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1 Introduction

The study of superconformal algebras has recently become of central im-
portance because of their dual rôle in describing the gauge symmetries of
supergravity in anti-de Sitter bulk and the global symmetries of the bound-
ary field theory [1, 2, 3].

A special class of configurations which are particularly relevant are the
so-called BPS states, i.e. dynamical objects corresponding to representations
which undergo “shortening”.

These representations can only occur when the conformal dimension of a
(super)primary operator is “quantized” in terms of the R symmetry quantum
numbers and they are at the basis of the so-called “non-renormalization”
theorems of supersymmetric quantum theories [4].

There exist different methods of classifying the UIR’s of superconformal
algebras. One is the so-called oscillator construction of the Hilbert space in
which a given UIR acts[5]-[9]. Another one, more appropriate to describe field
theories, is the realization of such representations on superfields defined in
superspaces [10, 11]. The latter are “supermanifolds” which can be regarded
as the quotient of the conformal supergroup by some of its subgroups.

In the case of ordinary superspace the subgroup in question is the super-
group obtained by exponentiating a non-semisimple superalgebra which is
the semidirect product of a super-Poincaré graded Lie algebra with dilatation
(SO(1, 1)) and the R symmetry algebra. This is the superspace appropriate
for non-BPS states. Such states correspond to bulk massive states which
can have “continuous spectrum” of the AdS mass (or, equivalently, of the
conformal dimension of the primary fields).

BPS states are naturally associated to superspaces with lower number of
“odd” coordinates and, in most cases, with some internal coordinates of a
coset space G/H. Here G is the R symmetry group of the superconformal
algebra, i.e. the subalgebra of the even part which commutes with the con-
formal algebra of space-time and H is some subgroup of G having the same
rank as G.

Such superspaces are called “harmonic” [12] and they are characterized by
having a subset of the initial odd coordinates θ. The complementary number
of odd variables determines the fraction of supersymmetry preserved by the
BPS state. If a BPS state preserves K supersymmetries then the θ’s of the
associated harmonic superspace will transform under some UIR of HK .

For 1/2 BPS states, i.e. states with maximal supersymmetry, the super-
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space involves the minimal number of odd coordinates (half of the original
one) and HK is then a maximal subgroup of G. On the other hand, for states
with the minimal fraction of supersymmetry HK reduces to the “maximal
torus” whose Lie algebra is the Cartan subalgebra of G.

It is the aim of the present paper to give a comprehensive treatment of
BPS states related to “short representations” of superconformal algebras for
the cases which are most relevant in the context of the AdS/CFT correspon-
dence, i.e. the d = 3 (N = 8), d = 6 (N = (2, 0)) and d = 4 (for arbitraryN).
The underlying conformal field theories correspond to world-volume theories
of Nc copies of M2, M5 and D3 branes in the large Nc limit [13]-[19] which are
“dual” to AdS supergravities describing the horizon geometry of the branes
[20].

Some of the results presented in this paper have already appeared else-
where [21]-[24]. 1 Here we give a systematic and unified treatment of the
BPS states corresponding to the three superconformal algebras above. The
method we use is developed in full detail in the case of the d = 4 superconfor-
mal algebra SU(2, 2/N) in Sections 2-5. In Section 2 we carry out an abstract
analysis of the conditions for Grassmann (G-)analyticity [25] (the general-
ization of the familiar concept of chirality [11]) in a superconformal context.
We find the constraints on the conformal dimension and R symmetry quan-
tum numbers of a superfield following from the requirement that it do not
depend on one or more Grassmann variables. Introducing G-analyticity in
a traditional superspace cannot be done without breaking the R symmetry.
The latter can be restored by extending the superspace by harmonic vari-
ables [26, 12, 27, 28, 29] parametrizing the coset G/HK . In Section 3 the
(N, p, q) harmonic superspaces [29, 30] relevant to the description of BPS
states preserving p + q/2N supersymmetries are reviewed. In Section 4 the
massless UIR’s (“supersingleton” multiplets) [31, 32, 33] of SU(2, 2/N) are
considered, first as constrained superfields in ordinary superspace [34, 35] and
then, for a part of them, as (N, p,N − p) G-analytic harmonic superfields
[12, 30]. In Section 5 we use supersingleton multiplication to construct UIR’s
of SU(2, 2/N). We show that in this way one can reproduce the complete
classification of UIR’s of ref. [36]. We give the full list of BPS states obtained
by multiplying chiral and G-analytic supersingletons as well as the restricted

1The new results were reported by one of us at the Workshop on ”Strings, Branes and
M-theory” at the CIT-USC Center for Theoretical Physics, Los Angeles, California on
April 5 and 7, 2000.
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classes of BPS states obtained from one type of G-analytic supersingleton
alone. We also discuss different kinds of shortening which certain superfields
(not of the BPS type) may undergo. In Sections 6 and 7 we apply the same
method to extend these results to d = 6 and d = 3 for the superalgebras
of the maximal supersymmetries, i.e. OSp(8∗/4) and OSp(8/4,R). We con-
clude the paper by listing the various BPS states in the physically relevant
cases of D3, M2 and M5 branes horizon geometry where only one type of
supersingletons appears.

Applications of the present results are found [37, 21] in the classification
of multitrace operators in four-dimensional N = 4 SU(Nc) Yang-Mills theory
[38]-[42], dual to type IIB supergravity on AdS5 × S5 [1].

Another area of interest is the classification of AdS black holes [44]-[47],
according to the fraction of supersymmetry preserved by the black hole back-
ground.

In a parallel analysis with black holes in asymptotically flat background
[48], the AdS/CFT correspondence predicts that such BPS states should be
dual to superconformal states undergoing “shortening” of the type discussed
here.

2 Grassmann analyticity and conformal su-

persymmetry

In this section we shall study the realizations of D = 4 N -extended conformal
supersymmetry SU(2, 2/N) on superfields depending on a subset of the 4N
odd variables. Such superfields will be called Grassmann (G-)analytic.

The non-vanishing (anti)commutation relations involving the odd gener-
ators of the superalgebra SU(2, 2/N) are given below:

{Qi
α, Q̄α̇j} = 2δi

j(σ
µ)αα̇Pµ ,

{Sαj , S̄
i
α̇} = 2δi

j (σµ)αα̇Kµ ,

{Qi
α, S

β
j } = −δi

j(σ
µν) β

α Mµν − 4δβ
αT

i
j − 2δβ

αδ
i
j(R+ iD) ,

[Qi
α, Kµ] = −(σµ)αα̇S̄

α̇i, [Q̄α̇i, Kµ] = (σµ)αα̇S
α
i ,

[Sαi, Pµ] = −(σµ)αα̇Q̄
α̇
i , [S̄i

α̇, Pµ] = (σµ)αα̇Q
αi , (2.1)

Here the odd generators are 2: Qi
α, Q̄α̇i = (Qi

α)† of Poincaré supersymmetry

2Two-component spinor indices are raised and lowered with the help of the Levi-Civita
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and Sαi, S̄
i
α̇ = (Sαi)

† of special conformal supersymmetry. The even gener-
ators are: Pµ of translations, Kµ of conformal boosts, Mµν = −Mνµ of the
Lorentz group, D of dilatations, T i

j of SU(N) and R of U(1) (“R charge”).
Further, the Lorentz and SU(N) generators commute with Q as follows:

[Mµν , Qα] = −1

2
(σµν)α

βQβ, [Mµν , Q̄α̇] =
1

2
(σ̃µν)

β̇
α̇Q̄β̇ , (2.2)

[T i
j , Q

k] = δk
jQ

i − 1

N
δi
jQ

k , [T i
j , Q̄k] = −δi

kQ̄j +
1

N
δi
jQ̄k , (2.3)

and similarly for S. Next, the commutators of Q and S with the dilatation
and R charge generators are given below:

[D,Q] =
i

2
Q , [D, Q̄] =

i

2
Q̄ ;

[D,S] = − i
2
S , [D, S̄] = − i

2
S̄ ; (2.4)

[R,Q] =
4−N

2N
Q , [R, Q̄] = −4−N

2N
Q̄ ;

[R, S] = −4−N

2N
S , [R, S̄] =

4−N

2N
S̄ . (2.5)

Finally, the SU(N) generators T i
j , (T i

j )
† = T j

i ,
∑N

i=1 T
i
i = 0 form the algebra

[T i
j , T

k
l ] = δk

j T
i
l − δi

lT
k
j . (2.6)

The rest of the superalgebra SU(2, 2/N) is the conformal algebra ofM,P,K,D
which will not be needed here.

The superspace traditionally used for the realization of SU(2, 2/N) (as
well as for Poincaré supersymmetry) is given by the real coset

R
4|2N,2N =

SU(2, 2/N)

{K,S, S̄,M,D, T,R} = (xµ, θα
i , θ̄

α̇i) . (2.7)

It is parametrized by 4 even coordinates xµ and 2N left-handed odd spinor
coordinates θα

i in the fundamental of SU(N) together with the 2N right-
handed complex conjugates θ̄α̇i = θα

i . The superalgebra is realized on super-
fields Φ(x, θ, θ̄) defined as functions in the coset (2.7). The generators of the

tensor: ψα = εαβψβ , χ̄α̇ = εα̇β̇χ̄β̇, ψα = εαβψ
β , χ̄α̇ = εα̇β̇χ̄

β̇; ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = 1.
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coset denominator K,S, S̄,M,D, T,R act on the superspace coordinates as
well as on the external indices of the superfield. The latter action is given
by the matrix parts of these generators, Kµ → kµ, Sαi → sαi, S̄

i
α̇ → s̄i

α̇,
Mµν → mµν , D → i`, T i

j → tij, R→ r. 3 A standard assumption is that the
matrix parts of the transitive generators K,S vanish,

sαiΦ = s̄i
α̇Φ = kµΦ = 0 (2.8)

(the third constraint follows from the first two, see (2.1)). The homogeneous
action of the remaining ones, d, l, r, t, on the superfield and, in particular,
on its lowest component φ(x) = Φ|θ=θ̄=0 defines the latter as an irrep of
SO(1, 1)× SL(2,C)× U(1)× SU(N) with the following quantum numbers:

D(`; j1, j2; r; a1, . . . , aN−1) (2.9)

where ` is the conformal dimension, j1, j2 are the two Lorentz quantum num-
bers (“spins”), r is the R charge and a1, . . . , aN−1 are the SU(N) Dynkin
labels.

2.1 Chiral superfields

The superalgebra SU(2, 2/N) can be realized in a smaller superspace, called
“chiral” superspace. It is obtained by adding half of the Poincaré super-
symmetry generators, for instance, the right-handed ones Q̄α̇

i , to the coset
denominator:

C
4|2N,0 =

SU(2, 2/N)

{K,S, S̄,M,D, T,R, Q̄} = (xµ, θα
i ) . (2.10)

This means adding a new constraint to the set (2.8):

q̄α̇
i Φ = 0 (2.11)

where q̄ is the matrix part of the generator Q̄. However, in this case the
superalgebra (2.1) implies restrictions on the allowed values of the quantum

3We assign the R charge rθ = −(4−N)/2N to the left-handed Grassmann coordinates
θα in order to be consistent with the convention that chiral superfields Φ(θ) have r = −`
for any N (see (2.13)). Note that for N = 4, rθ = 0 and the r quantum number becomes
a “central charge” [36, 33]. In this case one refers to the PSU(2, 2/4) algebra for r = 0
and to the PU(2, 2/4) algebra for r 6= 0.
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numbers (2.9) [?]. Indeed, the constraints (2.11), (2.8) yield the compatibility
condition

{q̄α̇
i , s̄

j

β̇
}Φ =

[
−δj

i (σ
µν)α̇

β̇mµν − 2δα̇
β̇

(
2tij + δj

i (`+ r)
)]

Φ = 0 . (2.12)

This is only possible if the superfield (i.e., its first component (2.9)) carries
no right-handed spin, no SU(N) indices and has R charge r = −`:

C
4|2N,0 ⇒ D(`; j1, 0;−`; 0, . . . , 0) . (2.13)

Such superfields are called (left-handed) chiral. Note that both the super-
space (2.10) and the superfields defined in it are complex.

Given a general superfield Φ(x, θ, θ̄), one can restrict it to the coset (2.10)
by imposing the following differential “chirality” constraint [11]

D̄α̇
i Φ(x, θ, θ̄) = 0 . (2.14)

Here D̄ is the right-handed half of the “covariant spinor derivatives”

Di
α =

∂

∂θα
i

+ iθ̄α̇i(σµ)αα̇∂µ , D̄α̇i = − ∂

∂θ̄α̇i
− iθα

i (σµ)αα̇∂µ . (2.15)

Note that these derivatives are only covariant with respect to the super-
Poincaré subalgebra of SU(2, 2/N). They obey the following anticommuta-
tion relations:

{Di
α, D

j
β} = {D̄α̇i, D̄β̇j} = 0 , {Di

α, D̄β̇j} = −2iδi
j(σ

µ)αβ̇∂µ . (2.16)

A crucial observation is that the chirality constraint (2.14) can be solved by
going to the “left-handed chiral” basis

xµ
L = xµ + iθLiσ

µθ̄i
L, θα

Li = θα
i , θ̄α̇i

L = θ̄α̇i . (2.17)

There D̄ becomes just a partial derivative, D̄α̇i = −∂/∂θ̄α̇i
L , so (2.14) simply

implies
Φ = Φ(xµ

L, θ
α
Li) . (2.18)

An important property of the chiral superfields (2.18) is that the product of
two of them is still a chiral superfield, i.e. they form a “ring structure”. Note
the close analogy with the typical property of ordinary analytic functions.
As we shall see in the next subsection, this analogy can be further developed.
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2.2 Grassmann analytic superfields

A natural question is whether one can find other realizations of SU(2, 2/N)
in superspaces involving only part of the odd coordinates. In the chiral case
above we chose to add all of the right-handed generators Q̄α̇

i , which form an
irrep of SU(N), to the coset denominator. Now, let us assume for a moment
the possibility to break SU(N). 4 We can then take just one of the Q’s or
the Q̄’s , e.g., Q1

α and put it in the denominator. The resulting coset has
2N − 2 left-handed and 2N right-handed odd coordinates:

A
4|2N−2,2N =

SU(2, 2/N)

{K,S, S̄,M,D, T,R,Q1} = (xµ, θα
2 , . . . , θ

α
N , θ̄

1
α̇, . . . , θ̄

N
α̇ ) .

(2.19)
This means replacing the chirality condition (2.11) by

q1
αΦ = 0 . (2.20)

Then, a compatibility condition analogous to (2.12) follows from the anti-
commutator

{q1
α, s

β
1}Φ =

[−(σµν)α
βmµν − 2δβ

α

(
2t11 − `+ r

)]
Φ = 0 . (2.21)

It implies (σµν)α
βmµνΦ = 0, i.e. no left-handed spin, as well as a relation

between the eigenvalue of the SU(N) generator t11, the R charge and the
conformal dimension:

j1 = 0 , 2t11 = `− r . (2.22)

Further, anticommuting q1
α with the remaining projections sβ

2,3,...,N , we obtain

t1i = 0 , 2 ≤ i ≤ N . (2.23)

Let us now make a digression and discuss the SU(N) generators tij. In the
Cartan decomposition of the SU(N) algebra (2.6) the generators with 1 ≤
i < j ≤ N are associated to the positive roots (“raising operators”). Among
them tii+1, i = 1, . . . , N − 1 correspond to the simple roots, which means
that the other raising operators are obtained by commuting the simple ones.
Similarly, the generators with N ≥ i > j ≥ 1 are associated to the negative

4Superspaces of this type can be introduced without breaking SU(N) in the framework
of harmonic superspace, see Section 3.
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roots (“lowering operators”), the simple ones being ti+1
i , i = 1, . . . , N − 1.

Finally, the N − 1 independent generators tii (recall that
∑N

i=1 t
i
i = 0) define

the N−1 charges of the Cartan subalgebra of [U(1)]N−1 ⊂ SU(N) as follows:

mk = tkk − tNN = tkk +
m

N
, 1 ≤ k ≤ N , m =

N∑
i=1

mi (2.24)

where mN ≡ 0. An irrep of SU(N) is generated from the highest weight state
(HWS) |a1, . . . , aN−1〉 specified, for example, by the Dynkin labels defined by

ak = mk −mk+1 ≥ 0 , 1 ≤ k ≤ N − 1 . (2.25)

Correspondingly, the charges (2.24) of a HWS take eigenvalues m1 ≥ m2 ≥
. . . ≥ mN−1 ≥ mN = 0. In the language of Young tableaux mk is just the
number of boxes in the k-th row. The HWS is by definition annihilated by
all the raising operators:

tij |a1, . . . , aN−1〉 = 0 , 1 ≤ i < j ≤ N . (2.26)

In these terms conditions (2.23) are just a subset of the irreducibility condi-
tions (2.26). From (2.22) we obtain the following restrictions on the quantum
numbers:

2m

N
− 2m1 = r − ` . (2.27)

We can go on and consider a superspace of the type (2.19) where the first
p θ’s are missing:

A
4|2N−2p,2N =

SU(2, 2/N)

{K,S, S̄,M,D, T,R,Q1, . . . , Qp}
= (xµ, θα

p+1, . . . , θ
α
N , θ̄

1
α̇, . . . , θ̄

N
α̇ ) . (2.28)

As before, this means to impose

qi
αΦ = 0 , 1 ≤ i ≤ p . (2.29)

Then, from the anticommutators {qi
α, s

β
i } = 0, 1 ≤ i ≤ p we obtain conditions

similar to (2.27):
2m

N
− 2mi = r − ` , 1 ≤ i ≤ p . (2.30)
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Also, {qi
α, s

β
j } = 0 for 1 ≤ i < j ≤ p yields a bigger subset of the irreducibility

conditions (2.26). In addition, this time we obtain a new type of condition:

tij |a1, . . . , aN−1〉 = 0 , p ≥ i > j ≥ 1 . (2.31)

The generators in (2.31) are lowering operators of SU(N). In fact, these new
constraints are corollaries of (2.30). Indeed, from (2.30) follows

a1 = . . . = ap−1 = 0 for p ≥ 2 . (2.32)

Now, the HWS |a1, . . . , aN−1〉 has the property 5

(tk+1
k )ak+1|a1, . . . , aN−1〉 = 0 . (2.33)

Then it is obvious that (2.32) and (2.33) imply (2.31).
The argument above can be reversed. Take a superfield defined in the

superspace A4|2N−2,2N (2.19) whose lowest component is in the SU(N) irrep
with Dynkin labels [0, . . . , 0, ap, . . . , aN−1], p > 1. Then (2.31) holds and
combining it with the constraint (2.20), we obtain the full set of constraints
(2.29). Thus, such a superfield effectively lives in a smaller superspace.

It is clear than we can repeat the same procedure in the right-handed
sector. This time the starting point will be a superspace where θ̄N

α̇ is absent
(note that in our convention q1 and q̄N are the HWS’s of the fundamental
irrep of SU(N) and of its conjugate, respectively). From the corresponding
condition q̄α̇

NΦ = 0 we derive

j2 = 0 ,
2m

N
= `+ r . (2.34)

Going on and removing q right-handed odd variables, θ̄N
α̇ , . . . , θ̄

N−q+1
α̇ , i.e.,

imposing the constraints

q̄α̇
i Φ = 0 , N − q + 1 ≤ i ≤ N , (2.35)

in addition to (2.34) we find

mi = 0 , N − q + 1 ≤ i ≤ N − 1 for q ≥ 2 . (2.36)

5The explanation is as follows. The generators tk+1
k , tkk+1 and tkk−tk+1

k+1 form the algebra
of SU(2)k ⊂ SU(N). The state |a1, . . . , aN−1〉 can be regarded as the HWS of an irrep of
this SU(2)k of U(1) charge ak, i.e. of dimension ak + 1. Eq. (2.33) then follows from the
fact that tk+1

k is the lowering operator of SU(2)k.
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As before, this implies the vanishing of the last q − 1 Dynkin labels:

ai = 0 , N − q + 1 ≤ i ≤ N − 1 for q ≥ 2 . (2.37)

Correspondingly, the HWS is annihilated by the lowering operators tij , N ≥
i > j ≥ N − q + 1.

Finally, we can combine left- and right-handed constraints and define the
most general G-analytic superspace as follows:

A
4|2N−2p,2N−2q =

SU(2, 2/N)

{K,S, S̄,M,D, T,R,Q1, . . . , Qp, Q̄N−q+1, . . . , Q̄N}
= (xµ, θα

p+1, . . . , θ
α
N , θ̄

1
α̇, . . . , θ̄

N−q
α̇ ) , p+ q ≤ N . (2.38)

Following [30] we shall call (2.38) an “(N, p, q) superspace” 6. It is important
to realize that anticommuting the Q’s and Q̄’s in the denominator should
not produce the translation generator Pµ which belongs to the coset. This
explains the condition p + q ≤ N in (2.38). The superfields defined in this
coset are annihilated by a subset of the Poincaré supersymmetry generators:

qi
αΦ = q̄α̇

j Φ = 0 , 1 ≤ i ≤ p , N − q + 1 ≤ j ≤ N . (2.39)

These conditions lead to restrictions on the quantum numbers obtained by
combining the ones found above:

j1 = j2 = 0 ;

` = m1 ;

r =
2m

N
−m1 ; (2.40)

m1 = m2 = . . . = mp ,

mi = 0 , N − q + 1 ≤ i ≤ N − 1 , q ≥ 2 .

Such SU(N) representations have the first p − 1 and the last q − 1 Dynkin
labels vanishing:

[0, . . . , 0, ap, . . . , aN−q, 0, . . . , 0] . (2.41)

An interesting limiting case is obtained when p+q = N . Such superspaces
contain exactly one half of the initial number of Grassmann variables (p left-
handed and N − p right-handed spinors). The SU(N) representation of the

6The first example of a (3, 2, 1) superspace was given in [29].
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lowest component of the superfield has only one non-vanishing Dynkin label,
ap 6= 0. Consequently, ` = ap and r =

(
2p
N
− 1

)
ap. In Section 4 we shall see

that in the special case ap = 1 such superfields describe some of the massless
superconformal multiplets.

We remark that chiral superspace can be viewed as a limiting case of the
above when, e.g., p = 0 and q = N . In this case only j1 = 0, the other
Lorentz quantum number j2 remains arbitrary.

3 (N, p, q) harmonic superspace

The chiral superspace introduced in Section 2.1 is naturally realized in terms
of superfields satisfying a differential constraint of the type (2.14). The ques-
tion arises if we can formulate similar differential constraints restricting a
superfield to the G-analytic superspaces of Section 2.2. It is quite clear that
one should impose constraints similar to (2.39) with the supersymmetry gen-
erators replaced by spinor covariant derivatives. The only problem is that in
(2.29) we have explicitly broken the SU(N) invariance. Here the situation is
the same as at the time when the concept of Grassmann analyticity was first
introduced in ref. [25]. This can be repaired by extending the framework of
standard superspace to the so-called harmonic superspace [12].

3.1 Harmonic variables on the coset SU(N)/[U(1)]N−1

Harmonic superspace is obtained from the ordinary one (2.7) by tensoring
it with a coset of the group SU(N)/H where H is a maximal subgroup of
SU(N). In order to be able to describe the most general case of G-analytic
superfields one has to choose the smallest such subgroup, which is the Cartan
subgroup [U(1)]N−1. The resulting coset SU(N)/[U(1)]N−1 is a compact com-
plex manifold (“flag manifold” [49, 30]) of complex dimension N(N − 1)/2.
Note, however, that (N, p, q) superfields for p ≥ 2 and/or q ≥ 2 effectively
live in the smaller cosets SU(N)/[U(1)]N−p−q+1× SU(p)× SU(q), as we shall
explain below (see also [30]).

3.1.1 Covariant description of the coset SU(N)/[U(1)]N−1

The harmonic variables uI
i and their conjugates ui

I = (uI
i )

∗ form an SU(N)
matrix where i is an index in the fundamental representation of SU(N) and
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I = 1, . . . , N are the projections of the second index onto the subgroup
[U(1)]N−1. Further, we define two independent SU(N) groups, a left one
acting on the index i and a right one acting on the projected index I of the
harmonics:

(uI
i )

′ = Λj
iu

J
j ΣI

J , Λ ∈ SU(N)L , Σ ∈ SU(N)R . (3.1)

In particular, the charge operators (2.24) of SU(N)R act on the harmonics
as follows:

mK uI
i = (δKI − δKN)uI

i , mK ui
I = −(δKI − δKN)ui

I . (3.2)

The harmonics satisfy the following SU(N) defining conditions:

uI
iu

i
J = δI

J ,

u ∈ SU(N) : uI
iu

j
I = δj

i , (3.3)

εi1...iNu1
i1
. . . uN

iN
= 1 .

3.1.2 Harmonic functions

A basic assumption of the harmonic approach to the coset SU(N)/[U(1)]N−1

is that any harmonic function is homogeneous under the action of [U(1)R]N−1,
i.e., it is an eigenfunction of the charge operators mI ,

mI f
K1...Kq

L1...Lr
(u) = (δK1I − δK1N − δL1I + δL1N + . . .)f

K1...Kq

L1...Lr
(u) (3.4)

(note that the projections (charges) K1 . . .Kq;L1 . . . Lr are not necessar-
ily all different). Thus the harmonic function effectively depends on the
(N2−1)−(N−1) = N(N−1) real coordinates of the coset SU(N)/[U(1)]N−1.
This description of the coset is global and coordinateless. The function (3.4)
is given by its harmonic expansion on the coset (hence the term “harmonic
space”). In our SU(N) covariant notation this expansion is [U(1)R]N−1 co-
variant and SU(N)L invariant. To give a simple example, consider the case
N = 2 and the harmonic function

f 1(u) = f iu1
i + f ijku1

iu
1
ju

2
k + . . .

+f i1...in+1j1...jnu1
i1 . . . u

1
in+1

u2
j1 . . . u

2
jn

+ . . . . (3.5)

Note that each term in the expansion has the same overall U(1)R charge 1.
The first coefficient f i is in the fundamental of SU(2)L, and the following

12



ones are symmetric in all of their indices (either because u1
iu

1
j is symmetric

in i, j or because the antisymmetrization of u1
iu

2
j reduces it to a preceding

term in (3.5)), thus realizing irreps of SU(2)L of isospin n+1/2. As a second
example, consider the function

f 1
2 (u) ≡ f 11 = f iju1

iu
1
j + f ijklu1

iu
1
ju

1
ku

2
l + . . . . (3.6)

This time the overall charge is even, therefore the irreps of the expansion
carry integer isospin.

We remark that the irreducible products of harmonics play the rôle of the
familiar spherical harmonics in the caseN = 2, where the coset SU(2)/U(1) ∼
S2 (see [12] for details).

The above N = 2 examples are generalized to any N as follows. 7 Con-
sider first a function of the type

f

1. . . 1︸︷︷︸
m1

2. . . 2︸︷︷︸
m2 ···

N-1. . . N-1︸ ︷︷ ︸
mN−1 (u) , m1 ≥ m2 ≥ . . . ≥ mN−1 . (3.7)

Note that the charges form a sequence corresponding to the canonical struc-
ture of a Young tableau. This tableau defines the smallest irrep of SU(N)L

that one finds in the expansion. All the remaining irreps are obtained by the
following procedure. Denote the HWS of the smallest irrep by its Dynkin
labels, |a1, . . . , aN−1〉 and that of any irrep present in the expansion by
|A1, . . . , AN−1〉. The vector |a1, . . . , aN−1〉 appears in the multiplet gener-
ated by the HWS |A1, . . . , AN−1〉, so it can be obtained by the action of the
lowering operators of SU(N)L:

|a1, . . . , aN−1〉 = (t21)
n1(t32)

n2 . . . (tNN−1)
nN−1 |A1, . . . , AN−1〉 . (3.8)

Here we only use the simple roots; the ordering in (3.8) is of no importance for
our argument. From the SU(N) algebra we easily find the following relations
between the two sets of Dynkin labels:

Ak = ak + 2nk − nk−1 − nk+1 ≥ 0 , k = 1, . . . , N − 1 . (3.9)

Note that the coefficients in (3.9) form the Cartan matrix of SU(N). The
total number of boxes of the Young tableaux (i.e., number of indices of the
coefficients, see below) is given by

M =

N−1∑
k=1

kAk = m+NnN−1 . (3.10)

7We are grateful to P. Sorba for help in developing this argument.
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Thus one finds an N − 1-parameter family of irreps where the choice of the
parameters nk is only limited by the requirements Ak ≥ 0.

As an illustration of the above, look at the first term in the expansion of
the function (3.7):

f i1...im1j1...jm2 ...k1...kmN−1 u1
i1
. . . u1

im1
u2

j1
. . . u2

jm2
. . . uN−1

k1
. . . uN−1

kmN−1
. (3.11)

Unlike the simple SU(2) examples above, here the coefficients f are not nec-
essarily irreducible under SU(N)L. Indeed, they only possess the symmetry
associated to each type of harmonic projection but no antisymmetrization
between any two different projections has been performed. Comparing the
term (3.11) to the general case (3.9) we can say that in (3.11) the total num-
ber of indices (boxes in a Young tableau) is M = m, so what is left is the
N − 2-parameter family of irreps corresponding to nN−1 = 0.

The general term in the expansion of the function (3.7) is obtained from
(3.11) by multiplying it by the chargeless harmonic monomial u1

i1 . . . u
N
iN

(the
total antisymmetrization of the indices i1, . . . , iN results in an SU(N)L sin-
glet, so it should be eliminated):

f

1. . . 1︸︷︷︸
m1

2. . . 2︸︷︷︸
m2 ···

N-1. . . N-1︸ ︷︷ ︸
mN−1 (u) =

∞∑
nN−1=0

f i1...iM (u1)m1+nN−1 . . . (uN−1)mN−1+nN−1(uN)nN−1 . (3.12)

We use nN−1 from (3.8) as the expansion parameter. Each term in (3.12)
has a coefficient with a total number of indices M given by (3.10). This
coefficient is decomposed into a set of SU(N)L irreps according to the rule
(3.9).

If the charges ([U(1)R]N−1 projections) of the harmonic function do not
appear in the canonical order (3.7), then one should reorder the indices
1, 2, . . . , N so that they can label a Young tableau. For instance, the N = 4
function f 122233 should be rewritten as f 222331, so it corresponds to the Young
tableau (3, 2, 1). If a complete set of N different projections is present, it can
be suppressed, e.g., the N = 4 function f 11234 ≡ f 1. Finally, if the function
carries lower indices (projections of the complex conjugate fundamental rep-
resentation), they should be converted into sets of N − 1 upper indices, for
example, the N = 4 function f 1

4 ≡ f 1123 or f 12
1 ≡ f 12234 ≡ f 2.
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3.1.3 Harmonic derivatives

The harmonic derivatives are operators which respect the defining relations
(3.3):

∂ I
J = uI

i

∂

∂uJ
i

− ui
J

∂

∂ui
I

− 1

N

N∑
K=1

δ I
J

(
uK

i

∂

∂uK
i

− ui
K

∂

∂ui
K

)
. (3.13)

They act on the harmonics as follows:

∂I
Ju

K
i = δK

J u
I
i −

1

N
δI
Ju

K
i , ∂I

Ju
i
K = −δI

Ku
i
J +

1

N
δI
Ju

i
K . (3.14)

Note that we prefer to treat uI
i and ui

I as independent variables subject to
the constraints (3.3).

Clearly, the derivatives ∂I
J are the generators of the group SU(N)R acting

on the [U(1)R]N−1 projected indices of the harmonics. The assumption (3.4)
is then translated into the requirement that the harmonic functions f(u) are
eigenfunctions of the diagonal derivatives ∂ I

I which count the U(1)R charges:

(∂ I
I − ∂N

N )f
K1...Kq

L1...Lr
(u) = (δK1I − δK1N − δL1I + δL1N + . . .)f

K1...Kq

L1...Lr
(u) . (3.15)

Then the independent harmonic derivatives on the coset are the N(N −
1)/2 complex derivatives ∂ I

J , I < J corresponding to the raising operators
of SU(N)R (or their conjugates ∂ I

J , I > J corresponding to the lowering
operators of SU(N)R).

From the above it follows that the harmonic differential conditions

∂ I
J f

K1...Kq

L1...Lr
(u) = 0 , I < J (3.16)

impose severe constraints on the harmonic function. Indeed, if the function
is of the type (3.7), it is reduced to just one harmonic monomial giving rise to
an SU(N) irrep whose HWS is labeled by the charges. Any other harmonic
function subject to the condition (3.16) must vanish.

As an example, take N = 2 and the function f 1(u) (3.5) subject to the
constraint

∂ 1
2 f

1(u) = 0 ⇒ f 1(u) = f iu1
i (3.17)

since this is the only term in the expansion (3.5) which automatically satisfies
the condition (3.17). So, the harmonic function is reduced to a doublet of
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SU(2). Similarly, for N = 4 the function f 12(u) is reduced to the 6 of SU(4).
Indeed, the constraints ∂ 2

3 f
12(u) = ∂ 3

4 f
12(u) = 0 ensure that f 12(u) depends

on u1, u2 only, f 12(u) = f iju1
iu

2
j . Then the constraint ∂ 1

2 f
12(u) = f iju1

iu
1
j = 0

implies f ij = −f ji. An example of a harmonic function which vanishes if
subject to the constraint (3.16) is, e.g., in N = 2, f1(u) ≡ f 2(u), since no
term in its expansion can satisfy the condition ∂ 1

2 f
2(u) = 0.

Note that not all of the derivatives ∂ I
J , I < J are independent, as follows

from the SU(N) algebra. The independent ones,

∂ 1
2 , ∂

2
3 , . . . , ∂

N−1
N (3.18)

correspond to the simple roots of SU(N). Then the constraint (3.16) is
equivalent to

∂ I
I+1f

K1...Kq

L1...Lr
(u) = 0 , I = 1, . . . , N − 1 . (3.19)

We remark that the coset SU(N)/U(1)N−1 can be parametrized by N(N−
1)/2 complex coordinates. In our context this amounts to making a choice
of the harmonic matrix uI

i such that the group [U(1)R]N−1 is identified with
[U(1)L]N−1 ⊂ SU(N)L. Then the harmonic derivatives become Cartan’s
covariant derivatives on the coset. The constraints (3.16) take the form of
covariant Cauchy-Riemann analyticity conditions. For this reason we can call
the set of constraints (3.16) (or (3.19)) harmonic (H-)analyticity conditions.
The above argument shows that H-analyticity is equivalent to defining a
HWS of SU(N), i.e. it is the SU(N) irreducibility condition on the harmonic
functions.

3.2 (N, p, q) harmonic superfields

The main purpose of introducing harmonic variables is to be able to define
manifestly SU(N) covariant superfields living in the G-analytic superspaces
(2.38). This is done following the example of the chiral superfields. There we
replaced the condition (2.11) by the differential chirality constraint (2.14).
In the case of (N, p, q) analyticity we have to replace conditions (2.39) by
analogous differential constraints. The crucial point now is to let the super-
field depend on the harmonic variables and obtain the adequate [U(1)]N−1

projections with the help of harmonic variables:

DI
αΦ(x, θ, θ̄, u) = D̄α̇

JΦ(x, θ, θ̄, u) = 0 (3.20)
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where

DI
α = Di

αu
I
i , D̄α̇

J = D̄α̇
i u

i
J , 1 ≤ I ≤ p , N − q + 1 ≤ J ≤ N . (3.21)

The derivatives appearing in (3.20) anticommute (see (2.16)), therefore there
exists a G-analytic basis in superspace,

xµ
A = xµ − i(θ1σ

µθ̄1 + . . .+ θpσ
µθ̄p − θN−q+1σ

µθ̄N−q+1 − . . .− θNσ
µθ̄N ) ,

θα
I = θα

i u
i
I , θ̄α̇I = θ̄α̇iuI

i . (3.22)

where these derivatives become just DI
α = ∂/∂θα

I , D̄α̇ J = −∂/∂θ̄α̇ J . Conse-
quently, in this basis the analytic superfield (3.20) becomes an unconstrained
function of N − p θ’s and N − q θ̄’s, as well as of the harmonic variables:

Φ(xA, θp+1, . . . , θN , θ̄
1, . . . , θ̄N−q, u) . (3.23)

Let us now turn to the harmonic dependence in (3.23). In principle, each
component in the θ expansion of the superfield is a harmonic function having
an infinite harmonic expansion of the type (3.12). If we want to deal with a
finite set of fields, we have to impose a harmonic irreducibility condition of
the type (3.16) (or the equivalent subset (3.19)). However, in the G-analytic
basis (3.22) the harmonic derivatives become covariant, D I

J . In particular,
the derivatives

D I
J = ∂ I

J +2iθJσ
µθ̄I∂µ−θJ∂

I+θ̄I ∂̄J , 1 ≤ I ≤ N−q, p+1 ≤ J ≤ N (3.24)

acquire space-time derivative terms. In the next section we shall see that
this has important consequences on a G-analytic superfield subject to the
additional H-analyticity constraints

D I
J Φ[a1,...,aN−1](xA, θp+1, . . . , θN , θ̄

1, . . . , θ̄N−q, u) = 0 , 1 ≤ I < J ≤ N .
(3.25)

Here we have indicated the SU(N) representation carried by the superfield.

3.3 (N, p, q) conformal superfields

So far in this section we have only discussed G-analytic superfields as rep-
resentations of Poincaré supersymmetry. From the analysis of Section 2 we
know that superconformal invariance yields additional restrictions, in partic-
ular, on the SU(N) irrep carried by the superfield. Adapting the arguments
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of Section 2, one finds that (3.20) implies the following harmonic conditions
(even if we do not impose the SU(N) irreducibility conditions (3.25)):

D I
I+1Φ

[a1,...,aN−1] = D I+1
I Φ[a1,...,aN−1] = 0 ,

1 ≤ I ≤ p− 1 and N − q + 1 ≤ I ≤ N − 1 . (3.26)

These two subsets of raising and lowering operators of SU(N) generate the
algebra of SU(p)× SU(q). In the spirit of the coset construction of Section 2
this means that we have added the factor SU(p)×SU(q) to the denominator
of the harmonic coset. In other words, a conformally covariant (N, p, q) su-
perfield lives not only in a smaller superspace, but also in a smaller harmonic
space as compared to our initial coset SU(N)/[U(1)]N−1. From Section 2
we also know that the Dynkin labels of such a superfield are restricted (see
(2.41)). To summarize, a G-analytic conformal superfield has the form

Φ[0,...,0,ap,...,aN−q ,0,...,0](xA, θp+1, . . . , θN , θ̄
1, . . . , θ̄N−q, u) (3.27)

and lives in the harmonic coset

SU(N)

[U(1)]N−p−q+1 × SU(p)× SU(q)
for p ≥ 2 , q ≥ 2 ;

SU(N)

[U(1)]N−q × SU(q)
for p = 0, 1 , q ≥ 2 ; (3.28)

SU(N)

[U(1)]N−p × SU(p)
for p ≥ 2 , q = 0, 1 ;

SU(N)

[U(1)]N−1
for p = 0, 1 and q = 0, 1 .

This effective reduction of the harmonic coset has been pointed out in
[30], although the coset proposed there only applies to superfields belonging
to very special SU(N) irreps with only two non-vanishing Dynkin labels:

Φ[0,...,0,ap,0,...,0,aN−q ,0,...,0](xA, θp+1, . . . , θN , θ̄
1, . . . , θ̄N−q, u) ⇒

u ∈ SU(N)

S(U(p)× U(q)×U(N − p− q))
. (3.29)

Note, however, that in the limiting cases N = p + q and N = p + q + 1 the
two cosets (3.28) and (3.29) coincide.
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4 Massless superconformal multiplets

Massless multiplets are a particular class of superconformal multiplets. Their
components are fields carrying Lorentz spin (j1, 0), φα1...α2j1

(x) or (0, j2),

φ̄α̇1...α̇2j2
(x) (all indices are symmetrized). In addition, they satisfy the mass-

less field equations

∂µσαα̇
µ φαα2...α2j1

= 0 , ∂µσαα̇
µ φ̄α̇α̇2...α̇2j2

= 0 (4.1)

(or �φ = 0 in the case of spin (0, 0)). These massless fields are known [50]
to form UIR’s of the conformal algebra SU(2, 2) if ` = j + 1. Consequently,
the massless superconformal multiplets form UIR’s of SU(2, 2/N) [36, 33].

In the language of AdS supersymmetry such multiplets are called “super-
singletons” [51, 52].

In this section we shall formulate the massless multiplets of SU(2, 2/N)
first in terms of ordinary superfields and then, for a subclass of them, in
(N, k,N − k) harmonic superspace (the simplest example is provided by the
(2, 1, 1) hypermultiplet [12]; the generalization to the case (N, k,N − k) was
given in [30]).

4.1 Massless multiplets as constrained superfields

There exist three types of massless N -extended superconformal multiplets.
They can be described in terms of ordinary constrained superfields [34, 35].

(i). The first type is given by scalar superfields

W i1...ik(xµ, θα
i , θ̄

α̇i) , k = 1, . . . , N − 1 (4.2)

with k totally antisymmetrized indices of the fundamental representation of

SU(N) (i.e., carrying Dynkin labels [0, . . . , 0,
k

1, 0, . . . , 0]). They satisfy the
following constraints:

D(j
αW

i1)i2...ik = 0 , (4.3)

D̄α̇{jW i1}i2...ik = 0 (4.4)

where () means symmetrization and {} means the traceless part. In the
cases N = 2, 3, 4 these constraints define the on-shell N = 2 matter (hy-
per)multiplet [53] and the N = 3, 4 on-shell super-Yang-Mills multiplets [54].
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Their generalization to arbitrary N has been given in Refs. [34, 35] where it
has also been shown that they describe on-shell massless multiplets.

After rewriting the constraints (4.3), (4.4) in harmonic superspace in Sec-
tion 4.2, we shall see that the above massless multiplets are superconformal
if

` = 1 , r =
2k

N
− 1 . (4.5)

We also note their SU(N) quantum numbers

m1 = . . . = mk = 1 , mk+1 = . . . = mN−1 = 0 , m = k . (4.6)

(ii). The second type is given by a chiral scalar superfield

D̄α̇
i Φ = 0 (4.7)

satisfying the additional constraint (field equation)

Di αDj
αΦ = 0 . (4.8)

This superfield is an SU(N) singlet. The corresponding massless multiplet is
superconformal if (see Section 2.1)

` = −r = 1 . (4.9)

Similarly, one can introduce an antichiral multiplet:

Di
αΦ̄ = 0 , D̄i α̇D

α̇
j Φ̄ = 0 (4.10)

with quantum numbers
` = r = 1 . (4.11)

(iii). The third type is given by chiral superfields carrying external
Lorentz spin (j1, 0):

D̄α̇
i wα1...α2j1

= 0 . (4.12)

Here the 2j1 spinor indices are totally symmetrized. These superfields are
SU(N) singlets. They satisfy the massless field equation

Di αwαα2...α2j1
= 0 . (4.13)

As we have seen in Section 2.1, conformal supersymmetry requires that

` = −r = j1 + 1 . (4.14)
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Similarly, one can introduce antichiral superfields with Lorentz spin (0, j2):

Di
αw̄α̇1...α̇2j2

= 0 , D̄α̇
i w̄α̇α̇2...α̇2j2

= 0 (4.15)

with
` = r = j2 + 1 . (4.16)

It is straightforward to see that such massless representations coincide
with the massless supermultiplets of N -extended Poincaré supersymmetry
(for an N = 8 example see ref. [55].).

4.2 Type (i) massless multiplets as analytic superfields

Now, let us use the harmonic variables to covariantly project all the SU(N)
indices in the constraints (4.3), (4.4) onto [U(1)R]N−1. For example, the
projection

W 12...k = W i1i2...ik(x, θ, θ̄)u1
i1
u2

i2
. . . uk

ik
(4.17)

satisfies the constraints

D1
αW

12...k = D2
αW

12...k = . . . = Dk
αW

12...k = 0 , (4.18)

D̄α̇ k+1W
12...k = D̄α̇ k+2W

12...k = . . . = D̄α̇ NW
12...k = 0 (4.19)

where DI
α = Di

αu
I
i and D̄α̇ I = D̄α̇ iu

i
I . The first of them, eq. (4.18), is a

corollary of the commuting nature of the harmonics variables, and the second
one, eq. (4.19), of the defining conditions (3.3). In eqs. (4.18), (4.19) one
recognizes the conditions for G-analyticity (3.20) of the type (N, k,N − k).
As explained in Section 3.2, in the appropriate G-analytic basis (3.22) W 12...k

becomes an unconstrained function of k θ̄’s and N − k θ’s:

W 12...k = W 12...k(xA, θk+1, . . . , θN , θ̄
1, . . . , θ̄k, u) . (4.20)

It is important to realize that the G-analytic superfield (4.20) is an SU(N)
covariant object only because it depends on the harmonic variables. In or-
der to recover the original harmonic-independent but constrained superfield
W i1i2...ik(x, θ, θ̄) (4.3), (4.4) we need to impose differential constraints involv-
ing the harmonic variables. In Section 3.2 we have shown that they take the
form of SU(N) irreducibility conditions, eq. (3.25). In this particular case
they are

D I
JW

12...k = 0 , 1 ≤ I < J ≤ N (4.21)
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or the equivalent set

D I
I+1W

12...k = 0 , 1 ≤ I < J ≤ N − 1 . (4.22)

In the initial real basis (2.7) of the full superspace R
4|2N,2N these constraints

simply mean that the superfield is a polynomial in the harmonics, as in
(4.17). However, in the G-analytic basis (3.22) the harmonic derivatives
(3.24) contain space-time derivatives. This leads to a number of constraints
on the component fields. The detailed analysis can be found in [22], here we
only recall the final result:

W 12...k = φ12...k

+θ̄1
α̇ψ̄

α̇ 23...k + . . .+ θ̄k
α̇ψ̄

α̇ 12...k−1

+θα
k+1χ

1...k k+1
α + . . .+ θα

Nχ
1...k N
α

+θ̄1
α̇θ̄

2
β̇
ψ̄(α̇β̇) 3...k + . . .+ θ̄k−1

α̇ θ̄k
β̇
ψ̄(α̇β̇) 1...k−2

+θα
k+1θ

β
k+2χ

1...k k+1 k+2
(αβ) + . . .+ θα

N−1θ
β
Nχ

1...k N−1 N
(αβ)

. . .

+θ̄1
α̇1
. . . θ̄k

α̇k
ψ̄(α̇1...α̇k) + θα1

k+1 . . . θ
αN−k

N χ(α1...αN−k)

+derivative terms . (4.23)

Here all the component fields belong to totally antisymmetric irreps of SU(N),
e.g., φ12...k(x, u) = φ[i1i2...ik](x)u1

i1
u2

i2
. . . uk

ik
. Further, these fields satisfy mass-

less field equations of the type (4.1).
We conclude this section by a remark concerning the conformal properties

of the above multiplets. The (N, k,N − k) analytic superfield W 12...k is
characterized by the SU(N) quantum numbers m1 = . . . = mk = 1, mk+1 =
. . . = mN−1 = 0. From eqs. (2.40) we see that if

`k = 1 , rk =
2k

N
− 1 (4.24)

W 12...k realizes a massless UIR of the superconformal algebra.

5 UIR’s of D = 4 N-extended conformal su-

persymmetry

In this section we shall show how the complete classification of UIR’s of
SU(2, 2/N) found in [36] (see also [56]) can be obtained by multiplying the
three types of massless superfields introduced in Section 4.
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5.1 The three series of UIR’s

The results of [36] 8 fall into three distinct series. The simplest one (called
series C in [22]) is given by the following conditions:

C) ` = m1 , r =
2m

N
−m1 , j1 = j2 = 0 . (5.1)

We can construct the superfield realization of series C by multiplying
massless G-analytic superfields 9 (“supersingletons”) of the type (4.20):

W [a1,...,aN−1] = (W 1)a1(W 12)a2 . . . (W 12...N−1)aN−1 . (5.2)

Since each factor in (5.2) satisfies the usual harmonic irreducibility con-
straints, the same is true for the product:

DI
JW

[a1,...,aN−1] = 0 , 1 ≤ J < I ≤ N . (5.3)

As a result, the lowest component of the superfield (5.2) is an irrep of
SU(N) with Dynkin labels [a1, . . . , aN−1]. This is easily seen by realizing
that: i) all the SU(N) indices projected with harmonics uK

i for a given
K are symmetrized; ii) their total number is mK =

∑N−1
i=K ai; iii) the har-

monic conditions (5.3) remove all symmetrizations between indices projected
with different harmonics uK

i and uL
i . All this reproduces the structure of a

Young tableau with numbers of boxes (m1, m2, . . . , mN−1), i.e. Dynkin labels
[a1, . . . , aN−1].

Further, from (4.24) we find ` =
∑N−1

k=1 ak`k = m1 and r =
∑N−1

k=1 akrk =
2m
N
− m1, which exactly reproduces (5.1). Thus, we have proved that the

complete series C is realized by the product (5.2) of massless multiplets.
We remark that for a generic choice of the Dynkin labels the superfield

(5.2) is (N, 1, 1) G-analytic. However, if the first p − 1 or the last q −
1 (or both) factors in (5.2) are absent, i.e., if the corresponding Dynkin
labels vanish, we obtain further analyticity conditions of the type (N, p, q),
in accord with (3.27). We should mention that in ref. [36] a list of the

8Our conventions differ from those of [36] in the following sense: r → −r, 2m/N →
2m1 − 2m/N .

9Series of operators obtained as powers of the N = 4 super-Yang-Mills field strength
considered as a G-analytic harmonic superfield were introduced in [57]. They were identi-
fied with short multiplets of SU(2, 2/4) and their correspondence with the K-K spectrum
of IIB supergravity was established in [58].
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possible superconformal differential conditions on superfields is given. There
one only finds (N, 1, 1) G-analyticity conditions, but this can be explained
by the above observation.

The second series (called B in [22]) is given by the following conditions:

B) ` = −r +
2m

N
≥ 2 + 2j1 + r + 2m1 − 2m

N
, j2 = 0 (5.4)

(or j1 → j2, r → −r, 2m
N
→ 2m1 − 2m

N
). It can be obtained by multiplying

the G-analytic massless superfield (5.2) by left-handed chiral ones as follows:

wα1...α2j1
Φk W [a1,...,aN−1] (5.5)

where k ≥ 0 is an integer. The first factor in (5.5) brings in the Lorentz spin
(j1, 0). The second factor adjusts the dimension and R charge of the series,

` = 1 + j1 +m1 + k , r = −1− j1 − k −m1 +
2m

N
, (5.6)

so that they exactly match (5.4). The conformal bound in (5.4) is obtained for
k = 0, i.e. without employing any scalar chiral superfields. The alternative
series of this type is obtained by replacing chiral by antichiral superfields.

Finally, the most general series (called A in [22]) is given by the following
conditions:

A) ` ≥ 2 + 2j2 − r +
2m

N
≥ 2 + 2j1 + r + 2m1 − 2m

N
(5.7)

(or j1 → j2, r → −r, 2m
N
→ 2m1− 2m

N
). This series is obtained by multiplying

together all possible types of massless superfields:

wα1...α2j1
w̄α̇1...α̇2j2

Φk Φ̄s W [a1,...,aN−1] (5.8)

where k ≥ s ≥ 0 are integers. This time we find

` = 2 + j1 + j2 +m1 + k + s , r = j2 − j1 − k + s−m1 +
2m

N
(5.9)

which corresponds to (5.7). The two conformal bounds in (5.7) are saturated
for s = 0 or k = s = 0, i.e. without employing one or the other type (or both)
of scalar chiral superfields. These bounds correspond to superfields satisfying
differential constraints, as explained in Section 5.3. The alternative series is
obtained by taking s ≥ k ≥ 0.
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Note that in the abstract series (5.4) and (5.7) the dimension ` and R
charge r can be any real numbers. In order to account for this, the powers k
and s in (5.5) and (5.8) will have to take non-integer values. This does not
happen for series C where ` is always integer and r is rational.

One final remark concerns the unitarity of the above series of represen-
tations. Earlier we mentioned that the massless multiplets (supersingletons)
are known to be UIR’s of the superconformal algebra. Then it is clear that
by multiplying them as we did above we automatically obtain series of UIR’s.

5.2 Series obtained from one type of supersingleton

In Section 5.1 we used all possible G-analytic supersingletons W 12...n with
1 ≤ n ≤ N − 1 to reproduce the complete series C. An alternative approach
is to use different realizations of the same type of supersingleton (i.e., for a
fixed value of n). We presented a similar construction in [22], where we only
considered the case n = N/2 (for even N). The generalization is straightfor-
ward. The result is a series of UIR’s which is a particular case of the series
B above.

The supersingleton W 12...n can be equivalently rewritten by choosing dif-
ferent harmonic projections of its SU(N) indices and, consequently, different
sets of G-analyticity constraints. This amounts to superfields of the type

W I1I2...In(θJn+1 , . . . , θJN
, θ̄I1, . . . , θ̄In) (5.10)

where I1, . . . , In and Jn+1, . . . , JN are two complementary sets of N indices.
Each of these superfields depends on 2N Grassmann variables, i.e. half of
the total number of 4N . This is the minimal size of a G-analytic superspace,
so we can say that the W ’s are the “shortest” superfields (superconformal
multiplets).

The idea now is to start multiplying different versions of the W ’s of the
type (5.10) (for a fixed value of n) in order to obtain composite objects
depending on various numbers of odd variables. The following choice of W ’s
and of the order of multiplication covers all possible intermediate types of
G-analyticity:

A(p1, p2, . . . , pN−1)

= [W 1...n(θn+1...N θ̄
1...n)]p1+...+pN−1

×[W 1...n−1 n+1(θn n+2...N θ̄
1...n−1 n+1)]p2+...+pN−1
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×[W 1...n−1 n+2(θn n+1 n+3...N θ̄
1...n−1 n+2)]p3+...+pN−1

· · ·
×[W 1...n−1 N−1(θn...N−2 N θ̄

1...n−1 N−1)]pN−n+...+pN−1

×[W 1...n−2 n n+1(θn−1 n+2...N θ̄
1...n−2 n n+1)]pN−n+1+...+pN−1

×[W 1...n−3 n−1 n n+1(θn−2 n+2...N θ̄
1...n−3 n−1 n n+1)]pN−n+2+...+pN−1

· · ·
×[W 13...n+1(θ2 n+2...N θ̄

13...n+1)]pN−2+pN−1

×[W 23...n+1(θ1 n+2...N θ̄
23...n+1)]pN−1 . (5.11)

The power
∑N−1

r=k pr of the k-th W is chosen in such a way that each new
pr corresponds to bringing in a new realization of the same supersingleton.
As a result, at each step a new θ or θ̄ appears (they are underlined in (5.11)),
thus adding new odd dimensions to the G-analytic superspace. The only
exception of this rule is the second step at which both a new θ and a new θ̄
appear. So, the series (5.11) covers the cases (N, n,N−n), (N, n−1, N−n−1)
and then all intermediate cases up to (N, 1, 0).

The superfield A(p1, p2, . . . , pN−1) should be submitted to the same H-
analyticity constraints as one would impose on W 1...n alone,

D I
I+1A(p1, p2, . . . , pN−1) = 0 , I = 1, 2, . . . , N − 1 . (5.12)

This is clearly compatible with the G-analyticity conditions onA(p1, p2, . . . , pN−1)
since they form a subset of these on W 1...n. As before, H-analyticity makes
A(p1, p2, . . . , pN−1) irreducible under SU(N).

By counting the number of occurrences of each projection 1, 2, . . . , N − 1
and the dimensions and R charges in (5.11), we easily find the relations

` =
N−1∑
k=1

kpk , m1 = `− pN−1 , m = n` , r =

(
2n

N
− 1

)
` . (5.13)

If N = 2n this series has no R charge. If pN−1 = 0 the product (5.11)
represents a G-analytic superfield and is thus a particular case of the series
C. If pN−1 ≥ 1 it depends on all θ’s and on all θ̄’s but θ̄N , so it is a particular
case of the series B (5.6) with j1 = 0.

Finally, the Dynkin labels of the SU(N) irrep carried by the first compo-
nent of A(p1, p2, . . . , pN−1) are given below:

a1 = pN−2 ,
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a2 = pN−3 , . . . , an−2 = pN−n+1 ,

an−1 = (N − n− 2)

N−1∑
k=N−n+1

pk +

N−n∑
k=2

(k − 1)pk ,

an = p1 , (5.14)

an+1 = p2 +
N−1∑

k=N−n+1

(k −N + n)pk ,

an+2 = p3 , . . . , aN−2 = pN−n−1 ,

aN−1 =

N−1∑
k=N−n

pk .

An interesting particular case is obtained if aN−1 = 0. This implies
pN−n = . . . = pN−1 = 0, so a1 = . . . = an−2 = 0. In other words, this is a
G-analytic superfield of the type (N, n− 1, 2). The remaining Dynkin labels
are an−1 =

∑N−n−1
k=2 (k − 1)pk, an = p1, an+1 = p2, . . . , aN−2 = pN−n−1.

In general, none of these labels vanishes, therefore the harmonic coset in
which this (N, n− 1, 2) superfield lives is not smaller than the expected one,
SU(N)/[U(1)]N−n × SU(n− 1)× SU(2).

5.3 Shortness conditions

In the AdS literature the term “short” applies to multiplets which do not
reach their maximal spin (equal to (j1 + N

2
, j2 + N

2
) where (j1, j2) is the

spin of the first component) or which contain constrained fields like, e.g.,
conserved vectors. Our construction of the UIR’s of SU(2, 2/N) in terms of
supersingletons allows us to easily find out when and what type of “shortness”
condition takes place.

To this end we recall that the building blocks w, Φ and W are all con-
strained superfields corresponding to the “ultrashort” supersingleton multi-
plets. They are either G-analytic ((4.18), (4.19)) or chiral ((4.7), (4.12)).
In addition, they satisfy on-shell constraints which take the form of SU(N)
irreducibility harmonic conditions (4.21) in the G-analytic case or are of the
type (4.8) or (4.13) in the chiral case.

Now, the most general product of chiral, antichiral and G-analytic super-
fields as in the series A (5.8) only satisfies the harmonic constraints (4.21)
(recall that w and Φ are harmonic-independent). However, there is a num-
ber of particular cases where some constraints on the θ dependence still take
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place.
i) The product wα1...α2j1

W [a1,...,aN−1] satisfies the intersection of the con-
straints (4.12), (4.13) of the factor w with the G-analyticity ones of the factor
W . In the generic case the latter is of the type (N, 1, 1), so we have

D̄α̇
N(wα1...α2j1

W [a1,...,aN−1]) = 0 , (5.15)

D1α(wαα2...α2j1
W [a1,...,aN−1]) = 0 . (5.16)

If W carries Dynkin labels like in (3.27), it is of the type (N, p, q) and,
correspondingly, we obtain q equations like (5.15) and p ones like (5.16).

Similarly, the product Φ W [a1,...,aN−1] satisfies the constraints

D̄α̇
N(Φ W [a1,...,aN−1]) = 0 , (5.17)

D1αD1
α(Φ W [a1,...,aN−1]) = 0 (5.18)

or more of the same type is W is (N, p, q) analytic.
ii) The bilinear products of chiral with anti-chiral superfields are current-

like objects. They satisfy constraints which turn the top spin in the superfield
into a conserved “current”. The simplest example is the bilinear ΦΦ̄:

DiαDj
α(ΦΦ̄) = 0 , (5.19)

D̄iα̇D̄
α̇
j (ΦΦ̄) = 0 . (5.20)

These constraints can be weakened if we multiply ΦΦ̄ by a G-analytic factor
W . In this case only certain projections of (5.19) are preserved, e.g.,

D1αD1
α(ΦΦ̄ W [a1,...,aN−1]) = D̄Nα̇D̄

α̇
N (ΦΦ̄ W [a1,...,aN−1]) = 0 . (5.21)

Yet another current-like object is the bilinear wα1...α2j1
w̄α̇1...α̇2j2

. It satis-
fies the constraints

D̄α̇
i (wα1...α2j1

w̄α̇α̇2...α̇2j2
) = 0 , (5.22)

Diα(wαα2...α2j1
w̄α̇1...α̇2j2

) = 0 . (5.23)

As before, the product wα1...α2j1
w̄α̇1...α̇2j2

W [a1,...,aN−1] satisfies only the cor-
responding projections of the above.

Similarly, the bilinear wα1...α2j1
Φ̄ satisfies the constraints

Diα(wαα2...α2j1
Φ̄) = 0 , (5.24)

D̄iα̇D̄
α̇
j (wα1...α2j1

Φ̄) = 0 . (5.25)
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iii) A different class of “short” objects are obtained from the most general
product (5.8) of series A either by setting s = 0 or j2 = 0 and s = 1. In
other words, we take the current-like bilinears above and multiply them by a
BPS object (i.e., product of a chiral and a G-analytic factors). The resulting
objects satisfy the constraints (for a generic W ):

D̄α̇
N (wα1...α2j1

w̄α̇α̇2...α̇2j2
Φk W [a1,...,aN−1]) = 0 , (5.26)

D̄Nα̇D̄
α̇
N(wα1...α2j1

Φ̄ Φk W [a1,...,aN−1]) = 0 . (5.27)

We call such objects “intermediate short”. Note that they saturate the first
conformal bound in (5.7). Intermediate short multiplets, as they are defined
above, will also occur in d = 6 and d = 3 (see Sections 6.4 and 7.4).

5.4 BPS states of SU(2, 2/N)

Here we give a summary of the SU(2, 2/N) multiplets which correspond to
BPS states. 10 They are realized in terms of superfields which do not depend
on at least one spinor coordinate. There are three distinct ways to obtain
such multiplets.

5.4.1 (p, q) BPS states

Superfields which do not depend on the first p θ’s and the last q θ̄’s are
obtained by multiplying G-analytic objects:

p+ q

2N
BPS: W [0,...,0,ap,ap+1,...,aN−q ,0,...,0](θp+1, . . . , θN , θ̄

1, . . . , θ̄N−q)

= (W 12...p)ap(W 12...p+1)ap+1 . . . (W 12...N−q)aN−q (5.28)

where
1 ≤ p, q ≤ N − 1 , p + q ≤ N . (5.29)

Note that the fraction of supersymmetry preserved by a (p, q) BPS state
ranges as follows:

1

N
≤ p+ q

2N
≤ 1

2
. (5.30)

The two end points are obtained for p = q = 1 and for p+ q = N .

10Note that such BPS states have a close resemblance to BPS Poincaré multiplets in
five dimensions [59], as expected by a limiting procedure.
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Such states have the first p− 1 and the last q − 1 SU(N) Dynkin labels
vanishing. The remaining quantum numbers are:

` =

N−q∑
k=p

ak , j1 = j2 = 0 , r =

N−q∑
k=p

(
2k

N
− 1)ak . (5.31)

Generically, such superfields live in the harmonic space

SU(N)

[U(1)]N−p−q+1 × SU(p)× SU(q)
. (5.32)

If a subset of the Dynkin labels vanish, for instance,

ap+m = ap+m+1 = . . . = aN−q−n = 0 , p+ q +m+ n ≤ N ,

the coset (5.32) is further restricted to

SU(N)

[U(1)]m+n × SU(p)× SU(q)× SU(N − p− q −m− n+ 2)
. (5.33)

5.4.2 (0, q) BPS states

Superfields which do not depend on the last q θ̄’s (or, alternatively, on the
first p θ’s) are obtained by multiplying G-analytic objects by left- (or right-)
handed chiral ones:

q

2N
BPS: W [a1,a2,...,aN−q ,0,...,0]

α1...α2j1
(θ1, . . . , θN , θ̄

1, . . . , θ̄N−q)

= wα1...α2j1
Φs (W 1)a1(W 12)a2 . . . (W 12...N−q)aN−q (5.34)

where s ≥ 0 is an integer and

1 ≤ q ≤ N − 1 . (5.35)

Note that the fraction of supersymmetry preserved by a (0, q) BPS state
ranges as follows:

1

2N
≤ q

2N
≤ N − 1

2N
. (5.36)

Such states have the last q − 1 SU(N) Dynkin labels vanishing. The
remaining quantum numbers are:

` = 1+j1 +s+

N−q∑
k=p

ak , j2 = 0 , r = −1−j1−s+

N−q∑
k=p

(
2k

N
−1)ak . (5.37)
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Generically, such superfields live in the harmonic space

SU(N)

[U(1)]N−q × SU(q)
. (5.38)

If a subset of the Dynkin labels vanish, for instance,

ai = 0 , 1 ≤ n ≤ N − q − 1 ,

the coset (5.32) is further restricted to

SU(N)

[U(1)]N−q−n × SU(q)× SU(n+ 1)
. (5.39)

5.4.3 Chiral BPS states

These are described by superfields which do not depend on all of the θ̄’s (or,
alternatively, on the θ’s), i.e. which are left- (or right-) handed chiral:

1

2
BPS: Wα1...α2j1

(θ1, . . . , θN) = wα1...α2j1
Φs . (5.40)

They are SU(N) singlets. The remaining quantum numbers are:

` = 1 + j1 + s , j2 = 0 , r = −1− j1 − s . (5.41)

The chiral superfields are harmonic-independent.

6 The six-dimensional case

The method described above can also be applied to the superconformal
algebras in six dimensions. We will first examine the consequences of G-
analyticity and conformal supersymmetry and find out the relation to BPS
states. Then we will make a conjecture about the possible structure of the
general UIR’s of the superconformal algebra. We restrict ourselves to the
most interesting case of (2, 0) conformal supersymmetry, i.e. to the superal-
gebra OSp(8∗/4). Some of the results have already been presented in [24].
Our consideration could be easily extended to (N, 0) conformal supersym-
metry with underlying superalgebra OSp(8∗, 2N) with arbitrary N .
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6.1 The conformal superalgebra OSp(8∗/4) and Grass-
mann analyticity

The part of the conformal superalgebra OSp(8∗/4) relevant to our discussion
is given below:

{Qi
α, Q

j
β} = 2Ωijγµ

αβPµ , (6.1)

{Qi
α, S

β j} = i(γµν)α
βMµν + 2δβ

α(4T ij − iΩijD) , (6.2)

[T ij, Qk
α] = −1

2
(ΩkiQj

α + ΩkjQi
α) , (6.3)

[T ij, T kl] =
1

2
(ΩikT lj + ΩilT kj + ΩjkT li + ΩjlT ki) (6.4)

(the commutation relations of D with Q and S are the same as in (2.4)). Here
Qi

α are the generators of Poincaré supersymmetry carrying a right-handed
chiral spinor index α = 1, 2, 3, 4 of the Lorentz group SU∗(4) ∼ SO(5, 1)
(generatorsMµν) and an index i = 1, 2, 3, 4 of the fundamental representation
of the R symmetry group USp(4) ∼ SO(5) (generators T ij = T ji); Sβ j

are the generators of conformal supersymmetry carrying a left-handed chiral
spinor index; D is the generator of dilations and Pµ of translations. The
symplectic matrix Ωij = −Ωji has non-vanishing entries Ω14 = Ω23 = −Ω32 =
−Ω41 = 1. The chiral spinors satisfy a pseudo-reality condition of the type
Qi

α = ΩijQβ
j cβα where c is a 4× 4 unitary “charge conjugation” matrix.

The standard realization of this superalgebra makes use of the superspace

R
6|16 =

OSp(8∗/4)

{K,S,M,D, T} = (xµ, θα i) (6.5)

where θα i is a left-handed spinor. Unlike the four-dimensional case, here
chirality is not an option but is already built in. The only way to obtain
smaller superspaces is through Grassmann analyticity. We begin by imposing
a single condition of G-analyticity (cf. eq. (2.20)):

q1
αΦ(x, θ) = 0 (6.6)

which amounts to considering the coset

A
6|12 =

OSp(8∗/4)

{K,S,M,D, T,Q1} = (xµ, θα 1,2,3) (6.7)
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(note that with our conventions θα 1 = θα
4 , θα 2 = θα

3 , θα 3 = −θα
2 , θα 4 = −θα

1 ).
From the algebra (6.1)-(6.4) we obtain

mµν = 0 , (6.8)

t11 = t12 = t13 = 0 , (6.9)

4t14 + ` = 0 . (6.10)

Eq. (6.8) implies that the superfield Φ must be a Lorentz scalar. In order
to interpret eqs. (6.9), (6.10), we need to split the generators of USp(4)
into raising operators (positive roots), U(1) charges and lowering operators
(negative roots):

USp(4) :




positive roots: T 13, T 22 (T 11, T 12)
U(1)× U(1) : H1 = 2(T 14 − T 23), H2 = −2T 23

negative roots: T 24, T 33 (T 34, T 44)
(6.11)

(the composite positive or negative roots are in parenthesis). On the HWS
of a USp(4) irrep the two U(1) charges H1, H2 take eigenvalues equal to the
Dynkin labels a1, a2 of the irrep. For instance, the generator Q1 is the HWS
of the fundamental irrep (1, 0).

Now it becomes clear that (6.9) is part of the USp(4) irreducibility con-
ditions whereas (6.10) relates the conformal dimension to the Dynkin labels:

` = 2(a1 + a2) . (6.12)

Let us denote the highest-weight UIR’s of the OSp(8∗/4) algebra by

D(`; J1, J2, J3; a1, a2)

where ` is the conformal dimension, J1, J2, J3 are the SU∗(4) Dynkin labels
and a1, a2 are the USp(4) Dynkin labels of the first component. Then the
G-analytic superfields defined above are of the type

Φ(θ1,2,3) ⇔ D(2(a1 + a2); 0, 0, 0; a1, a2) . (6.13)

The next step is to add the generator Q2
α to the superspace coset denom-

inator:

A
6|8 =

OSp(8∗/4)

{K,S,M,D, T,Q1, Q2} = (xµ, θα 1,2) . (6.14)
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This implies the constraints

4t23 + ` = 0 ⇒ a1 = 0 , (6.15)

t24 = 0 . (6.16)

Note that the vanishing of the lowering operator t24 means that the subal-
gebra SU(2) ⊂ USp(4) formed by t13, t24 and t14 − t23 acts trivially on the
particular USp(4) irreps. This is equivalent to setting a1 = 0, as in (6.15).
Thus, the new G-analytic superfields are of the type

Φ(θ1,2) ⇔ D(2a2; 0, 0, 0; 0, a2) . (6.17)

From (6.1) it is clear that we cannot have any further G-analyticity con-
straints. We can summarize the above discussion by saying that the super-
conformal algebra OSp(8∗/4) admits the following short UIR’s corresponding
to BPS states:

1/2 BPS : D(2a2; 0, 0, 0; 0, a2) ; (6.18)

1/4 BPS : D(2(a1 + a2); 0, 0, 0; a1, a2) . (6.19)

6.2 Supersingletons

There exist four types of massless multiplets in six dimensions corresponding
to ultrashort UIR’s (supersingletons) of OSp(8∗/4) [60]. All of them can be
formulated in terms of constrained superfields as follows.

(i) The first type is described by a (real) superfield W {ij}(x, θ) antisym-
metric and traceless in the external USp(4) indices. It satisfies the constraint
[61] (see also [62])

D(k
α W

{i)j} = 0 ⇒ D(2; 0, 0, 0; 0, 1) (6.20)

where the spinor covariant derivatives satisfy the supersymmetry algebra

{Di
α, D

j
β} = −2iΩijγµ

αβ∂µ . (6.21)

The components of this superfield are massless fields forming the on-shell
tensor (2, 0) multiplet in six dimensions [61, 63].

(ii) The second type is described by a superfield W i(x, θ) which is in the
fundamental UIR of USp(4). The corresponding constraint is

D(k
α W

i) = 0 ⇒ D(2; 0, 0, 0; 1, 0) . (6.22)
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(iii) The third type is the only one described by a (real) superfield without
external indices, w(x, θ). The corresponding constraint is second-order in the
spinor derivatives:

D(i
αD

j)
β w = 0 ⇒ D(2; 0, 0, 0; 0, 0) . (6.23)

(iv) Finally, there exists a series of multiplets described by superfields
with n totally symmetrized external Lorentz spinor indices, w(α1...αn)(x, θ).
These superfields can be made real in the case n = 2k. Now the constraint
takes the form

Di
[βw(α1]...αn) = 0 ⇒ D(2 + n/2;n, 0, 0; 0, 0) . (6.24)

As shown in ref. [24], the six-dimensional massless conformal fields only
carry reps (J1, 0) of the little group SU(2) × SU(2) of a light-like particle
momentum. This results applies to all (N, 0) d = 6 superconformal algebras
and is related to the analysis of conformal fields in d dimensions [64]. This
fact implies that massless superconformal multiplets are classified by a sin-
gle SU(2) and USp(2N) R-symmetry and are therefore identical to massless
super-Poincaré multiplets in five dimensions. Some physical implication of
the above circumstance have recently been discussed in ref. [65] where it was
suggested that certain strongly coupled d = 5 theories effectively become
six-dimensional.

6.3 Harmonic superspace

The massless multiplets (i)-(iii) admit an alternative formulation in harmonic
superspace [66, 67, 68]. The advantage of this formulation is that the con-
straints (6.20), (6.22) become conditions for G-analyticity. We introduce
harmonic variables describing the coset USp(4)/[U(1)]2:

u ∈ USp(4) : uI
iu

i
J = δI

J , uI
i Ω

ijuJ
j = ΩIJ , uI

i = (ui
I)

∗ . (6.25)

Here the indices i, j belong to the fundamental representation of USp(4)
and I, J are labels corresponding to the [U(1)]2 projections. The harmonic
derivatives

DIJ = ΩK(Iu
J)
i

∂

∂uK
i

(6.26)

form the algebra of USp(4)R (see (6.4)) realized on the indices I, J of the
harmonics.
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Let us now project the defining constraint (6.20) of the (2, 0) tensor mul-
tiplet with the harmonics u1

ku
1
iu

2
j and u2

ku
2
iu

1
j :

D1
αW

12 = D2
αW

12 = 0 (6.27)

where D1,2
α = Di

αu
1,2
i and W 12 = W {ij}u1

iu
2
j . In other words, the constraint

(6.20) now takes the form of a G-analyticity condition. In the appropriate
basis in superspace one obtains a short superfield depending on half of the
odd coordinates:

W 12(xA, θ
1, θ2, u) . (6.28)

In addition to (6.27), the projected superfield W 12 clearly satisfies the USp(4)
harmonic irreducibility conditions

D13W 12 = D22W 12 = 0 (6.29)

(only the simple roots of USp(4) are shown). The equivalence between the
two forms of the constraint follows from the obvious properties of the har-
monic products u1

[ku
1
i] = u2

[ku
2
i] = 0 and Ωiju1

iu
2
j = 0. The harmonic con-

straints (6.29) make the superfield ultrashort.
One can treat the case (ii) in the same way. Projecting the constraint

(6.22) with u1
ku

1
i we obtain the following constraint of G-analyticity:

D1
αW

1 = 0 ⇒ W 1(θ1, θ2, θ3) . (6.30)

In addition, one has to impose the conditions of USp(4) irreducibility, D13W 1 =
D22W 1 = 0, after which the superfield becomes ultrashort.

Finally, in case (iii), projecting the constraint (6.23) with uI
iu

I
j where

I = 1, 2, 3, 4 (no summation), we obtain the condition

DI
αD

I
βw = 0 . (6.31)

It implies that the superfield w is linear in each projection θαI .

6.4 Series of UIR’s of OSp(8∗/4) and shortening

It is now clear that we can realize the two BPS series of UIR’s (6.18) and
(6.19) as products of the two types of G-analytic superfields (supersingletons)
(6.27) and (6.30):

BPS : [W 1(θ1, θ2, θ3)]a1 [W 12(θ1, θ2)]a2 . (6.32)
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As a bonus, we also prove the unitarity of these series, since they are obtained
by multiplying massless unitary multiplets (supersingletons).

We remark that our harmonic coset USp(4)/[U(1)]2 is effectively reduced
to USp(4)/U(2) if a1 = 0. Indeed, such UIR’s of USp(4) have the property
that they are annihilated by the lowering operator T 24 (see (6.16)). The
latter, together with the raising one T 13 and the U(1) charge H1, form an
SU(2) subalgebra of USp(4) which acts trivially on such representations. So,
the 1/2 BPS states (6.18) are associated to the harmonic coset USp(4)/U(2).
We note that this smaller harmonic space was used in Ref. [68] to formulate
the (2, 0) tensor multiplet.

We are not aware of an exhaustive study of the most general UIR’s of
OSp(8∗/4) similar to one of Ref. [36] for the case of SU(2, 2/N). Yet, based
on our experience from Section 5, we can make the following conjecture.
The generic UIR is likely to be obtained by multiplying all four types of
supersingletons above:

wα1...αm1
wβ1...βm2

wγ1...γm3
wk (W 1)a1(W 12)a2 (6.33)

where m1 ≥ m2 ≥ m3 and the spinor indices are (anti)symmetrized so that
they form the SU∗(4) UIR with Young tableau (m1, m2, m3) or Dynkin labels
[J1, J2, J3]. The corresponding UIR of OSp(8∗/4) is

D(6 +
1

2
(J1 + 2J2 + 3J3) + 2(k + a1 + a2); J1, J2, J3; a1, a2) . (6.34)

We can have four distinct series:

A) m1m2m3 6= 0 , ` ≥ 6 +
1

2
(J1 + 2J2 + 3J3) + 2(a1 + a2) ;

B) m1m2 6= 0 , m3 = 0 , ` ≥ 4 +
1

2
(J1 + 2J2) + 2(a1 + a2) ;

C) m1 6= 0 , m2 = m3 = 0 , ` ≥ 2 +
1

2
J1 + 2(a1 + a2) ;

D) m1 = m2 = m3 = 0 , ` = 2(a1 + a2) . (6.35)

In cases A, B, C the conformal bound is saturated when k = 0 in (6.33), i.e.,
when no scalar supersingleton w is used.

In the generic case the multiplet (6.33) is “long”, but in some special
cases certain shortening can take place. Repeating the argument of Section
5.3, we find three such cases:
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i) The product of a supersingleton of type (iii) or (iv) with a BPS object
satisfies the intersection of the defining constraints (6.24), (6.23), (6.30) and
(6.27) of the four building blocks, e.g.,

D1
[β

(
wα1]...αn (W 1)a1(W 12)a2

)
= 0 , (6.36)

D1
αD

1
β

(
w (W 1)a1(W 12)a2

)
= 0 . (6.37)

ii) The bilinear products of supersingletons are current-like objects. Apart
from the ones involving BPS objects, these are:

D(i
αD

j
βD

k)
γ (w2) = 0 ;

D
(i
[βD

j)
γ (w wα1]...αn) = 0 ; (6.38)

Di
γ(wα1...αm1

wβ1...βm2
) = 0

(underlining the indices in the third equation means projecting out the Young
tableau (m1, m2, 1)).

iii) Intermediate short objects are obtained by multiplying the currents
(6.38) by a BPS object. They satisfy the corresponding projections of eqs.
(6.38).

6.5 BPS states of OSp(8∗/4)

Here we give a summary of the SU(2, 2/N) multiplets which correspond to
BPS states. They are realized as products of the two types of G-analytic
superfields.

6.5.1

1

4
BPS : W [a1,a2](θ1, θ2, θ3) = (W 1)a1(W 12)a2 . (6.39)

These superfields can carry arbitrary USp(4) quantum numbers and have
dimension ` = 2(a1 +a2) and vanishing spin. In the generic case they live on
the harmonic coset

USp(4)

[U(1)]2
(6.40)

If a2 = 0 this coset becomes USp(4)/U(2).
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6.5.2

1

2
BPS : W [0,a2](θ1, θ2) = (W 12)a2 . (6.41)

This time the first USp(4) Dynkin label vanishes. The dimension is ` = 2a2

and the spin is zero. The harmonic coset is

USp(4)

U(2)
. (6.42)

7 The three-dimensional case

In this section we carry out the analysis of the d = 3 N = 8 superconformal
algebra OSp(8/4,R) in a way similar to the above. Some of the results have
already been presented in [23]. As in the previous cases, our results could
easily be extended to OSp(N/4,R) superalgebras with arbitrary N .

7.1 The conformal superalgebra OSp(8/4,R) and Grass-
mann analyticity

The part of the conformal superalgebra OSp(8/4,R) relevant to our discus-
sion is given below:

{Qi
α, Q

j
β} = 2δijγµ

αβPµ , (7.1)

{Qi
α, S

j
β} = δijMαβ + 2εαβ(T ij + δijD) , (7.2)

[T ij, Qk
α] = i(δkiQj

α − δkjQi
α) , (7.3)

[T ij, T kl] = i(δikT jl + δjlT ik − δjkT il − δilT jk) . (7.4)

Here we find the following generators: Qi
α of N = 8 Poincaré supersymmetry

carrying a spinor index α = 1, 2 of the d = 3 Lorentz group SL(2,R) ∼
SO(1, 2) (generators Mαβ = Mβα) and a vector 11 index i = 1, . . . , 8 of
the R symmetry group SO(8) (generators T ij = −T ji); Si

α of conformal
supersymmetry; Pµ, µ = 0, 1, 2, of translations; D of dilations.

11Since SO(8) has three 8-dimensional representations, 8v, 8s and 8c related by triality,
the choice which one to ascribe to the supersymmetry generators is purely conventional.
In order to be consistent with the other N -extended d = 3 supersymmetries where the
odd generators always belong to the vector representation, we prefer to put an 8v index i
on the supercharges.
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The standard realization of this superalgebra makes use of the superspace

R
3|16 =

OSp(8/4,R)

{K,S,M,D, T} = (xµ, θα i) . (7.5)

In order to study G-analyticity we need to decompose the generators Qi
α

under [U(1)]4 ⊂ SO(8). Besides the vector representation 8v of SO(8) we
are also going to use the spinor ones, 8s and 8c. In this context we find it
convenient to introduce the four subgroups U(1) by successive reductions:
SO(8) → SO(2)× SO(6) ∼ U(1)× SU(4) → [SO(2)]2× SO(4) ∼ [U(1)]2×
SU(2) × SU(2) → [SO(2)]4 ∼ [U(1)]4. Denoting the four U(1) charges by
±, (±), [±] and {±}, we decompose the three 8-dimensional representations
as follows:

8v : Qi → Q±±, Q(±±) ; Q[±]{±}, (7.6)

8s : φa → φ+(+)[±], φ−(−)[±], φ+(−){±} ; φ−(+){±} (7.7)

8c : σȧ → σ+(+){±}, σ−(−){±}, σ+(−)[±] . σ−(+)[±] (7.8)

The definition of the charge operators Hi, i = 1, 2, 3, 4 can be read off from
the corresponding projections of the relation (7.2):

{Q++
α , S−−

β } =
1

2
Mαβ + εαβ(D − 1

2
H1) ,

{Q(++)
α , S

(−−)
β } =

1

2
Mαβ + εαβ(D − 1

2
H2) ,

{Q[+]{+}
α , S

[−]{−}
β } =

1

2
Mαβ + εαβ(D − 1

2
H3 − 1

2
H4) ,

{Q[+]{−}
α , S

[−]{+}
β } = −1

2
Mαβ − εαβ(D − 1

2
H3 +

1

2
H4) . (7.9)

In this notation we have

[H1, Q
±±
α ] = [H2, Q

(±±)
α ] = ±2iQ±±

α ,

[H3, Q
[±]{±}] = [H4, Q

[±]{±}] = ±iQ[±]{±} . (7.10)

Let us denote a quasi primary superconformal field of the OSp(8/4,R)
algebra by the quantum numbers of its HWS:

D(`; J ; a1, a2, a3, a4) (7.11)
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where ` is the conformal dimension, J is the Lorentz spin and ai are the
Dynkin labels (see, e.g., [69]) of the SO(8) R symmetry. In fact, in our
scheme the natural labels are the four charges hi (the eigenvalues of Hi).
They are related to the Dynkin labels as follows:

h1 = 2(a1 + a2) + a3 + a4 ,

h2 = 2a2 + a3 + a4 , (7.12)

h3 = a3 , h4 = a4 ,

or, inversely,

a1 =
1

2
(h1 − h2) , a2 =

1

2
(h2 − h3 − h4) , a3 = h3 , a4 = h4 . (7.13)

A HWS |ai〉 of SO(8) is by definition annihilated by the positive simple roots
of the SO(8) algebra:

T [++]|ai〉 = T {++}|ai〉 = T++(−−)|ai〉 = T (++)[−]{−}|ai〉 = 0 . (7.14)

In order to build G-analytic superspaces we have to add one or more
projections of Qi

α to the coset denominator. In choosing the subset of pro-
jections we have to make sure that: i) they anticommute among themselves;
ii) the subset is closed under the action of the raising operators of SO(8)
(7.14). Then we have to examine the consistency of the vanishing of the
chosen projections with the conformal superalgebra (7.9). Thus we find the
following sequence of G-analytic superspaces corresponding to BPS states:

1

8
BPS :




q++
α Φ = 0 →

Φ(θ++, θ(±±), θ[±]{±})
D(a1 + a2 + 1

2
(a3 + a4); 0; a1, a2, a3, a4)

(7.15)

1

4
BPS :




q++
α Φ = q

(++)
α Φ = 0 →

Φ(θ++, θ(++), θ[±]{±})
D(a2 + 1

2
(a3 + a4); 0; 0, a2, a3, a4)

(7.16)

3

8
BPS :




q++
α Φ = q(++)Φ = q

[+]{+}
α Φ = 0 →

Φ(θ++, θ(++), θ[+]{±}, θ[−]{+})
D(1

2
(a3 + a4); 0; 0, 0, a3, a4)

(7.17)

1

2
BPS (type I) :




q++
α Φ = q

(++)
α Φ = q

[+]{±}
α Φ = 0 →

Φ(θ++, θ(++), θ[+]{±})
D(1

2
a3; 0; 0, 0, a3, 0)

(7.18)
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1

2
BPS (type II) :




q++
α Φ = q

(++)
α Φ = q

[±]{+}
α Φ = 0 →

Φ(θ++, θ(++), θ[±]{+})
D(1

2
a4; 0; 0, 0, 0, a4)

(7.19)

Note the existence of two types of 1/2 BPS states due to the two possible
subsets of projections of qi closed under the raising operators of SO(8) (7.14).

We remark that in the cases 1/4, 3/8 and 1/2 the states are annihilated by
some of the lowering operators of SO(8). This means that certain subalgebras
of SO(8) act trivially on them:

1

4
: SU(2) ↔ {

T++(−−) , T−−(++) , H1 −H2 (7.20)

3

8
: SU(3) ↔

{
T++(−−) , T−−(++) , H1 −H2

T (++)[−]{−} , T (−−)[+]{+} , H2 −H3 −H4
(7.21)

1

2
: SU(4)I ↔




T++(−−) , T−−(++) , H1 −H2

T (++)[−]{−} , T (−−)[+]{+} , H2 −H3 −H4

T {++} , T {−−} , H4

(7.22)

1

2
: SU(4)II ↔




T++(−−) , T−−(++) , H1 −H2

T (++)[−]{−} , T (−−)[+]{+} , H2 −H3 −H4

T [++] , T [−−] , H3

(7.23)

These properties are equivalent to the restrictions on the possible values of
the SO(8) Dynkin labels in (7.15)-(7.19). Note that the existence of two
types of 1/2 BPS states can be equivalently explained by the two possible
ways to embed SU(4) in SO(8), as shown in (7.22) and (7.23).

7.2 Supersingletons and harmonic superspace

The supersingletons are the simplest OSp(8/4,R) representations of the type
(7.18) or (7.19) and correspond to D(1/2; 0; 0, 0, 1, 0) or D(1/2; 0; 0, 0, 0, 1).
The existence of two distinct types of d = 3 N = 8 supersingletons has first
been noted in Ref. [70]. Each of them is just a collection of eight Dirac
supermultiplets [32] made out of “Di” and “Rac” singletons [31].

In order to realize the supersingletons in superspace we note that the
HWS in the two supermultiplets above has spin 0 and the Dynkin labels of
the 8s or 8c of SO(8), correspondingly. Therefore we take a scalar superfield
Φa(x

µ, θα
i ) (or Σȧ(x

µ, θα
i )) carrying an external 8s index a (or an 8c index ȧ).
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These superfields are subject to the following on-shell constraints 12:

type I: Di
αΦa =

1

8
γi

aḃ
γ̃j

ḃc
Dj

αΦc ; (7.24)

type II: Di
αΣȧ =

1

8
γ̃i

ȧbγ
j
bċD

j
αΣċ . (7.25)

The two multiplets consist of a massless scalar in the 8s (8c) and spinor in
the 8c (8s).

The harmonic superspace description of these supersingletons can be re-
alized by taking the harmonic coset 13

SO(8)

[SO(2)]4
∼ Spin(8)

[U(1)]4
. (7.26)

Since SO(8) ∼ Spin(8) has three inequivalent fundamental representations,
8s, 8c, 8v, following [75] we introduce three sets of harmonic variables:

uA
a , w

Ȧ
ȧ , vI

i (7.27)

where A, Ȧ and I denote the decompositions of an 8s, 8c and 8v index,
correspondingly, into sets of four U(1) charges (see (7.6)-(7.8)). Each of the
8 × 8 real matrices (7.27) belongs to the corresponding representation of
SO(8) ∼ Spin(8). This implies that they are orthogonal matrices (this is a
peculiarity of SO(8) due to triality):

uA
a u

B
a = δAB , wȦ

ȧ w
Ḃ
ȧ = δȦḂ , vI

i v
J
i = δIJ . (7.28)

These matrices supply three copies of the group space, and we only need one
to parametrize the harmonic coset. The condition which identifies the three

12See also [68] for the description of a supersingleton related to ours by SO(8) triality.
Superfield representations of other OSp(N/4) superalgebras have been considered in [71,
72].

13A formulation of the above multiplet in harmonic superspace has been proposed in
Ref. [68] (see also [73] and [74] for a general discussion of three-dimensional harmonic
superspaces). The harmonic coset used in [68] is Spin(8)/U(4). Although the supersingle-
ton itself does indeed live in this smaller coset (see Section 7.5.4), its residual symmetry
U(4) would not allow us to multiply different realizations of the supersingleton. For this
reason we prefer from the very beginning to use the coset (7.26) with a minimal residual
symmetry.
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sets 14 of harmonic variables is

uA
a (γI)AȦw

Ȧ
ȧ = vI

i (γ
i)aȧ . (7.29)

Further, we introduce harmonic derivatives (the covariant derivatives on
the coset (7.26)):

DIJ = uA
a (γIJ)AB ∂

∂uB
a

+ wȦ
ȧ (γIJ)ȦḂ ∂

∂wḂ
ȧ

+ v
[I
i

∂

∂v
J ]
i

. (7.30)

They respect the algebraic relations (7.28), (7.29) among the harmonic vari-
ables and form the algebra of SO(8) realized on the indices A, Ȧ, I of the
harmonics.

We now use the harmonic variables for projecting the supersingleton
defining constraints (7.24), (7.25). Using the relation (7.29) it is easy to show
that the projections Φ+(+)[+] and Σ+(+){+} satisfy the following G-analyticity
constraints:

D++Φ+(+)[+] = D(++)Φ+(+)[+] = D[+]{±}Φ+(+)[+] = 0 , (7.31)

D++Σ+(+){+} = D(++)Σ+(+){+} = D[+]{±}Σ+(+){+} = 0 (7.32)

where DI
α = vI

iD
i
α, ΦA = uA

a Φa and ΣȦ = wȦ
ȧ Σȧ. This is the superspace

realization of the 1/2 BPS shortening conditions (7.18), (7.19). In the ap-
propriate basis in superspace Φ+(+)[+] and Σ+(+){+} depend on different halves
of the odd variables as well as on the harmonic variables:

type I : Φ+(+)[+](xA, θ
++, θ(++), θ[+]{±}, u, w) , (7.33)

type II : Σ+(+){+}(xA, θ
++, θ(++), θ[±]{+}, u, w) . (7.34)

In addition to the G-analyticity constraints (7.31), (7.32), the on-shell
superfields Φ+(+)[+], Σ+(+){+} are subject to the SO(8) irreducibility harmonic
conditions obtained from (7.14) by replacing the SO(8) generators by the
corresponding harmonic derivatives. The combination of the latter with eq.
(7.31) is equivalent to the original constraint (7.24).

It should be stressed that Φ+(+)[+], Σ+(+){+} automatically satisfy addi-
tional harmonic constraints involving lowering operators of SO(8) (cf. (7.22)
and (7.23)). As mentioned earlier, this means that the supersingleton har-
monic superfields effectively live in the smaller harmonic coset Spin(8)/U(4).

14Although each of the three sets of harmonic variables depends on the same 28 pa-
rameters, we need at least two sets to be able to reproduce all possible representations of
SO(8).
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7.3 OSp(8/4,R) supersingleton composites

One way to obtain short multiplets of OSp(8/4,R) is to multiply different
analytic superfields describing the type I supersingleton. The point is that
above we chose a particular projection of, e.g., the defining constraint (7.24)
which lead to the analytic superfield Φ+(+)[+]. In fact, we could have done this
in a variety of ways, each time obtaining superfields depending on different
halves of the total number of odd variables. Leaving out the 8v lowest weight
θ−−, we can have four distinct but equivalent analytic descriptions of the
type I supersingleton:

Φ+(+)[+](θ++, θ(++), θ[+]{+}, θ[+]{−}) ,

Φ+(+)[−](θ++, θ(++), θ[−]{+}, θ[−]{−}) ,

Φ+(−){+}(θ++, θ(−−), θ[+]{+}, θ[−]{+}) ,

Φ+(−){−}(θ++, θ(−−), θ[+]{−}, θ[−]{−}) . (7.35)

Then we can multiply them in the following way:

(Φ+(+)[+])p+q+r+s(Φ+(+)[−])q+r+s(Φ+(−){+})r+s(Φ+(−){−})s (7.36)

thus obtaining three series of OSp(8/4,R) UIR’s exhibiting 1/8, 1/4 or 1/2
BPS shortening:

1

8
BPS: D(a1 + a2 +

1

2
(a3 + a4), 0; a1, a2, a3, a4) , a1 − a4 = 2s ≥ 0 ;

1

4
BPS: D(a2 +

1

2
a3, 0; 0, a2, a3, 0) ; (7.37)

1

2
BPS: D(

1

2
a3, 0; 0, 0, a3, 0)

where
a1 = r + 2s , a2 = q , a3 = p , a4 = r . (7.38)

We see that multiplying only one type of supersingletons cannot repro-
duce the general result of Section 7.1 for all possible short multiplets. Most
notably, in (7.37) there is no 3/8 series. The latter can be obtained by mixing
the two types of supersingletons:

[Φ+(+)[+](θ++, θ(++), θ[+]{±})]p+q[Σ+(+){+}(θ++, θ(++), θ[±]{+})]q , (7.39)

or the same with Φ and Σ exchanged. Counting the charges and the di-
mension, we find exact matching with the series (7.17) where a3 = p + q
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and a4 = q. Further, mixing two realizations of type I and one of type II
supersingletons, we can construct the 1/4 series

[Φ+(+)[+]]m+k[Φ+(+)[−]]k[Σ+(+){+}]n (7.40)

which corresponds to (7.16) where a2 = k, a3 = m, a4 = n. Finally, the full
1/8 series (7.15) (i.e., without the restriction a1− a4 = 2s ≥ 0 in (7.37)) can
be obtained in a variety of ways.

In this section we have analyzed all short highest weight UIR’s of the
OSp(8/4,R) superalgebra whose HWS’s are annihilated by part of the super-
Poincaré odd generators. The number of distinct possibilities have been
shown to correspond to different BPS conditions on the HWS. When the
algebra is interpreted on the AdS4 bulk, for which the 3d superconformal
field theory corresponds to the boundary M-2 brane dynamics, these states
appear as BPS massive excitations, such as K-K states or AdS black holes, of
M-theory on AdS4×S7. Since in M-theory there is only one type of supersin-
gleton related to the M-2 brane transverse coordinates [76], according to our
analysis massive states cannot be 3/8 BPS saturated, exactly as it happens in
M-theory on M4 × T 7. Indeed, the missing solution was also noticed in Ref.
[77] by studying AdS4 black holes in gauged N = 8 supergravity. Curiously,
in the ungauged theory, which is in some sense the flat limit of the former,
the 3/8 BPS states are forbidden [48] by the underlying E7(7) symmetry of
N = 8 supergravity [78].

7.4 Series of UIR’s of OSp(8/4,R)

In addition to the short objects of the BPS type considered above, we can
define two current-like objects. One of them is a bilinear of two supersingle-
tons of, e.g., type I, ΦaΦa. Using (7.24) one can show that it satisfies the
constraint

Di
αD

j
βD

k
γ(ΦaΦa) = 56⊕ 8 , (7.41)

meaning that only these SO(8) representations survive in the decomposition
of the 8 ⊗ 8 ⊗ 8 on the left-hand side of (7.41). The other current carries
SL(2,R) spinor indices, Wα1...α2J

, and satisfies the constraint

DiαWαα2...α2J
= 0 . (7.42)

Our conjecture for the generic UIR of OSp(8/4,R) is as follows:

Wα1...α2J
(ΦaΦa)

k BPS[a1, a2, a3, a4] . (7.43)
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Here we have used the factor W to obtain the spin, the factor ΦaΦa for the
conformal dimension and the BPS factor for the SO(8) quantum number.
The unitarity bound is given by

` ≥ 1 + J + a1 + a2 +
1

2
(a3 + a4) (7.44)

and is saturated if k = 0 in (7.43).

7.5 BPS states of OSp(8/4,R)

Here we give a summary of all possible OSp(8/4,R) BPS multiplets. Denot-
ing the UIR’s by

D(`; J ; a1, a2, a3, a4) (7.45)

where ` is the conformal dimension, J is the spin and a1, a2, a3, a4 are the
SO(8) Dynkin labels, we find four BPS conditions:

7.5.1

1

8
BPS : q++

α = 0 . (7.46)

The corresponding UIR’s are:

D(a1 + a2 +
1

2
(a3 + a4); 0; a1, a2, a3, a4) (7.47)

and the harmonic coset is
Spin(8)

[U(1)]4
. (7.48)

If a2 = a3 = a4 = 0 this coset becomes Spin(8)/U(4).

7.5.2

1

4
BPS : q++

α = q(++)
α = 0 . (7.49)

The corresponding UIR’s are:

D(a2 +
1

2
(a3 + a4); 0; 0, a2, a3, a4) (7.50)

and the harmonic coset is

Spin(8)

[U(1)]2 × U(2)
. (7.51)

If a3 = a4 = 0 this coset becomes Spin(8)/U(1)× [SU(2)]3.
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7.5.3

3

8
BPS : q++

α = q(++)
α = q[+]{+}

α = 0 . (7.52)

The corresponding UIR’s are:

D(
1

2
(a3 + a4); 0; 0, 0, a3, a4) (7.53)

and the harmonic coset is
Spin(8)

U(1)×U(3)
. (7.54)

7.5.4

1

2
BPS (type I) : q++

α = q(++)
α = q[+]{+}

α = q[+]{±}
α = 0 ; (7.55)

1

2
BPS (type II) : q++

α = q(++)
α = q[+]{+}

α = q[±]{+}
α = 0 . (7.56)

The corresponding UIR’s are:

1

2
BPS (type I) : D(

1

2
a3; 0; 0, 0, a3, 0) ; (7.57)

1

2
BPS (type II) : D(

1

2
a4; 0; 0, 0, 0, a4) . (7.58)

and the harmonic coset is
Spin(8)

U(4)
. (7.59)

8 Conclusions

Here we give a summary of the different types of BPS states which are realized
as products of supersingletons described by G-analytic harmonic superfields.
We shall restrict ourselves to the physically interesting cases of D3, M2 and
M5 branes horizon geometry where only one type of such supersingletons
appears. This construction gives rise to a restricted class of the most general
BPS states.
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8.1 PSU(2, 2/4)

The BPS states are constructed in terms of the N = 4 d = 4 super-Yang-Mills
multiplet W ij in three equivalent G-analytic realizations:

(W 12(θ3,4, θ̄
1,2))p+q+r(W 13(θ2,4, θ̄

1,3))q+r(W 23(θ1,4, θ̄
2,3))r . (8.1)

BPS SU(4) Dimension Harmonic space

1
2

(0,p,0) p SU(4)/S(U(2)×U(2))

1
4

(q,p,q) p+2q SU(4)/[U(1)]3

(q,p,q+2r) p+2q+3r SU(4)/[U(1)]3
1
8

(0,p,2r) p+3r SU(4)/U(1)×U(2)
(0,0,2r) 3r SU(4)/U(3)

8.2 OSp(8∗/4)

The BPS states are constructed in terms of the (2, 0) d = 6 tensor multiplet
W {ij} in two equivalent G-analytic realizations:

(W 12(θ1,2)p+q(W 13(θ1,3))q . (8.2)

BPS USp(4) Dimension Harmonic space

1
2

(0,p) 2p USp(4)/U(2)

1
4

(2q,p) 2p+4q USp(4)/[U(1)]2

(2q,0) 4q USp(4)/U(2)
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8.3 OSp(8/4,R)

The type I BPS states are constructed in terms of the N = 8 d = 3 matter
multiplet Φa carrying an external 8s SO(8) spinor index in four equivalent
G-analytic realizations:

[Φ+(+)[+](θ++,(++),[+]{±})]p+q+r+s ×
[Φ+(+)[−](θ++,(++),[−]{±})]q+r+s ×
[Φ+(−){+}(θ++,(−−),[±]{+})]r+s ×
[Φ+(−){−}(θ++,(−−),[±]{−})]s . (8.3)

BPS SO(8) Dimension Harmonic space

1
2

(0,0,p,0) 1
2
p Spin(8)/U(4)

1
4

(0,q,p,0) 1
2
(p+ 2q) Spin(8)/U(2)×U(2)

1
8

(r+2s,q,p,r) 1
2
(p+ 2q + 3r + 4s) Spin(8)/[U(1)]4

The type II BPS states are constructed in terms of theN = 8 d = 3 matter
multiplet Σȧ carrying an external 8c SO(8) spinor index in four equivalent
G-analytic realizations:

[Σ+(+){+}(θ++,(++),[±]{+})]p+q+r+s ×
[Σ+(+){−}(θ++,(++),[±]{−})]q+r+s ×
[Σ+(−)[+](θ++,(−−),[+]{±})]r+s ×
[Σ+(−)[−](θ++,(−−),[−]{±})]s . (8.4)
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BPS SO(8) Dimension Harmonic space

1
2

(0,0,0,p) 1
2
p Spin(8)/U(4)

1
4

(0,q,0,p) 1
2
(p+ 2q) Spin(8)/U(2)×U(2)

1
8

(r+2s,q,r,p) 1
2
(p+ 2q + 3r + 4s) Spin(8)/[U(1)]4

Note added

Just before submitting this paper to the hep-th archive, we saw a new article
by P. Heslop and P.S. Howe [79]. It partially overlaps with our treatment of
the d = 4 case.
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