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Abstract

The GNS representation using hermitian linear functionals on (possibly indefinite)
inner product spaces and the regularization of divergent integrals are preliminarily re-
viewed. For the collection of all possible regularizations of algebraic singularities, the
corresponding free-field-like functionals are considered and the Krein space structure
of the respective representation spaces is investigated in detail.

1 Introduction

It is now natural to consider (local) quantum field theories (QFT) in which not all Wight-
man axioms are satisfied, since there are examples of QFT in which it is impossible that the
Wightman functionals W under consideration satisfy as well locality as positivity. Guided
by the investigations of some models ([23], [26]), it seems to be better to keep locality
and to give up positivity. Furthermore, considering QFT having two-point functions with
infrared-singularities (e.g., free field of mass m = 0 in two space-time dimensions [22]),
the regularization yields Wightman functionals not being positive. The present paper is
concerned with that case. Along these lines one is led to the modified Wightman axioms

of indefinite metric QFT due to Morchio and Strocchi ([21], [5, ch. 10]).

Following the Borchers-Uhlmann approach to axiomatic QFT ([6], [28]), such non-positive
Wightman functionals W have to be considered now. As a first step, one has to generalize
the well-known GNS-Theorem to the case of hermitian linear functionals in order to re-
construct the field operators 7(.), their domain @, the state space £, and the vacuum .
Such a generalization is due to Scheibe [24] (cf. Proposition 2.1). However, © then is an
inner product space rather than a unitary space, where the inner product (.,.) is defined
by W. For as well physically as mathematically motivated reasons, one likes to define a
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Hilbert space structure on @, i.e., the inner product space D, (.,.) is densely embedded in
some Krein space [4] (cf. formulae (1), (2) below).

Having in mind that the "whole theory” is encoded in W, one is led to the task of estab-
lishing conditions upon W such that a Hilbert space structure exists on ®. Such conditions
were given in [30], [18], [1], [21], [15]. In the following condition (H) taken from [15] will
be considered. It is then of interest whether or not the Gram operator J connecting the
inner product (.,.) with the positive definite (scalar) product of the Krein space leaves the
domain @ invariant. Remember also that such a Hilbert space structure, if it exists, is
not uniquely defined in general. For an explicite example of an inner product space which
allows to define a whole family of non-equivalent Hilbert space structures, the reader is

referred to [2] (cf. questions (Q1), ..., (Q3)).

In [11], [13], those questions were answered for hermitian linear functionals of the structure
of (generalized) free fields on tensor algebras (cf. Prop. 3.1, 3.4, Cor. 3.3, below). The
present paper is aimed at an investigation of the above questions for the case of hermitian
linear functionals again of the structure of free fields, where the two-point functional Wj is
now defined by the regularization of a divergent integral. Considering QFT with infrared
singularities, one meets such Wy ([22],[5, section 11.1.]). In contrast to [22], it is stated
that the Gram operator .J leaves the domain ® invariant (Corollary 3.3). Furthermore all
possible regularizations are considered and it is shown that they may in general lead to
non-equivalent Krein space structures.

The pattern of the present paper is as follows. While in Section 2 the GNS representation
with hermitian linear functionals and questions related to the Hilbert space structure are
recalled, Section 3 is devoted to the structure of the representation space © for the special
case of functionals of the free-field type. In Section 4 some facts about the regularization
of divergent integrals are recalled, and then, in Section 5, applied to the GNS representa-
tion using an hermitian linear functional W5 which is obtained by the regularization of a
divergent integral.

2 On the GNS Representation with Hermitian Linear
Functionals

Let 2 denote an (associative) *-algebra with unity 1 and W a linear and hermitian func-
tional on 2 satisfying W(1) = 1. Recall the following GNS-like reconstruction theorem
due to Scheibe.

Proposition 2.1. Under the above assumptions there are

(i) a vector space ® with an inner product (.,.),

(ii) a vector g € D satisfying (o, o) = 1,



(ii1) a representation f— mw(f) of A by linear operators on ® such that

W(f) = (o, mw(f)ibo),
© = span {mw(f)vo; f €A}, cyclicity of o,
(o, mw(N)Y) = (Tw (), ¥),

fed, p,ve®.
Furthermore, ©, 1o, and mw(.) are uniquely defined by (i),...,(iii) up to isometric linear
isomorphisms.
Proof. See [24, 30]. O

Remark 2.2. Noticing that an inner product (f,g) := W(f*g), f,g € 2, is defined on ,
consider the isotropic part

A°={fc 2 (f,g)=0forall g €A},

A

and the quotient space ® = 2A/A° endowed with the inner product (f,§)~ = (f,g), where
"= { +2A°} denotes the residue class containing - (cf. [3, Ch. I, §1.8]). In the following it

~

is written (.,.) instead of (.,.)™.

In order to make the theory mathematically manageable one has to define a Hilbert space

structure on @, i.e., there is a positive definite inner product [.,.] and a linear operator
J = J* (Gram operator) on § = DIl |[.|| = v/[., ], such that
(pov) = [e, JY], (1)
[Tl = sup [[J¥] < oo, (2)
[ll1<1

w, ¥ € 9, where the continuously extended inner products onto §) are also denoted by
(-.), [-+.]- (Here and in the following, let I (resp. =) denote the completed hull of a set
- relative to the (locally convex) topology defined by ||.|| (resp. 7).) Let the above Hilbert
space structure be denoted by (9, .J).

Recall further that two Hilbert space structures ($;,.J;), j = 1,2, are called equivalent, if
the two positive definite inner products [.,.]; satisfy

(@7¢) = [997 quvb]l = [997 J2¢]27
and both norms |[.||; = +/[.,.]; (j = 1,2) are equivalent on ®, thus $; = 2. Remember

also that if the inverse operator J~! exists as a bounded linear operator on §, then there is
an equivalent Hilbert space structure (9',.J') given by [, ¢]" = [¢, |J]¢], J' = |—§|, ©, 0 EN
([8, §2.7(3)]). Noticing that .J' is a symmetry on §)' (i.e., J' = J™* = J~1) (9, J') is called

a Kremn space structure.

The existence of a Hilbert space structure has the following consequences:
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1) there is a maximal Hilbert space structure,

2) the theory of unbounded representations applies, and consequently, the theory is
well-understood and mathematically manageable (see [25]).

ad 1): A Hilbert space structure (£),.J) on © is called maximal if there is no other one

($1, J1) satisfying $ ; $1. Recall the following.

Proposition 2.3. The following are equivalent.

(i) (9,J) is a mazimal Hilbert space structure,
(ii) J=' is a bounded operator on ),

(iii) $) is a Krein space.
Proof. (1) & (i1) : [21, Theorem 5], (i1) < (417) : [4, V.1.3]. O

Along these lines, the following questions arise.

Questions

(Q1) Which conditions must the functional W satisfy such that a Hilbert space structure
exists on 27

(Q2) Under which conditions does the Gram operator J satisfy J: D — D ?

(Q3) Under which conditions does exactly one maximal Hilbert space structure exist on

D7
For answering (Q1), the following Hilbert-space structure condition is introduced.

(H) There is a quadratic seminorm p on 2 such that for each g € A there is a constant

Cy >0 and |W(g*f)| < C,p(f) is satisfied for all f € 2A.

(Remember that a seminorm p is called quadratic (or Hilbertian), if a semi-scalar product

[.,.] exists such that p(f) = +/[f, f], f € A.) Noticing that
(f,9) =W(["9) (3)

defines an inner product on 2, recall that a locally convex topology 7 on 2 is called a
partial majorant (resp. majorant), if the inner product (.,.) is separately continuous (resp.
continuous) relative to 7. (H) means then that p defines a quadratic and partial majorant

on 2.



Theorem 2.4. The following are equivalent:
(i) Condition (H) is satisfied,
(ii) a quadratic majorant exists on D,
(tii) a Hilbert-space structure (9,.J) exists on D,

(iv) a Krein-space structure ($',.J') exists on D.
Proof. See [15, Theorem 3]. O

An answer to (QQ2) is given next. Recall that the non-degenerate inner product space
D,(.,.) is called decomposable, if a fundamental decomposition

D = @(+)(_i_)@(—)

exists, where D®) are positive / negative definite subspaces of @, and (4) denotes the

orthogonal direct sum relative to the inner product (.,.).

Theorem 2.5. The following are equivalent:

(i) there is a Krein-space structure (9,J) on © such that J: D — D,

(i) ©, (.,.) is a decomposable, non-degenerate inner product space.
Proof. See [15, Theorem 4]. O

In order to discuss (Q3), the special case that Theorem 2.5 (1) applies is considered now.
For every fundamental decomposition

D = @(+)(_i_)@(—) 7 (4)

a norm z — ||z||; = /(z,Jz), x € D, is defined on ®, where J = Pt & P~ is called
fundamental symmetry, and PT : © — D& are the fundamental projections defined
by the decomposition (4). Recall that there is a one-to-one correspondence between the
fundamental symmetries and the fundamental decompositions of a decomposable inner
product space. Remember further that the locally convex topology 7; defined by ||.||s is
called decomposition majorant (belonging to the above fundamental decomposition), and
that there are inner product spaces having non-equivalent decomposition majorants ([4,

Ex. IV.4.4]).

An answer to (Q3) is given now.

Proposition 2.6. I[f D, (.,.) is a non-degenerate and decomposable inner product space,
the following are equivalent:



(i) Eractly one Krein-space structure exvists on @, (.,.),

(ii) for every fundamental decomposition ® = D) (4)D), it follows that D P [1; o]
or D) [r; lo-)] is complete, and thus a Hilbert space,

(iii) there exists a fundamental decomposition ® = @(1+)(—i—)@(1_) such that @(1+)[TJ1 [o]

or @(1_)[771 |o(o] is complete, and thus a Hilbert space.

Proof. See [16, Proposition 3], [29, Satz 9]. O

For the important class of quasi-positive (resp. quasi-negative) inner product spaces, i.e.,
© does not contain any negative definite (resp. positive definite) subspace of infinite
dimension, the following gives an answer to (Q3).

Corollary 2.7. If® is quasi-positive or quasi-negative, then there exists exactly one Krein-
space structure on 2.

Proof. Proposition 2.6 ((17) = (7)) readily yields the statement under consideration. See
also [15, Corollary 2]. O

3 On the GNS Representation with Free-Field-Like
Functionals

3.1 Free-Field-Like Functionals on Tensor Algebras

Let E be a vector space with an involution ” *”, and let

jol. é E,
n=0

denote the tensor algebra (Borchers-Uhlmann algebra) over the basic space F, where Ey =
C (field of complex numbers), F,, = F @ --- @ E (n copies), n = 1,2,3,... . Recall that
Eg becomes a *-algebra with unity 1= (1,0,0,...) € Fg, where the algebraic operations
are defined as usual (e.g., see [9], [10]).

Noticing that an hermitian linear functional W5 on Fy defines an inner product on E by
(xvy) = WQ(‘T* ® y) )

x,y € F, let the following assumption about as well the structure of the inner product
space F,(.,.) as its involution ”*” be made.



Assumption I. Let an hermitian linear functional Wy on Ey be given such that E,(.,.) is
decomposable with fundamental decomposition

[ = E(+)(—i—)E(_)(—i—)E(O) (5)
satisfying (E®) = BE#) 4 ¢ {4+, <0}, where F* = {f*; f € F'}.
Recalling that £, E(-) are pre-Hilbert spaces with respect to
[z, 2] = Wa(a™ @ 2), [y,y] = eWa(y” @ y),

choose orthonormal basises {¢(®)}, ¢4+ and {e(®)} ca= of EW) and E) | respectively, such
that ¢l = ¢(®)* o € AT UA~. Let further {e(®)} e 10 be a basis of E(©. Then {e(®},ca
constitutes a basis of £ (A%, AT, A~ are sets of indices with A = ATUATUA", AtNA- =
AT N A= A" N A =0), and

8ot for a€ At
Wg(e(a) ® e(a/)) =S Ebgo for ae A
0 for acA°

o € A, is satisfied.
Consider then the hermitian linear functional (pseudo-Wightman functional)
W =(1,0,W,,0,Wy,...)

of the type of generalized free fields on Eg, where
Won(el®) @ - @ eloa)) = Z H Wy(elen) @ eleir)y,
(i,5) r=1

a; € A(j=1,2,...,2n), and the sum Z(i,j) - is over all the (;nnn)!! partitions of {1,2,...,2n}

into pairs {s', 7'}, {¢%, 7%}, ..., {i", 7"} such that ¢! < i? < - <" ' < gl 2 <j% ..., 0" <
J* neN.

Let us introduce the following notation. For every £e®) @ ... @ el®) a; € A (j =
1,2,...,n),n € N, let

(e @@ ) = glas,. .. an)

denote the number of «; satisfying o; € A™.

3.2 The Structure of the Representation Space

Notice that the sesqui-linear form (f,g) := W(f*g), f.g € Eg, defines an (indefinite)
inner product on Fg. Consider the set of isotropic vectors E(g)) = Eg N E(E@L] ={f €
Eg;W(g*f) =0 for all g € Eg}, and the quotient space

D = Ey/EY.
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Let the non-degenerate sesqui-linear form induced by (.,.) on © also be denoted by (.,.).

In order to describe ® more explicitely, the symmetrization operators Sy : Ep — FEj

defined by
1

7T€Hk
is introduced, where f, = f) @ --- @ f¥ € K, and 11, denotes the set of all the permu-
tations of {1,2,....k}, k € N. Consider the kernels of the symmetrization operators
ker(Sm) = Span{e(al) ® . e ® e(am) <:>e(aﬂ'(1)) ® . e ® e(aﬂ(m));
mell,, o, € A(j=1,2,....,m)}, (7)

m=2,3,..., ker(5y) = {0}.
Proposition 3.1. Letting Assumption I be satisfied, it follows:

a) It holds © = (4)°_ Dy, where Dy = C,

m=0
D, &~ E(+)(—i-)E(_) 7 (8)
D, = FE,/ker(Sy)

= span{Sm(e(al) @ ... e(a’")); a; EATUA (1=1,2,...,m)}.

b) © is a decomposable, nondegenerate inner product space, i.e., there are subspaces
D) D) € D such that there is a fundamental decomposition

D=2 (D). (9)

¢) (9) applies especially for D) = C(—I;)@(l—l_)(—l;)@g—l_)(—i—) cee
D) = @(1_)(—i—)@(2_)(—i—) ..., where

D = span{S, () @ - @) ey, ..., o) is even}

D) =~ span{Sn(e(al) @ ® e(a")); n(on,...,on) is odd}
d) It holds @W(L)@é‘), n =1,2,..., where (L) denotes orthogonality relative to the
inner product (.,.), and .
9, =9 (+)D). (10)
Proof. See [13, Theorem 3.3, Lemma 3.4a)]. O

Remark 3.2.

a) Proposition 3.1 states that there are linear isomorphisms &, : ©,, — E,,/ ker(S,,),
and further, ©,, and ®,, are orthogonal to each other relative to the inner product
(. )yn#Em,mn=0,1,2,....



b) If J; : ©; — ©; denotes the fundamental symmetry belonging to the fundamental
decomposition (8), then J, = J;®---®@.J; : ©,, = D, is the fundamental symmetry
belonging to (10). Furthermore, the fundamental symmetry J : ©® — © belonging
to (9) is given by J = (Jo, J1, J2,...), Jo = I (identity mapping).

Corollary 3.3. If Assumption I applies, then a Krein-space structure (£),.J) exists on D
such that J : © — 2.

Proof. Proposition 3.1b) and Theorem 2.5 ((i¢) = (¢)) yield the statement under consid-
eration. O

The remainder of this section is devoted to question (Q3). Consider first the "one-particle”
space ®; endowed with the inner product (.,.); defined by W;. Due to Proposition 3.1a)
and Theorem 2.5, a Krein-space structure exists on ©1, (.,.);. In general, however, Propo-
sition 2.6 implies that this Krein-space structure is not uniquely defined. On the other
hand, if @1, (.,.); is quasi-positive, then there is exactly one Krein-space structure on
by Corollary 2.7.

Consider
2 =P,
m=0
endowed with the inner product (.,.)"™ = (.,.) lpmxom, n € N.

Proposition 3.4. Assuming that the “one-particle” space D1, (x,y)1 s quasi-positive, it

follows
a) there is exactly one Krein-space structur on D, (., .)(”), neN,

b) on ©,(.,.), there are non-equivalent Krein-space structures.

Proof. a) Tt follows from Proposition 3.1c) that a fundamental decomposition of D) is

given by
D = (@@;ﬁ) (+) (@@;ﬁ) .
m=0 m=0

The assumption that @, (x,y); is quasi-positive, then yields that @™ (.,.)") is quasi-
positive, too. The statement under consideration now follows from Corollary 2.7.

b) By Proposition 2.6 it is enough to verify that both DM[r; [g5w] and D) [r; 9]
are not complete. Considering any y = (yo,¥1,...) € D,y; € D;, notice that ||y|l; =

> iz ly;llZ, where |ly;|l; = [lylls, = \/(y;, Jiy;), and J;, J are taken from Remark 3.2b).

Take then two elements 2 € @gi) satisfying ||zE|[; = 27", Considering «* = 2 ®-- - @af
(n factors), it follows |[zF|, = 27". Putting 2t = (0,z},...,2+,0,0,...) € D),

e~ = (0,27,0,25,...  T341,0,0,...) € D) n € NU {oc}, notice |[2F)]|; < oo and
() 5 #() pelative to 77 as n — oco. Since ) ¢ D, the proof is complete. O



4 On the Regularization of Integrals with Algebraic
Singularities
In order to apply the results of the preceeding section to some special hermitian linear

functionals, some notions and facts from the theory of divergent integrals and their regu-
larization are recalled (see [7]; ch.1,1.7.3).

Define
Gq = {p € B(RY)| suppp C O}, Q CR% d € N.

Here G(R?) denotes the Schwartz space of test functions of rapid decrease.

Let some (real) function f : Q@ — R, © C RY d € N be given. The function f is then
called tempered on € if the mapping

@ /f(x)w(x)dx (11)

is a continuous linear functional on &g.
If f is a tempered function on © = R%\ {x¢}, then we say that f has a singularity at .

A singularity x¢ is an algebraic singularity, if there is an m > 0 such that

()] [l o™ (12)

is bounded on some neighbourhood $(x¢) of x.

The degree of the singularity zq i1s defined by

deg, (f):=inf{m > 0[IU(z) : (12) is bounded on U(zo)}.

Assume now that f is a tempered function on Q = R%\ {z0}. Every distribution T} €
&'(RY) is called a regularization of f, if it has the following form

15() = [ dof(opelo

Rd

for every test function ¢ € Gga\ (4. If furthermore the above T is hermitian, then it is
called an hermitian reqularization of f.

Recall the following basic facts from regularization theory which is well developed in [7].
For the sake of simplicity, 2o = 0 is assumed.
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Proposition 4.1. a) Let f be a tempered function on R4\ {0}. If 0 is an algebraic singu-
larity of f, then there is a reqularization of f. In this case one can give a reqularization by
the following formula:

1) = [ dof(o) [ota) (P00 () 001 [a])]. (13)

where [ is the integral part of degy(f) and PU=Yp denotes the Taylor series of order [ <1
for the test function @ about the point 0. 8 is the Heaviside step function:

1: |z <1
(9(1<:>|:1;|):{0 : IJ?I;l

(In (13) one subtracts from the test function p(x) € G(R?) so many members of the Taylor
series at xg = 0, that the order of the remainder is equal to [.)

b) If Ty and Ty are any two different reqularizations of f, then it holds supp(Ty <T3) = {0}.

Remembering that every distribution with support in {0} is a finite sum of the delta
function and derivatives of the delta function, the general form of the regularization can
be given.

Corollary 4.2. Let us use the following description: (co,c1,--+ ,¢,,0,---) = ¢ € d(R).
Suppose that f is a tempered function on Q = R\ {0}. Let 0 be an algebraic singularity
of f. Then every reqularization of f is of the form

Tre(e) = Ty(9) + Y ¢jp(0). (14)

J=0

Remark 4.3. If the singularity at z( is not an algebraic singularity, then there exists in
general no regularization relative to &.

5 The Decomposition of G(R") with Respect to Inner
Products Induced by Regularized Integrals

5.1 The Regularized (1/z),

In this section those inner products on the test function space S(R*) = G(R)/ {¢ €
S(R)|p(xz) =0 Va > 0} are considered, which are derived from the regularizations of
foool/:zj @(x) dx. They arise for example in the theory of the quantized massless scalar field
in two-dimensional spacetime (see e.g. [22]).

It is convenient to define the "signature” of a test function by the linear map o : S(R™) —

w, 0,= (00, oM e ) = (£(0),¢(0),2"(0),...).
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Now, define for every finite sequence of real numbers ¢ € d(R) and for any ¢, € G(R™)
(cf. (14),(13)):

(Pt = Tielee) = [ 5 (Fote) #3501 000)

0

n /100(1_“;@;@(1;) + icn j—n<¢($)¢($)>

xn

(15)

n=0 =0

*© n n\ . e
= bt Y (1),
n=0 7=0

This gives a well-defined sesquilinear and hermitian inner product on &(R™).
Some special functions in G(RY)

The following linearly independent family of test functions will be used to construct the
negative definite subspaces of G(R™*) endowed with the above inner product:

k
Xak(2) = %e_(”)2l a>0,keNo=NU{0}, [ €N.

The first entries of the signature of x, 4, can be calculated using Leibniz’ rule together
with the facts

di 2* dn=* 21 l,nsk=0
- — 5. . = —(az) — )
doi | = 0w Uk €Ro) and e {0,0<n<:>k<zz'
This yields:
Oy = (0,...,0,1,0,...,0,7,7,...). (16)
T T T
0 k k421

Here and in the following the question mark indicates that the corresponding entry is
irrelevant (and in general not just a simple constant).

In order to calculate the inner product (15) for x’s with different values of k, it is necessary,
in addition to the signatures, to know (a1, Xak1)e=0:

In the case k£ 4+ &' > 0 the substitution 2(@:1;)21 — x gives

00 k+kE
de x —2(aw)?!

(Xa,k,lea,k',l)O — /0 ? k! k/! e (17)

(k—lz—lk/> (k+k") (k+k")
- —a” = Appa” k+k >0),
2125 e (k+ )

where . is Euler’s function.

Y
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For k = k' = 0, first consider the difference (a,b > 0)

(Xa,0,0> Xa,0,0)0 @(Xboz,XbOJ

d Jai da
/ X <e—2 ax / it —2 / —2 bl’ <:>1>
x
<:>/ br)™ / d_< —202 / o207
d , by
<:>/ _x<e_2$ <:>/ e = —dr = Inb&lna.
o ¥ L
Hence, the inner product is given by
(Xa,O,laXa,O,l)O = <lna, (18)

where @ = (X106 X100)0 = 3 < U de s [jEde & 2) S

Now, using these results, the desired decomposition of G(R™) into a positive and a negative
definite part can be described. The general scheme for this decomposition is as follows.

General description of the decomposition

Two subspaces &) and &) are defined as

6 = {p € 8(R")|9(0) =0, ¢'(0) =0, ..., p(0) =0}, (19)

&) = span{xo,...,xn}, (20)
for some D € Ny. Here xq, ..., xp are elements of G(R™) with the property ng)(()) = 0ij
fore,5 =0,...,D, i.e. the corresponding signatures are

Xo : (1,0,0,...,0,7,7,...)
x1 ¢ (0,1,0,...,0,7,7,...)

: : (21)
xp & (0,0,0,...,1,7,7,...).
It follows that §(R*) can be written as an algebraically direct sum
S6(RT) =60+ 6 with dim(G6)=D 41, (22)

where the decomposition of ¢ € G(R*) is given by c,o( ) = [e(x)ep(0)xol(z) s’ (0)y1(z) &
- @0\ ()] + [2(0)xo(z) + ¢ (0)xi(z) + -+ + P (0)xp(x)].

Now, given a sequence ¢, i.e. a specific inner product of the form (15), the problem is to

choose the number D and the functions xg,..., xp in such a Way, that (i) the signatures

are as in (21), (ii) the inner product is positive definite on &) and (iii) it is negative

definite on &)

Notice that the decomposition yielded by this procedure is not a fundamental one, because
it is not orthogonal. It can be made orthogonal using the following Proposition.
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Proposition 5.1. Let ©, (-,-) be an inner product space, which admits a decomposition
D =200 L DO where DD is positive/negative definite and dim(D)) = n < oco.

Then there is another positive definite subspace @(1+) so that ® = @(1+)(—i—) D),

Proof. Observe first, that © is non-degenerate.

Since ©(7) is finite-dimensional, it is possible to construct an orthonormal basis by, ..., b,

with (by,b,) = ©d,,. Use this to define a projection P : ©® — D7) by Px = &>, (b, )b,
Now set @(1+) ={rePr|r €D}

It follows that @(1+) and D7) are orthogonal to each other and that they together span the
full space ®. Because of the non-degeneracy of ® their intersection is equal to {0}. These

properties prove the above assertion ® = @(1+)(—i—) D),
(+)

It remains to show that ©;" is positive definite. To this end suppose first the existence
of an z € @(1+) satisfying (z,z) < 0. Then span{z,D(7)} would be a negative definite
subspace (since @ L @(_)) with dimension n + 1 in contradiction to the fact that there
cannot be a negative definite subspace of dimension greater than n (the codimension of

the positive definite D+)). So @(1+) must be positive semidefinite.

Now suppose = € @(1+) and (z,x) = 0. Cauchy-Schwarz’ inequality on the semidefinite @(1+)

implies = L @(1+). But also # L ©(). Thus z = 0, again because of the non-degeneracy of
®. This completes the proof. O

Remark 5.2. In the situation of Proposition 5.1 it is in general impossible to leave the
infinite-dimensional part unchanged and to find an appropriate finite-dimensional comple-
ment. A given positive definite subspace can only be used to construct a fundamental
decomposition, if it is even uniformly positive (see [4, Thm. V.7.1.] for details, and cf. also
the conclusion in the next section).

Investigation of the possible cases

a) ¢=(0,0,...):
Set D =0, so that &) is positive definite.

As the x choose Y401, the signature of which is (1,0,7,...), and which thus has the
right properties (independently of a).

If, finally, @ is chosen large enough, then (x4.0.1, Xa,01)c = 1 <Ina will be negative,
i.e., with this a the inner product is negative definite on &),

b) ¢=1(¢,0,0,...), co # 0:
D =0 = &M is positive definite. The x: Ya01, 0 = (1,0,7,...).

(Xa,015 Xa0.1)e = Q1 <Ina+ ¢ (see (15) together with (18) and the above signature).
Again, a can be chosen such that &(=) becomes negative definite.
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c)

d)

¢=(cp,c1,0,0,...), ¢ #O:
Literaly like in case b).

¢=(cp,c1,62,0,0,...), ca £ 0:

Here, two cases have to be distinguished:

(i) e2 > O:

D =0 = &M is positive definite. The y: Ya02, 0 = (1,0,0,0,7,...). (X025 Xa02)e =
O <lna + .

(i) ¢ < 0:
D =1 = 6W is positive definite.
The \’s: Xao02, 0 =(1,0,0,0,7,...),
Xa,1,2, O = (0, 1, 0, 0, 0, ?, e )
Now, a has to be chosen so that the following matrix (the representation of the inner
product in the basis of (7)) becomes negative definite:

(Xa,0,25 Xa,02)e (Xa,0,20 Xa1,2)c _ Qyelna+c Apza™' + ¢
(Xa1,25 Xa,0,2)e (Xa1,20 Xa1,2)e Aoza™ 4+ Appa™2+2c )

According to Hurwitz’ theorem, this can be done by ensuring that the main subde-
terminants have alternating signs:

Oy &lna +c9 <0 and
(QQ Slna + Co) (A112 Cl_2 + 202) <:>(A012 Cl_l + 01)2 > 0.
These inequalities become true for sufficiently large a, because the first expression
tends to ©oo, the second one to +00 as a — oo (since ¢y < 0).
¢ =(cp,c1,62,¢3,0,0,...), c3 # 0
D =1 = 6W is positive definite.
The \’s: Xao02, 0 =(1,0,0,0,7,...),
Xai2+ ¥ Xaz2 (v €R), 0 =(0,1,7,0,0,7,...).

The matrix representation of the inner product on the space &(-) is here:

Ny &lna+ ¢ Aorza™ +yAoz2a™ 4+ ¢1 + 7o

Aoz a™ 4+ vAga™? + ¢ + ¢y —I-QA’yl/l\zljz_;:l; f;\;jia(_;cg
So, &) is negative definite, if
O elna+c <0 and
(Qy <lna+ o) (2¢2 + 6yes + O(a_Q)) (e +ye2 + O(a_l))2 > 0.

To ensure this, choose v, which serves here as an additional freedom, so that 2¢; +
6ycs < 0 (this is possible since ¢35 # 0), and then « large enough.
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f) ¢ =(co,e1yvyC2011,0,0,..0), conp1 Z0 (R =2,3,4,...):
D =n = 6 is positive definite.

The X’S: 01 2 ...n ntl 2n—1 2n 2n+41
b Pl
Xa,0,n+1 (1,0,0,...,0, 0 ge e ey 0 ,0, 0 ,?,...)
Xa,1,n+1 +mn Xa,2n,n+1 (071707' . '707 0 e 0 11, 0 7?7' . )
0,0 0,0.2,...)

Xa,2,n-|—1 —I' Y2 Xa,?n—l,n—l—l (070717' R

Xamnn+l +7nxa,n+17n+1 (070707"'7177717"'7 0 707 0 7?7)

For brevity, the corresponding matrix representation is not written out here in detail.
It can be made negative definite similarly as in part e) by choosing appropriate values

for a, v1,..., Y.

g) ¢c=(coyC1y.vey€24,0,0,...), c00, #0 (n=2,3,4,...):
(i) ean > 0:
D =n <1 = 6W is positive definite.

Xa,l,n-l—l —I' 7 Xa,?n—l,n—l—l (0717' R

-2

The X’S: 01 2...n=-1n nt+l ...2n—=22n—1 2n 2n+1
e 4 A
Xa,0,n+1 (1,0,0,...,0,0, 0 ,...,0,0,0,0,7,...)
Xa,l,n-l—l —|—’}/1 Xa,2n—1,n-|—1 (0,1,0,..., 0 ,0, 0 ge ooy 0 y M ,0, 0 ,?,...)
Xa,2,n-|—1‘|’72 Xa,2n—2,n-|—1 (0,0,1,..., 0 ,0, 0 ge ooy Y2 0 ,0, 0 ,?, )
Nam—tni1+ (0,0,0,.. ., 1 .040-15..., 0, 0,0, 0.,2,...)
P)/n—l Xa,n—l—l,n—l—l
(ii) ¢ < 0:
D =n = 6 is positive definite.
The X’S: 01 «oon—1mn n+l 2n—1 2n 2n+1
b bl
Xa,0,n+1 (1,0,...,0,0, 0 ,...,0,0,0,7,...)
0.0, 0 0,0,7,...)

Xa,n—1,n+1 +7n—1 Xa,n+1,n+1 (0707"'7 1 707771—17"'7 0 707 0 7?7"‘)
Xa,nnt1 (0,0,...,0,1, 0 ..., 0,0,0.,7,...).
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5.2 Conclusion

It has been shown that in each of the cases the inner product space G(R*) admits a
decomposition according to (22). Then Proposition 5.1 shows that there even exists a
fundamental decomposition in which the negative part equals the initial (=) and thus
S(RT) is quasi-positive.

Setting ¥ = &(R™) in section 3 and defining W3 by the above inner product, one obtains
a free-field-like structure for which Assumption I. is satisfied, so that all the results of this
section apply, including Proposition 3.4.

Looking at the structure of &) with (¢, ). [g@) = Jo 1/ o(z)(z)dz (in each of the
cases but d)(i) and g)(i)), one is lead to conjecture, that in all of these cases a Krein space
containing &(R™) could be constructed, the positive part of which is always L*(R*, dz/x),
the completion of &™) with respect to the inner product. Then, choosing different reg-
ularizations would only result in different dimensions for the negative part. But, as was
stressed in Remark 5.2, for &) to be part of a fundamental decomposition, it is nessecary
and sufficient that it is uniformly positive with respect to some Krein space structure of
S(R), for which we can take 6(1+)(—i-) &) from Proposition 5.1. Now, uniform positivity
means that there is a constant n > 1 so that (p &Py, 0 <Pp).+n(Pe, Py). > 0 holds for
every ¢ € &) where P is the orthogonal projection onto &) (cf. the proof of Proposi-
tion 5.1). Consider case a), i.e., &) is spanned by Xa,01 With (X401, Xa0.1)o = <1. Then
the condition of uniform positivity is equivalent to |(xa.0.1,%)ol> < C(@, @)o (¢ € &) for
some C' > (), or

Oodl' —(az)?
/-—e<>w@
0

X

<c / TP e SEY), p(0)= 0.

This condition is not fulfilled, as can be seen by considering a sequence ¢,, of positive test
functions that approximates the characteristic function of the interval (0,1). So, there is
no fundamental decomposition of G(R*) with &) as its positive part.

The section is closed by a summary of the results concerning the dimensions of the negative

definite subspaces: dim(G(_)) =D+ 1.

c dim(G(_)) see cases
(0,0,...) 1 a)
(00,0,0,...) Co7é0 1 b)
(007---702n+170707---) (TLEN())
Con+1 7£0 n+1 C)v e)vf)
(coyevvr€20,0,0,...) (n€N)
Can >0 n d)(i), g)(i)
Cop < 0 n+1 d)(ii),
g)(ii)
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5.3 The Regularized (1/x)"

In this section the more general case of the regularized foool/xk e(x)dx (k € N) is briefly
considered.

(P, ¥)e = /0 j,f [— @ij dd;J < (x)>
_|_/loo(i_f o(z) () + ZC]‘ @(‘P(l’)ﬁ)

where ¢ € d(R) and ¢, € S(RT).

Set again

D ={p e 6RT)|¢(0) =0, ¢'(0) =0, .., ¢!"(0) = 0},
using the following choice for D ([z] denotes the integral part of x):

c D
(Co,...,Ck_l,0,0,...) [%;1]
(007---702n+170707---) (2n—|—1>k<:>1)

Czn+17é0 n
(Co,...,CQn,0,0,...) (2n>k<:>1)

02n>0 n <1

2 <0 n

&™) is a positive definite subspace of finite codimension D + 1 (cf. (22)). This means
that there can be no negative definite subspace of greater dimension than D + 1. So,
S(R*) equipped with the given inner product is quasi-positive and thus decomposable.
The dimension of the negative part of the fundamental decomposition must be less or
equal to D + 1. Again, the assumptions of section 3 are satisfied.

Here only one-dimensional integrals were considered. If an inner product on G(RY) is
defined by a regularization of some d-dimensional function with a finite number of algebraic
singularities, then analogous arguments show that the space becomes quasi-positive and
thereby decomposable.
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