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Abstract

A global event decision hardware, suitable for the
planned LHC experiments, is presented, based on the
neural network architecture to be implemented typi-
cally at the second trigger level. A prototype for such
a system is successfully operating in the H1 experi-
ment at the HERA ep collider. The latency of the
network triggers, which are of the feed-forward type,
is about 20 microseconds. The inputs to the networks
are suitably preprocessed quantities available at level
2. We describe the neural hardware and its use within
the overall trigger strategy, exemplified with the H1
experiment. We discuss an interesting application of
the network hardware for fast secondary vertex find-
ing at the trigger level, useful for studies of b and top
physics and searches for hadronic Higgs final states.

1 Introduction

It is expected that the extremely high interaction
rates at the LHC (about 20 events on average per
bunch collision, at 40 MHz) will pose a serious chal-
lenge to the trigger systems. High selectivity of the
interesting physics processes, which are usually rare,
is of utmost importance. Typically, the trigger sys-
tems have to reduce the rates of order 40 MHz down
to a manageable figure of around 10-100 Hz, suit-
able for permanent logging to tape. Multi-level trig-
ger systems for the large colliding-beam experiments
ATLAS [1] and CMS [2] have been proposed, reduc-
ing the rate step by step with increasingly complex
decision machines, to cope with this formidable task.
In Atlas, the first two trigger levels will be realized
in dedicated hardware, from the third level onwards

general processors (software) will manage the data
reduction, while the CMS collaboration plan to go
directly to a general purpose processor farm after the
first hardware level. We present here a trigger con-
cept, designed for the second level, which is particu-
larly well suited for the typical trigger task of recog-
nizing and discriminating complicated event patterns
in a multi-component detector system. The concept
is based on the neural network technology, realized in
dedicated hardware, which has convincingly demon-
strated its potential in a concrete application within
the H1 experiment at the HERA ep collider [3].

We summarize here the concepts and the technical
realization of the H1 neural network trigger, details
on the system can be found elsewhere (see, e.g. [3, 4]).
Besides the superior global event decision capabilities
a la H1, which can be naturally extended to the LHC
experiments, we present a recent pilot study for a fast
secondary vertex finder, based on the hit information
from the Silicon trackers available at level 2.

2 Prototyping: The H1 Detec-
tor and its Trigger Scheme

Modern, large particle detector systems such as AT-
LAS or CMS at the LHC are designed with the in-
tention to serve as general purpose facilities, pushing
into a new kinematic frontier, and be prepared to be
sensitive for the expected physics as well as poten-
tially new phenomena. In this spirit, a large variety
of detection principles have been foreseen, allowing
for efficient detection and measurement of hadronic
particles (jets) as well as of photons and leptons (elec-
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trons and muons). This is no different for the run-
ning experiments at the HERA collider, which are
presently probing a dramatically enlarged kinematic
domain of deep-inelastic scattering.

For triggering the apparatus, H1 has installed a
scheme of three levels, two hardware levels and one
software level (“level 4”). An intermediate software
level (“level 3”) is provided, but not used at present.
At level 1, each of the detector components (subde-
tectors) provides a set of triggers to a central trigger
box, where they can be subjected to simple coinci-
dence logic. Details on the H1 detector are given
elsewhere[5]. The first level trigger is pipelined and
does not generate deadtime (the same strategy is ap-
plied for the LHC experiments). This architecture
implies that the level 1 trigger processors are able
to provide a trigger decision for each bunch crossing
(BC, a 96 ns interval for HERA, 25 ns for the LHC).
For H1, the pipeline memory is 30 BC’s long. After
about 2.3 us (24 BC’s) a level 1 trigger decision is
formed (“L1-keep”) and the trigger information from
all subdetectors is transferred to the level 2 systems.
At this point the primary deadtime starts, no fur-
ther triggers can be accepted until the event buffers
are fully read out or a “fast clear” from the level 2
trigger system has been issued, rejecting the event.
When the event is accepted by the level 2, the de-
tector readout is initiated and the entire event infor-
mation is sent to the level 4 processor farm, where
a full event reconstruction is performed and the final
event decision, using standard C-code programming,
is taken.

At the second hardware trigger level in H1, the
decision time is limited to 20 us in order to digest
a maximum of 1-2 kHz from level 1 while keeping
the deadtime below 2 %. At level 2, the informa-
tion from all level 1 trigger processors is available, so
that “intelligent” use of this information is possible,
exploiting the correlations among the various trigger
quantities. The output of the level 2 trigger is around
50 Hz presently, which is the maximum input rate for
the level 4 RISC processor farm (30 CPUs). The out-
put rate of level 4 which is limited to about 10 Hz,
is dumped to disk and then stored permanently to
tape.

3 Principles of the H1 Neural
Network Trigger

The H1 design of the level 2 neural network trigger
is based on the empirical observation [6], that small
nets trained for specific physics reactions, working
all in parallel, are the most efficient and flexible way
to use neural nets at the trigger level (compared to a
single large net trained on all physics reactions simul-
taneously). Most importantly, putting these nets to
a real trigger application, the degree of modularity is
extremely helpful when a new trigger for a new kind
of physics reaction is to be implemented: there is no
need to retrain the other nets, the new physics net is
simply added to the group of the others.

The present strategy of using the networks is the
following: Each of the networks is trained for a spe-
cific physics channel and is coupled to a set of level 1
subtriggers, particularly efficient for that physics
channel. Because some of the level 1 subtriggers need
to be made sufficiently relaxed to be efficient, their
rate is usually unacceptably high. The level 2 trig-
ger therefore has the task to reduce the excess back-
ground rate in these subtrigger sets while keeping the
efficiency for the chosen physics channel high. At
present, 12 networks are running in parallel, mostly
optimized for electro- and photoproduction of vec-
tor mesons, which are difficult to separate from the
background at level 1.

4 L2 Trigger Hardware

According to the principles described above, the
hardware realization for the neural network trigger is
modularized as follows (see [3]): Receiver cards col-
lect the incoming trigger information of the various
subdetectors and distribute them via a 128 bit wide
L2 bus to preprocessing units, called Data Distribu-
tion Boards (DDB). Each DDB is able to pick up a
freely chosable set of items from the L2 input data
stream. The DDB can perform some basic opera-
tions on the items (e.g bit summing) and provides an
input vector of maximally 64 8bit words for its com-
panion CNAPS/VME board. Controlling and config-
uring of the complete system is done by a THEMIS



VME SPARCstation, which is located in the CNAPS
crate (see below).

4.1 The CNAPS board

The algorithms calculating the trigger decision are
implemented on VME boards housing the CNAPS
1064 chip [7] (see fig. 1). It is a parallel fixed-point
arithmetic computer in SIMD architecture. The
CNAPS-1064 chip (also called array) houses 64 pro-
cessor nodes (PN). Up to eight chips (512 PNs) can
be combined on one VME board. A PN is a proces-
sor for itself except that it shares the instruction unit
and I/O busses with all the other PNs. An on-chip
instruction unit handles the command and data flow.
The commands are distributed via a 32 bit PN com-
mand bus. The 8 bit wide input and output busses are
used for the data transfer to and from the CNAPS
array. A direct access to these I/O busses is real-
ized with a mezzanine board developed at MPI Mu-
nich. Through the mezzanine board the input vector
is loaded into the CNAPS chip and the trigger result
is sent back to the DDB. For synchronization reasons
the CNAPS boards are driven with an external clock
at 20.8 MHz (2 times the HERA clock frequency of
10.4 MHz).

The main internal parts of the PNs are arithmetic
units like adder(32bit) and multiplier(24 bit), logic
unit, register unit, 4K memory and a buffer unit.
Calculations are done in fixed-point arithmetic with
chosable precision. The sigmoidal transfer function
is implemented via a 10 bit look-up table (LUT) on
chip. A full net with 64 inputs, 64 hidden nodes and
1 output node can be computed in 8 us at 20.8 MHz,
or in 166 clock cycles. To get the same speed with a
single conventional CPU one would have to clock it
at several GHz.

4.2 The Data Preprocessing

The Data Distribution Board (DDB) resides in a spe-
cial ”L2 VME crate” equipped with the L2 Bus, an 8
times 16 bit parallel data bus running with the HERA
clock speed in an interleaved mode, yielding an effec-
tive 20 MHz transfer rate. For each subdetector the
level 1 data, which are a quite heterogeneous such as
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Figure 1: Architecture of the CNAPS 1064 chip: It
realizes an array of 64 fized-point arithmetic proces-
sors, operating in the Single Instruction M ultiple
Data (SIMD) mode. Data are clocked in serially with
8 bit width (“in-bus”) and distributed to the process-
ing nodes. The weights for the multiplication step are
stored in on-chip memory. The “out-bus” transfers
the results for optional further processing (e.g. for a
look-up table to emulate a sigmoid function).

calorimetric energy sums, tracker vertex histograms,
tracker rays (bits in the § — ¢ plane), bit-coded muon
hit maps etc., are sent serially onto one of the eight
subbusses of the L2 backplane. For system control
purposes, a special monitor board ("spy”) with an
independent readout of the data transmitted over the
L2 bus is residing in the same crate.

On the DDB, the L2 data received are passed
through a data type selection where they can be
transformed (e. g. split into bytes or single bits) using
a look-up table. After bit splitting, several prepro-
cessing algorithms like summing of bits and bytes,
bit selections or general functions (look-up) can be
applied. The data may, of course, also be sent un-
changed to the selection RAM, where the input vector
for the neural network computer is stored. Through
the use of XILINX 40XX chips the hardware can be
flexibly adapted to changes, e.g. for new data for-
mats in the received input. Using selection masks
the data are transmitted via a parallel data bus from
the RAM to a mezzanine receiver card directly con-
nected to the local data bus on the CNAPS board.
Figure 2 shows the hardware of the neural network
trigger operating in Hl-experiment. The upper crate



houses the CNAPS neuro-computer boards and the
VME control computer (at the left). The lower (9U)
crate houses the receiver units for the L1 informa-
tion (at the right) and the data distribution boards.
Each board is associated with its neuro-computer,
connected via cable between the backplanes, carry-
ing the preprocessed network input to the CNAPS
board.

The system described above can be translated into
an LHC environment without any principal problems:
Also there, partial (coarse granularity) detector data
are available for the level 2 and these informations
can be used in full correlation to arrive at highly se-
lective triggers. The main advantage of using neural
nets as opposed to standard multi-purpose proces-
sors (using a high level computer language) is their
inherent speed. It seems also that complex high-
dimensional correlations - in absence of known apri-
ori algorithms, which usually is the case at the trigger
level - can be exploited in an optimal way with the
adaptive methods provided by neural networks.

5 Vertex Finding with Neural
Nets

An interesting field not yet fully exploited by neural
networks is the tracking area. Here, the basic event
pattern is provided by an ensemble of hits from the
tracking detectors (two- or three-dimensional infor-
mation), which give already a pretty clear “view” of
the event origin and basic kinematic features. Of
particular interest is the information from high pre-
cision silicon trackers, which are used offline to find
secondary vertices in the events, i.e. to tag heavy
flavor decays. Bottom-quarks, e.g., provide a unique
signature for many known and new phenomena ex-
pected at the TeV scale such as top quark physics,
Higgs searches and supersymmetry, in addition to the
physics of B- hadrons themselves. By finding the sec-
ondary vertex from the B hadron decay at the trigger
level, using the fine granular silicon strip information
available at level 2, one is in principle sensitive to all
B hadron decays, not only to the semileptonic decays
considered in present trigger schemes [1].

Figure 2: View of the hardware of the H1 neural net-
work trigger (see text).

As a pilot study we investigated the potential to
“reconstruct”, at the trigger level, a possible sec-
ondary vertex associated with a certain set of tracks.
In order to facilitate the network training in this ini-
tial study, the silicon strip information to be used
was limited to the regions of interest (ROI) defined
in the first level calorimeter trigger (the ROI strat-
egy will be employed for the second level triggers at
ATLAS). Typical decay lengths for charmed mesons
expected in the LHC energy range are several cen-
timeters, whereas the precision of space points for a
modern Si strip detector is around 20 microns. This
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Figure 3: Distribution of the decay length of D

mesons originating in the decay chain of Top and
Higgs (m = 200 GeV/c® decays) from proton-proton
interactions at LHC' energies.

gives a ratio for vertex distance to space point pre-
cision of roughly 100:1. This ratio seems sufficiently
large to try fast secondary vertex recognition with the
space hits alone as inputs to a neural net. No attempt
was made to form tracks from the space points.

Using Monte-Carlo simulation, hits were generated
in the various layers of the Si-detector of ATLAS,
originating from D* decays which where given dis-
tributions in momentum space according to the ex-
pectation from top and Higgs (mmiges = 200 GeV)
production. A typical decay length distribution for
the D mesons (coming from the prompt D* decays)
is shown in fig. 3. Without attempting any conven-
tional track reconstruction method, which would be
forbiddingly long for a hardware trigger application,
the hit pattern originating from the tracks within a
cone around the ROI was given to a feed-forward net-
work with 2 hidden layers (typically 20 nodes in each
layer) and one output node. The task of the linear
output node was to estimate the decay length associ-
ated with the hit pattern. Each input to the network
is a 1 bit number, either 0 (no hit) or 1 (hit), ordered
in rising ¢ coordinate, mimicking a realistic readout
scenario. The nets were trained with a backpropa-

gation algorithm with a target output value equal to
the decay length of the simulated D — Km decay.
The training was controlled by an independent sam-
ple of events, yielding the result shown in fig. 4, where
the difference between the target value and the decay
length estimated by the network is plotted. A reso-
lution of o ~ 1.6 mm is achieved in the simple case
of only two tracks (originating from the D — K
decay).
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Figure 4: Difference between the true decay length
and the value estimated by the neural network for
D — K decays. The results shown satisfy the condi-
tion that no other track except the two decay products
from the D meson are present in the search sector.

In order to investigate the stability of the nets
against noise, we added additional tracks coming
from the primary vertex with corresponding hits to
the neural input and repeated the training. As ex-
pected, the performance of the networks, keeping the
network architecture the same, deteriorated progres-
sively with increasing number of additional tracks.
Doubling the number of tracks from the primary ver-
tex resulted in an increase of the resolution for the
decay length by about a factor of two (¢ ~ 3 mm).
Further details can be found elsewhere]8].

Further studies are required with increased com-
plexity of the network architecture (more nodes in
the hidden layers) in order to improve the perfor-



mance in presence of many fake tracks close to the
two tracks originating from the secondary vertex. In
addition, the possibility of more than two tracks com-
ing from the secondary vertex have not been attacked
yet. The preliminary results, however, are quite en-
couraging and demonstrate the ability of the neural
networks to extract the relevant information (pres-
ence of a secondary vertex) from a complex hit pat-
tern without explicit track reconstruction. Such an
algorithm would be extremely fast and well suited for
an application at an early trigger level.

6 Conclusions

We have presented the principles and the hardware
realization for the second level neural network trig-
ger, operational in the H1 experiment at HERA since
1996 as a global event decision machine. Based
on commercially available, massively parallel digital
ULSI neural network chips, a 20 us decision time is
achieved for the network trigger. The network inputs
are derived from the trigger information provided by
the various level 1 trigger systems and are prepro-
cessed by custom-designed hardware.

For the physics data taking at the LHC, e.g. in AT-
LAS or CMS, such a trigger system could be readily
adapted. Depending on the field of application (level
1 or level 2) the preparation of the network inputs
needs special attention, both on the electronics level
as well as in the successful training of the networks.
Besides the proven strength of neural networks in pat-
tern recognition tasks, one of the main motivations
of using the neural approach in a trigger application
at the LHC is the speed provided by dedicated neu-
romorphic hardware executing the inherently parallel
computations of the neural algorithms.

As a promising physics application we have stud-
ied the neural networks ability to recognize secondary
vertices in an ensemble of tracks, based on the infor-
mation from the simulated ATLAS Si-detector. Feed-
forward networks were trained to estimate the decay
lengths of D mesons from top and Higgs decays, given
solely the information from the Si-hits in the various
layers of the detector. It is found that the resolution
for the decay length is adequate (order of a few mm)

to recognize a secondary vertex, thus being able to
tag charmed and beauty decays with high efficiency.
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