column. The last row of the

matrices of dimension 2 + 2n + 1 is now represented as the collection u ⊗ en+1,i and

the last column as v ⊗ ei,n+1, where u, v are rows, columns of length 2, and i runs over

{0, 1, ..., n}.
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A Cartan subalgebra hn is generated by the set

hi = σ2 ⊗ eii, i = 0, 1, ..., n.

Positive/negative Serre generators are

e±i =
1 ± σ2

2
ei,i+1 − δii

1 ∓ σ2

2
⊗ ei+1,i, i = 0, 1, ..., n− 1,

e±n =
( 1

±i

)

⊗ en,n+1 − (1,±i) ⊗ en+1,n,

are associated with simple roots ~r(j), j = 0, 1, ..., n, linear functions on hn defined by

[hi, ej ] = ri(j) ej. We find, for i = 0, 1, ..., n,

[hi, ej ] = (δij − δi,j+1)ej , j = 0, 1, ..., n− 1,

[hi, en] = δinen.

The positive roots are ri(j, k) = δij ± δik, 0 ≤ j < k ≤ n − 1, and ri(j) = δij , and the

half-sum of positive roots is

ρ =
1

2

∑

~r(j, k) = (n+
1

2
, n−

1

2
, ...,

1

2
).

Finally, we record the relations

[ei, e−j ] = δij(hi − hi+1), i = 0, 1, ..., n− 1,

[en, e−j ] = −2δnjhn.

4.2. Weights. A ‘compact weight’ will mean a dominant, integral weight on the Cartan

subalgebra ho
n of so(2n+ 1) generated by the set h1, ..., hn, namely

wi = w(hi) = wi, i = 1, ..., n,

where w1, ..., wn are integers or half-integers satisfying

w1 ≥ w2 ≥ ... ≥ wn ≥ 0.

Each compact weight ~w is the highest weight of a finite dimensional, irreducible rep-

resentation D(~w) of so(2n + 1). A ‘weight’ is a pair (E, ~w) where E ∈ R and ~w is a

compact weight.
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4.3. Highest weight modules. See subsection 2.3.

4.4. Results. The solution is given in [EHW]. The special case n = 1 was done long ago

by Evans [E]. We need to distinguish a number of different cases.

Let ∆c(~w) be the set of positive roots ~r such that 〈~w|~r〉 :=
∑

i wiri = 0. It turns

out to be one of the following:

Case I,p (1 ≤ p ≤ n): ∆c(~w) is the root system of su(p), p = 1, ..., n. (When p = 1,

then this is the empty set.) Then ∆c(~w) contains the roots generated by the simple

roots ~r(1), ..., ~r(p−1), and this case is characterized by 〈~w,~r(i)〉 = 0, i = 1, ..., p−1 and

〈~w,~r(p+ 1)〉 6= 1, or w1 = w2 = ... = wp > wp+1.

Case II: ∆c(~w) is the root system of so(2n+ 1). Then ~w = 0.

Case III: ∆c(~w) is the root system of su(n), w1 = ... = wn.

The result is that the following is an exhaustive list of highest weights (E0, ~w) that

satisfy conditions (a),(b) above.

Case I,p: w1 = w2 = ... = wp > wp+1, E0 = 2n+ w1 − p; p = 1, ..., n. The lowest

energy of the maximal ideal is E0 + 1.

Case IIa, IIb: ~w = 0, E0 = n − 1

2
or 0. The lowest energy of the maximal ideal is

E0 + 2 or 1, respectively.

Case III: w1 = ... = wn = 1

2
, E0 = n. The lowest energy of the maximal ideal is

E0 + 1.

In each case, except when E0 = 0, this value of E0 marks the lower bound for

unitary representations, and there are no other unitary, irreducible representations.

5. S0(2, 2n+ 1) invariant gauge theories.

5.1. Field modules. See subsection 3.1. The problem is to determine whether the action

of gn on V0 generates a decomposable gn module with a unitary quotient. For this to

12



be the case it is necessary, but not sufficient, that the highest weight be one of the types

listed in subsection 4.4.

To get further it is necessary to choose the manifold M . The one that is most likely

to be of interest is the hyperboloid

∑

δaby
ayb = 1,

in the pseudo-Euclidean space En of dimension 2n + 3 with metric δn. See subsection

3.1.

From [EHW] we learn that the highest weight of the ideal is of the form (E0+1, ~w′)

in Case I and in Case III, and in Case II when E0 = 0, and of the form (E0 + 2, ~w′) in

Case II when E0 = n− 1

2
.

5.2. Case I. The highest weight of the ideal lies in the space obtained from the ground

states by applying one raising operator. At this level of energy kn acts by the repre-

sentation D2n+1 ⊗D(~w), where D2n+1 is the defining representation of so(2n+ 1). See

subsection 3.2.

5.3. Case IIa, E0 = n− 1

2
. The highest weight is (n− 1

2
,~0), and the associated function

is

f(y) = (y+)
1
2
−n

We apply two raising operators to get

fjk ∝ (y−∂j + 2yj∂+)yk(y+)−
1
2
−n = δjky−(y+)−

1
2
−n − (2n+ 1) yjyk(y+)−

3
2
−n.

The problem is to determine the structure of this space as a k module. It is a sum of

two irreducible representations, one of them one dimensional and spanned by the trace

∑

j

fjj ∝ (δaby
ayb)(y+)−

3
2
−n.

The first factor is the invariant that is constant on the hyperboloid and this function

is the highest weight vector of D(n + 3

2
,~0). The subspace of functions generated from

this one is an ideal and is a space of gauge modes of zero invariant norm. The Harish

Chandra module has the structure

D(n−
1

2
,~0) → D(n+

3

2
,~0).
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The best known example is: n = 1, the module is a space of solutions of the covari-

ant Klein Gordon dipole equation in AdS4, the bosonic singleton [FlFr2], instead of the

hyperboloid, one passes to the cone (Dirac’s cone, conformally compactified Minkowski

space), then the functions in the ideal vanish and the representation becomes irreducible.

This constrution generalizes directly to AdS2n+2.

Case IIb, E0 = 0. Here D(E0, ~w) = D(0,~0) is the trivial representation. The maximal

ideal in the Harish Chandra module has highest weight (1, ~α), where ~α is the highest

weight of the defining representation D2n+1 of so(2n + 1) (the vector representation).

There are two different ways that this representation can appear in a field theory,

precisely as described in the case of so(2, 2n). Both cases are familiar from the analysis

of AdS4 QED, n = 1 [FH].

Case III, w1 = ...wn = 1

2
, E0 = 1. This is other singleton representation. The case

n = 1 is the familiar fermionic singleton. In this case the two singletons combine to a

representation of Osp(1/4) [Fr3] and singleton multiplets combine to form a represen-

tation of Osp(N/4) [FN] [BSST][BD][NST]. For n > 1, it was discovered by [AL] that

there are just two singletons

6. SO∗(2n). Basis, highest weight modules.

6.1. Basis. In this section and in the next one Gn, for n = 2, 3, ... , is the universal

cover of the group SO∗(2n) of 2n dimensional, unimodular matrices that preserve the

hermitean form σ2⊗1n, and gn is the associated complexified Lie algebra. The compact

subalgebra kn is isomorphic to u(n).

Fix an index set I = {1, ..., 2n}, δn = Diag{1, ..., 1}, and a basis for gn,

{Lab = −Lba ; a, b ∈ I, a < b},

(Lab)
d
c = δd

aδbc − a, b, δbc := (δn)bc, a, b, c, d ∈ I.

The commutation relations are [Lab, Lcd] = δbcLda −a, b−c, d. The compact subalgebra

is the unitary subalgebra.
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We factor the space M2n of 2n dimensional matrices into a direct product of M2 ⊗

Mn. We introduce the Pauli matrices σ1, σ2, σ3 in M2, and the matrices

(eij)
l
k = δl

iδjk

in Mn.

A Cartan subalgebra hn is generated by the set

h0 =
1

2n
(e11 + ...+ enn),

hi = σ2 ⊗ eii − 2h0, i = 1, ..., n.

In this section and in the next one δij is the Kroenecker symbol. Positive/negative Serre

generators,

e±i =
1 ± σ2

2
ei,i+1 −

1 ∓ σ2

2
⊗ ei+1,i, i = 1, ..., n− 1,

e±n = σ1

1 ∓ σ2

2
⊗ en−1,n +

1 ± σ2

2
σ1 ⊗ en,n−1,

(those in the first line compact) are associated with simple roots ~r(j), j = 1, ..., n, linear

functions on hn defined by [hi, ej] = ri(j) ej. We find, for i = 1, ..., n,

[hi, ej ] = (δij − δi,j+1)ej , j = 1, ..., n− 1,

[hi, en] = (δin + δi,n−1)en.

The positive roots are ri(j, k) = δij−δik, 1 ≤ j < k ≤ n (compact) ri(j, k) = δij+δik, 1 ≤

j < k ≤ n (noncompact) and the half-sum of positive roots is

ρ =
1

2

∑

~r(j, k) = (n− 1, ..., 1, 0).

6.2. Weights. A ‘compact weight’ will mean a dominant, integral weight on the Cartan

subalgebra su(n) generated by the set h1, ..., hn, namely

wi = w(hi) = wi, i = 1, ..., n, w1 + ...+ wn = 0,

where w1, ..., wn are integers or half integers and w1 ≥ ... ≥ wn. Each compact weight ~w

is the highest weight of a finite dimensional, irreducible representation D(~w) of su(n).

A ‘weight’ is a pair (E, ~w) where E ∈ R is an eigenvalue of h0 and ~w is a compact

weight.
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6.3. See subsection 2.3.

6.4. Results. The solution was found by Enright, Howe and Wallach [EHW]. We need

to distinguish several cases.

Case I,q, w2 = w3 = ... = wq+1, E0 = 2n− 3 +w2 − q; q = 1, ..., n− 1. The lowest

energy of the maximal ideal is E0 + 1.

Case II,p: w1 = ... = wp, p = 3, ..., n, with E0 = 2n − 3 + w1 − p, p even,

E0 = 2n− 2 + w1 − p, p odd. The lowest energy of the maximal ideal is E0 + [p
2
].

In both of these cases, this value of E0 marks the lower bound for unitary repre-

sentations. But here there are additional, isolated, unitary representations ( for n >),

namely

Case 3: Same as case II, except that E0 takes one of the values

E0 = 2n+ w1 − 2p+ 2j, 0 ≤ 2j ≤

{

p− 4, p even
p− 5, p odd

,

with j integer . This happens is when n = p = 4, ~w = 0, E0 = 0. The first non trivial

case is n = 5, p = 4, E0 = w1 + 2.

7. The six-dimensional case.

In this section we apply the results to the case of AdS7, with a 6-dimensional

Minkowski boundary, where the conformal algebra is so(2, 6) ≈ so∗(8). To label the

highest weight of the compact subalgebra so(6) ≈ su(4) we shall use the Dynkin labels

a1, a2, a3,, related to the highest weight ~w in the following way:

2w1 = a1 + a3 + 2a2, 2w2 = a1 + a3, 2w3 = a3 − a1.

The highest weight of the Harish Chandra modules will be indicated by the quadruple

E0, a1.a2, a3. The three first classes of unitary representations listed in subsection 2.4

as Cases I, p = 1, 2, 3 are:

p = 1 : E0 ≥ 4 + w1 = 4 + a2 + (a1 + a3)/2, a2 6= 0,

p = 2 : E0 ≥ 3 + w1 = 3 + (a1 + a3)/2, a2 = 0,

p = 3 : E0 ≥ 2 + w1 = 2 + a1/2, a2 = a3 = 0, or 1, 3 → 3, 1.

16



The irreducible representations at the bound of the third class are the singletons, found

in [Si][Mi2][AL] and associated with massless fields on the boundary. Later they were

discussed, in the context of the Osp(8∗/4) superalgebra, in the papers [GuT],[FeS1]. In

a recent paper the extension of the unitary modules corresponding to p = 1 and p = 3,

to the superalgebra Osp(8∗/4), was found [FeS2].

Notice that the bound in the first case is twice the bound in the third case. The

limiting Harish Chandra modules in Case p = 1 can be constructed by squaring the

singleton representations. This is the usual situation, where massless fields in the bulk

correspond to (conserved) tensor currents on the boundary, that are bilinears in bound-

ary massless fields [FeFr2]. These two series, p = 1, 3 (for a3 = 0) were investigated in

[FeFr3] and in [FeS1].

The series in the intermediary case, p = 2, has no analogue in 4 dimensions. What

is new here, in six dimensions, is that, for p = 2, the unitary bound on E0 is lower than

the conformal degree of the conserved singleton currents. The fields associated with

the unitary bound in case p = 1 are neither elementary massless, nor composite. The

singletons with E0 = 3, a1 = 2 (p = 3), and the operators with E0 = 4, a1 = a3 = 1

(p = 2) were discussed in [FeFr3].

The unitary quotient of the Harish Chandra module D(E0, 1, 0, 1), with E0 = 4,

a1 = a3 = 1, a2 = 0 can be represented as a closed 4-form, dJ4 = 0, or its conserved

dual J∗
4 = J2,

(d∗J2)µ = ∂νJµν = 0.

The integral
∫

M4

J4 = Q1

defines the flux of a string in six dimensions, so J4 is the current operator that is related

to “tensionless” strings [W2][SW][Sa][DFKR][DLP].

This also explains why* we do not have a simple candidate for such an operator; it

exists as a consequence of the tensionless string interaction, and it cannot be described

* Moreover, the string is self dual, which means that it is not only dyonic, but that

its electric and magnetic charges are equal. In this respect there is a distinction between

even and odd values of n, since for odd n the singleton representation p = n is real,

while for even n it is complex.
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as a local, bilinear in the massless (singleton) fields.

The picture presented here suggests that there could be a bulk theory that gener-

alizes supergravity by including this new bulk field, with interactions.*

Such a current J4 is actually known in 6-dimensional (1,0) supersymmetric theories

[Sa] where, away from the conformal point, tensor multiplets interact with non abelian

gauge fields and it takes the form [Sa][FRS][DFKR]

J4 = TrF ∧ F, Q1 =

∫

TrF ∧ F.

The string flux is related to the instanton number (instanton in a space transverse to

the string). [DLP] The flat limit of a tensionless string was discussed in [DLLP].

8. Speculations about higher dimensions.

For higher dimensions, with d − 2 a multiple of 4, we may think that the above

formulas generalize to (d = 2n) Jn+1 = TrF
n+1

2 , so that

Qn−2 =

∫

Mn+1

TrF
n+1

2 ,

which is the n+1

2
Chern class of the gauge group.

The unitary bound for the family D(E0, ~w) of Harish Chandra so(2, 2n) modules,

for a fixed, integral, dominant compact weight ~w was obtained in subsection 2.4. We

concentrate on the cases,

w1 = ...wp >
wp+1, p < n,
0, p = n

,

where the bound is

E0 = 2n− 1 + w1 − p.

Singletons are in the class p = n.

The particular case w1 = 1, E0 = d− p, was investigated in [FeFr3]. The fields are

closed d− p forms,

dJd−p = 0.

* However, the unitarity bounds of Osp(8∗/2N) superalgebras seem to exclude this

possibility [Mi2][FeS2].
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Indeed, this equation is conformally invariant [W1] if the conformal degree is d− p.

The integral

Qp−1 =

∫

Md−p

Jd−p

is the flux of a p − 1 brane (d − p are the coordinates transverse to the brane) that

we interpret as tensionless p− 1-brane, a natural generalization from the 6-dimensional

case.

Let us consider a hypothetical d = 10 dimensional conformal field theory, the

holographic description of a hypothetical 11 dimensional theory in AdS11. [Gu1][Ho]

The bosonic singleton, other than the scalar, is a self dual five form with E0 = 5.

However, there is a whole set of unitary Harish Chandra modules that are all zero

center modules (all the Casimir operators of the conformal group vanish on them),

described by a 4-form with E0 = 6, a 3-form with E0 = 7, a 2-form with E0 = 8 and a

vector with E0 = 9. (p = 1, 2, 3, 4.) The integrals of these currents may produce fluxes

for 3,2,1 and 0 branes, respectively. The last is the usual global charge present in all

theories (for any d ≥ 3). Therefore, a 10 dimensional conformal field theory may be

considered as a theory of tensionless 3,2, and 1 branes [FP].

It is tempting to go on to suggest that the only conformal branes are the dyonic

(self dual) 3-branes, analogues of the dyonic string in dimension 6. In support of this

there is the obvious fact, already observed in [FeFr3], that this theory resembles a kind

of conformal limiting case of IIB supergravity. In analogy with the 6 dimensional case

we may think that such a theory, away from the conformal point, is defined thropugh

non abelian gauge interactions, so that the 6-form current is of the type

J6 = TrF 3,

where F is a non abelian 10 dimensional gauge field. In such a situation the 3-brane

charge would be related to a topological configuration of the gauge field with non van-

ishing third Chern class

Q3 =

∫

TrF 3.

It is not known whether the above considerations may be accommodated in a

supersymmetric theory. To answer this question further studies on new types of super-

symmetric structures in higher dimensions may be needed.
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Appendix. Case by case.

A.1. SO(2,2n).

n = 1. Since SO(2, 2) is not simple, this case is not encompassed by the investigation

of [EHW]. The results apply nevertheless if we interpret as follows. Take a standard

Chevalley basis for each of the two factors SO(2, 1), with generators A,B of the compact

Cartan generators normalized so that the weights are ±1 in the adjoint representation.

Set h0 = (A + B)/2, h1 = (A − B)/2. Let (a, b) be a generic pair of eigenvalues of

(A,B), then our highest weight is given by E0 = (a+ 2)/2, w1 = (a− b)/2.

Case I,1 is the case b = 1, E0 = w1 > 0. The Harish Chandra module is irre-

ducible on the first SO(2, 1) factor and equivalent to D(0) → D(1) on the other. This

representation appears in the gauge theory of singletons in 2+1 dimensions [Fr6][FlFr4].

Case II is a = b = 0, E0 = w1 = 0. The quotient is D(0, 0) and the ideal is

D(1, 1), D(1,−1) or both.

n = 2. SO(2, 4) is the anti De Sitter group in 5 dimensions and the conformal

group in 4 dimensions. The compact subgroup is SO(4) = SU(2) ⊗ SU(2). The usual

notation for the compact weights is (J1, J2) and is adapted to this decomposition, with

J1, J2 integral or half integral. Set w1 = J1 + J2, w2 = J1 − J2.

Case I,1 is the general case, w1 > w2 or J1J2 6= 0. The formula E0 = 2n−1+w1−p

becomes E0 = J1 + J2 + 2. The lowest energy of the ideal is E0 + 1. The simplest field

theory in AdS5, with J1 = J2 = 1

2
, is the theory of a vector field, homogeneous of degree

−3. The ground states are

fi(y) = (y+)−3ǫi, i = 1, 2, 3, 4,

with ǫi constant. The lowest weight of the ideal is (4, 0, 0) and the associated gauge

field subspace consists of the gradients or exact vector fields. The next simplest cases

are the fields of AdS5 supergravity, with highest weights (E0, w1, w2) equal to (4, 1, 1)

and ( 7

2
, 1

2
, 1), ( 7

2
, 1, 1

2
).
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Case I,2 is characterized by w1 = w2 or J2 = 0. The formula for E0 becomes

E0 = J1 + 1. This is the familiar case of conformally invariant field theories in 4-

dimensional Minkoski space (or AdS4) [BFH1]. Realized as field theories in AdS5 they

are topological singleton field theories [FeFr1].

Case IIa has w1 = w2 = 0 and E0 = 1. It is the representation associated with

a scalar, massless field in 4 dimensions. Case IIb is the case E0 = J1 = J2 = 0. The

ideal has highest weight (1, 1, 0); it is the highest weight of a non unitary irreducible

representation.

n = 3. SO(2, 6) is the symmetry group of AdS7. See Section 7.

A.2. SO(2,2n+1).

n = 1. The nondecomposable representations of S0(2, 3), and the associated field

theories in AdS4 have been studied extensively.

Case I,1: w1 > 0, E0 = w1 + 1. The highest weight of the ideal is w1 + 2, w1 − 1.

These are the representations associated with massless fields with spin greater than or

equal to 1 [BFH2,3][[FFr1][Fr2][FH].

Case IIa: w1 = 0, E0 = 1

2
. The highest weight of the ideal is ( 5

2
, 0). This is the

bosonic singleton, described by a scalar field [FlFr2].

Case IIb: The Harish Chandra module is D(0, 0) → D(1, 1); the ideal non unitary.

This is a component of the field representation of QED in AdS4. [BFH2]

Case III: w1 = 1

2
, E0 = 1; the fermionic singleton, described by a spinor field

[He][P].

n = 2. SO(2, 5) is the symmetry group of AdS6.

Case I,1: w1 > w2, E0 = 3 + w1.

Case I,2: w1 = w2 > 0, E0 = 2 + w1.

Case IIa,IIb: ~w = 0, E0 = 3

2
, the bosonic singleton, or 0.
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Case III: w1 = w2 = 1

2
, E0 = 2, the fermionic singleton. This case is particularly

interesting since it is related to the exceptional F(4) superconformal algebra [N][R]. The

spin zero and spin one-half singletons are combined in the singleton hypermultiplet.

A.3. SO∗(2n).

The isomorphisms so∗(4) = so(2, 1)×so(3), so∗(6) = su(1, 3) and so∗(8) = so(2, 6)

allow us to omit the cases n = 2, 3, 4. We do not discuss the n > 4 cases.
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Birkhäuser 1982.

[E] Evans, N.T., “Discrete series for the universal covering group of the 3+2 De Sitter

group”, J. Math. Phys. 8 (1967) 170.

[FaFr] Fang, J. and Fronsdal, C. “Massless, half-integral spin fields on De Sitter space”,

Phy. Rev. D 22 (1980) 1361.

[FeFr1] Ferrara, S. and Fronsdal, C., “Conformal Maxwell theory as a singleton field theory

on AdS5, IIB three-branes and duality”, Class. Quant. Grav. 15 (1998) 2153-2164.

(hep-th/971223)

[FeFr2] Ferrara, S. and Fronsdal, C., “Gauge fields as composite boundary excitations”,

Phys. Lett. B 433 (1998) 19.

[FeFr3] Ferrara, S. and Fronsdal, C. “Gauge fields and singletons of AdS2p+1”, Lett. Math.

Phys. 46 (1998) 157-169. (hep-th/9806072)

[FFZ] Ferrara, S, Fronsdal, C. and Zaffaroni, A., “ Supergravity on AdS5 and N = 4

superconformal Yang-Mills theory”, Nucl. Phys. B 532 (1998) 153-162.

[FeP] Ferrara, S and Porrati, M. “AdS superalgebras and brane charges”, Phys. Lett.

B458 (1999) 43.

[FRS] Ferrara, S., Riccioni, F. and Sagnotti, A, “Tensor and vector multiplets in 6-

23

http://arXiv.org/abs/hep-th/0005136
http://arXiv.org/abs/hep-th/9806072


dimensional supergravity”, Nucl. Phys. B 1998 (1998) 115. (hep-th/9711059)

[FeS1] Ferrara, S. and Sokatchev, E., “Representations of (1,0) and (2.0) superconformal

algebras in 6 dimensions, massless and short superfields”, hep-th/0001178.

[FeS2] Ferrara, S. and Sokatchev, E., “Superconformal interpretation of BPS states in AdS

geometry”,

hep-th/0005151.

[FlFr1] Flato, M. and Fronsdal, C, “One massless particle equals two Dirac singletons”,

Lett. Math. Phys. 2 (1978) 421.

[FlFr2] Flato, M. and Fronsdal, C., “Quantum field theory of singletons”, J. Math. Phys.

22 (1981) 1100; and “The singleton dipole”, Commun. Math. Phys. 108 (1987)

469.

[FlFr3] Flato, M. and Fronsdal, C., “ Spontaneously generated field theories, zero center

modules, colored singletons and the virtues of N = 6 supergravity”, in Essays in

Supersymmetry, Reidel, 1986.

[FlFr4] Flato, M. and Fronsdal, C., “Three-dimensional singletons”, Lett. Math. Phys. 20

(1990) ?65.

[FFG] Flato, M., Fronsdal, C. and Gazeau, J.P.,“ Masslessness and lightcone propagation

in De Sitter and 2+1 Minkowski space”. Phys. Rev. D 33 (1986) 415.

[Fr1] Fronsdal, C., “Elementary particles in curved space IV. Massless particles,” Phys.

Rev. D 12 (1975) 3819.

[Fr2] Fronsdal, C., “Singletons and massless, integral spin fields on De Sitter space”,

Phys. Rev. D 20 (1979) 848.

[Fr3] Fronsdsal, C., “The Dirac supermultiplet”, Phys. Rev. D26 (1982) 1988.

[Fr5] Fronsdal, C., “Massless particles, orthosymplectic symmetry and another type of

Kaluza-Klein theory”,in Essays in Supersymmetry, Reidel, 1986.

[Fr6] Fronsdal, C., “Three-dimensional singletons and two-dimensional conformal field

theory”, Int. J. Mod. Phys. A7 (1992) 2193, and “A model for QCD in three

dimensions”, in Proceedings of the Colloque Rideau, Paris 1995.

[Fr7] Fronsdal, C., “Some open problems with higher spins”, Proceedings of the super-

gravity workshop at Stonybrook, September 1979. P. van Nieuwenhuizen and D.Z.

Freedman, Ed.s.

24

http://arXiv.org/abs/hep-th/9711059
http://arXiv.org/abs/hep-th/0001178
http://arXiv.org/abs/hep-th/0005151


[FH] Fronsdal, C and Heidenreich, W., “Linear De Sitter gravity”, J. Math. Phys. 28

(1987) 215.

[FN] Freedman, D. and Nikolai, H., “Multiplet shortening in Osp(N/4), Nucl. Phys.

B237 (1984) 342. gravitational interaction of massless high-spin fields”, Phys.

Lett. 189B (1987) 89./

[GKP] Gubser, S.S., Klebanov, I.R. and Poliakov, A.M., “Gauge theory correlators from

non critical string theory”, Phys. Lett. B48 (1998) 105. (hep-th/9802109)

[Gu1] Gunaydin, M., “Unitary superalgeras of Osp(1/32, R) and M-theory”, Nucl. Phys.

B528 (1998) 432.

[Gu2] Gunaydin, M., “AdS.CFT dualities and the unitary representations of non ccom-

pact groups and supergroups: Wigner versus Dirac”, hep-th/0005168.

[GiT] Gibbons, C.W. and Townsend, P.K., “Vacuum interpolation in supergravity via

super p-branes”, Phys. Rev. 71 (1993) 3754.

[GVNW] Gunaydin, M., van Nieuwenhuizen, P. and Warner, N., “General construction of

the unitary representations of anti De Sitter superalgebras and the spectrum of the

S4 configuration of eleven dimensional supergravity”, “Nucl. Phys. B255 (1985)

543.

[GuT] Gunaydin, M. and Takemae, S. “Unitary superalgebras of Osp(8∗/4) and

AdS7/CFT6 duality, hep-th/9910110.

[Ha] Halyo, E., “Supergravity on AdS(4/7) × S(7/4) and M-branes”, JHEP 9804,011

(1998). (hep-th/9803077)

[Ho] Horava, P. “M-theory as a holographic field theory”, Phys. Rev. D 59 (1989)

046004.

[He] Heidenreich, W., Nuovo. Cim. A80 (1984) 220.

[L] Laoues, M., “Massless particles in arbitrary dimension”, Math. Phys. 10 (1998)

1079.

[Mac] Mack, G., “All unitary representations of the conformal group SU(2, 2) with posi-

tive energy”, Commun. Math. Phys. 55 (1977) 1.

[Mal] Maldacena, J., “ The large N limit of superconformal field theories and supergrav-

ity”, Adv. Theor. Math. Phys. 2 (1998) 231. hep-th/9705104.

[Me1] Metsaev, R. R., “Arbitrary spin massless bosonic fields in d-dimensional anti De

25

http://arXiv.org/abs/hep-th/9802109
http://arXiv.org/abs/hep-th/0005168
http://arXiv.org/abs/hep-th/9910110
http://arXiv.org/abs/hep-th/9803077
http://arXiv.org/abs/hep-th/9705104


Sitter space”, hep-th/9810231.

[Me2] Metsaev, R. R., “Massless mixed symmetry boson and fermion fields in anti De

Sitter space”, Phys. Lett. B354 (1995) 78.

[Mi] Minwalla, S., “Particles on AdS(4/7) and primary operators of M(2) brane and

M(5) brane world volumes”, JHEP 10 (1998) 002. (hep-th/9803053)

[Mi2] Minwalla, S., “Restrictions imposed by Superconformal invariance on quantum field

theories”, Adv. Theor. Mat. Phys. 2 (1998) 781. (hep-th/9712074)

[N] Nahm, W., “Supersymmetries and their representations”, Nucl. Phys. B 135

(1978) 149.

[NST] Nicolai, H., Sezgin, E. and Tanii, Y., “Singleton representations of Osp(N/4)”,

Nucl. Phys. B305 (1988) 483.

[P] Percoco, U., “The spin 1

2
singleton dipole”, Lett. Math. Phys. 12 (1986) 315.

[R] Romans, L.J., “The F (4) gauged supergravity in six dimensions”, Nucl. Phys.

B269 (1986) 691.

[Sa] Sagnotti, A., “ A note on the Green-Schwarz mechanism in open string theory”,

Phys. Lett. 294B (1992) 196.

[Se] Seiberg, N., “Nontrivial fixed point of the renormalization group in 6 dimensions”,

hep-th/9609061.

[SW] Seiberg, N. and Witten, E., “Commment on string dynamics in 6 dimensions”,

hep-th/9603003.

[Sz] Sezgin, E., “High spin N = 8 supergravity in AdS4, hep-th/9903020.

[Si] Siegel, W., “All free conformal representations in all dimensions”, Int. J. Mod.

Phys. A 4 (1989) 2015.

[St] Strominger, A., “Open p-branes”, Phys. Lett. B383 (1996) 44. (hep-th/9512059)

[T] Townsend, P. K., Nucl. Phys. (Rev. Suppl.) 68 (91998) 11. (hep-th/9708034)

[W1] Witten, E., “ Anti De Sitter space and holography”, Adv. Theor. Math. Phys. 2

(1998) 253. (hep-th/9802150)

[W2] Witten, E., “Some comments on string dynamics”, (hep-th/9507121)

26

http://arXiv.org/abs/hep-th/9810231
http://arXiv.org/abs/hep-th/9803053
http://arXiv.org/abs/hep-th/9712074
http://arXiv.org/abs/hep-th/9609061
http://arXiv.org/abs/hep-th/9603003
http://arXiv.org/abs/hep-th/9903020
http://arXiv.org/abs/hep-th/9512059
http://arXiv.org/abs/hep-th/9708034
http://arXiv.org/abs/hep-th/9802150
http://arXiv.org/abs/hep-th/9507121

