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Abstract

We generalize Poisson-Nijenhuis structures. We prove that on a manifold endowed with
a Nijenhuis tensor and a Jacobi structure which are compatible, there is a hierarchy of pair-
wise compatible Jacobi structures. Furthermore, we study the homogeneous Poisson-Nijenhuis

structures and their relations with Jacobi structures.
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1 Introduction

Jacobi structures, which are natural generalizations of Poisson structures, have been studied
by A. Lichnerowicz and his collaborators [L], [D-L-M], [G-L], etc. A Jacobi structure on a
manifold M is defined by a pair (A, E), where A is a bivector field, E is a vector field such that
[E,A] = 0 and [A,A] = 2E A A. Two Jacobi structures (A;, Ey) and (Ag, E2) are said to be
compatible if (A; + Ag, E1 + E») is also a Jacobi structure (see [N]). Here, we give compatibility
conditions between a Jacobi structure (A, E) and a (1,1)-tensor field J whose Nijenhuis torsion
Ny vanishes (J is called a Nijenhuis tensor). When these compatibility conditions are satisfied,
we get another Jacobi structure denoted by (JA, JE), which is compatible with (A, E). These
conditions generalize the notion of Poisson-Nijenhuis structures introduced by Magri in [M-M].
Recently, J. Monterde et al. (see [M-M-P]) considered Jacobi-Nijenhuis structures. This work

contributes to further generalization of Jacobi-Nijenhuis structures.

Poisson-Nijenhuis structures play a central role in the study of integrable systems. In [V], the
author defined the Poisson-Nijenhuis structures in the general algebraic framework of Gel’fand
and Dorfman. Moreover, Y. Kosmann-Schwarzbach gave in [K] a characterization of Poisson-

Nijenhuis structures in terms of Lie algebroids. Another one is given in [B-M].

The paper is organized as follows. In Section 2, we recall some definitions and basic results
about Jacobi structures. Furthermore, inspired by the construction of Magri et al. (see [C-M-P]),
we establish that certain compatible Jacobi structures define a sequence of functions in involu-

tion.

In Section 3, we give necessary and sufficient conditions for a Nijenhuis tensor J and a Jacobi
structure (A, E) to define, in a natural way, a new Jacobi structure which is compatible with
(A, E). Moreover, we prove that the main property of the Poisson-Nijenhuis manifolds holds
for the Jacobi ones endowed with a compatible Nijenhuis tensor. Namely, they determine a

sequence of Jacobi structures which are pairwise compatible (see Theorem 3.9).

Section 4 is devoted to the analysis of homogeneous Poisson structures, which are compatible
with a Nijenhuis tensor. Such structures are called homogeneous Poisson-Nijenhuis structures.
It is well known that homogeneous Poisson structures are related to Jacobi ones, their relations
being already established in [D-L-M]. We give sufficient conditions to have homogeneous Poisson-

Nijenhuis structures and deduce some consequences for Jacobi structures.

2 Preliminaries

In the sequel, all manifolds, multi-vector fields and forms are assumed to be differentiable of

class C'.



2.1 Jacobi structures

Definition 2.1 A Jacobi manifold (M,{ , }) is a manifold M equipped with a R-bilinear and
skew-symmetric map { , } : C°(M,R) x C>®(M,R) — C*°(M,R), called a Jacobi bracket, which

satisfies the following properties:

1) the Jacobi identity:

£ g, b}y +1{g,{h, f}} +{h,{f,9}} =0, V f,g,h € C®(M,R);

2) the bracket is local (i.e. the support of {f, g} is a subset of the intersection of the supports
of f and g).

The definition of a Jacobi structure is equivalent to giving a pair (A, E) formed by a bivector
field A and a vector field F such that

[E,A] =0 and [A,A]=2EAA,

where [ , ] is the Schouten-Nijenhuis bracket on the space of multivector fields (see [Kz]). The
Jacobi bracket is then given by

When FE is zero, we obtain a Poisson structure. In other words, a Poisson structure on
a manifold M is given by a bivector field A such that the Schouten-Nijenhuis bracket [A,A]
vanishes. Then (M, A) is called a Poisson manifold. In [L], Lichnerowicz has shown that to any
Jacobi structure (A, F) on a manifold M, one may associate a Poisson structure m on M x R
defined by

m(z,t) = eft(A(m) + % A E)

Then, 7 is called the Poissonization of (A, E). Let us recall other examples of Jacobi structures

(see [L] for example).

Example 1: locally conformal symplectic manifolds. Let M be a 2n-dimensional man-
ifold. A locally conformal symplectic structure on M is given by a pair (F,w), where F is a

nondegenerate 2-form and w is 1-form such that

dv=0 and dF +wAF =0.

We define a bivector field A and a vector field E by:

ipF=w and ipF = —a.



Then (A, E) defines a Jacobi structure. In fact, for any 2 € M, there exist a neighborhood U,
and a function f defined on U, such that w = df and Q = e/ F is symplectic.

Example 2: contact manifolds. Let M be a (2n + 1)-dimensional manifold. A differential
1-form n on M defines a contact structure if n A (dn)™ does not vanish at any point of M. So,
the map b : xy(M) — QY (M) defined by b(X) = ixdn + n(X)n is an isomorphism of C*° (M, R)-
modules, where x(M) is the space of vector fields and Q!(M) is the space of differential 1-forms
on M. Consider the vector field E and the bivector field A such that

A, B) = dn(>~"(a),b~1(8)) and E=5>"'(n).

The pair (A, E) defines a Jacobi structure on M.

2.2 Characteristic distribution of a Jacobi manifold

Let (M, A, E) be a Jacobi manifold. For any f € C*°(M,R), the vector field given by

X; =A(df) + fE

is called Hamiltonian vector field associated with f. We have the following proposition (see

G-L]):
Proposition 2.2 The pair (A, E) defines a Jacobi structure on M if and only if
Xirgy = X5, Xgl, ¥ fig € CF(M,R),
where {f,g} = A(f,9) + fE(dg) — gE(df). Moreover,
Xy =0 < {f,g} =0, VgeC™(M,R).

The characteristic distribution of a Jacobi manifold (M, A, E) is the subbundle C' of TM
spanned by all the Hamiltonian vectors fields. Thus, Cy; = Span{E(z), (Aa)(z),« is a 1-form}
is the fiber at the point x. The characteristic distribution of (M, A, F) is completely integrable
in the sense of Stefan-Sussmann (see [St] [Su]); it defines a singular foliation on M. The leaves
of this foliation are contact manifolds or locally conformal symplectic manifolds, according to
their dimension.

A Jacobi structure is said to be transitive if C = TM. It is known (see [L], [G-L]) that a
transitive Jacobi manifold is either a contact manifold (when its dimension is odd) or a locally

conformal symplectic manifold (when its dimension is even).



2.3 Jacobi pencils

A manifold M is said to be a bihamiltonian manifold if M is endowed with two Poisson tensors
71 and 79 such that m; — Ame is a Poisson tensor for any A € R. Then 71 — Ay is called a Poisson
pencil. By anology, if {.,.}, and {., .}, are two Jacobi structures such that {.,.}, ={.,.}, =X{.,.},
defines a Jacobi structure for any A in R, then {.,.}, will be called Jacobi pencil. In this case,

the two Jacobi structures are said to be compatible.

Proposition 2.3 (see [N]) Let (A1, E1) and (A2, Es) be two Jacobi stuctures on M. Denote by
7 = e Y(A; + 0/0t \ E;), with i = 1,2, the associated Poisson tensors on M x R. Then the

following assertions are equivalent:

(1) (A1, Ev) and (Ag, E3) define a Jacobi pencil on M.
(2) [AI,AQ] =FEiANAy+ EyANAy and [EI,AQ] + [EQ,AI] = 0.

(8) The pair (71, m2) defines a Poisson pencil on M x R.

From the classical Liouville theory, it follows that the integrability of a Hamiltonian system
is related to the number and the independence of its first integrals in involution (i.e. commuting
first integrals). Therefore, the methods of construction of functions in involution play an impor-
tant role in integrable systems. We shall see that the one given in [C-M-P] using the Casimir of
a Poisson pencil holds for Jacobi structures. Denoting by N[[A]] = C*°(M,R) ® R[[A]] the space
of formal power series in A over C*°(M,R), we may extend a Jacobi bracket {.,.} defined on
C>®(M,R) to N[[A]] by

00

{iﬂﬂ ,i/\jgj} = ZA’"( > {fp,gq}).

=0 7=0 r=0 p+q=r
Now, assume that {.,.}, = {.,.}, = A{, }, is a Jacobi pencil. If (A;, E;), with j = 1,2, are

the tensors associated to the Jacobi brackets {.,.},, we consider the mapping oy defined by
O')\f = (A1 - )\Ag)df + f(E1 - )\EQ),
which can be extended to N[[A]]. If h = 3.2, A'h; € NJ[A]] is such that oy (k) = 0, then for any

f € C®(M,R) we have

{hi+17f}1 = {hlaf}Z
We deduce that

{hishivit, = {hishivs}, =0, Vi, j.

So this gives a sequence of functions in involution for the Jacobi brackets {.,.},, with £ =1,2.



2.4 The Lie algebroid of a Jacobi manifold

It was proven in [Ke-SB] that there is a Lie algebroid associated with an arbitrary Jacobi
manifold (M, A, E). Let us recall that a vector bundle A over a differentiable manifold M is
said to be a Lie algebroid if there is a Lie bracket [, |4 on the space , (A) of smooth sections of
A and a bundl e map o : A — T'M, extended to a map between sections of these bundles, such
that

1) o([X,Y]a) = [o(X), 0(Y)],
2) [X, fY]a= fIX,Y]a + (o(X)f)Y,

for any X, Y smooth sections of A and for any smooth function f on M. Then p is called the
anchor of the Lie algebroid.

Consider the vector bundle T*M @& R. The space , (T*M @ R) of smooth sections may
be identified with Q'(M) x C*®°(M,R). The Lie algebroid associated with a Jacobi manifold
(M, A, E) is T*M © R with the Lie bracket { , }z g on, (T"M @ R), which is defined by

{(a, /), (3,9} ap) = (LAaﬁ — Lypa —d(Aa, B)) + fLeB — gLea —ip(a A (),
M@, ) + Ao dg) — A(8,df) + [ E(dg) — gE(df)),

where d is the exterior derivative and Lx = dix +¢xd is the Lie derivation by X, for any vector

field X. The anchor is given by the map # (A.5) such that

#(A,E)(aaf) = Aa + fE
Notice that we have # , ., df,f) =X

Proposition 2.4 The pair (A, E) defines a Jacobi structure on M if and only if

# (@ 1) # iy (9] = # ey ({0 ), (B9} ) )

Sketch of proof: The operation # , . {.,-}(a,p) is the unique Rebilinear map which satisfies
(B)) # oy (1001, 1), (A, 9)}0,) ) = [y (A ), H ) (9, 9),
(Ba) # ({000 1), 108,00 ba ) ) = B (#0015, a )

(H o (@ D) # ) (B:9),

for any «, 3 € Q'(M) and for any smooth functions f, g. Since the map

(@, 1), (8:9)) — [# (s (@ )y # (1 1) (B> 9)]

also satisfies these rules (R1) and (R3), they are equal.



3 Compatibility between Jacobi and Nijenhuis structures

Let J be a (1, 1)-tensor field of M. The Nijenhuis torsion N of J with respect to the Lie bracket
[.,.] on the space x(M) of vector fields is defined by

Ny(X,Y)=[JX,JY] = JJX,Y] - JIX,JY]+ J2[X,Y], VX,Y €x(M).

Definition 3.1 J is called a Nijenhuis tensor if its Nijenhuis torsion vanishes.

Notations. To any bivector field A on M, we may associate the skew-symmetric linear map
denoted also by A : Q'(M) — x(M) and defined by:

(B, Aa) = (@A B,A) = Ao, B).
Conversely, a linear map A : Q' (M) — x(M) defines a bivector field on M if and only if
(0, AB) + (8, Aa) = 0.

In particular, when .J is a (1, 1)-tensor field on M and A : Q'(M) — x(M) is a linear map,
then .J o A defines a bivector field if and only if Jo A = Ao !J. In this case, the associated
bivector field is denoted by JA.

Furthermore, any bivector field A gives a bracket defined on the differential 1-forms by

{aaﬁ}l\ = LAaﬁ_LAﬁa_d(A(aa ﬁ))a VO&,/B € QI(M)a (1)
where Lx is the Lie derivation by X, for any vector field X.
Whenever J o A = Ao !J, we denote by C(A,.J) the R-bilinear map given by

C(A (e B) = {, Bhan = ({ To, Bha + {as T8k — "Ha B} ).

Definition 3.2 (see [K-M]) A Poisson-Nijenhuis structure on a manifold M is defined by a

Poisson tensor m and o Nijenhuis tensor J on M such that
(a) Jor=mo '],
(b) C(m,J)=0.

In this case, we say that w and J are compatible.

To extend this definition to Jacobi structures, it is natural to think about the Poissonization
method but the latter gives a weak generalization (see subsection 3.2). We propose the following

definition.

Definition 3.3 Let (M, A, E) be a Jacobi manifold. A Nijenhuis tensor J on M is said to be
compatible with the Jacobi structure (A, E) if



(i) JoA=Ao tJ,
(ii) Ao, )TE = Aa, IB)E = A(C(A, )(e,8)), Ve § € QL(M);
(iii) [JFE, Al +[E,J¥A] =0 for any k € N*.

When the property (iii) holds only for k < p, and the other properties are satisfied, we will say
that (A, E) and J are compatible up to the order p.

When E = 0 (i.e. A defines a Poisson structure), the pair (A, J) is said to be a weak Poisson-
Nijenhuis structure (see [M-M-P]). In such a case, the compatibility conditions are reduced to
(i7), which includes the one given in [M-M]. In other words, a Poisson-Nijenhuis structure is

always a weak Poisson-Nijenhuis structure but the converse is false.

Theorem 3.4 Let (A, E) be a Jacobi structure on M. Assume that J is a (1,1)-tensor field
such that Jo A = Ao 'J and

Nj(Aa+ fE,AB+gE) =0, VYa,8€Q' (M) and VYf,ge C®(M,R),

where Ny is the Nijenhuis torsion of J. Then (JA,JE) is a Jacobi structure on M if and only
if the following properties are satisfied for all o, 3,y € QY(M) :

(a) J([JE, Ao+ [E, JA]a) =0,
() (177, A(C(A, D), B)) = M, B)TE + Ao, LIB)E) =0,

In particular, if J is a Nijenhuis tensor compatible with (A, E), then (JA, JE) is a Jacobi

structure on M.
The proof of Theorem 3.4 is based on the following three lemmas.
Lemma 3.5 For any bivector field A, we have:
(v, M B34) = (7, [Aa, A + 218, AJ(@, 8,7), ¥ @,y € Q1(M). @)
This formula is proven in [G-D] and [K-M].

Lemma 3.6 Consider a couple (A, E) formed by a bivector field A and a vector field E on M
such that [A,A] = 2E A A. Then, for any linear map J on x(M) satisfying J o A = Aot J, the
following formula holds:

SUAIAN@,8,9) = (JE AN 8,7) + (L, A(C( )@, 0)))
FE(LI)A @, LIB) ~ JE( A,
_<7a NJ(Aaa Aﬁ)>



Proof: We use Lemma 3.5 which gives:

SITAL TG, 5,7) = (7%, Aa, Bhan) — {[TAa, JAB), 7).

Next, we add and withdraw the following quantity:

("Ty, M'Ja, Bha + Ma, "TBYr — JAMa, B}a).

Using again the relation (2), we obtain

AN 8) = 5 (I8N e B )+ Al B, )
AN, 1) )+ (A (A e )
_<77 NJ(AaaAB» (3)
Since [A,A] = 2E A A it turns out that:

%[JA, JA(a, 8,7) = (JEAJA) (e, B,7) + E(CJy)A(e, LIB) — JE(Jy) Ala, B)
+(" Ty, AC(A, T) (e, B))) — (7, Ns(Aar, AB)).

This is the formula wanted. ||

Lemma 3.7 Let A and E be respectively a bivector field and a vector field on M. Then the
following relation holds for any linear map J on x(M):

[JE, JA)(a, B) = (B, Nj(E,Aa)) + (3, JIJE,Ala + J[E, JAla — J*[E, A]a).
Proof: For any bivector field A and for all a, 3 € Q'(M), we have:
[E,A](a, B) = Lg(Ae, B)) — AMLEa, B) — AMa, LgB).
This is equivalent to the relation
[E,Ala = [E,Aa] — ALpa, Vo€ Q'(M). (4)

Using (4), we obtain for any o € Q'(M):

[(JE,JAla = [JE,JAa|— JALjpa
= Ny(E,Aa)+ J[JE,Aa] + J[E, JAa] — J*[E,Aa] — JALjpa.

Replacing [E, Aa] by [E, Ala + ALga, we deduce that

[JE, JA]O[ = NJ(E, AOé) + J([JE, AOé] - ALJE‘a)
+J([E, JAa] — JALpa) — J?[E, Ala)
= Ny(E,Aa)+ J([JE,A] +[E, JA] — J[E,A])a.

9



Proof of Theorem 3.4: Lemma 3.7 ensures that [JE,JA] = 0 is equivalent to (a). While
Lemma 3.6 says that [JA,JA] = 2JE A JA if and only if property (b) is satisfied. So the

theorem is proved. [

Now, let us express the properties (a) and (b) of Theorem 3.4 using the Lie algebroid asso-

ciated with the Jacobi structure (see Proposition 2.4).

Proposition 3.8 Let (A, E) be a Jacobi structure on M and let J be a (1,1)-tensor field such
that

JoA=Ao 'J and Ny(Aa+ fE,AB+gE)=0, Va,BcQ' (M), Vf,gec C®(M,R).

Then we have the following equivalences:

(a) is satisfied <= [JAa+ fJE, gJE] = #(JA,JE) ({(Oé,f),(o,g)}(]A,]E‘))

(b) is satistied = [JAa, JAG] = #, ., (1(0,0), (8,0} sasm))
Proof: we have
[JAa + fJE, gJE] = g[JAa, JE] + (JA(a,dg) + (fdg — gdf, JE))JE.
On the other hand, we have
#onam U f),(0,9)unur) = —9JALjpa + (JA (o, dg) + (fdg — gdf, JE))JE.

We deduce that

[JAa+ fIE,gJE] = # s ;o (. ), (0,9) }asm) = 9([JAa, JE| + JALjpa)
= g[JA, JE]a.

But Lemma 3.7 says that

[JA,JE]la =0 < J([JE,AJa+ [E, JA]a) = 0.

Hence we obtain the first equivalence. In the same way, we prove the second equivalence using

Lemma 3.6.

10



3.1 Hierarchy of Jacobi structures

The following theorem is a generalization of a result proved in [M-M] and [K-M]:

Theorem 3.9 For any Jacobi structure (A, E) compatible with a Nijenhuis tensor J on M and
for each k € N*, the pair (JEA, J*E) is a Jacobi structure on M. Furthermore for ki, ko € N¥,
(JFU A, TR E) and (J*2A, J*2 E) define a Jacobi pencill

Lemma 3.10 Let J be a (1,1)-tensor field. Then, we have:

Ny (X,Y) = NJk(JX,JY)+Jk<NJ(JkX,Y)+NJ(X,JkY))

—J? (Nkal(JX, JY) = Ny (X,Y)), VX,Y € y(M).

The proof of this lemma is straightforward.

Proof of Theorem 3.9: assume that [JEA, JEA] = 2J°E A JPA, for any ¢ < k. It follows from
Lemma 3.6 that

%[J’““A, TN (e, 8,7) = (JFTEE A TFA) (o, 8,7) + (T, JEAC(TRA, J)(a, B))
+JRECETY) TR A (o, tTB) — TFFLE(Ty)JE A, B).

We shall prove that
JEAC(JFA, ) (a, B) + J*A (o, LTB)JFE — J*A(e, B)JFHLE = 0.

In fact, for any bivector field A and for any linear map J on y (M) such that Jo A = Ao tJ,
the following relation holds (see [M-M)]):

(C(TA, ) (e, B), X) = (C(A, )("Ta, B), X) +(a, Ns(AB,X)). (5)
Hence, we obtain by induction that for any £ > 1,

C(J*A, N (o, B) = C(A, J) (L T*a, B). (6)

Since J is compatible with (A, E), we have

A(C’(A, J)(a, [3)) = A(a, B)JE — Ala, LIB)E. (7)

We deduce that

TEAC(TPA, D) (e, B) = J*C(A, T)("TFa, B)
— gk (A(tha, B)JE — A(t TRt Jﬁ)E)
= J*A(a, B)J*HE — JFA (e, TIB)JFE.

11



So, we obtain the relation wanted. The latter implies that
[JEA, JFA) =20 E A JFA for any k> 1.
Moreover, replacing J by J* in Lemma 3.7, we obtain:
[J*E, J*A)(a, B) = (8, Nj(E,Aa)) + (LT*B,[J*E, Ala + [E, J¥Ala).

From Lemma 3.10, we obtain by induction that the Nijenhuis torsion of J* vanishes for any
k > 1. Therefore,
[JEE, J¥A] =0 for any k> 1.

Thus, (J¥A, J¥E) defines a Jacobi structure for any & > 1.
Now take two different pairs (J¥1A, J¥1E) and (J*2A,J*2E). We shall prove that they

determine a Jacobi pencil. For any A € R, we have to prove that
[JEA = ATF2A, JRA = ATR2A) = 2(JM E — AT E) A (JFTA — AJF2A).

Since we have

[JEA, JRA] = 2J5E A JRA, Vi=1,2,
thus we have only to prove that
[JEA, JE2A] = T E A TR A + TR E A JRA.

Assume that k1 = ko + £, then we apply £ times the result saying that, for arbitrary bivector
fields A and 7 on M, for any linear map .J on y(M) the following formula holds (see [M-M)]):

[JA,W](OZ7677) = [Avﬂ-](avﬁv tJ7)+<C(7r7J)(O‘7fY)7 Aﬁ>
—(C(m, J)(B,7), Aa) =(C(A, J)(a, B), 7).

We apply this last relation and we calculate by recursion the ¢ quantities [J¥2 A, Jk2A],... [Jk2FTA, JF2 A].
It follows that:

[THA, TR A] (e, B,7) = [Jk2A T2 A)(a, B, ' T")
+Z C(IP A, J) (o, LT 1), TR TAB)
—Z C(JF2A,7) (8, 'T "), JM T Aa)
—Z C(TF A, T) (e, B), JHH T A)

12



Now, we use the relation ( 6) as well as ( 7) and the fact [J¥2A, J¥2A] = 2J%2 E A J¥2 A, we obtain

after computations:

[JEPA, JE2A) = TR B A JRA + JR2E A JRA.

The last step is to show that:
[JRE - XJRE, JMA — AT A] = 0.

This is equivalent to showing that [J¥1 E, J¥2A] + [J*¥2 E, J¥1A] = 0. By hypothesis this relation
is true when ks = 1 and using Lemma 3.7, we can easily show by induction that this formula

holds for any k; and ks. [ |

Example 3. Let w be a closed 1-form and let Fy, F5 be two nondegenerate 2-forms on M.
Assume that (F,w) and (Fy,w) are locally conformal symplectic structures on M. Let (A;, E;)
denote the Jacobi structures associated with (Fj,w), where i = 1,2. Assume that these two
Jacobi structures are compatible. Define the isomorphism of C°°(M,R)-modules »; : x(M) —
QY(M) by

v;(X) = —ix F;.

We have
Bi=—7"(w) and Ao=b7"(a), VaeQ'(M).

Then, the (1, 1)-tensor field J = bQ_I o by is compatible with (A1, E}) at any order. Indeed, for
any x € M, there exist a neighborhood U, and a function f defined on U, such that w = df.
The 2-forms Q; = e/ F} and Q5 = ¢/ F, are symplectic and the Poisson tensors associated with
01, Qy are respectively m = e TA;, my = e T Ag.

We claim that the Jacobi structures (A1, Eq) and (Ag, Es) are compatible if and only if 7y
and mo are compatible. Let us prove this claim. Using the properties of the Schouten-Nijenhuis

bracket, we get

[, 7m2] = e ([Al, Aol — [Ar, F] A A — [Ag, f] A A1>.

Since E; = [A;, f] = —Ai(df), we have

[7(1,7(2] = 672f([A1,A2] — FEi NNy — By /\Al).

Therefore, [71, 73] = 0 if and only if [A1,As] = E1 A Ag + E2 A A1. Moreover, we may remark
that the Jacobi identity of the Schouten-Nijenhuis bracket gives

f] = _[[WQ’ef]ﬂrl]_[[efﬂrl]’WQ]

= —[[As, floe AT = [[f, M) e T M),

[[7T1,7T2], €

13



The fact that E; = [A;, f] implies

[[m1,m2), e/ ] = —e 1 ([Ba, M] + [E1, Ag)).

Thus, (A;, E;)i=1,2 form a Jocobi pencil if and only if the tensors (7;);=1 2 define a Poisson pencil.
So, we may deduce that the Nijenhuis torsion of J vanishes. Furthermore, the sequence (J*m)
is formed by pairwise compatible Poisson tensors, while (J¥A, J*E}) is a sequence of pairwise

compatible Jacobi structures.

3.2 Compatibility and Poissonization

First, let us see why the method of Poissonization gives a weak generalization. Let (A, E) be a
Jacobi structure and let J be a (1, 1)-tensor field on M. Denote by 7 the corresponding Poisson

tensor on M x R. Consider J : x(M x R) — x(M x R) an extension of J of the form

~ 0 0
J=J = dt ® —
+a0®8t+f0 ®8t’

where o € Q' (M) and fy is a smooth function on M. On the one hand, the relation Jomw = wot.J

gives a strong condition, which is the following:

JE = Aoy + foFE.

For instance when A is zero, we must have JE = foFE. Moreover, if we express the fact that
the Nijenhuis torsion of J vanishes, we have other conditions on ag and fy. On the other hand,
when (m, J ) is a Poisson-Nijenhuis structure on M x R, we have necessarily the conditions of
compatibility (), (i7) and (zi¢) of Definition 3.3. Indeed, in such a case, the hierarchy of pairwise

comp atible Poisson structures (J*7) is given by

JEr = e H(JFA + % ANJFE).

We know that Jr is a Poisson tensor on M x R if and only if the pair (JA,JE) is a Jacobi
structure on M. Hence, by Theorem 3.4 we have (i) and (7¢). Furthermore, (7i7) is obtained by

using the fact that the Poisson tensors Jk7 are compatible with 7.

Now, let us make precise why many Jacobi-Nijenhuis structures are particular cases of Jacobi
structures compatible with a Nijenhuis tensor (see Definition 3.3). For any bivector field A (resp.
vector field F), we may define a mapping #(A,E) : QL (M) x C®°(M,R) — x(M) x C*°(M,R) by

#m (B:9) = (AB + gE, (B,E)).

Definition 3.11 (see [M-M-P]) Let J : x(M)xC®(M,R) — x(M)xC>®(M,R) be a C®(M,R)-
linear map and let (A, E) be a Jacobi structure on M. The triple (A, E,J) is said to be a
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Jacobi-Nijenhuis structure on M if we have Jo #(A,E) = #(A,E) o 7 and (A1, Ey) is a Jacobi

structure compatible with (A, E), where Ay and Ey are characterized by the relation

ey = J °Ham:

An extension J of an endomorphism J of (M) to x(M x R) is equivalent to giving a
C>°(M, R)-linear map J : x(M) x C®(M,R) — x(M) x C®(M,R). When J sends {0} x
C>(M,R) to itself, then we may set

J(X,0) = (JX,{(ap, X)) and JF(0,1) = (0, fo).
We get

~ d 0
J=J = dt @ —
+a0®at+fo ®8t’

If (A, E) is a Jacobi structure on M and 7 denotes the corresponding Poisson tensor on M x R,

then

Jom =mo o= J o #(A,E) - #(A,E) ° tj’

Moreover (A, E,J) is a Jacobi-Nijenhuis structure on M iff (, J) is a Poisson-Nijenhuis struc-
ture on M x R

Suppose (A, E, J) is a Jacobi-Nijenhuis structure on M such that 7(0,1) = (0, fo). Then,
from what we have seen above, we may deduce that the (1,1)-tensor field on M, which corre-

sponds to 7, is compatible with (A,E).

4  Nijenhuis tensors and homogeneous Poisson structures

Definition 4.1 A homogeneous Poisson manifold (M, ,Z) is a Poisson manifold (M, ) with
a vector field Z over M such that

Theorem 4.2 Assume that (M, m, 7Z) is a homogeneous Poisson manifold. Let J be Nijenhuis
tensor compatible with w. Then (M, Jw,Z) is a homogeneous Poisson manifold if and only if

we have the following property

mo(Lzo'J—"JoLyz) =0, (8)

where Ly = izd + diyz is the Lie derivation by Z. When this property holds, Jm — Am defines a

Poisson pencil which is homogeneous with respect to Z.
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Proof: Taking into account Theorem 3.9, we have only to prove that [Z, Jn] = —Jnr. Let us

compute [Z, Jr]. We obtain

[Z7 Jﬂ—] (dfa dg) = de(JT('(df, dg)) - JW(Ldea dg) - Jﬂ—(dfa Lng)
= Lyzd(x(*Jdf,dg)) — w(*JLydf,dg) — =("Jdf, Lzdg)

Since

Lzd(n("Jdf,dg)) = [Z,7)("Jdf, dg) + n(Lz ' Jdf dg) + m("Jdf, Lzdg),
We obtain

(2, Jm)(df,dg) = [Z,7)("Jdf,dg) +n(Lz ' Tdf,dg) — Jr(Lzdf,dg)

= —n("Jdf,dg) + m(Lz "Jdf,dg) — Jr(Lzdf,dg)
Hence, the relation [Z, Jw| = —J7 is equivalent to the following one:
moLzo 'J=mo 'JoLy.

This proves the theorem. [ |

Definition 4.3 A homogeneous Poisson manifold (M, r,Z) equipped with a Nijenhuis tensor
J which is compatible with m and satisfies equation ( 8) is said to be a homogeneous Poisson-

Nijenhuis manifold.

Corollary 4.4 Let (M, n,J) be a Poisson-Nijenhuis manifold. If w is homogeneous with respect
to a vector field Z and if the following property holds

Z,JX]| = J|Z,X], VX € x(M), 9)
then the triple (M, ,J) is a homogeneous Poisson-Nijenhuis manifold with respect to Z.
Proof: We obtain the corollary using the above theorem and the fact that
[Z,JX]=J[Z,X], VXex(M) < Lzo'J="JoLy.

Definition 4.5 A map ) : (My, A1, E1) — (Ms, Ao, E) between two Jacobi manifolds is said
to be a conformal Jacobi morphism if there exists a function a € C*°(M;y,R) which vanishes

nowhere such that for any f,g € C*°(Ms,R) we have:

{a(fod),algov)hr = a({f,g}2 0 1),

where the brackets { , }1 and { , }2 are the Jacobi brackets associated with (A1, Ey) and (A2, E2)

respectively.
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Homogeneous Poisson manifolds are closely related to Jacobi manifolds and their relations

were established in [D-L-M]. In terms of Poisson pencils, we have the following results.

Proposition 4.6 Let {.,.}, be a Jacobi pencil on M, then there exists a Poisson pencil on

M x R such that the projection P : M x R — M is a conformal Jacobi morphism.
Proof: If (A;, E;) denotes the Jacobi structure on M associated to {.,.},, with i = 1,2; then the
Poisson pencil on M x R is given by m; — Ame where

%A&)

One may easily verify that P : (M x R, 7)) — (M,{.,.},) is a conformal Jacobi morphism. H

mi(z,t) = et (Az(x) +

Conversely, we may prove that homogeneous Poisson pencils give Jacobi pencils by using a

proof done in [D-L-M]. Precisely we have:

Proposition 4.7 Let ) be a homogeneous Poisson pencil on M with respect to the vector field
Z, and let N be a submanifold of M of codimension 1 which is transverse to Z. Then there
exists a Jacobi pencil on N such that for any pair of functions (f,g) defined on an open set U

of M, satisfying < Z,df >= f and < Z,dg >= g, we have
Uivaw Ixow tx = TAdf 1 dg) |y -

Corollary 4.8 Let (M, A, E) be a Jacobi manifold and let J be a Nijenhuis tensor on M, which
is compatible with (A, E). Then there exists a sequence of Poisson-Nijenhuis structures (m) on
M x R that the projection Py : (M X Rymi) — (M, A, E) is a conformal Jacobi morphism, for
each k>1.

Conversely, if (M,n,J) is a homogeneous Poisson-Nijenhuis manifold with respect to the
vector field Z and if N is a submanifold of M of codimension 1, which is transverse to Z, then

there exists a sequence of pairwise compatible Jacobi structures on N determined by w, Z and
J.

This corollary is a direct consequence of Theorem 3.9 as well as Propositions 4.6 and 4.7.
Acknowledgements. I express my gratitude to the Abdus Salam International Centre for

Theoretical Physics for its support.
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