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Abstract
The ALICE detector data link has been designed to
cover all the needs for data transfer between the detector
and the data-acquisition system. It is a 1 Gbit/s, full-
duplex, multi-purpose fibre optic link that can be used
as a medium for the bi-directional transmission of data
blocks between the front-end electronics and the data-
acquisition system and also for the remote control and
test of the front-end electronics. In this paper the
concept, the protocol, the specific test tools, the
prototypes of the detector data link and the read-out
receiver card, their application in the ALICE-TPC test
system and the integration with the DATE software are
presented. The test results on the performance are also
shown.

Introduction
During the preparation of the ALICE Technical
Proposal [1] the need emerged for a common interface
between the front-end electronics (FEE) of the different
detectors and the data acquisition system (DAQ). A
dedicated working group was formed to collect in a
document [2] the needs of the detectors and the DAQ.
The following main requirements have been identified:
x only one standard link, named detector data link, for

the information transfer between the FEEs of all the
sub-detectors and the DAQ;

x standard protocol;
x point-to-point full-duplex optical connection;
x high-speed transmission of event data;
x remote control and test of the FEEs from the DAQ;
x bi-directional data block transfer between the DAQ

and the FEEs.

Concept
The detector data link (DDL) and the read-out receiver
card (RORC) constitute together the detector read-out
chain. The DDL transfers the event fragments from the
experimental pit to the computing room and stores them

in the input buffer of the RORC. The RORC interfaces
the DDL to the front-end digital crate (FEDC). The
DDL consists of the following components:
x source interface unit (SIU), connected to the FEE;
x destination interface unit (DIU), connected RORC;
x physical medium (two fibre optic cables).

The FEDC is responsible for the sub-event building. The
RORCs, plugged-in the FEDC, are controlled by a SBC.
The local data concentrator (LDC) reads-out the event
fragments from the RORCs and assembling them into
sub-events. Then the sub-events are sent to the central
event building switch. If it is reveals to be needed,
separate I/O busses could be used for the control and the
read-out functions in this crate, because of the speed
limitation of the available standard backplanes. We
hope, however, that in a few years high-performance
channel-based I/O busses (e.g. System I/O) or really fast
standard backplanes (e.g. VME320 or VME1000) will be
available. In this case the two I/O busses will be merged
and the final version of the FEDC will have only a
single I/O bus.

Figure 1 shows a part of the ALICE DAQ, consisting of
a detector read-out chain and a sub-event building
system.
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Figure 1 Part of the ALICE DAQ
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In most applications, the SIU will be connected directly
to the FEE (see Figure 2).
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Figure 2 Direct connection to the FEE

In some of the applications (for example, where the
level of the radiation is too high for the SIU), the SIU
will be placed outside of the detector with a distance of
several meters. In this configuration a radiation hard
medium-speed transceiver shall be used inside the FEE.
The DDL is connected to the FEE through a DDL. This
configuration is foreseen for the Si-Pixel detector.
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Figure 3 Indirect connection to the FEE

Figure 4 shows another possibility for the indirect
connection. In this case the DDL concentrator is
implemented as a VME interface, and the information is
transmitted between the two VME crates by using two
DIUs and two RORCs. This configuration is foreseen
for the trigger detector, because the trigger unit will be
placed in a VME crate. Dedicated software will emulate
the behavior of the SIU and the FEE, so from the DAQ
point of view this configuration will be identical to the
basic configuration.
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Figure 4 Indirect connection through VME bus

The DDL is connected to two external systems (e.g.
FEE and RORC). The RORC-DIU interface consists of
2 uni-directional busses for the full-duplex information
transfer (see Figure 5). It is, for example, possible to
send commands to the FEE or the interface units, while
event data are transmitted from the FEE to the DAQ.

The FEE-SIU interface consists of a bi-directional bus
and a JTAG controller port [3], which can be used for
the remote testing and control of the FEE via the TAP.
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Figure 5 The DDL interfaces

Main technical parameters
The main data flow will take place from the FEE to the
RORC. The DDLs will be able to read-out the complete
ALICE events (40 MB) within less than 2 ms,
transmitting event data from the FEE to the RORC with
a detected bit error rate of d 10-15. Each DDL will be
able to transmit data at a rate of 100 MB/s. As the zero
suppression algorithm requires downloading big blocks
of data into the FEE, a throughput of 10 MB/s is needed
in the opposite direction. Both the FEE and the SIU will
be remotely controlled from the FEDC through the
DDL, since their placement inside the detector will not
allow using any other cabling apart from the DDL
physical medium. Therefore, commands and status
information will also be transmitted between the FEE
and the RORC. Since the SIU is located inside the
detector, the requirements for the lifetime (t 10 years),
the power consumption (d 5W) and the footprint
(d 50 cm2) of this unit are key issues. More strict
requirements have been identified for the ITS [2] sub-
detectors where radiation tolerant electronics is needed
and the footprint of the SIU shall be less than 20 cm2.
To achieve the high reliability of the experimental
apparatus, efficient test of all the sub-systems will be
provided. The DDL will allow testing the FEE remotely
by using JTAG controller port of the SIU. The DDL
itself will also have a powerful self-test mode.

DDL protocol

1. Protocol layers

The DDL protocol consists of four layers: the DDL
interface layer (most upper), the signaling and framing
layer, the coding layer and the physical layer.

The DDL interface layer is described in the Interface
Control Document (ICD) [4]. It includes the physical
and electrical description of the interface units. The ICD
defines also the interface signals, the information
structures, the transactions and the timing.

The signaling and framing layer is described in the
Physical and Signaling Interface Specification [5]. It is



a mixture of the FC(2) layer of the Fibre Channel
Standard [6] and DDL specific solutions.

The coding layer is compatible with FC(1) layer of the
Fibre Channel Standard (FCS), where the well known
8B/10 coding scheme is used [7].

The physical layer is compatible with FC(0) layer of the
FCS. For the DDL prototype the 100-M5-SL-I
nomenclature is used, having the following main
parameters: 100 MB/s transmission speed, 50 Pm multi-
mode optical fibre, 850 nm laser transmitter, data
transmission up to 500 m distance.

2. Transactions

The information transfer on the DDL is organised in
control-status transactions and block transfer
transactions. The control-status transactions are simple,
while the block transfer transactions are complex,
consisting of several control-status transactions. All the
transactions are started by a command and terminated by
a command transmission status word. It indicates, if any
errors have occurred during the transaction.

The following control-status transactions are defined:
x front-end electronics control;
x front-end electronics status read-out;
x interface unit control;
x interface unit status read-out.

 Figure 6 shows the FEE status read-out transaction, as
an example of the control-status transactions.
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 Figure 6 The FEE status read-out transaction

 The following block transfer transactions are defined:
x event data transmission;
x data block downloading;
x data block read-back;
x self-test.

Figure 7 shows the event data transmission transaction,
as an example of the block transfer transactions.
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Figure 7 The event data transmission transaction

Prototype project
The main goals of prototype development project are:
1. build a prototype of the complete read-out chain;
2. develop hardware and software tools for the test;
3. integrate the read-out chain with DATE [8] software;
4. try out the system in normal working conditions.

1. Components of the read-out chain

The following tasks are included in this project:
x experimental media interface (MI) design and test;
x DIU development;
x RORC development;
x SIU development.

Within the MI test sub-project, the design and the test of
an 1.06 Gbit/s MI circuits and an experimental PCB
layout and stack-up have been accomplished and the
main functional components have been selected and
tested. The results of these tests [9] allow us to safely
integrate the high-speed serial MI directly on the DDL
cards.

Within the DIU development sub-project a first
prototype version and an improved prototype version
have been designed, built and tested. The DIU photos
can be found on the WEB [10]. The DIU consists of two
main functional parts: the protocol engine and the media
interface (see Figure 8). In the protocol engine the three
upper layers of the DDL protocol are implemented. The
MI interfaces the protocol engine to the physical
medium. It realises only the lower protocol layer. It is
able simultaneously to send and receive serial data
stream with a transmission speed of 1.06 Gbit/s, so some



signals in this sub-system can have harmonics up to
7 GHz. The PCB layout design is quite critical here, this
is the explanation why a MI test project was necessary.
The main technical features of the DIU are:
x multi-volt system (+5V and +3.3V supply voltages);
x 48 cm2 footprint;
x 9x1 OT2 with duplex SC fibre optic connector;
x FC3 electrical transceiver (53 MHz reference clock);
x protocol engine is in two FLEX10K50A PLDs:

� 4 clock signals are used
� single port FIFO is available only
� 240-pin RQFP package
� +3.3V core logic;

x two EPC1 configuration PROM;
x passive serial configuration.
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Figure 8 The architecture of the DIU

The prototype SIU now is under development. The
components have been selected, the mechanical, the
PCB layout and the digital designs are ready. The SIU
has similar architecture as the DIU. The main technical
features of the SIU are:
x single +3.3V system;
x 27 cm2 footprint;
x 5x2 SSF4 OT with VF45-RJ fibre optic connector;
x serial backplane electrical transceiver:

� 53 MHz reference clock
� built-in elastic buffer
� 106 MHz reference clock
� built-in 8B/10B encoder/decoder

x protocol engine is in one FLEX10K100E PLD:
� 2 clock signals are used
� dual port FIFO is available
� 256-pin FineLine BGA package
� +2.5V core logic;

x single EPC2 configuration EPROM;
x ISP configuration via JTAG chain.

                                                          
2 optical transceiver
3 fibre channel
4 small form factor

Within the RORC development project, a first prototype
and an improved prototype version have been designed,
built and tested [11]. The photos can be found on the
WEB [10]. The main task of the RORC is to receive and
store temporary the event fragments, coming from the
FEEs through the DDL [1]. When the LDC is free, the
event fragments are read out from the RORC by the
LDC for the sub-event building. The RORC is also able
to transmit data blocks and commands to the FEEs and
receive status information from them through the DDL.
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The RORC consists of two memory buffers for the high-
speed transmission of the incoming and the outgoing
data blocks and a FIFO for the incoming status
information. For the testability, a loop-back multiplexer
and a DDL test multiplexer are used, supporting the
RORC and the DDL self-test working modes. Figure 9
shows the architecture of the prototype RORC. The
main technical features of prototype RORC are:
x normal, RORC and DDL self-test modes;
x two DDL channels;
x up to 3M x 32 bit input buffer;
x 512k x 32 bit output buffer;
x 64 x 32 bit status FIFO;
x VME64x (VITA 1.1-199x) module and connectors;
x 6U board height;
x A32, D8-32, D32_BLT, D64_BLT transfer types;
x 50 MB/s block transfer rate;
x slave and interrupter building blocks;
x programmable base address;
x interrupt event: status FIFO is not empty.

2. Hardware and software tools for the test

For testing and monitoring of the DDL and the RORC,
the following hardware tools have been developed:
x DIU extender (DIUEXT);
x SIU extender (SIUEXT);
x SIU simulator (SIMU);
x FEE emulator (FEMU).



The DIUEXT is an extender board, having the same
footprint as the DIU. It can be inserted between the DIU
and the RORC. There are five connectors on this board,
providing connection for logic analyzers for the
monitoring all the RORC-DIU interface signals. The
photo of the DIUEXT can be seen on the WEB [10].

The SIUEXT is an extender board, having the same
footprint as the SIU. It can be inserted between the SIU
and the FEE. There are four connectors on this board,
providing connection for logic analyzers for the
monitoring all the FEE-SIU interface signals.

The SIMU is a manually controlled simple device,
having the same footprint as the SIU. It can be used for
the basic hardware tests of the FEE. The SIMU is able
to execute all the FEE transactions, according to the
DDL protocol.

The FEMU is able to emulate the behavior of all the
ALICE detectors. It is based on a HP logic analyzer
system (see Figure 10). An interface card has been
developed for the connection of the HP-LA to the DDL.
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Figure 10 The DDL test setup

Figure 10 shows the DDL test setup, consisting of:
x a FEMU system;
x a MVME 2604 SBC, running on AIX platform;
x a fibre channel line monitor and analyzer.

The DDL test software is running on MVME2604 and
MVME4604 processors under AIX 4.2. It has been
developed for the functional, the performance and the
qualification tests of the DDL [12].

The data traffic on the optical fibres can be studied by
using a FCS monitor and analyzer device.

System test within normal working
conditions
The DDL first has been tried-out within normal working
conditions in the ALICE-TPC test system [13]. In this
test setup (see Figure 11) the DDL has been used in
indirect configuration (see Figure 4). For requesting the
transmission of event data block, a command is sent
from the read-out crate to the front-end crate. This

action is followed by an event transfer in the opposite
direction.
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Figure 11 Integration in the ALICE-TPC test system

Integration with DATE software
The DATE [] is currently used by the NA57 experiment
as data acquisition software. In the future, most of the
ALICE sub-detectors will use the DATE for the FEE
tests and the beam tests as well. Since the DDL and the
RORC will also be key elements of these tests, the
integration of the complete read-out chain with the
DATE software is a high priority task. Therefore DDL
software library has been integrated with DATE during
the Q2/1999 [14] and the complete read-out chain has
successfully been tested by transmitting several TB of
data with different patterns and block lengths.

Performance Tests
The system performance has been tested in DIU-DIU
configuration. The task-to-task command delivery time
between two MVME 2604 processor is about 6 PPs. The
read-out speed has been measured in 64-bit block
transfer mode by using both MVME 2604 processors
and MVME 4604 processors. Table 1 shows the test
results of the for the MVME 2604 processor, while
Table 2 for the MVME 4604 processor. It was identified
in both cases that the block transfer speed is limited by
the DMA speed of the processor, but not by the RORC.

block size [MB] 400 4k 40k 400k 1M
speed [MB/s] 5.0 19.1 26.4 28.7 28.9

Table 1 Data transmission speed with MVME 2604

block size [MB] 400 4k 40k 400k 1M
speed [MB/s] 5.7 23.3 33.7 38.0 38.3

Table 2 Data transmission speed with MVME 4604
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