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Compressible Potential Flows with Free Boundaries.
Part I: Vibrocapillary Equilibria
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Abstract:  Various variational formulations describing nonstationary compressible fluid
flows are considered. In particular, for high-frequency exitations a variationally based ap-
proximating frame is deduced which may explain experimentally observed phenomena.
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Introduction

This paper centers around Hamilton’s principle applied to nonstationary compress-
ible fluid flows with partially free boundaries in different exterior fields and under
surface tension. In particular some of its consequences for systems subject to high-
frequency exterior exitations are analyzed.

L. Lichtenstein, in his classical textbook [14], seemingly was the first, who gave
a general formulation of Hamilton’s principle for the motion of compressible fluids
under various boundary conditions. Later on, K.O. Friedrichs in [7] recognized the
variational characterization of free boundaries in steady potential flows. Since then,
in a large number of contributions [1], [2], [3], [17], [18], [22], [27] further types of vari-
ational principles were employed to characterize the nonstationary motion of a free
boundary flow. Despite of the success in the mathematical treatment of compress-
ible flows with fixed boundaries, see [15], strong mathematical results on the fluid
motion (e.g. long-time existence, blow-up) remained rare as long as free boundaries
are involved. Even for the local initial value problem until now a mathematically
satisfactory theory has reached only limited success; for diverse existence results
compare e.g. [4], [23], [25], [26] and the literature cited there. The arising difficul-
ties originate in the nonlinearities and the complicated coupling between boundary
conditions and differential equations. Thus standard techniques from PDE fail to
apply in most situations. On the other hand, due to their practical relevance, free
boundary problems as considered here continue to challenge the numerically inter-
ested mathematician to test new algorithms and software, see e.g. [5]. In particular,
numerical schemes based on variational methods have proved useful in approximat-
ing unsteady motion. A related numerical approach to nonstationary incompressible
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flows with partially free boundaries has been pursued in the textbook [18]; ordinary
differential equations including the geometric aspects of the underlying variational
principle are treated in [29].

Our paper, in Section 1, is aimed at formulating diverse variational principles
governing the evolution of a compressible potential flow driven by volume forces as
well as by surface tension and acoustic loading along the free and fixed (container-)
boundary parts, respectively. The computation of the Hamilton action in Theo-
rem 1.1 requires the solution of a time-dependent family of Neumann problems for
an elliptic equation. On the other hand, this preliminary step may be avoided at
the expense of introducing additional state variables. This is performed in detail in
Theorems 1.2, 1.3.

When acoustic loading is included, the behaviour of the system may change in
an unexpected way. During high-frequency exitation the time-averaged free surface
can take a position far from the corresponding capillary shape, cf. [8], [16], [30]
for a review on experimental work on this subject. We draw attention also to [13]
where the related problem of acoustic flattening of a rotating liquid drop has been
treated. Having in mind the mechanical analogy in nonlinear pendulum theory [11],
in [28] the last author raised the question whether the mean surface position is
determined by some kind of “vibrocapillary” force and a corresponding principle
of minimal potential energy which, at the same time, would allow to distinguish
between stability and instability of an averaged surface shape.

Section 2 adresses the mathematical background of this question. By transforma-
tion to nondimensional variables and introduction of a small parameter character-
izing the high-frequency contributions of the exitation we construct via truncating
the Hamilton action a class of oscillating solutions. Their time-averaged free bound-
aries turn out to be critical points of a time-independent “quasi-potential”. This is
outlined in Theorems 2.2, 2.3. To get further information about the principal sym-
bol and the mapping properties of the corresponding Jacobi operator, in Section 3,
Theorem 3.3 we compute the second variation of that potential.

In a forthcoming second part of this paper we apply the results developed below
to a numerical study of the experimentally observed vibrocapillary phenomena.

1 Variational principles

In the following let @ = (21, %2, x3) euclidean coordinates in R? and let ¢ denote
the time. We consider the unsteady motion of a compressible fluid occupying a
time-dependent bounded domain Q(¢) which is part of a rigid container @ ={z €
R3| n(z) < 0} with a smooth function 7. Let dQ(t) = Si(t) U Sz U X(t) with
S1,5 C 8@, where S5 denotes the (time-independent) location of an acoustic source
and X(t) = {z € Q | £(x,t) = 0} is the moving free boundary. In the following V§
is assumed to point to the exterior of Q(t) always. If ¢ = ¢(z,t), p = p(z,t) and
p = p(z,t) are velocity potential, pressure and density of the liquid, then the free
boundary problem considered here reads as:
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¥ (45196 +0) ==%p i Q) (1)
p+div(pVe) =0 in Q(F) (1.2)

subject to the boundary conditions
dpp=0 on Si(t), Onp=—|VE[TI on S(t), pdyp=V on Sy.  (1.3)

Here, U = U(z,t) is the potential of volume forces and V = V(z,t) measures the
normal component of velocity of the acoustic source. Throughout the paper 9, is
the derivative relative to the outer normal n = (ny,ng,n3) of 0Q(t) and a dot
denotes differentiation with respect to time. On 3(¢) and J0%(t), respectively, the
free boundary conditions

p—20H =py on 3(t), (1.4)

=V = BIVn|[VEl on 9X(1) (1.5)

have to be fulfilled. Here H denotes the mean curvature of ¥ and pg is the outer
atmospheric pressure which we assume to be constant. ¢ is the coefficient of sur-
face tension, f the relative adhesion coeflicient between the fluid and the bounding

walls. In our setting the system above is completed by a barotropic pressure-density
relation

p=p(p) (1.6)

Additionally, to guarantee mass conservation we impose

/ Vs =0 (1.7)
S

as an constraint on V.

To establish Hamilton’s principle for (1.1)-(1.6) we introduce the following no-
tation: For given £ and p let ¢ be the solution (defined up to a constant) of the
Neumann problem

div(pVe) = —p in Q(1), (1.8)
dyo=0 on Si(t), pdyp=V on Sy, dpp=—|VE'E on B(t).  (1.9)

Equation (1.8) is uniformly elliptic as long as p is bounded positively against zero. To
guarantee the solvability of the Neumann problem (1.8), (1.9), in addition to (1.7),
we have to restrict €& and p, which we choose as state variables in the following, to
satisfy the constraint

| s [ pveéas=o.
Q1) E(t)

This implies

/ p dQ = const., (1.10)
Q)
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i.e. conservation of total mass. Letting W = W (p) the inner energy density of the
fluid, then

p= W (p) (1.11)
gives the inverse funtion to (1.6). With this notation
- 1
Q()

(1.12)
(1201 - B1S10]) = polQ()

defines the Lagrangian of (1.1)-(1.6). In (1.12) the term o|X(¢)| corresponds to the
free surface energy and [3|S1(t)| measures the wetting energy. Due to compressibility
we have to include the work pg|Q(¢)| of the outer pressure.

Theorem 1.1. For a fized time intervall [ty,t3] let

A€, p) = /t2 Ldt (1.13)

t1

denote the action corresonding to (1.12), considered under the restriction (1.10),
and subject to

081102 =0, 0pley, = 0. (1.14)
Then any sufficiently regular solution &, p of the variational equations
8¢ A&, p){OE} + 8, A(&, p){dp} =0 (1.15)

~ for all variations 8¢, 6p compatible with (1.10), (1.14) — satisfies the equations of
motion (1.1)-(1.6) in [t1,t3] (with velocity potential ¢ computed from (1.8), (1.9)
and pressure given by (1.11)).

Proof. Our starting point is the weak formulation of the Neumann problem (1.8)
defining ¢ in dependence of &, p:

/ wdQ:/ PV dQ vw5+/ pE|VE| L ds
Q(1) Q) S5 (t)

for all sufficiently smooth functions ¥ = 1¥(-,¢) on Q(¢). Remembering the general
differentiation rule for integrals over a time-dependent domain

d ) )
G| rae=-[ géivertass [ jaa (1.16)
Q) (1) Q(t)
(note that V¢ is directed towards the exterior of ()(t)) we obtain
d .
G| pwda- [ pid= [ pvevedo- [ veas (1.17)
Q) Q) Q) S2
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The functional (1.12) is defined under the constraint (1.10) only. Therefore, com-
puting its derivative requires

/ 5p Q) - / pSE|VE[T S = 0,
Q1) ()

for the variations 6&, dp. In the following we compute the partial derivatives 6¢A, 5, A
under that assumption. We start with the variation of A with respect to p. From
the definition of I, and A we get immediately

2 1 d
§,A = / / dp (—|Vc,o|2 — —(pW) - U) + pVpVie dQdt. (1.18)
1 JQ(1) 2 dp

On the other hand, setting 1» = ¢ in the p-variation of equation (1.17) and using
(1.14) yields

t2 t2
/ / pVpVeodQdt = — / / Sp(¢+ [Vel?) dQ dt.
1 JQ) 1 JQ()
Substituting this into (1.18) finally gives
f2 1 , d
sa=— [ [ s (s 5vel+ Low)+0) o,
t1 Q(t) 2 dp

Similarly, by computing the variation of A with respect to & we get

t2
d¢A :/ {/ pVeVipdQ
t1 Q(t)

— / s¢ivel! (3|w|2 — pW — pU — py — QUH) dx (1.19)
=) 2
o [ se(ve v Ve ) cu} dt,
%

(concerning the variation of the surface area see e.g. [9]). Furthermore, variation of
(1.17) with respect to & implies

t2 t2
[ pvevspdqat== [ [ p(o+ VeP)sve -t asa
Q1) o Jee)

hence

2 1
A= [ {/ (p(¢+§IV¢|2+W+U) +po+2aH)65|V5|—1d2
e LB (1.20)

+ a/ 8¢ (V| = V€T Ve + ) dl} dt.
[2)))

Obviously, the integrals on the right-hand sides of (1.19), (1.20) can be thought of as
linear functionals also without any restriction on the variables 6§, ép. Adopting this
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point of view comparision of (1.19), (1.20) with (1.15) via the Lagrange multiplier
rule leads to

t2
8,A{op} = —/ /\/ dp dQ dt,
t1 Q(t)
t2
Se A{6¢} = / /\/ pSEIVE|T A dt
o0 e
for all 8¢, §p with a time-dependent Lagrange multiplier A = A(¢), i.e
2, 4 :
b4 IVel+ LW +U =0 I Q) (1.21)
p (c,b+ §|Vc,o|2 + U+ W) +po+20H =Xp on X(f),

and, as a result of variation along 93:
[Vl THVETI VR VE S B =0.
Computing the pressure p from (1.11) this implies (1.1)-(1.6). 0

Remark. From (1.11) and (1.21) it follows
- 2
ple+ oIVl + U+ W ) +p=2p

along any extremal. By adding a suitable time-dependent constant to ¢ we can
assume A = 0 without loss of generality. With this normalization of ¢ we get

Az/h{/ (0w dQ = o([2(0)] - 35,0} d

t2
/ / VedSdt+ / pp dQ)
S2 Q)

for the action along an extremal. Here the kinetic energy is expressed as an integral
over the pressure, cf. also [10].

t1

In Theorem 1.1 the computation of the velocity potential requires the solution of
a Neumann problem. In particular for numerical purposes it is desirable to avoid this
preliminary step. As in [2], [17] and [20] we introduce ¢ as an additional independent
variable. In this case (1.8) as well as the boundary conditions (1.9) turn into natural
optimality conditions. Qur starting point is the observation that the ¢-variation of
the functional

J(pr o) = /{/Q() (2 +51veP) d@+/s V@ds}dt

leads to (1.8), (1.9). In fact,
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t2
5,0 = / {/ —p(8¢ + VpVop) dQ + / Vg dS} i
11 Q(t) S2

and, after integration by parts

t2
%J:/tl {/Q(t)(erle(pV@))fswdQ

[ ptupbeds— [ (ponp-1ibeds
S1(¢) So
t2

-/ p(anso—ava—l)ésodS}dt— JCE
E(t) Q1)

t1

in view of (1.16). Hence, é,.J (&, p, v){dp} = 0 for all ¢ with dp|s, +, = 0 implies ¢
to be a solution of (1.8), (1.9); note that in this situation the solvability condition
for (1.8), (1.9) is met automatically. With this velocity potential ¢ we obtain

2 1
J=/ / 5p|W|2det+/ pp dQ
t1 JQ(t) Q(t)

The &, p-variations of the second term on the right-hand side vanishes if 8¢, ép
satisfies (1.14). Thus we get after comparision with (1.12) and Theorem 1.1:

t2

t1

Theorem 1.2. Any sufficiently reqular critical point (€, p, @) of the functional
2 ) 1 5
Ben = [ { [ —p(e+5I0el U 0) dQ
t1 Q(t)

~ o501 - ) + [ v@ds—po|@<t>|} dt

S

subject to

5€|t1¢2 = 07 5IO|7517752 = 07 599|7517752 =0
satisfies (1.1)-(1.6). a

The following Theorem 1.3, where £ and ¢ have been introduced as independent
variables, can be viewed as a counterpart to Theorem 1.2. Let P be a primitive of

1/p:

dr
P(r) = / o) + const.,

where the constant is choosen such that

d

a3, PV (0) = P(p"W'(p). (1.22)

Since P is strictly monotone the inverse function P~! exists. With this function we
have



8 BEYER, GAWRILJUK, GUNTHER, LUKOVSKY AND TIMOKHA

Theorem 1.3. Under the constraints
5€|t1¢2 =0, 599|7517752 =0

any sufficiently regular critical point (£, ¢) of the functional C' = C(€, ¢) with

C(e.9) :/j{/Q(t) P (= IVl 1) dQ

~o(=0l- a0 + [ veds - wiew] fa

S

satisfies (1.1)-(1.6).

Proof. For given (£, ¢) we determine p = p[¢, ¢] with

L1 .
o+ §|Vc,o|2 +U+W(p)+pW'(p)=0 in Q(t).
This is equivalent to

8,B(& p,o){0p} =0 forall dp (1.23)

with the functional B = B(E, p, ) from Theorem 1.2. In view of (1.22) this means
(o4 Vel +U) = L(pwip) = P(AW
P gIVel + U ) = (eWle) = PV (p))
o1
= P(—p(c,o+ §|Vc,o|2 + U+ W))

hence C'(§, ¢) = B(&, p, ¢[€, ¢]) and Theorem 1.2 gives the assertion. O

2 High-frequency exitations

In this section the free boundary problem (1.1)-(1.6) is considered with a time-
dependent high-frequency potential

Uz, t) = —grs — w?a;z; sin(wt).

Here the usual summation convention over repeated indices is used. In the following
we study the behaviour of the system if

W — 00, wla| = const., (2.1)

i.e. under the influence of a time-periodic volume force with an amplitude increasing
proportionally to the frequency. We disregard any additional acoustic source at the
boundary, hence we may set V' = 0 and S(¢t) = Si(t) + S2. In addition, (1.6) is
specified to the adiabatic pressure-density relation

p=rpolp/po)’"  (v>1).
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For our purposes it is advantageous to rewrite the system (1.1)-(1.6) in nondi-
mensional form. Letting [ be a representative length, we replace the original domains
and variables according to

Quew(®) =171Q(),  Tpew(t) = 1'S(1),  @pew =112, Loew = Wi,
as well as
Crew = 9/, Prew = p/pol*W?, puew = p/po,
Ponew = Do/ pol*w?, e = a/lal.
Then, introducing the nondimensional parameters
e =laorigl/l, p= U/w2|ao,,ig|21,007 b= gl’po/c (“Bond number”),

and retaining the original notation, the system (1.1)-(1.6) takes the form

pV (c,o + %|Vc,o|2 + pe?bas + ca;x; sin t) = —Vp, (2.2)
p+div(pVe) =0 in Q(t), (2.3)
subject to the boundary conditions
dup =0 on S(t), dne=—|VELE on (1), (2.4)
p—2us’H =po on X(t), —VnVE=p|Vn||VEl on I%(t). (2.5)

With respect to the new variables the pressure-density relation reads as

p=(p/po)"". (2.6)

According to (2.1) we consider (2.2)-(2.6) under the hypothesis ¢ < 1 and p,b
fixed. We restrict out attention to a cylindrical container @ = B X [0,00) over a
fixed bottom B C R2 The free surface is assumed to be a graph over B:

Y(t) = {x € R® |23 = ((a1, 22, 1), (21,22) € B},

i.e. £ = 23 — (. In this situation, according to Theorem 1.1, which is referred to in
the following exclusively, we obtain (2.2)-(2.6) as Euler-Lagrange equations of the
action-functional

t2
A(C, pie) = / / p(l|Vc,o|2 — W — pe?bas — ca;x; sin t) dQ
121 Q(t) 2 (2 7)

—uﬁuz@r—MS@D—pwmw@da

under the constraint of mass conservation. As a consequence of the adiabatic
pressure-density relation the inner energy density is given by

W (p) = const. + pop™™ /(v = 1).
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In the following we construct approximate solutions (in the sense explained below)
to the variational equation

dA(C,p;e) =0 subject to 5/ pdx =0 (2.8)
Q(t)

within the class of 27-periodic functions in time. Accordingly, time varies in
Sl = R/2r. Choosing t; = 0,t; = 27, we have to replace (1.14) by the period-
icity conditions

C('70):C('727T)7 p(70):p(72ﬂ-)
If ¢ = 0, then any pair ({p, 1) with a time-independent shape (o = (o(z1, z2) of the

free surface is a solution of (2.8), which simply reflects the fact that an isolated fluid
at rest is in neutral equilibrium. Let

QO = {$ € R3 | ($1,$2) € B 0<z3< C0($1,$2)}7
then
A(Co, 1;0) = =27 (po + W (1))|Qo| = 0, (2.9)

if the inner energy density W is suitably normalized: W (1) + W’'(1) = 0. A closer
look at (2.7) shows, that

0A(Co,1;0) =0 for arbitrary variations 6¢, dp (2.10)

under this normalization. Therefore it is reasonable to choose the ansatz

Cs:C0($17$2)+5C1($17$27t)7 Pe = 1—|—€p1($7t) (2'11)
as the starting point for our construction. Here (; is normalized by mean value zero
in time:

2
Culwy, xa, 1) dt = 0. (2.12)
0

The side condition in (2.8) requires

|Qol = / Co(21,22) dB = const., (2.13)
B
/ p1($7t) dQ—|—/ C1($17$27t) dB = 0. (214)
Qo B

In view of (2.9), (2.10) we get by inserting (2.11) into (2.7)

A(C67p67€) :52;[(4:07(17,01) ‘|’O(53) (215)

with
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~ 2 1 p2

R TR
o (g2 2k

(2.16)

- / a;x;(q sintdB} dt — 2mp(|S0] — B1Sol)-
o

Here, the “wave number” k = ('ypo)_l/2 has been introduced, g, Sg denote the
free and wetting parts of 0Q)g, respectively, and ¢y is the first order term in the
expansion

©(Cey pe) = 2¢1(Co, C1s p1) + O(7).

As may be read off (2.3), (2.4) the potential ¢y solves the Neumann problem

Ag@l = —ﬂl in Q(), 871991 =0 on 507 871991 = (1 —|— |VC0|2)_1/2<:0 on 20.
(2.17)

The expansion (2.15) motivates the definition to call the pair ((., p.) an e-approzimate
solution of (2.8) if (Co, (1, p1) is a critical point of the truncated action, i.e.

§A(Co,Ciyp1) =0 (2.18)

for all variations 8o, 6¢1,dpy compatible with (2.12)-(2.14). To determine solutions
of (2.18), firstly, we have to compute the (q, p;-variations of A.

Proposition 2.1. For fized (o the solution of the Fuler-Lagrange equations

5(12{((07 C17 pl){(SCl} + 5/)112{(CO7 C17 pl){épl} =0

— for all variations 5y, 0p1 compatible with (2.12), (2.14) - leads to a time-periodic
boundary value problem for an inhomogeneous wave equation:

B1 — kT2 Apy = —a;zicost in Qg x S, (2.19)
Onp1 =0 on Sy x S, p1 = —a;x;sint on Mg x St (2.20)
27
Onpr(,t)dt=0 on Xy (2.21)
0

After solving (2.19)-(2.21) we get (1, p1 from

&= (14 |VGH) Y200 on S x S, (2.22)
p1= —kz(c,bl +az;sint) in Qo X St (2.23)

In view of (2.12) (y is determined uniquely by (2.22).
Proof. Any stationary point of SA=0 subject to (2.12), (2.14) satisfies

P14+ kT2py = —agzgsint + A(H) in Qg x ST, (2.24)
O = —az;sint — A(t) +e(z) on g x Sh (2.25)

with two Lagrangian multipliers A and ¢. Since
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/27r A(t) dt = 2me(x)

by (2.25), it follows ¢(z) = ¢ = const.. After normalizing ¢ suitably we may assume
A = const. = c. In this case integration of (2.24) yields

2 2
227 | Qo :/ / o1 det:—/ /gl dBdt =0
0 0 0 B

because of (2.12), hence ¢ = 0. Now, after differentiation with respect to t, (2.24),
(2.25) imply (2.19), (2.20). O

To outline the solvability of the boundary value problem (2.19)-(2.21), let A((o)
denote the spectrum of the Neumann-Dirichlet problem for the Laplace equation:

Au+Au=0in Qgp; du=0 on Sy, u=0 on Y. (2.26)

Under mild regularity assumptions on ¥y and 0B the embedding of the Sobolev
space H'(Qo) into L%(Qo) is compact and the trace operator u — u|y, maps H(Qo)
into H'/2(X) continuously, see e.g. [24]. Then the set A((o) consists of a countable
number of positive reals with the unique limit point 4+o0. For k% ¢ A((p)

p1(x,t) = (x) cost (2.27)
is a solution of (2.19)-(2.20) if ¢ is chosen according to
A+ k2 = kra;z; in Qo; 9,1 =0 on Sy, ¥ =a;x; on Y. (2.28)
Then, in view of (2.27) we get via (2.22), (2.23)
G, w2, 1) = (i (w1, 22) sint, pi(w,t) = pi(x)sint, (2.29)
with
=+ IVG) oy, pf = k(% — aiei). (2:30)

Moreover, if n?k?* ¢ A((o) for all n € Z then (2.27) is the unique solution up to a
constant, as is easily seen by the Fourier separation method, see e.g. [12].

Concerning the remaining derivative of A with respect to (o we get, after a
calculation along the lines followed in the proof of Theorem 1.1,

. 27 1 5 . p2
o= [ [ {5+ oo = e - 25
— petbasg — (a;zip1 + asCh) sint} 0(o dB dt

+ 27T,u/BdiV T(p0(odB — 27 /aB(l/ T (o — B)0¢odl

if the variation 8¢ is compatible with the side conditions (2.13), (2.14). To shorten
the notation, the nonlinear operator

T = (14 |V¢)™V2V¢

and the outer normal v to B have been introduced. Evaluating 5(011 at the extremal
(1, p1 of Proposition 2.1 leads to
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Theorem 2.2. If k* ¢ A(Co) and ¥, (5, pi are taken from (2.28), (2.30) then the
pair

(Gorpe) = (Go+ <G sint, 1+ =pisin)

defines an e-approximate solution of §A = 0 if

4pH + %|V(¢ —a;x;)|* = 2ubrs =X on Y, (2.31)
v-T¢o=p on 0B (2.32)
with a Lagrange multiplier A = const. O

The principal part H = %div T(o of (2.31) is the mean curvature of the surface
Yo; hence (2.31) generalizes the equilibrium condition for a fluid-air interface in a
vertical gravity field known from capillary theory, cf. [6]. In our setting, due to vibra-
tion, an additional nonlinear first-order pseudo-differential operator is to be included
in the equilibrium condition. Alternatively (2.31) can be viewed as a counterpart to
Bernoulli’s equation for incompressible fluid flows. In the sequel we call any surface
Yo given by a solution (o of (2.31), (2.32) a vibrocapillary equilibrium shape.

An integration of (2.31) by parts yields

21(819B| - b|Qul) < |BIA,

which means that the Lagrange multiplier A in (2.31) is bounded from below in
terms of the given data. In the pure capillary case there holds equality.

As is clear from the above reasoning equations (2.31), (2.32) must appear as
variational equations.

Theorem 2.3. Under the assumptions of Theorem 2.2 any solution (o of the equi-
librium conditions (2.31), (2.32) is a critical point of the time-independent functional

1~ . .
II(¢o) = —;A(CO,CI* sint, pysint)

under volume conserving variations. The explicit expression of 11 reads as

11(Go) = 20([Sol = 81S0l) + 5 [ (V4 = B2(0 = a2 + dubaa) dQ.0

Qo

IT is henceforth referred to as the quasi-potential of vibrocapillarity.

3 The Jacobi operator

In this Section, to get further insight into diverse mapping properties of the quasi-
potential II, we study its second variation §211. This may be of particular interest in
stability considerations as well as in various numerical approaches. In the following
considerations we identify functions originally defined on Yy by constant continua-
tion along zs-direction with functions on B.
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Obviously the second variation of the capillary term Ilg((o) = |Xo| — 5| So| in 11
reads as:

oGk = [ (IVH = (T6o- V1)) na dB.
B
Since admissible variations A must have mean value zero, this implies
§*11o(Co) {hs 1} = pos.C*|[h|1

in view of Friedrich’s inequality and |T(g| < 1. Here and in the following || - ||,
denote the norms in the Sobolev spaces H?. Introducing the tangential gradient
Vy, = (D1, Da, D3) and the Laplace-Beltrami operator Ay, :

VEO =V - n@n, AEO = DiDi

there holds |Vh|? — (T(p - VR)? = |Vy,h|* and an integration by parts implies

Flo(){h ) = = [ v, (15, 1) d
Yo

if h =0 on 0B. Remembering the relation
As,n; = —c*n; — 2D;H,

where ¢? is the sum of the squares of the principal curvatures of X, see e.g. [9], we
infer

divs, (n3Vs,) = divs, (n3Vs, (nah)) — divs, (n3hVs, (n3))
= N3 (AZO (ngh) + (2D3H + 02n3)h) .

Hence
Lh = —ngAEO (ngh) — n3(2D3H + 02n3)h

gives the Euler-Lagrange operator to 62Il;.
According to Theorem 2.2 the first variation of the nonlocal part

o) =5 [ (V6 = k(6 — ai)?) dQ.
of II reads as
ST (Co) R} = —%/E IV (4 — aj)|h dB.

This implies

52H1(C0){h, h} = — / (V(¢ — ale)v&b + hV(¢ — aixi)V(prs — a3))th,

o

Here 6% has to satisfy the Dirichlet-Neumann Problem
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ASY + k25 =0 in Qo; 0,6 =0 on S, ¢ = (az—Py,)h on Y.

Considering the expression for the Laplacian relative to normal and tangential
derivatives along Y

A= 82 —2H0, + Ay, 82 = n;n;0;0;
and ¥ — a;z;|y, =0, Ay|y, = 0 we get
82(1# —a;x;) =2H0, (Y — a;z;).
In view of 05 = n3d,, + Ds there holds
0,05 = n30% + n;D30; = 1302 + D30, — (D3n;)0;
and consequently
On(they — as) = (2nsH + D3)0,, (¢ — a;x;).
We have proved
Proposition 3.1. Under the assumption k* ¢ A(Co) let
Csy t HY*(S0) — H™Y2(S0),  Cs,(u) = dyiily,
be the “capacity operator” where u denotes the solution of
AU+ka=0 in Qy; 9,u=0 on S, a=u on Y.
Then there holds

51, (Co) {h, ]} = /E (b, — as)hCs, (o, — as)h) X

1
— 5/ h*(dnzH + D3)|V (¢ — a;2;)|* dB
o
for variations h with mean value zero. O
In view of

/ uC'y, u d¥g :/ |Va|* — k*u? dQ
20 0

the principal part of the capacity operator is positive, hence Proposition 3.1 implies

Corollary 3.2. If the data are sufficiently regular then 6*111((o) is bounded on the
Sobolev-space H'?(B):

=C*Alls < Th(Co){h, b} < C™AIIE.
If additionally
|¢1’3 - a3| 2 c>0 on E07

then 8%111(Co) satisfies the Garding-type inequality
11 (Go) (. B} 2 pos.CU] — €0
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To collect the results of this section in a general statement we introduce the
Jacobi operator J((p) of II via

FNGHo = [ 9T (GHAYaSo it glan = hlos = 0.
0
Theorem 3.3. Assuming the data to be sufficiently reqular, then: (i) The bilinear
Jorm 6%11((o) satisfies the Garding-type inequality
1(Co) {h, B} > pos.CT[AIE — C'|n.
(i1) J(Co) reads as
J(Co)h = —2unsAs, (nsh) + (e, — a3)Cs, (Vs — az)h) + mngh

with

m=—2uc*ng — 2nsH|V (¢ — aiwi)|2 + 2bpun?

— Dy (4,uH + %|V(¢ — aiwi)|2 — Qb;wg,).

In particular

m = —2uc*ng — 2n3H|V (¥ — a;x;)|* + 2bun3, (3.1)
if (o is a critical point of 11. O
Note, that the nonlocal term in (3.1) may be replaced by

2nsH|V (¢ — aiwi)|2 = 2nsH (2)\ + 4pbxs — 8pH ).

Finally we draw attention to a simple stability criterium. Obviously, for sufficiently
small wave numbers k the capacity operator is nonnegative. Therefore, if H < 0 and
bns > c?, then a vibrocapillary equilibrium is stable in the sense that

O*TL(Co){h, b} > pos.C*||R]%.

for all “interior” variations h with mean value zero. This indicates that for convex
equilibrium shapes a “vibro-force” may cause a stabilizing effect.
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