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Unexpected remnants of the renormalization algorithm in quantum field theory

are the Adler-Bell-Jackiw anomalies [1, 2], finite amplitudes arising from the quan-

tum violation of classical conservation laws. Anomalies fall into two main classes:

axial and trace. The axial anomalies obey all-order properties, such as the Adler-

Bardeen theorem [3] , and give important information about the low-energy physics,

by means of the ’t Hooft anomaly-matching conditions [4]. The trace anomaly is re-

lated to the beta function [5], by a formula Θ = βaOa, Oa being composite operators.
Certain trace anomalies in external fields can be computed exactly in the IR limit

of (supersymmetric) UV-free theories [6, 7], where an exact beta function can also

be derived [8]. They reveal the intrinsic irreversibility of the renormalization-group

flow, its relation to the invariant area of the graph of the beta function between the

fixed points [9] and the essential difference between marginal and relevant deforma-

tions [10].

Most of these powerful results apply only to even dimensions. Trace anomalies in

external gravitational and flavour fields do not exist in odd dimensions. Nevertheless,

an odd-dimensional formula for the irreversibility of the RG flow can in principle be

written [11], because the relation Θ = βaOa is completely general and so is the notion
of invariant area of the graph of the beta function. It would be desirable to dispose

of a web of non-trivial conformal field theories, conformal windows and RG flows in

three dimensions to investigate these and related issues more closely. The purpose

of this letter is to construct a large class of such theories and flows, and address the

search for appropriate odd-dimensional generalizations of the properties mentioned

above.

The beta functions of the most general power-counting renormalizable three-

dimensional theory with a Chern-Simons vector field have been studied by Avdeev

et al. in ref. [12]. Three-dimensional quantum field theory is relevant for its possible

applications in the domain of condensed-matter physics. However, the Chern-Simons

models are parity-violating and this somewhat limits the range of their applicability.

The three-dimensional φ6 theory is known to have a non-trivial fixed point in the

large-N expansion and a conformal window interpolating between the free limit and

this point [13]. Nevertheless, a large class of parity-preserving conformal windows is

not known at present and will be constructed here.

The Chern-Simons coupling gcs is not renormalized [14, 15, 16]. The simplest

argument to prove this fact proceeds as follows. Let us denote by βcs the beta function

of gcs. The results of refs. [5], relating the trace anomaly to the beta functions, imply

that, in our case, Θ should contain a term proportional to the Chern-Simons form,

multiplied by βcs. However, Θ is gauge-invariant, while the Chern-Simons form is not.

For this reason βcs has to be identically zero. This kind of argument, essentially based

on the properties of the trace anomaly, will be applied several times in this paper.

It was shown in ref. [12] that the Chern-Simons coupling can be used to split the

zeros of the beta function and generate a variety of non-trivial conformal windows.
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For example, the beta function of a ϕ̄ϕψ̄ψ-coupling with constant η typically reads

βη = a(η + bg
2
cs)(η

2 − g4cs)

to the lowest order, a and b being some factors, possibily depending on the gauge

group and the representation. The coupling gcs is quantized in the non-abelian case,

g2cs = 1/N , and is arbitrarily small in the large-N limit. Therefore, the existence of

interacting fixed points at η = ±g2cs and η = −bg2cs is proved, in this limit, directly
from perturbation theory. This construction is a three-dimensional analogue of the

existence proof of a conformal window in QCD. There we have, to two loops,

βQCD = β1α
2 + β2α

3 +O(α4) , β1 = − 1
6π
(11Nc − 2Nf) , β2 =

25N2c
(4π)2

,

where β2 is written for β1 � Nc and Nc large. The role of gcs is here played by

β1/β2 � 1/Nc. We see that all these constructions involve a large-N limit of some

sort. Our models will not be an exception in this respect.

The successful removal of divergences in quantum field theory is not restricted to

the power-counting renormalizable theories. Non-renormalizable models in less than

four dimensions were quantized long ago by Parisi, using a large-N expansion [17].

The four-fermion model has been studied in detail [18, 19], and the technique has

been applied to other cases, such as the SN−1 non-linear σ-model [20] and the CPN−1

model [21]. A challenging, open problem in quantum field theory is to classify the set

of power-counting non-renormalizable theories that can be constructed in a pertur-

bative sense, i.e. the appropriate generalization of the power-counting criterion [22].

For the purposes of this paper, the Parisi large-N expansion is a powerful tool

to construct non-trivial conformal field theories and conformal windows in three

dimensions. The known four-fermion models are relevant perturbations of a certain

subclass of these fixed points. Our models are power-counting non-renormalizable,

because although they do not contain dimensionful parameters, certain bosonic fields

do not have a propagator at the classical level. Such fields are associated with

composite operators and can be scalars, but also abelian and non-abelian gauge

vectors. The propagators are dynamically generated by fermion loops and the large-

N expansion is crucial to justify the resummation of fermion bubbles before the other

diagrams, which are subleading.

To some extent, the construction presented here is a simple application of the

general theory of Parisi, however formulated in a new way, which singles out the

conformal properties and is more suitable to the research program that we have in

mind. More importantly, I generate a whole class of RG flows (marginal deforma-

tions) interpolating between the conformal fixed points and show that they satisfy

a remarkable set of non-perturbative strong-weak coupling dualities, also exhibited

by an exact relation between the beta function and the anomalous dimension of the
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composite field. The non-abelian gauge coupling is non-renormalized and has a dis-

crete set of values. Observe that our theories do not contain a Chern-Simons term.

I give a general argument proving the non-renormalization theorem, based on the

trace anomaly.

I work in the euclidean framework and use a modified dimensional-regularization

technique. The naive dimensional technique is indeed not applicable to the theories

studied here, nor to the more familiar four-fermion models, because the dynamically

generated propagator does not regularize correctly. It is necessary to add a peculiar

non-local term Lnon loc to the classical lagrangian. This term does not generate new
renormalization constants and is evanescent, therefore formally absent in D = 3.

I start from the four-fermion model, written in terms of an auxiliary field σ:

LN =
N∑
i=1

ψ̄i (∂/+ λσ)ψi +
1

2
Mσ2 . (1)

This theory was constructed rigorously in [23], where the existence of an interacting

UV fixed point was established. A detailed study can be found in [19]. There are two

phases, and the chiral symmetry can be dynamically broken. The σ-field equation

gives σ = −λψ̄ψ/M , whence the name “composite boson” for σ.
The theory is well-defined also if we set M = 0. The model

L =
N∑
i=1

ψ̄i (∂/+ λσ)ψi (2)

is conformal both at the classical and quantum levels, as we now prove. We call it the

σN conformal field theory. At the classical level no scale is present. The renormalized

lagrangian has the form

L = Zψψ̄∂/ψ + λBZ1/2σ Zψψ̄σψ + Lnon loc .
Lnon loc denotes the evanescent term to be discussed below. No σ3-term is generated
by renormalization, because of the symmetry x1 → −x1, ψ → γ1ψ, σ → −σ. The
quadratic terms in σ are also absent: (i) the mass termMσ2 is not generated, because

it is absent in the classical lagrangian and we can choose a subtraction scheme such

that the cut-off appears only logarithmically in the quantum action; (ii) no local

kinetic term for σ can be generated, since the field σ has dimension 1 in D = 3.

In general, the bare coupling can be written as λB = λZλµ
ε/2. However, the num-

ber of independent renormalization constants is equal to the number of independent

fields and therefore we can interpret two Z’s as the wave-function renormalization

constants of ψ and σ, and set Zλ ≡ 1. This ensures that βλ ≡ 0 in D = 3 and proves
that the theory is conformal also at the quantum level. At the level of the trace

anomaly, conformality (i.e. Θ ≡ 0) follows from the fact that all local dimension-3
operators are proportional to the field equations.
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(a) (b) (c)

Figure 1: Leading diagram and first subleading corrections.

The dynamical σ kinetic term is generated by diagram 1a, which, expanded

around three dimensions, gives

diagram 1a = − Nλ2B
(4π)D/2

Γ (2−D/2)Γ2 (D/2− 1)
Γ (D − 2) (k2)D/2−1

= −λ
2
BN

8
(k2)(1−ε)/2 +O(ε) . (3)

We fix the normalization with

λ2N = 8 +O
(
1

N

)
, (4)

in D = 3 and find, in momentum space,

Γkin[σ] =
1

2
|σ(k)|2µε(k2)(1−ε)/2 + 1

2
Mσ2 . (5)

From the diagrammatic point of view, the reader might find it easier to imagine that

the mass M is still non-zero, but small, and set it to zero at the end. In particular,

at M 6= 0 it is immediate to resum the geometric series of the bubbles of type (a)
(see figure 1). After inverting the σ kinetic term and finding the propagator

〈σ(k) σ(−k)〉 = 1
M

∞∑
L=0

(−1)Lµ
Lε(k2)L(1−ε)/2

ML
=

1

µε(k2)(1−ε)/2 +M
, (6)

M can be freely set to 0, which we assume from now on. We see that the propagator

of the σ-field is proportional to 1/
√
k2 in D = 3. The propagator (6), however,

does not regularize the theory properly, because it goes to zero too slowly at high

energies. This fact becomes apparent in the calculations of the subleading corrections.

Consider the example of diagram 1b, where the dashed line is meant to be the σ-

propagator (6). The integral ∫
d3−εp (p/+ k/)

(p+ k)2(p2)(1−ε)/2

produces a Γ(0). The same holds for diagram 1c. This phenomenon is very general

and concerns theories of composite bosons in every dimension, and in particular the
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logarithmically trivial D = 4 four-fermion models considered by Wilson in [27]. We

conclude that the naive dimensional-regularization procedure fails to regularize our

theories.

The problem can be cured by giving a classical, but evanescent, kinetic term to

the composite field σ, which at the leading order reads

Lnon loc = 1
2
|σ(k)|2

√
k2
[
1− λ2BN

8
(k2)−ε/2

]
. (7)

Lnon loc is renormalization-group invariant. This requirement is essential for an easier
study of the theory. The new Γkin is obtained by adding (7) to the old one, namely (5),

henceforth producing the desired high-energy behaviour:

Γ′kin[ϕ] =
1

2
|σ(k)|2

√
k2 , (8)

which regularizes the theory correctly. It is easy to go through the usual proofs of

renormalizability and locality of the counterterms with the improved dimensional

technique.

In x-space we find, in D = 3,

〈σ(x) σ(0)〉 = 1

2π2|x|2 . (9)

This two-point function is intrinsically non-perturbative, since it equals the two-point

function of an elementary scalar field with anomalous dimension +1/2.

The field ψ has dimension (D − 1) /2 and (7) attributes exactly the same dimen-
sion to σ. Taking the µ -derivative of the equation λB = λµ

ε/2, we get

β(λ) =
dλ

d lnµ
= −ε
2
λ .

Integrating the defining relation

γσ(λ) =
1

2

d lnZσ(λ, ε)

d lnµ
,

we get the σ-wave-function renormalization constant [24, 25]:

Zσ(λ, ε) = exp

(
−4
ε

∫ λ

0

γσ(λ
′)

λ′
dλ′
)
.

We assume that we work in the minimal subtraction scheme. We want to find a

closed expression for Lnon loc that properly includes the subleading corrections. The
requirements are that Lnon loc be renormalization-group invariant and evanescent. An
expression for Lnon loc satisfying these properties reads, in momentum space,

Lnon loc = 1
2
|σ(k)|2

√
k2
[
1− λ2BN

8
(k2)−ε/2

]
exp

(
4

ε

∫ λB(k
2)−ε/4

λ

γσ(λ
′)

λ′
dλ′
)
.
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This formula is essentially unique, the alternatives differring by scheme redefinitions.

Renormalization-group invariance is exhibited by rewriting Lnon loc as

Lnon loc = 1
2
|σB(k)|2

√
k2
[
1− λ2BN

8
(k2)−ε/2

]
exp

(
4

ε

∫ λB(k
2)−ε/4

0

γσ(λ
′)

λ′
dλ′
)
,

where σB = σZ
1/2
σ . It is easy to prove that Lnon loc is zero in D = 3. Indeed, we have

in the ε→ 0 limit:

Lnon loc ∼ 1
2
|σ(k)|2

√
k2
[
1− λ2BN

8
(k2)−ε/2

](
µ2

k2

)γσ(λ)
→ 0 .

A straightforward application of the Callan-Symanzik equations shows that the

σ-two-point function has the form

Γσσ = A(λ)
√
k2
(
µ2

k2

)γσ(λ)
, (10)

or, in x-space,

〈σ(x) σ(0)〉 = A′(λ)
|x|2+2γσ(λ)µ2γσ(λ) . (11)

The numerical coefficients A(λ) and A′(λ) do not have here a direct physical meaning,
because they are scheme-dependent and can be changed by redefining µ.

Formulas (10) and (11) have the expected form for a conformal field theory. A

non-vanishing anomalous dimension γσ(λ) proves that the theory is interacting. We

now calculate γσ(λ) to the lowest order. We find, from diagrams 1b and 1c,

Zψ = 1− λ2

6π2ε
, Zσ = 1 +

4λ2

3π2ε
(12)

and the anomalous dimensions are

γψ =
2

3Nπ2
, γσ = − 16

3Nπ2
.

These values are in agreement with the calculations of [19] (they can be checked using

the formulas (2.35a-b) of that paper, after replacing N with N/2, since the authors

of [19] use doublets of complex spinors). Higher-order corrections have been studied

by Gracey in refs. [26]. It is important to remark that γσ is negative. A negative

anomalous dimension for the composite boson is not in contradiction with unitarity.

We have already observed that the uncorrected σ-dimension is 1/2-larger than the

minimum. The unitarity bound is therefore dσ = 1+γσ > 1/2 or γσ > −1/2, so that
γσ is allowed to have negative values in three dimensions. Observe that γψ is instead

positive and could not be otherwise for a similar reason. To the first subleading order

we have therefore the x-space correlator

〈σ(x) σ(0)〉 = 1

2π2|x|2−32/(3Nπ2) .
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Summarizing, we have formulated, via a large-N expansion and an improved

dimensional-regularization technique, a class of interacting conformal field theories

in three dimensions. These theories are in general strongly coupled. They become

weakly coupled for N large, and free for N =∞.
Now, we want to define renormalization-group flows interpolating between the

σN+M and the σN conformal field theories. Let us consider the lagrangian

LNM =
M∑
i=1

χ̄i (∂/+ gσ)χi +
N∑
i=1

ψ̄i (∂/+ λσ)ψi . (13)

Here we expand perturbatively in g, or actually ḡ = g/λ. For ḡ = 0 we have the σN
model plus M free fermions. For ḡ = 1 we have the σN+M model. It is therefore

natural to expect that the coupling ḡ interpolates between the two fixed points. We

can show that there is a non-trivial beta function by studying the first perturbative

corrections. We combine the small-ḡ expansion with the large-N expansion. We also

assume that ḡ2M/N � 1. Since ḡ varies from 0 to 1, this means that M is much

smaller than N . The renormalized lagrangian reads

LR =
M∑
i=1

Zχχ̄
i
(
∂/+ gZḡZ

1/2
σ σ

)
χi +

N∑
i=1

Zψψ̄
i
(
∂/+ λZ1/2σ σ

)
ψi + Lnon loc

and the evanescent, renormalization-group invariant, non-local kinetic term reads, in

the general case:

Lnon loc = 1
2
|σ(k)|2

√
k2
[
1− λ2BN

8
(k2)−ε/2

]
exp

(
−2
∫ ln√k2
lnµ

γσ(lnµ
′) d lnµ′

)
.

From the results (12) we easily get, to the lowest order,

Zψ = 1− 4µ−ε

3Nπ2ε
, Zχ = 1− 4ḡ

2µ−ε

3Nπ2ε
,

Zσ = 1 +
32µ−ε

3Nπ2ε
, Zḡ = 1 +

16 (ḡ2 − 1)µ−ε
3Nπ2ε

. (14)

We therefore obtain

βḡ =
16

3Nπ2
ḡ
(
ḡ2 − 1)+O( ḡ

N2
,
ḡ5

N

)
(15)

and conclude that the σN model plus M decoupled fermions is the UV limit of the

flow and the σN+M point is the IR limit. Remarkably, the first orders in ḡ single out

correctly both fixed points. This means that, presumably, every truncation of the

perturbative expansion of βḡ factorizes the expected ḡ (ḡ
2 − 1). We show below that

this is indeed the case. The theories with couplings ḡ and −ḡ are clearly equivalent.
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The flows (13) satisfy a natural strong-weak coupling duality, associated with

the replacement ḡ ↔ 1/ḡ, N ↔ M . The dual flow interpolates from the UV σM
model with N free fermions to the IR σN+M model. Pairs of dual flows have the IR

limits in common. Finally, the self-dual flow has N = M . We immediately realize

that the σM model plus N free fermions is the fixed point at ḡ = ∞. It is natural
to conjecture that the points ḡ = 0, 1,∞ are all the fixed points of the exact beta
function. The dual flows are plotted in figur 2.

The mentioned duality and fixed

�� ����

σ

σσ

β

g

0 1

N+M

M

Ν

Figure 2: Beta function of dual RG flows.

points are non-perturbative proper-

ties of the flows and are self-evident

from the construction. We have al-

ready seen that, unexpectedly, the

lowest order beta function (15), cal-

culated for ḡ � 1, vanishes at ḡ =
1. What is even more astonishing is

that, with a little improvement, the

beta function vanishes also at ḡ =∞
and satisfies the mentioned duality

exactly. To see this, let us relax the

assumption ḡ2M/N � 1, so that M and N can be of the same order. Diagram 1a
is proportional to N +Mḡ2. The above formulas can be corrected replacing N by

N +Mḡ2. In particular, the lowest-order beta function (15) becomes

βḡ =
16

3π2
ḡ (ḡ2 − 1)
(N +Mḡ2)

,

and does satisfy the ḡ ↔ 1/ḡ, N ↔M duality, because

β1/ḡ =
16

3π2
1/ḡ (1/ḡ2 − 1)
(M +N/ḡ2)

.

The remarkable perturbative features that we have outlined are explained by an ex-

act relation between the beta function and the anomalous dimension of σ, that we

now derive. This formula is a sort of three-dimensional analogue of certain common

formulas in four-dimensional supersymmetric theories, such as the NSVZ beta func-

tion [8], or the beta function of the superpotential coupling. We stress that in three

dimensions we do not need supersymmetry for this.

We write the renormalized lagrangian in a manifestly dual form:

LR =
M∑
i=1

V (g,M ;λ,N ; ε)χ̄i (∂/+ gU(g,M ;λ,N ; ε)σ)χi +

+

N∑
i=1

V (λ,N ; g,M ; ε)ψ̄i (∂/+ λU(λ,N ; g,M ; ε)σ)ψi.

8
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We have

Zχ = V (g,M ;λ,N ; ε) , Zψ = V (λ,N ; g,M ; ε) ,

Zσ = U2(λ,N ; g,M ; ε) , Zg =
U(g,M ;λ,N ; ε)

U(λ,N ; g,M ; ε)
,

and find

βḡ = ḡ (γσ − γ̃σ) ≡ ḡ

[
γσ(ḡ,M ;N)− γσ

(
1

ḡ
, N ;M

)]
. (16)

Observe that γσ(1,M ;N) = γσ(M + N). We can immediately check the duality of

the exact beta function:

β1/ḡ =
1

ḡ

[
γσ

(
1

ḡ
, N ;M

)
− γσ(ḡ,M ;N)

]
. (17)

The beta function vanishes at the fixed points ḡ = 0,∞ and the solutions of

γσ(ḡ,M ;N) = γσ

(
1

ḡ
, N ;M

)
. (18)

Using the fact that γσ(1,M ;N) = γσ(M +N) we know that ḡ = 1 is a solution. We

expect that this is the unique solution of the condition (18).

The trace anomaly reads

Θ = βḡσ

M∑
i=1

χ̄iχi ≡ βḡO

and, correctly, does not vanish using the field equations.

More generally, we can consider the model

L =
k∑
i=1

Ni∑
j=1

V (λi, Ni;λ,N ; ε)ψ̄
j
(i) (∂/+ λiU(λi, Ni;λ,N ; ε)σ)ψ

j
(i) ,

where the argument λ,N in (λi, Ni;λ,N ; ε) refers to the set of couples λj, Nj with

j 6= i. Clearly, V (λi, Ni;λ,N ; ε) and U(λi, Ni;λ,N ; ε) are symmetric with respect to

the exchanges λj , Nj ↔ λl, Nl with j, l 6= i. Choosing λk to be of order unity and all
the other λ’s small, we have

βi = λ̄i
(
γσ − γ̃(i)σ

)
≡ λ̄i

[
γσ(λ̄1, N1; . . . λ̄i, Ni . . . ; λ̄k−1, Nk−1;Nk)−

− γσ
(
λ̄1

λ̄i
, N1; . . .

1

λ̄i
, Nk . . . ;

λ̄k−1
λ̄i

, Nk−1;Ni

)]
,

γσ = γσ(λ̄1, N1; . . . ; λ̄k−1, Nk−1;Nk) =
d lnU(λk, Nk;λ,N ; ε)

d lnµ
,
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Figure 3: Polyhedrical RG patterns interpolating between pairs of σN models.

where λ̄i = λi/λk and i = 1, . . . , k − 1. The list of fixed points is obtained by
assigning the values 0, 1,∞ to λ̄1, . . . , λ̄k−1 in all possible ways, keeping in mind that
when some λ̄’s are infinite, it is immaterial whether the finite λ̄’s are 0 or 1. In total,

we have 2k−1 fixed points, corresponding to the models σ∑
sN
for all possible subsets

s of (N1, . . . , Nk). The flows are naturally associated with the regular polyhedron

having k faces in k − 1 dimensions (triangle for k = 3, tetrahedron for k = 4, etc.)
and the dualities are symmetries of this polyhedron. The RG patterns for k = 2, 3, 4

are illustrated in figure 3.

The trace anomaly reads

Θ = σ

k−1∑
i=1

βi

Ni∑
j=1

ψ̄j(i)ψ
j
(i) .

Flows interpolating between the UV σN+M and IR σN fixed points can be ob-

tained by giving mass to M fermions. For the general purposes mentioned in the

introduction, these flows are less interesting than the pure RG flows, which preserve

conformality at the classical level and run only due to the dynamical scale µ [10].

In some cases, nevertheless, such as the vector models constructed below, giving

masses to the fermions seems the only simple way to interpolate between pairs of

fixed points, because a non-renormalization theorem forbids the running of the gauge

coupling constant.

Vector four-fermion models were also considered in [17]. Here I make a set

of observations on the non-abelian composite gauge bosons, and prove that their

coupling constant is quantized and non-renormalized. The abelian coupling, instead,

is non-renormalized, but can take arbitrary values.
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We start from the four-fermion model defined by the lagrangian

L = ψi∂/ψi + λ2

2M

[
(ψ

i
γµψ

i)2
]
, (19)

to which we associate the conformal field theory

L = ψ̄i (∂/+ iλA/)ψi .
The vector Aµ becomes dynamical at the quantum level and the resulting conformal

theory is interacting. The diagram 1a generates the Aµ-propagator at the leading

order in the large-N expansion and its kinetic term in the quantum action reads, in

momentum space and coordinate space, respectively:

Γkin[A] =
1

2

λ2N

16
Aµ(k)Aν(−k)k

2δµν − kµkν√
k2

=
1

4

λ2N

16
Fµν

1√−�Fµν , (20)

Fµν denoting the field strength. At the leading order we set again

λ2N

16
= 1, λB = λµ

ε/2 .

Since the U(1) currents are conserved, the subleading corrections can only change

the coefficient of the quadratic term in (20), but cannot change the dimension of

the vector. There is, nevertheless, a non-vanishing anomalous dimension for the

fermion fields, calculable from diagram 1b or, alternatively, from 1c. We find, using

an analogue of the Feynman gauge,

γψ =
4

3Nπ2
+O

(
1

N2

)
, γA ≡ 0 .

Finally, the non-local lagrangian kinetic term of the vector reads

Lnon loc = 1
2
Aµ(k)Aν(−k)k

2δµν − kµkν√
k2

[
1− λ2BN

16
(k2)−ε/2

]

and does not need subleading corrections, since γA = 0.

It is straightforward to construct conformal field theories with non-abelian gauge

fields, using the same method. The lagrangian

L = ψ̄i [δij∂/+ iλA/aT aij]ψj
generates a gauge-field quantum action

Γkin[A] =
1

4

λ2C(T )Nf

16
F a
µν

1√−�F
a
µν ,

for the field strength

F a
µν = ∂µA

a
ν − ∂νAaµ − λfabcAbµAcν .

11
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With a natural normalization convention for the action we see that the gauge coupling

is discretized and equals

g2 =
16

C(T )Nf

+O
(
1

N2f

)
.

We have the freedom to change the representation T and Nf , but since the set of

unitary representations is denumerable, the non-abelian gauge coupling can take

only discrete values. It remains to be seen whether we can interpolate between two

models with different values of the gauge coupling by means of an RG flow. However,

a non-renormalization theorem forbids this. Consider the trace anomaly Θ. The

term responsible for the running of the gauge coupling should be proportional to the

gauge beta function multiplied by a non-trivial dimension-3, local, gauge-invariant

operator. However, there exists no such operator in the gauge sector, all candidates

being proportional to the field equations. The usual term F 2µν has dimension 4, while

terms proportional to D/ψ are trivial.

Other interesting conformal field theories are given by the gauged σN models

L = ψ̄i [δij∂/+ iλA/aT aij + λ′σδij]ψj .
RG flows such as

L =
N∑
i=1

ψ̄i
[
δij∂/+ iλA/

aT aij + λ
′σδij

]
ψj +

M∑
i=1

χ̄i
[
δij∂/+ iλA/

aRa
ij + gσδij

]
χj

do not change the gauge-coupling, by the non-renormalization theorem proved above,

but only the σ coupling. The patterns of their RG flows are similar to the RG patterns

of the non-gauged σN models, with the only difference that the duality symmetries

involve also exchanges of the representations, such as R↔ T , etc.

A non-abelian coupling can take arbitrary values, but the non-renormalization

theorem applies. Consider for example

L =
N∑
i=1

ψ̄i [∂/+ iλA/]ψi +

M∑
i=1

χ̄i [∂/+ iλ′A/]χi .

Here the trace anomaly is still identically zero and the theory is conformal for arbi-

trary λ and λ′. We have

Γkin[A] =
1

4

λ2N + λ′2M
16

Fµν
1√−�Fµν .

We can reduce to the original vector four-fermion model (19) by means of a

relevant deformation. A mass perturbation, such asMA2µ/2, produces the propagator

〈Aaµ(k) Abν(−k)〉 =
δab
√
k2

k2 +M
√
k2

(
δµν +

kµkν

M
√
k2

)
.

12
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The behaviour kµkν/(Mk2) at large momenta is not dangerous if the current is

conserved [17], which happens for abelian fields. The situation is similar to quantum

electrodynamics in four dimensions, where the photon can be given a mass without

spoiling the renormalizability. With non-abelian gauge fields we have to advocate a

symmetry-breaking mechanism. We consider

L = ψ̄i (δij∂/+ iλA/aT aij)ψj + |Dµϕ|2 + V (|ϕ|) + Λψ̄ψ ϕ̄ϕ+ Λ′ψ̄T aψ ϕ̄Raϕ · · ·

and assume that the potential V (|ϕ|) is such that the scalar field has an expectation
value 〈|ϕ|〉 = M1/2. We know that the theory is renormalizable in the large-N

expansion. We can integrate the vector field out by solving its field equation. For

simplicity we write the formulas in the abelian case, although the mechanism is not

strictly necessary there. We have

Aaµ = −
i

2λ |ϕ|2
(
ψγµψ − ϕ̄∂µϕ+ ∂µϕϕ̄

)
= − iψγµψ

λ|M1/2 + η|2 −
1

λ
∂µθ ,

having set ϕ = eiθ(M1/2 + η)/
√
2. The Goldstone boson θ is gauged away as usual

and we remain with

L = ψ̄i∂/ψi −
(
ψ
i
γµψ

i
)2

2M
∣∣∣1 + η/√M ∣∣∣2 +

1

2
(∂µη)

2 + V (η) +
Λ

2
ψ̄ψ

∣∣∣∣1 + η√
M

∣∣∣∣
2

. (21)

When the mass of η is very large, (19) is recovered exactly. By construction, the

theory (21) is renormalizable, although this is not evident in the final form. Since the

limit of large η-mass can be taken atM fixed, we see that (19) is also renormalizable.

A more direct way to get to (19) is by replacing V (|ϕ|) with iα(ϕ̄ϕ−M), such
as in the SN−1 non-lineal σ-model [20]. The field α is dynamical and acquires a
propagator proportional to

√
k2, which is however compatible with power counting.

In this case, however, we need to take a large-N limit also in the number of ϕ

components.
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