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ows with partially free boundaries has been pursued in the textbook [18]; ordinary
di�erential equations including the geometric aspects of the underlying variational
principle are treated in [29].

Our paper, in Section 1, is aimed at formulating diverse variational principles
governing the evolution of a compressible potential ow driven by volume forces as
well as by surface tension and acoustic loading along the free and �xed (container-)
boundary parts, respectively. The computation of the Hamilton action in Theo-
rem 1.1 requires the solution of a time-dependent family of Neumann problems for
an elliptic equation. On the other hand, this preliminary step may be avoided at
the expense of introducing additional state variables. This is performed in detail in
Theorems 1.2, 1.3.

When acoustic loading is included, the behaviour of the system may change in
an unexpected way. During high-frequency exitation the time-averaged free surface
can take a position far from the corresponding capillary shape, cf. [8], [16], [30]
for a review on experimental work on this subject. We draw attention also to [13]
where the related problem of acoustic attening of a rotating liquid drop has been
treated. Having in mind the mechanical analogy in nonlinear pendulum theory [11],
in [28] the last author raised the question whether the mean surface position is
determined by some kind of \vibrocapillary" force and a corresponding principle
of minimal potential energy which, at the same time, would allow to distinguish
between stability and instability of an averaged surface shape.

Section 2 adresses the mathematical background of this question. By transforma-
tion to nondimensional variables and introduction of a small parameter character-
izing the high-frequency contributions of the exitation we construct via truncating
the Hamilton action a class of oscillating solutions. Their time-averaged free bound-
aries turn out to be critical points of a time-independent \quasi-potential". This is
outlined in Theorems 2.2, 2.3. To get further information about the principal sym-
bol and the mapping properties of the corresponding Jacobi operator, in Section 3,
Theorem 3.3 we compute the second variation of that potential.

In a forthcoming second part of this paper we apply the results developed below
to a numerical study of the experimentally observed vibrocapillary phenomena.

1 Variational principles

In the following let x = (x1; x2; x3) euclidean coordinates in R3 and let t denote
the time. We consider the unsteady motion of a compressible uid occupying a
time-dependent bounded domain Q(t) which is part of a rigid container eQ = fx 2
R

3 j �(x) < 0g with a smooth function �. Let @Q(t) = S1(t) [ S2 [ �(t) with
S1; S2 � @ eQ, where S2 denotes the (time-independent) location of an acoustic source
and �(t) = fx 2 eQ j �(x; t) = 0g is the moving free boundary. In the following r�
is assumed to point to the exterior of Q(t) always. If ' = '(x; t), p = p(x; t) and
� = �(x; t) are velocity potential, pressure and density of the liquid, then the free
boundary problem considered here reads as:
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�r

�
_'+

1

2
jr'j2+ U

�
= �rp in Q(t); (1.1)

_�+ div(�r') = 0 in Q(t) (1.2)

subject to the boundary conditions

@n' = 0 on S1(t); @n' = �jr�j�1 _� on �(t); �@n' = V on S2: (1.3)

Here, U = U(x; t) is the potential of volume forces and V = V (x; t) measures the
normal component of velocity of the acoustic source. Throughout the paper @n is
the derivative relative to the outer normal n = (n1; n2; n3) of @Q(t) and a dot
denotes di�erentiation with respect to time. On �(t) and @�(t), respectively, the
free boundary conditions

p� 2�H = p0 on �(t); (1.4)

�r�r� = �jr�jjr�j on @�(t) (1.5)

have to be ful�lled. Here H denotes the mean curvature of � and p0 is the outer
atmospheric pressure which we assume to be constant. � is the coe�cient of sur-
face tension, � the relative adhesion coe�cient between the uid and the bounding
walls. In our setting the system above is completed by a barotropic pressure-density
relation

� = �(p): (1.6)

Additionally, to guarantee mass conservation we imposeZ
S2

V dS = 0 (1.7)

as an constraint on V .
To establish Hamilton's principle for (1.1)-(1.6) we introduce the following no-

tation: For given � and � let ' be the solution (de�ned up to a constant) of the
Neumann problem

div(�r') = � _� in Q(t); (1.8)

@n' = 0 on S1(t); �@n' = V on S2; @n' = �jr�j�1 _� on �(t): (1.9)

Equation (1.8) is uniformly elliptic as long as � is bounded positively against zero. To
guarantee the solvability of the Neumann problem (1.8), (1.9), in addition to (1.7),
we have to restrict � and �, which we choose as state variables in the following, to
satisfy the constraint Z

Q(t)
_�dQ�

Z
�(t)

�jr�j�1 _� d� = 0:

This implies Z
Q(t)

� dQ = const:; (1.10)
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i.e. conservation of total mass. Letting W = W (�) the inner energy density of the
uid, then

p = �2W 0(�) (1.11)

gives the inverse funtion to (1.6). With this notation

L(t; �; �; _�; _�) =

Z
Q(t)

�

�
1

2
jr'j2 �W (�)� U

�
dQ

� �
�
j�(t)j � �jS1(t)j

�
� p0jQ(t)j

(1.12)

de�nes the Lagrangian of (1.1)-(1.6). In (1.12) the term �j�(t)j corresponds to the
free surface energy and �jS1(t)j measures the wetting energy. Due to compressibility
we have to include the work p0jQ(t)j of the outer pressure.

Theorem 1.1. For a �xed time intervall [t1; t2] let

A(�; �) =

Z t2

t1

Ldt (1.13)

denote the action corresonding to (1.12), considered under the restriction (1.10),
and subject to

��jt1;t2 = 0; ��jt1;t2 = 0: (1.14)

Then any su�ciently regular solution �; � of the variational equations

��A(�; �)f��g+ ��A(�; �)f��g= 0 (1.15)

{ for all variations ��; �� compatible with (1.10), (1.14) { satis�es the equations of
motion (1.1)-(1.6) in [t1; t2] (with velocity potential ' computed from (1.8), (1.9)
and pressure given by (1.11)).

Proof. Our starting point is the weak formulation of the Neumann problem (1.8)
de�ning ' in dependence of �, �:Z

Q(t)
_� dQ =

Z
Q(t)

�r'r dQ�

Z
S2

V  dS +

Z
�(t)

� _� jr�j�1 d�

for all su�ciently smooth functions  =  (�; t) on Q(t). Remembering the general
di�erentiation rule for integrals over a time-dependent domain

d

dt

Z
Q(t)

f dQ = �

Z
�(t)

f _�jr�j�1 d�+

Z
Q(t)

_f dQ; (1.16)

(note that r� is directed towards the exterior of Q(t)) we obtain

d

dt

Z
Q(t)

� dQ�

Z
Q(t)

� _ dQ =

Z
Q(t)

�r'r dQ�

Z
S2

V  dS: (1.17)
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The functional (1.12) is de�ned under the constraint (1.10) only. Therefore, com-
puting its derivative requiresZ

Q(t)
�� dQ�

Z
�(t)

���jr�j�1 d� = 0;

for the variations ��; ��. In the following we compute the partial derivatives ��A; ��A
under that assumption. We start with the variation of A with respect to �. From
the de�nition of L and A we get immediately

��A =

Z t2

t1

Z
Q(t)

��

�
1

2
jr'j2 �

d

d�
(�W )� U

�
+ �r'r�' dQdt: (1.18)

On the other hand, setting  = ' in the �-variation of equation (1.17) and using
(1.14) yields

Z t2

t1

Z
Q(t)

�r'r�' dQdt= �

Z t2

t1

Z
Q(t)

��
�
_'+ jr'j2

�
dQdt:

Substituting this into (1.18) �nally gives

��A = �

Z t2

t1

Z
Q(t)

��

�
_'+

1

2
jr'j2 +

d

d�
(�W ) + U

�
dQ:

Similarly, by computing the variation of A with respect to � we get

��A =

Z t2

t1

�Z
Q(t)

�r'r�' dQ

�

Z
�(t)

��jr�j�1
��
2
jr'j2 � �W � �U � p0 � 2�H

�
d�

+ �

Z
@�
��
�
jr�j�1jr�j�1r�r� + �

�
dl

�
dt;

(1.19)

(concerning the variation of the surface area see e.g. [9]). Furthermore, variation of
(1.17) with respect to � implies

Z t2

t1

Z
Q(t)

�r'r�' dQdt = �

Z t2

t1

Z
�(t)

�
�
_'+ jr'j2

�
��jr�j�1 d�dt;

hence

��A =

Z t2

t1

�Z
�(t)

�
�
�
_'+

1

2
jr'j2 +W + U

�
+ p0 + 2�H

�
��jr�j�1 d�

+ �

Z
@�
��
�
jr�j�1jr�j�1r�r� + �

�
dl

�
dt:

(1.20)

Obviously, the integrals on the right-hand sides of (1.19), (1.20) can be thought of as
linear functionals also without any restriction on the variables ��, ��. Adopting this
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point of view comparision of (1.19), (1.20) with (1.15) via the Lagrange multiplier
rule leads to

��Af��g = �

Z t2

t1

�

Z
Q(t)

�� dQdt;

��Af��g =

Z t2

t1

�

Z
�(t)

���jr�j�1 d� dt

for all ��, �� with a time-dependent Lagrange multiplier � = �(t), i.e.

_'+
1

2
jr'j2 +

d

d�
(�W ) + U = � in Q(t); (1.21)

�

�
_'+

1

2
jr'j2 + U +W

�
+ p0 + 2�H = �� on �(t);

and, as a result of variation along @�:

jr�j�1jr�j�1r�r� + � = 0:

Computing the pressure p from (1.11) this implies (1.1)-(1.6). ut

Remark. From (1.11) and (1.21) it follows

�

�
_'+

1

2
jr'j2 + U +W

�
+ p = ��

along any extremal. By adding a suitable time-dependent constant to ' we can
assume � = 0 without loss of generality. With this normalization of ' we get

A =

Z t2

t1

�Z
Q(t)

(p� p0) dQ� �
�
j�(t)j � �jS1(t)j

��
dt

+

Z t2

t1

Z
S2

V ' dS dt+

Z
Q(t)

�' dQ

����t2
t1

:

for the action along an extremal. Here the kinetic energy is expressed as an integral
over the pressure, cf. also [10].

In Theorem 1.1 the computation of the velocity potential requires the solution of
a Neumann problem. In particular for numerical purposes it is desirable to avoid this
preliminary step. As in [2], [17] and [20] we introduce ' as an additional independent
variable. In this case (1.8) as well as the boundary conditions (1.9) turn into natural
optimality conditions. Our starting point is the observation that the '-variation of
the functional

J(�; �; ') =

Z t2

t1

�Z
Q(t)

��
�
_'+

1

2
jr'j2

�
dQ+

Z
S2

V ' dS

�
dt

leads to (1.8), (1.9). In fact,
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�'J =

Z t2

t1

�Z
Q(t)

��(� _'+r'r�') dQ+

Z
S2

V �' dS

�
dt

and, after integration by parts

�'J =

Z t2

t1

�Z
Q(t)

�
_�+ div(�r')

�
�' dQ

�

Z
S1(t)

�@n'�' dS �

Z
S2

(�@n'� V )�' dS

�

Z
�(t)

�(@n'� _�jr�j�1)�' dS

�
dt�

Z
Q(t)

��' dQ

����t2
t1

in view of (1.16). Hence, �'J(�; �; ')f�'g= 0 for all �' with �'jt1;t2 = 0 implies '
to be a solution of (1.8), (1.9); note that in this situation the solvability condition
for (1.8), (1.9) is met automatically. With this velocity potential ' we obtain

J =

Z t2

t1

Z
Q(t)

1

2
�jr'j2 dQdt+

Z
Q(t)

�' dQ

����t2
t1

:

The �; �-variations of the second term on the right-hand side vanishes if ��, ��
satis�es (1.14). Thus we get after comparision with (1.12) and Theorem 1.1:

Theorem 1.2. Any su�ciently regular critical point (�; �; ') of the functional

B(�; �; ') =

Z t2

t1

�Z
Q(t)

��
�
_'+

1

2
jr'j2 + U +W (�)

�
dQ

� �
�
j�(t)j � �jS1(t)j

�
+

Z
S2

V ' dS � p0jQ(t)j

�
dt

subject to

��jt1;t2 = 0; ��jt1;t2 = 0; �'jt1;t2 = 0

satis�es (1.1)-(1.6). ut

The following Theorem 1.3, where � and ' have been introduced as independent
variables, can be viewed as a counterpart to Theorem 1.2. Let P be a primitive of
1=�:

P (�) =

Z
d�

�(�)
+ const:;

where the constant is choosen such that

d

d�

�
�W (�)

�
= P

�
�2W 0(�)

�
: (1.22)

Since P is strictly monotone the inverse function P�1 exists. With this function we
have
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Theorem 1.3. Under the constraints

��jt1;t2 = 0; �'jt1;t2 = 0

any su�ciently regular critical point (�; ') of the functional C = C(�; ') with

C(�; ') =

Z t2

t1

�Z
Q(t)

P�1
�
� _'�

1

2
jr'j2 � U

�
dQ

� �
�
j�(t)j � �jS1(t)j

�
+

Z
S2

V ' dS � p0jQ(t)j

�
dt

satis�es (1.1)-(1.6).

Proof. For given (�; ') we determine � = �[�; '] with

_'+
1

2
jr'j2 + U +W (�) + �W 0(�) = 0 in Q(t):

This is equivalent to

��B(�; �; ')f��g= 0 for all �� (1.23)

with the functional B = B(�; �; ') from Theorem 1.2. In view of (1.22) this means

�

�
_'+

1

2
jr'j2+ U

�
=

d

d�

�
�W (�)

�
= P

�
�2W 0(�)

�
= P

�
��

�
_'+

1

2
jr'j2+ U +W

��
;

hence C(�; ') = B(�; �; '[�; ']) and Theorem 1.2 gives the assertion. ut

2 High-frequency exitations

In this section the free boundary problem (1.1)-(1.6) is considered with a time-
dependent high-frequency potential

U(x; t) = �gx3 � !
2aixi sin(!t):

Here the usual summation convention over repeated indices is used. In the following
we study the behaviour of the system if

! !1; !jaj = const:; (2.1)

i.e. under the inuence of a time-periodic volume force with an amplitude increasing
proportionally to the frequency. We disregard any additional acoustic source at the
boundary, hence we may set V = 0 and S(t) = S1(t) + S2. In addition, (1.6) is
speci�ed to the adiabatic pressure-density relation

� = �0(p=p0)
1= ( > 1):
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For our purposes it is advantageous to rewrite the system (1.1)-(1.6) in nondi-
mensional form. Letting l be a representative length, we replace the original domains
and variables according to

Qnew(t) = l�1Q(t); �new(t) = l�1�(t); xnew = l�1x; tnew = !t;

as well as

'new = '=l2!; pnew = p=�0l
2!2; �new = �=�0;

p0;new = p0=�0l
2!2; anew = a=jaj:

Then, introducing the nondimensional parameters

" = jaorigj=l; � = �=!2jaorigj
2l�0; b = gl2�0=� (\Bond number");

and retaining the original notation, the system (1.1)-(1.6) takes the form

�r
�
_'+

1

2
jr'j2 + �"2bx3 + "aixi sin t

�
= �rp; (2.2)

_�+ div(�r') = 0 in Q(t); (2.3)

subject to the boundary conditions

@n' = 0 on S(t); @n' = �jr�j�1 _� on �(t); (2.4)

p� 2�"2H = p0 on �(t); �r�r� = �jr�jjr�j on @�(t): (2.5)

With respect to the new variables the pressure-density relation reads as

� = (p=p0)
1=: (2.6)

According to (2.1) we consider (2.2)-(2.6) under the hypothesis " � 1 and �; b
�xed. We restrict out attention to a cylindrical container eQ = B � [0;1) over a
�xed bottom B � R2. The free surface is assumed to be a graph over B:

�(t) = fx 2 R3 j x3 = �(x1; x2; t); (x1; x2) 2 Bg;

i.e. � = x3 � �. In this situation, according to Theorem 1.1, which is referred to in
the following exclusively, we obtain (2.2)-(2.6) as Euler-Lagrange equations of the
action-functional

A(�; �; ") =

Z t2

t1

�Z
Q(t)

�
�1
2
jr'j2 �W � �"2bx3 � "aixi sin t

�
dQ

� �"2
�
j�(t)j � �jS(t)j

�
� p0jQ(t)j

�
dt:

(2.7)

under the constraint of mass conservation. As a consequence of the adiabatic
pressure-density relation the inner energy density is given by

W (�) = const:+ p0�
�1=( � 1):
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In the following we construct approximate solutions (in the sense explained below)
to the variational equation

�A(�; �; ") = 0 subject to �

Z
Q(t)

� dx = 0 (2.8)

within the class of 2�-periodic functions in time. Accordingly, time varies in
S1 = R=2�. Choosing t1 = 0; t2 = 2�, we have to replace (1.14) by the period-
icity conditions

�(�; 0) = �(�; 2�); �(�; 0) = �(�; 2�):

If " = 0, then any pair (�0; 1) with a time-independent shape �0 = �0(x1; x2) of the
free surface is a solution of (2.8), which simply reects the fact that an isolated uid
at rest is in neutral equilibrium. Let

Q0 = fx 2 R3 j (x1; x2) 2 B; 0 < x3 < �0(x1; x2)g;

then

A(�0; 1; 0) = �2�
�
p0 +W (1)

�
jQ0j = 0; (2.9)

if the inner energy density W is suitably normalized: W (1) +W 0(1) = 0. A closer
look at (2.7) shows, that

�A(�0; 1; 0) = 0 for arbitrary variations ��; �� (2.10)

under this normalization. Therefore it is reasonable to choose the ansatz

�" = �0(x1; x2) + "�1(x1; x2; t); �" = 1 + "�1(x; t) (2.11)

as the starting point for our construction. Here �1 is normalized by mean value zero
in time: Z 2�

0
�1(x1; x2; t) dt = 0: (2.12)

The side condition in (2.8) requires

jQ0j =

Z
B
�0(x1; x2) dB = const:; (2.13)Z

Q0

�1(x; t) dQ+

Z
B
�1(x1; x2; t) dB = 0: (2.14)

In view of (2.9), (2.10) we get by inserting (2.11) into (2.7)

A(�"; �"; ") = "2 eA(�0; �1; �1) +O("3) (2.15)

with
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eA =

Z 2�

0

�Z
Q0

1

2
jr'1j

2 �
�21
2k2

� �bx3 � aixi�1 sin t dQ

�

Z
�0

aixi�1 sin t dB

�
dt� 2��

�
j�0j � �jS0j

�
:

(2.16)

Here, the \wave number" k = (p0)
�1=2 has been introduced, �0; S0 denote the

free and wetting parts of @Q0, respectively, and '1 is the �rst order term in the
expansion

'(�"; �") = "'1(�0; �1; �1) + O("2):

As may be read o� (2.3), (2.4) the potential '1 solves the Neumann problem

�'1 = � _�1 in Q0; @n'1 = 0 on S0; @n'1 = (1 + jr�0j
2)�1=2 _�0 on �0:

(2.17)

The expansion (2.15) motivates the de�nition to call the pair (�"; �") an "-approximate
solution of (2.8) if (�0; �1; �1) is a critical point of the truncated action, i.e.

� eA(�0; �1; �1) = 0 (2.18)

for all variations ��0; ��1; ��1 compatible with (2.12)-(2.14). To determine solutions
of (2.18), �rstly, we have to compute the �1; �1-variations of eA.
Proposition 2.1. For �xed �0 the solution of the Euler-Lagrange equations

��1
eA(�0; �1; �1)f��1g+ ��1

eA(�0; �1; �1)f��1g = 0

{ for all variations ��1; ��1 compatible with (2.12), (2.14) { leads to a time-periodic
boundary value problem for an inhomogeneous wave equation:

�'1 � k
�2�'1 = �aixi cos t in Q0 � S

1; (2.19)

@n'1 = 0 on S0 � S
1; _'1 = �aixi sin t on �0 � S

1; (2.20)Z 2�

0
@n'1(�; t) dt = 0 on �0: (2.21)

After solving (2.19)-(2.21) we get �1; �1 from

_�1 = (1 + jr�0j
2)1=2@n'1 on �0 � S1; (2.22)

�1 = �k2( _'1 + aixi sin t) in Q0 � S
1: (2.23)

In view of (2.12) �1 is determined uniquely by (2.22).

Proof. Any stationary point of � eA = 0 subject to (2.12), (2.14) satis�es

_'1 + k�2�1 = �aixi sin t + �(t) in Q0 � S1; (2.24)

_'1 = �aixi sin t � �(t) + c(x) on �0 � S1; (2.25)

with two Lagrangian multipliers � and c. Since
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Z 2�

0
�(t) dt = 2�c(x)

by (2.25), it follows c(x) = c = const:. After normalizing '1 suitably we may assume
� = const: = c. In this case integration of (2.24) yields

2k2�cjQ0j =

Z 2�

0

Z
Q0

�1 dQdt = �

Z 2�

0

Z
B
�1 dBdt = 0

because of (2.12), hence c = 0. Now, after di�erentiation with respect to t, (2.24),
(2.25) imply (2.19), (2.20). ut

To outline the solvability of the boundary value problem (2.19)-(2.21), let �(�0)
denote the spectrum of the Neumann-Dirichlet problem for the Laplace equation:

�u+ �u = 0 in Q0; @nu = 0 on S0; u = 0 on �0: (2.26)

Under mild regularity assumptions on �0 and @B the embedding of the Sobolev
space H1(Q0) into L2(Q0) is compact and the trace operator u 7! uj�0

mapsH1(Q0)
into H1=2(�0) continuously, see e.g. [24]. Then the set �(�0) consists of a countable
number of positive reals with the unique limit point +1. For k2 =2 �(�0)

'1(x; t) =  (x) cos t (2.27)

is a solution of (2.19)-(2.20) if  is chosen according to

� + k2 = k2aixi in Q0; @n = 0 on S0;  = aixi on �0: (2.28)

Then, in view of (2.27) we get via (2.22), (2.23)

�1(x1; x2; t) = �?1(x1; x2) sin t; �1(x; t) = �?1(x) sin t; (2.29)

with

�?1 = (1 + jr�0j
2)1=2@n ; �?1 = k2( � aixi): (2.30)

Moreover, if n2k2 =2 �(�0) for all n 2 Zthen (2.27) is the unique solution up to a
constant, as is easily seen by the Fourier separation method, see e.g. [12].

Concerning the remaining derivative of eA with respect to �0 we get, after a
calculation along the lines followed in the proof of Theorem 1.1,

��0
eA =

Z 2�

0

Z
�0

�
�
1

2
jr'1j

2 + _�1@3'1 � _�1'1 �
�21
2k2

� �"2bx3 � (aixi�1 + a3�1) sin t

�
��0 dB dt

+ 2��

Z
B
divT�0��0 dB � 2��

Z
@B

(� �T �0 � �)��0 dl

if the variation ��0 is compatible with the side conditions (2.13), (2.14). To shorten
the notation, the nonlinear operator

T�0 = (1 + jr�0j
2)�1=2r�0

and the outer normal � to @B have been introduced. Evaluating ��0 eA at the extremal
�1; �1 of Proposition 2.1 leads to
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Theorem 2.2. If k2 =2 �(�0) and  , �?1 , �
?
1 are taken from (2.28), (2.30) then the

pair

(�"; �") = (�0 + "�?1 sin t; 1 + "�?1 sin t)

de�nes an "-approximate solution of �A = 0 if

4�H +
1

2
jr( � aixi)j

2 � 2�bx3 = � on �0; (2.31)

� � T�0 = � on @B (2.32)

with a Lagrange multiplier � = const. ut

The principal part H = 1
2 divT�0 of (2.31) is the mean curvature of the surface

�0; hence (2.31) generalizes the equilibrium condition for a uid-air interface in a
vertical gravity �eld known from capillary theory, cf. [6]. In our setting, due to vibra-
tion, an additional nonlinear �rst-order pseudo-di�erential operator is to be included
in the equilibrium condition. Alternatively (2.31) can be viewed as a counterpart to
Bernoulli's equation for incompressible uid ows. In the sequel we call any surface
�0 given by a solution �0 of (2.31), (2.32) a vibrocapillary equilibrium shape.

An integration of (2.31) by parts yields

2�
�
� j@Bj � b jQ0j

�
� jBj�;

which means that the Lagrange multiplier � in (2.31) is bounded from below in
terms of the given data. In the pure capillary case there holds equality.

As is clear from the above reasoning equations (2.31), (2.32) must appear as
variational equations.

Theorem 2.3. Under the assumptions of Theorem 2.2 any solution �0 of the equi-
librium conditions (2.31), (2.32) is a critical point of the time-independent functional

�(�0) = �
1

�
eA(�0; �?1 sin t; �?1 sin t)

under volume conserving variations. The explicit expression of � reads as

�(�0) = 2�
�
j�0j � �jS0j

�
+

1

2

Z
Q0

�
jr j2� k2( � aixi)

2 + 4�bx3
�
dQ:ut

� is henceforth referred to as the quasi-potential of vibrocapillarity.

3 The Jacobi operator

In this Section, to get further insight into diverse mapping properties of the quasi-
potential �, we study its second variation �2�. This may be of particular interest in
stability considerations as well as in various numerical approaches. In the following
considerations we identify functions originally de�ned on �0 by constant continua-
tion along x3-direction with functions on B.
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Obviously the second variation of the capillary term �0(�0) = j�0j � �jS0j in �
reads as:

�2�0(�0)fh; hg =

Z
B

�
jrhj2 � (T�0 � rh)

2
�
n3 dB:

Since admissible variations h must have mean value zero, this implies

�2�0(�0)fh; hg � pos:Ctekhk21

in view of Friedrich's inequality and jT�0j < 1. Here and in the following k � ks
denote the norms in the Sobolev spaces Hs. Introducing the tangential gradient
r�0

= (D1; D2; D3) and the Laplace-Beltrami operator ��0
:

r�0
= r� n@n; ��0

= DiDi

there holds jrhj2 � (T�0 � rh)
2 = jr�0

hj2 and an integration by parts implies

�2�0(�0)fh; hg = �

Z
�0

h div�0

�
n23r�0

h
�
d�

if h = 0 on @B. Remembering the relation

��0
nj = �c2nj � 2DjH;

where c2 is the sum of the squares of the principal curvatures of �0, see e.g. [9], we
infer

div�0

�
n23r�0

�
= div�0

�
n3r�0

(n3h)
�
� div�0

�
n3hr�0

(n3)
�

= n3
�
��0

(n3h) + (2D3H + c2n3)h
�
:

Hence

Lh = �n3��0
(n3h)� n3(2D3H + c2n3)h

gives the Euler-Lagrange operator to �2�0.
According to Theorem 2.2 the �rst variation of the nonlocal part

�1(�0) =
1

2

Z
Q0

�
jr j2� k2( � aixi)

2
�
dQ:

of � reads as

��1(�0)fhg = �
1

2

Z
�0

jr( � aixi)j
2h dB:

This implies

�2�1(�0)fh; hg = �

Z
�0

�
r( � aixi)r� + hr( � aixi)r( x3 � a3)

�
h dB:

Here � has to satisfy the Dirichlet-Neumann Problem
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�� + k2� = 0 in Q0; @n� = 0 on S; � = (a3 �  x3)h on �0:

Considering the expression for the Laplacian relative to normal and tangential
derivatives along �0

� = @2n � 2H@n + ��0
; @2n = ninj@i@j

and  � aixij�0
= 0, � j�0

= 0 we get

@2n( � aixi) = 2H@n( � aixi):

In view of @3 = n3@n +D3 there holds

@n@3 = n3@
2
n + niD3@i = n3@

2
n +D3@n � (D3ni)@i

and consequently

@n( x3 � a3) = (2n3H +D3)@n( � aixi):

We have proved

Proposition 3.1. Under the assumption k2 =2 �(�0) let

C�0
: H1=2(�0)! H�1=2(�0); C�0

(u) = @neuj�0
;

be the \capacity operator" where eu denotes the solution of

�eu+ k2eu = 0 in Q0; @neu = 0 on S; eu = u on �0:

Then there holds

�2�1(�0)fh; hg =

Z
�0

( x3 � a3)hC�0

�
( x3 � a3)h

�
d�

�
1

2

Z
�0

h2(4n3H +D3)jr( � aixi)j
2 dB

for variations h with mean value zero. ut

In view of Z
�0

uC�0
u d�0 =

Z
Q0

jreuj2 � k2eu2 dQ
the principal part of the capacity operator is positive, hence Proposition 3.1 implies

Corollary 3.2. If the data are su�ciently regular then �2�1(�0) is bounded on the
Sobolev-space H1=2(B):

�Ctekhk20 � �1(�0)fh; hg � Ctekhk21
2

:

If additionally

j x3 � a3j � c > 0 on �0;

then �2�1(�0) satis�es the Garding-type inequality

�1(�0)fh; hg � pos:Ctekhk21
2

� Ctekhk20:ut
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To collect the results of this section in a general statement we introduce the
Jacobi operator J(�0) of � via

�2�(�0)fg; hg=

Z
�0

gJ(�0)fhg d�0 if gj@B = hj@B = 0:

Theorem 3.3. Assuming the data to be su�ciently regular, then: (i) The bilinear
form �2�(�0) satis�es the Garding-type inequality

�(�0)fh; hg � pos:Ctekhk21 � Ctekhk20:

(ii) J(�0) reads as

J(�0)h = �2�n3��0
(n3h) + ( x3 � a3)C�0

�
( x3 � a3)h

�
+mn3h

with

m = � 2�c2n3 � 2n3H jr( � aixi)j
2 + 2b�n23

�D3

�
4�H +

1

2
jr( � aixi)j

2 � 2b�x3
�
:

In particular

m = �2�c2n3 � 2n3H jr( � aixi)j
2 + 2b�n23; (3.1)

if �0 is a critical point of �. ut

Note, that the nonlocal term in (3.1) may be replaced by

2n3H jr( � aixi)j
2 = 2n3H(2�+ 4�bx3 � 8�H):

Finally we draw attention to a simple stability criterium. Obviously, for su�ciently
small wave numbers k the capacity operator is nonnegative. Therefore, if H � 0 and
bn3 � c2, then a vibrocapillary equilibrium is stable in the sense that

�2�(�0)fh; hg � pos:Ctekhk21:

for all \interior" variations h with mean value zero. This indicates that for convex
equilibrium shapes a \vibro-force" may cause a stabilizing e�ect.
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