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Abstract

We are answering the question why 4-dimensional space has the metric 1+ 3

by making a general argument from a certain type of equations of motion

linear in momentum for any spin (except spin zero) in any even dimension d.

All known free equations for non-zero spin for massless fields belong to this

type of equations. Requiring Hermiticity1 of the equations of motion operator

as well as irreducibility with respect to the Lorentz group representation, we

prove that only metrics with the signature corresponding to q time + (d− q)

space dimensions with q being odd exist. Correspondingly, in four dimensional

space, Nature could only make the realization of 1 + 3-dimensional space.
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1This is a generalization of an earlier work which shows that without assuming the Lorentz

invariance -which in the present work is assumed- the Weyl equation follows using Hermiticity.
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Introduction:
One of the most exciting open questions in physics and cosmology [1] is why the metric

of our World is the Minkowski one. With the metric of only the Euclidean signature, for
example, the World would have almost no dynamics (classically) for p2

1 + p2
2 + p2

3 + p2
4 = m2,

and massless particles like photons, gluons and gravitons would not even exist (onshell)
(provided that pa, a ∈ {1, 2, 3, 4} are real quantities, which of course is understood, since
otherwise the signature loses sense). Concerning the problem of dynamics, two space and
two time signatures would work but other problems would occur [2], like the problem of
causality.

The argument presented here comes entirely from considering the internal space,i.e. spin,
degrees of freedom. Also with internal degrees of freedom arguments, S. E. Rugh and one
of us [3] argue that, if one requires the equation operator to be Hermitian, then although
the Lorentz invariance is assumed to be broken at the outset, an equation which is Lorentz
invariant and can be interpreted as the Weyl equation follows as an especially stable possi-
bility, while the space-time is (1+3)-dimensional [4], [5], [6]. J. Greensite [7] [8] has argued
for the signature of (1+3) by assuming that the Lorentz symmetry is a dynamical quantity.
Hawking [1], on the other hand has pointed to the Wheeler-De-Witt equation, in which the
signature cannot even be seen, and so, he says, it should not matter whether the metric
is either Euclidean or Minkowskian. Tegmark [2] has given antropical principle arguments
in a spirit of random dynamics, very much like that by one of us [4] [6]. Weinberg has an
argument for one-time signature in string theory [9]. Penrose and Rindler have some remark
on the special properties of the experimental signature and dimension for the Weyl tensor
[10].

The present work is based on considering free equations of motion for an arbitrary spin
and dimension and signature. We shall use a special form of such equations put forward
by one of us, who [11–15] has proposed the approach in which all the internal degrees of
freedom are described as the dynamics in the space of anticommuting coordinates, that is,
the Lorentz symmetry in the internal space of anticommuting coordinates manifests in the
four-dimensional space as spins and charges for either fermions or bosons. This approach
offers an easy and elegant way to define the equations of motion for fermions or bosons to
any dimension d (either even or odd). We have made use in this paper of some of the results
presented in the references [12,16–19].

In this paper, we are presenting a general proof that under certain assumptions, for any
even-dimensional space, the number of, say, time dimensions must be odd. We take the
starting point of writing a rather general form of equations of motion

BPa0 ψ = 0,

where

Pa0 = pa0 + i α Sa0i piηii, i 6= aa0 , (1)

which is obeyed by all known free fields (the Weyl fields, the Yang-Mills fields), except a
scalar one, like the Higgs one (if it exists). Here pa is the d-momentum, Sab are the Lorentz
generators in internal space; it is the Lorentz generators acting on the spin states. The
operator B is a spin-space matrix, which because of our assumption about “irreducibility”
of the representation is a function of the Sab’s, but not (necessarily) Lorentz invariant. The
constant α is equal to the inverse of the (maximal) helicity of the field and is for fermions
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equal to two, for vectors, equal to one, and so on. In fact equation (1) is obtainable by
rewriting equations of motion like the Weyl equations and the Maxwell equations. We also
take gravity as a free field and only care for it as gravitons. The general proof follows if
the following basic assumptions are fulfilled: 1. Equations of motion are of the form (1).
(This assumption implies that the equations of motion are linear in the d-momentum and
thus that we consider massless particles. It also implies that the equation content is Lorentz
invariant, but that the form of it is not manifestly Lorentz invariant.) 2. The equations
of motion operator is Hermitian. 3. The equations of motion operator operates only inside
an irreducible representation with respect to the Lorentz group. We find the support for the
above assumptions in the Standard Model of the electroweak interaction, which supposes
four-dimensional space-time. We shall argue for them in a longer article [20].

The internal Lorentz symmetry: The generators of the Lorentz transformations in the
internal space Sab fulfil the commutation relations

[Sab,Scd] = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac). (2)

We recognize the generators Sab to be of the spinorial character Sab, if they fulfil the following
relations

{Sab, Sac} =
1

2
ηaa ηbc, no summation over a. (3)

With the appropriate choice of the inner product [11,12,15,17,16] we can make a definition
of the Hermiticity of the spin-space Lorentz generators Sab as follows

(Sab)+ = ηaa ηbb Sab, (4)

where + stays for Hermitian conjugation. (This definition agrees with the Hermeticity
properties of Sab = − i

4
[γa, γb], if expressed in terms of the γa matrices: (Sab)+ = ηaaηbbSab.)

We shall further comment on the inner product and the Hermiticity conditions later. For
our proof the expression for the Casimir for the Lorentz group, operating only in internal
space

Γ(int) = (−i)n+1 (2i)n

(2n)!
ǫa1a2a3a5,...,a2n−1a2n

Sa1a2Sa3a4 · · ·Sa2n−1a2n (5)

will be needed. Taking into account the Hermiticity properties of the generators Sab from
Eq.(4), one finds that

(Γ(int))+ = (−) (
∏

b

ηbb) Γ(int); b ∈ {1, 2, · · · , 2n}. (6)

Γ(int) defines left (Γ = −1) and right (Γ = 1) handed representations.
Higher spins:
All the definitions presented above (except Eq.(3), which is only valid for spinors) are

valid for any spin in any dimensional space-time. To treat higher spins we use the Bargmann
and Wigner construction [21,22], making higher spin fields out of spinorial fields by con-

structing the fields with many spinorial indices of left - α, β, γ, . . . - and right -
.
α,

.

β,
.
γ, . . .

handedness and generalize it in higher dimensions ( we allow besides the totally symmetrized
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case, which is the only case needed in four-dimensions) to the antisymmetrized case and to
all possible mixed symmetrized cases belonging to various Young tableaux Y and Ŷ for left-
and right-handed representations, respectively

ψ
(Y Ŷ )

α1α2···αn

.

α1
.

α2···
.

αm

= N
∑

P,P̂

sign(Y )(P ) sign(Ŷ )(P̂ ) ψαP (1)αP (2)···αP (n)
.

α
P̂ (1)

.

α
P̂ (2)···

.

α
P̂ (m)

, (7)

where P and P̂ run over the permutations, determined by the Young tableaux Y and Ŷ ,
respectively and the two sign( ) are determined by the two Young tableaux Y and Ŷ ,
respectively, so that we are projecting out a particular irreducible representation of the
Lorentz group. N takes care of the normalization of the spin field. The generators of
the Lorentz transformation for any representation Sab are constructed using the spinorial
generators Sab (Eq.(3))

Sab =
n+m
∑

k=1 I(1) ⊗ I(2) ⊗ · · · ⊗ Sab
(k) ⊗ I(k+1) · · · ⊗ I(m+n), (8)

where ⊗ means the direct product and I(k) stays for the unit matrix acting on the index αk

or
.
αk and so do Sab

(k). It is easily shown that Sab obey the algebra of the Lorentz group
(Eq.(2)).

Our theorem giving an odd number of time-dimensions in even-dimensional space-time:
Theorem: Assuming for any irreducible representation (for any spin) the equations of

motion (Eq.(1))

BPa0ψ = B(pa0 + iαSa0ipi ηii)ψ = 0 (9)

and letting the signature of space-time be defined so that the bilinear form in pa0

ψ+ (pa0 − iαSa0i pi ηii)Pa0 ψ, (10)

has the signature of the Klein-Gordon equation for the space-time signature in question, it
follows that the time-dimension q is odd, provided that the equations of motion operator is
Hermitian

BPa0 = (BPa0)+. (11)

The statement above the bilinear form should even include the fact that the positive and
the negative definite subspaces of dimensions say q and d− q can be chosen independently
of the internal space state |ψ >.

We shall first give a proof of the theorem for the spinorial case, since for this case it is
simple and transparent.

Proof for the Weyl equation case:
We recognize that the operator in Eq.(10) in the Weyl case equals the equations of

motion operator of the Klein-Gordon equation papbηab, provided that α = 2, which is a real
number and that Eq.(3), which defines the anticommutation relations for spinors, is taken
into account. When taking into account also the Hermiticity condition (Eq.(11)) we have

B = B+, −(BSa0i)+ = BSa0i. (12)
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It follows that

B Sa0i + Sa0i ηa0a0 ηii B = 0, (13)

which means that B either commutes or anticommutes with Sa0i, depending on whether a0

and i have the same or the opposite signature.
Using Jacobi identities [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 and [A, {B,C}] +

[C, {A,B}] + [B, {C,A}] = 0 we derive the following generalization of Eq.(13)

[B, Sab] = 0, for (−1)δa0a+δa0bηaaηbb = 1

{B, Sab} = 0, for ηaaηbb (−1)δa0a+δa0b = −1. (14)

Let us now deduce the commutation versus anticommutation relations of B and Γ(int), the
Casimir of the Lorentz group, (Eq.(5)). Taking into account Eq.(14) we find

[B,Γ(int)] = 0, for (−1)
∏

b

ηbb = 1

{B,Γ(int)} = 0, for (−1)
∏

b

ηbb = −1. (15)

Since B was assumed to depend only on Sab, which means that the equations of motion
operator BPa0 operates within only the irreducible representation, then B should commute
with Γ(int). Unless Γ(int) = 0, which can cause problems, we can now conclude from Eq.(15)
that

(−1)
∏

b

ηbb = 1, (16)

which can only be true if the number of time coordinates and the number of space coordinates
are odd.

This finishes the proof for fermions, that is for the Weyl case. Due to the generalized
Bargmann-Wigner proposal for the description of any spin field in d dimensions out of
the Weyl spinors (Eq.(7)), we would intuitively conclude that since α is real for the Weyl
equations of motion operator and since Sab is a linear composition of Sab

(k)’s, which each
act on different spinor indices, α should be real for any spin equations of motion operator
and accordingly Eqs.(12, 13,14,15) as well as the equation (16) should be valid for any spin
in any dimension.

The general proof, which we present below, ensures that α of Eq.(1) is real for any spin.
Proof for the general case:
In order to perform the general proof of our signature theorem we need a lemma, that is,

an extension of a well-known theorem about representations of compact groups to the non-
compact groups, which tells us thatany representation of a compact group can be considered
unitary with respect to an appropriate inner product. The latter is constructed by averaging
or integrating over an arbitrary measure.

We present a slightly extended theorem as a lemma formulated for the Lorentz group
SO(q,d-q) with q time and (d− q) space dimensions:

Lemma:
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Let Sab make up a (finite dimensional) representation of the Lorentz group Lie algebra
(Eq.(2)). Then there exists an operator V such that

(Sab)+ = ηaa ηbb VSabV−1. (17)

Proof of lemma: For real ωab the Lie algebra consisiting of elements of the form ωabS
ab

is the Lie algebra for the group SO(q, d− q), but if we instead let

for ηaa ηbb = +1 : ωab real (18)

for ηaa ηbb = −1 : ωab purely imaginary, (19)

then the group generated will be the compact group SO(d) instead. In other words, for a
choice of the square roots, the Lie algebra consisting of the elements

ω̂ab

√

ηaa ηbb Sab (20)

forms a Lie algebra representation for the compact group SO(d) when the ω̂ab run through
real values. On the compact group SO(d) we can apply the idea of averaging over the Haar
measure an arbitrary inner product which, for instance, may be the one represented by the
unit matrix 1; that is to say, we construct the “averaged” inner product as expressed by a
matrix:

K :=
∫

dHaarg (eiω̂ab(g)
√

ηaaηbbS
ab

)+ 1 eiω̂ab(g)
√

ηaaηbbS
ab

. (21)

We have now ensured that the generators of the compact group are Hermitian with respect
to the inner product defined by K, becuase K constructed as an average over the whole
compact group must be left invariant under similarity transformations with representatives
eiω̂abS

ab

of elements of this compact group. This in turn implies Hermiticity of the generators
for this group with respect to K being used as the inner product, i.e.

(eiω̂ab

√
ηaaηbbSab

)+ K eiω̂ab

√
ηaaηbbSab

= K (22)

or equivalently

K
√

ηaaηbbSab − (
√

ηaaηbbSab)+ K = 0. (23)

Since we had chosen definite values for the square roots, we see that we get the statement
of the lemma by dividing equation (23) by K from the right and putting V = K. This ends
the proof of the lemma.

Corollary to lemma:
V came out Hermitian and positive definite as an operator, and the constructions√

V Sab
√

V−1 will obey Hermiticity relations of the form of Eq.(4).
The corollary is easily seen by dividing by

√
V to the left and

√
V−1 to the right equation

(17).
Another useful corollary is the following
Corollary:
For the anticommutators of the generators of the Lorentz group we have the operator-

inequalities
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√
V(−ηaaηbb(Sab)2 − ηccηdd(Scd)2)

√
V−1 ≤

√
V
√

ηaaηbbηccηdd{Sab,Scd}
√

V−1 ≤
≤

√
V(ηaaηbb(Sab)2 + ηccηdd(Scd)2)

√
V−1 (24)

and thus the signs of the expression in Eq.(10) for the positive and negative coordinate
subspaces are not changed by ignoring the anticommutator terms in an expansion of the
product of operators.

This corollary is rather easily shown by remarking that the squares of the Hermitian

operators
√

V (
√

ηaa ηbb Sab ±
√

ηcc ηdd Scd)
√

V−1, Hermitian according to the first
corollary, must be positive (semi) definite as operators (matrices).

From this last corollary we easily see that in the general case of arbitrary representation
we can ignore the commutator terms in equation (10) when investigating the condition for
the signature, at least if we consider |ψ > as being an eigenstate of the Hermitian operator√
V . Then namely the extra

√
V and

√
V−1 would in fact effectively be replaced by even

positive numbers and it would not matter for conclusions on the sign of the expression in
Eq.(10).

Then the requirement that the sign of Eq.(10) for, say, such |ψ >’s that are eigenstates of√
V must be the same for pa0 alone different from zero and for pi alone different from zero in

the case of ηa0a0ηii = +1, while they should lead to opposite signs in the case ηa0a0ηii = −1,
gives us that α is real.

A problem may be if it is really possible that the expression of Eq.(10) for all |ψ > can
come to show just the signature of the group SO(q, d−q). However, the logic here is that we
just have assumed that it is so, since the motivation for our requirements about the bilinear
form is a replacement for assuming the Klein-Gordon equation to be valid as a consequence
of our equation of motion.

Having now achieved the real α and the Hermiticity properties (17) the condition for
positivity of Eq.(1) is easily seen to be that

B+ = B (25)

and

(i B α Sa0i)+ = −iηa0a0 ηii VSa0iV−1 α B = i B α Sa0i, (26)

the latter equation of which is equivalent to that

[V−1 B, Sa0i] = 0 for ηa0a0 ηii = −1 (27)

while

{V−1 B, Sa0i} = 0 for ηa0a0 ηii = +1. (28)

But that is to say that we reached the same commutation or anticommutation conditions (13)
as for the Weyl equation case, except that now we have the conditions for V−1 B rather than
simply for B itself. That does not matter, however, since with an irreducible representation
even V should be expressed by the generators and must commute - not anticommute (unless
the Casimir is zero) - with the Casimir operators, in particular with Γ(int).

Hereby the proof ends also for the general case.
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Concluding remarks:
We have presented in this letter the general proof, valid for all spins (except for spin

zero) and all even dimensions, that an equations of motion operator can be linear in the p-
momentum, Hermitian and operate within only the irreducible representations of the Lorentz
group, if space has an odd number of time dimensions and accordingly also an odd number
of space dimensions. It is the spin degrees of freedom which determine the signature of
space-time.

The assumptions of the linearity in the p-momentum, Hermiticity and irreducibility
properties of the equations of motion operator are rather mild assumptions. In fact we have
been inspired to make them by the Standard Electroweak Model assumptions, and we shall
discuss the arguments favouring them in a longer article [20]. Our general proof answers one
of the most exciting open questions of science, namely why our space-time signature is 3+1,
pointing out that there are internal degrees of freedom that are responsible for the signature.
Before concluding, we would only point out that all the known elementary particles of
the Standard Model (assuming d = 4) belong (before switching on the interactions) - not
counting the Higgs as known - belong to one of the following groups:

1) Either to the spin-1
2

Weyl particles, described by the Weyl equations of left- and
right-handed irreducible representations (Eq.(9)), with B = 1 or B = Γ(int) (which is known

as γ5) and α = 2, leading to left-handed (Γ = −1) fermions of left helicity (
−→p .

−→
S

|
−→p .

−→
S |

= −1)

or to right-handed (Γ = 1) fermions of right helicity (
−→p .

−→
S

|
−→p .

−→
S |

= 1) while anti-fermions if

left-handed (Γ = −1) have right-helicity (
−→p .

−→
S

|
−→p .

−→
S |

= 1) and if right-handed (Γ = 1) have left

helicity (
−→p .

−→
S

|
−→p .

−→
S |

= −1), (The Standard Model postulates that no right-handed fermions or

anti-fermions exist, which would carry the weak charge. This feature of the Standard Model
has appreciable experimental support.)

2) Or to the spin-one linear Yang-Mills equations of the Maxwell type with α = 1 in
Eq.(1) and again with B = 1 or B = Γ(int), which are less known equations [16,19] and
which lead to equations

(

p0 + i−→p × 0
0 p0 − i−→p ×

)

(−→E L−→E R

)

= 0.

Assuming
−→E L =

−→E + i
−→B and

−→E R =
−→E − i

−→B the last equation leads to equations of motion
for electric and magnetic fields, which both obey Maxwell equations. We shall comment on
these equations in a longer article [20].
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