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Abstract

The method of extraction of the e/h ratio for electromagnetic
compartment of combined calorimeter is suggested and the non-
compensation was determined. The results agree with the Monte
Carlo prediction and results of the weighting method for electro-
magnetic compartment of combined calorimeter. The new easy
method of a hadronic energy reconstruction for a combined calori-
meter is also suggested. The proposed methods can be used for
combined calorimeter, which is being designed to perform energy
measurement in a next-generation high energy collider experiment

like ATLAS at LHC.
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1 Introduction

The future experiment ATLAS [1, 2] at the Large Hadron Collider (CERN)
will include a combined calorimeter [3] with in the central region the two
separate units: the liquid-argon electromagnetic calorimeter [4] and the
iron-scintillating hadronic calorimeter [5, 6, 7, 8].

For many tasks of calorimetry it is necessary to know a non-compensa-
tion of combined calorimeter compartments. As to the hadronic calorime-
ter there is the detailed information about the e/h ratio presented in
[5, 9, 10]. But as to the electromagnetic calorimeter [11] reliable infor-
mation practically absent.

The aim of the present work is to develop the method for the determina-
tion of the electromagnetic compartment non-compensation and compares
results of this method with results of weighting method [12, 13] and Monte
Carlo prediction [14] for the same calorimeter. The new method of an
energy reconstruction for combined calorimeter is also presented. For de-
tailed understanding of performance of the future calorimetry the combined
calorimeter setup has been made consisting of the liquid-argon electromag-
netic calorimeter inside the cryostat and downstream the iron-scintillating
hadronic calorimeter [15, 16, 17].

2 Method

The response, R, of a calorimeter to a hadronic shower is the sum of the
contributions from the electromagnetic, E., and hadronic, E}, parts of the
hadronic shower energy, F = E, + Ej,, [18]

R=¢-E.+h-Ey, (1)

where e (h) is the energy independent coefficient of transformation elec-
tromagnetic (hadronic) part of a shower energy to response. Therefor an
incident energy is

E=(1/e)-(¢/m) R, (2)
e e/h
;_1+(e/h—1).k.1n(E)’ (3)

fro = k-In(E) = E./E is a fraction of electromagnetic energy. In the
case of a combined calorimeter the incident energy is deposited into an
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electromagnetic compartment, F.,,, into a hadronic compartment, Fj.q4,
and into a dead material between the two calorimeters, Fy,,. Using relation
(2) the following expression has been obtained:

em ™
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E= Eem + Edm + Ehad - <_> Rem + Edm + <_> Rhad ; (4)
em €had \T had

where Re,, (Rpaq) is response of a electromagnetic (hadronic) calorimeter
compartment, 1/e.,, [16, 19] and 1/epqq [16] are the energy calibration
constant for electromagnetic and hadronic calorimeter.

The Eq. (4) is the basic formula for the new, non-parametrical, method
of a hadronic energy reconstruction for a combined calorimeter. This
method does not require the determination of any parameters by a min-
imisation technique and uses known e/h ratios and electron calibration
constants. In the right side of the Eq. (4) an energy is under a logarith-
mic function therefore for achievement of convergence with an accuracy of
~ 1% is sufficiently only the first approximation. The obtained reconstruc-
tion of the mean values of energies is within £1% and this accuracy can be
compared with results from Ref. [20, 16]. The fractional energy resolution
is comparable with the benchmark method result [16]. The method can
be used for the fast energy reconstruction in the trigger.

From expression (4) the value of the (/7). ratio can be obtained

€ o Ebeam - Edm - Ehad
T) o N Rem - (1/€em)

The (e/h)em ratio can be inferred from (3), where E is the beam energy.
For calculation of the Ej.q the value (e/h)paq [9] was used and F in the
(3) is the energy deposited in the hadronic calorimeter, & = 0.11 [14]. The

term FEg,, is taken similar to [16, 15]: Eugn = (1/€am) - \/Eemyi - Enad,f
where E,,,; is an energy released in a last depth of an electromagnetic

calorimeter and Fj,q ¢ is an energy released in a first depth of a hadronic
calorimeter. The validity of this approximation has been tested by the
experimental study [17, 16] and by the Monte Carlo simulation [21, 22].

(5)

3 Results

The mean values of the (e/7).,, distributions, derived by (5) and extract-
ing by fitting in the +20 [23], are given in Table 1 and shown in Fig. 1
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(black circles) as a function of the energy. The fit of (e/7), values by
the expression (3), with two parameters, yields (e/h)e, = 1.74 £ 0.04 and
k = 0.108£0.004. The value of parameter k is in the good agreement with
well known 0.11 [14]. For fixed parameter k the value of non-compensation
is (e/h)em = 1.77 £ 0.02. The quoted errors are the statistical ones and
obtained from the fit. The systematic error, which is a consequence of
the uncertainties in the input constants used in the (5), is estimated to be
£0.04.

Table 1: The (e/7)en ratios as a function of the beam energy.

E (e/T)em

(GeV) [23] [12] [13]
10 1.47+0.03 - -
20 1.424+0.02 | 1.47+£0.03 | 1.40 £0.03
40 1.33 £0.02 - -
50 1.33£0.02 | 1.32£0.03 -
80 1.28 £0.01 = -
100 | 1.28 £0.01 | 1.25£0.02 -
150 | 1.26 £ 0.01 - -

180 - 1.16 £ 0.02 -
300 | 1.19£0.02 | 0.96 = 0.02 -
400 - - 1.10 £0.02

In the Ref. [14] showed that the e/h ratio for non-uranium calorimeters
with high-Z absorber material is satisfactorily described by the formula:

e e/mip

g 6
h 041+ f,-n/mip’ (6)

where f,, is a constant determined by the Z of the absorber (for lead
fn = 0.12) [24, 25], e/mip and n/mip represent the calorimeter response
to electromagnetic showers and to MeV-type neutrons, respectively. These
responses are normalised to the one for minimum ionising particles. The
Monte Carlo calculated e/mip and n/mip values [26] for the lead-liquid-
argon electromagnetic calorimeter [27] are e/mip = 0.78 and n/mip < 0.5
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Figure 1: The (e/m)en ratios as a function of the beam energy for this
method (black circles) and for weighting method (open circles for Ref. [12]
and open squares for Ref. [13]). The lines are the result of a fit of Eq.
(3) with free e/h parameter and k = 0.11: solid line is for the [23] data,
dashed line is for the [12] data and dash-doted line is for the [13] data.



and leading to e/h > 1.66. The measured value of the (e/h)e, ratio agrees
with this prediction.

The formula (6) show that e/mip is very important for understanding
compensation in lead-liquid-argon calorimeters. The non-compensation
increase when the sampling frequency is also increased [24]. A large frac-
tion of the electromagnetic energy is deposited through very soft electrons
(E < 1 MeV) produced by Compton scattering or the photoelectric effect.
The cross sections for these processes strongly depend on Z and practi-
cally all these photon conversions occur in the absorber material. The
range of the electrons produced in these processes is very short, ~ 0.7 mm
for 1 MeV electron in lead. Such electrons only contribute to the calorime-
ter signal if they are produced near the boundary between the lead and
the active material. If the absorber material is made thinner this effec-
tive boundary layer becomes a larger fraction of the total absorber mass
and the calorimeter response goes up. This effect was predicted by EGS4
simulation [24]. It explains that predictions for the GEM [28] accordion
electromagnetic calorimeter (1 mm lead and 2 mm liquid-argon) are the
e/mip = 0.86 and the e/h > 1.83. The Monte Carlo calculations also pre-
dict that the electromagnetic response for liquid-argon calorimeters (due
to the larger Z value of argon) is consistently large than for calorimeters
with plastic-scintillator readout. The signal from neutron (n/mip) sup-
pressed with factor 0.12 and the n — p elastic scattering products do not
contribute to the signal of liquid-argon calorimeters. These detectors only
observe the 7’s produced by inelastic neutron scattering and from thermal
neutron capture [24].

In the Refs. [12, 13] the following definition of an e/m ratio for first
compartment of the combined calorimeter is adopted. The estimators for
pion and electron energies, respectively, are &' = ¢, - Ren, + €f g - Rhaa and
E = ¢, - Rem, where R, and Ry, are responses of elecromagnetic and
hadronic compartments of a combined calorimeter, ¢, (energy indepen-
dent within 1%) is the energy calibration constant for the electromagnetic
calorimeter, ¢, and c},; are weighting parameters for pions. These pa-
rameters was find using a minimisation procedure for a energy resolution
(0/E) at every beam energies. In the Ref. [12, 13] an electron/pion ra-
tion defined as (e/7)em = %, /¢5,,. This definition one can find from (4)
for an electromagnetic compartment, where ¢Z . = 1/eey, - (€/7)em and
1/eem = ¢,

The results of this weighting method for (e/7).,, rations are given in



Table 1 and shown in Fig. 1 (open circles are for [12] and open squares
are for [13]). In the energy region < 100 GeV the [23] data are in a
good agreement with [12, 13] data and in disagreement for energies > 100
GeV. Fit of the (e/7)., values by the expression (3), with two parameters,
yields (e/h)em = 2.28 £ 0.19 and k£ = 0.143 &+ 0.006 for [12] data and
(e/h)em = 1.93 £ 0.13 and k = 0.135 = 0.007 for [13] data. Note, that
problematical value of (e/m)em = 0.96 + 0.02 at 300 GeV [12] is excluded
from the fit. One can see that parameters k are more bigger that its
well known value and the (e/h)e,, are bigger than our result. For fixed
parameter k& = 0.11 the result of the fit are (e/h)e, = 1.73 £ 0.10 for
[12] data and (e/h)en = 1.64 £ 0.18 for [13] data. In the both cases we
calculated errors of the e/h taken into account the values of < x? >. The
finding e/h rations are in agreement with our result within error bars.
Therefore, one can see that the weighting method leads to distortion of
the (e/m)em ratios.

4 Conclusions

The method of extraction of the e/h ratio for electromagnetic compartment
of combined calorimeter is suggested and the non-compensation was de-
termined. The results agree with the Monte Carlo prediction and results
of the weighting method for electromagnetic compartment of combined
calorimeter. The new easy method of a hadronic energy reconstruction
for a combined calorimeter is also suggested. The proposed methods can
be used for combined calorimeter, which is being designed to perform en-
ergy measurement in a next-generation high energy collider experiment

like ATLAS at LHC.
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