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A new method for combining QCD matrix elements and parton showers in Monte Carlo 
simulations of hadronic final states is outlined. The aim is to provide at least a leading-order 
description of all hard multi-jet configurations together with jet fragmentation to next-to
leading logarithmic accuracy, while avoiding the most serious problems of double counting. 

1 Introduction 

The Monte Carlo simulation of multi-jet final states is a challenging problem in QCD and im
portant for new physics searches. Two extreme approaches to this problem can be formulated 
as follows. One can use the corresponding matrix elements with bare partons representing jets. 
Then one must add a model for conversion of the partons into hadrons; any realistic model 
will include parton showering, and hence extra jet production and potential double counting. 
Alternatively, one can use the parton model to generate the simplest relevant final state (e.g. 
e+e- -> qij) and produce addition jets by parton showering. However, this gives a poor simula
tion of configurations with several widely separated jets. 

For earlier work on combining these approaches see refs. 1•2•3•4•5. Here I outline a method 6 
in which the matrix element and parton shower domains are separated at some value y1 of the 
kr (Durham) jet resolution 7 

Yij = 2min{Ef,EJ}(l -cosfJ;j )/Q2 

The proposed method has the following features: At Yij > Yi multi-jet cross sections and 
distributions are given by matrix elements modified by Sudakov form factors. At Yij < Yl they 
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are given by parton showers subjected to a 'veto' procedure, which cancels the Y1 dependence 
of the modified matrix elements to next-to-leading logarithmic (NLL) accuracy. 

Note that the procedure does not aim at a complete description of any configuration to 
n�xt-to-leading order (NLO) in a3, although this might be possible after subtracting NLO terms 
froin the Sudakov form factors (see ref. 5). The main objective is to describe all hard multi-jet 
configurations to leading order, i.e. O(a�-2) for n jets, together with jet fragmentation to NLL 
accuracy ,  while avoiding major problems of double counting and/or missed phase-space regions. 

2 Modified Matrix Elements 

The exclusive e+e- n-jet fractions at c.m. energy Q and kr-resolution Y1 = QI/Q2 are given to 
NLL accuracy by 8 

R2(Q1, Q) [D.q(Q1, Q)]2 

R3(Q1,Q) 2 [D.q(Q1,Q)]2 {q 
dqrq(q,Q)D.9(Q1,q) }qi 

R4(Q1,Q) 2 [D.q(Q1,Q)]2 { fq 
dqrq(q,Q)D.9(Q1,q) f

q 
dq'rq(q',Q)D.9(Q1,q') }qi }q, 

+ r
q 

dq r q(q, Q)D.g(Q1, q) rq 
dq' r g(q', q)D.g(Q1, q') }qi }q, 

+ r
q 

dqrq(q,Q)D.g(Q1,q) r dq1r,(q1)D.1(Q1,q') } }qi }q, 
etc., where r q,g,f are q -. qg, g -. gg and g -. qq branching probabilities 

and Aq,g are the quark and gluon Sudakov form factors 

exp (- l: dqrq(q,Q)) 
exp (- l: dq [rg(q, Q) + r J(q)]) 

with 

The Sudakov form factor A;(Q1, Q) represents the probability for a parton of type i to 
evolve from scale Q to scale Q1 without any branching (resolvable at scale Q1). Thus R2 is the 
probability that the produced quark and antiquark both evolve from Q to Qi without branching. 
More generally, the probability to evolve from Q to q ?: Q1 without branching (resolvable at 
scale Q1) is A;(Q1, Q)/ A;(Q1, q). 

In R3, the quark q (or antiquark q) evolves from Q to Qi without branching, while the q 
(or q) evolves from Q to q, branches, and the resulting partons evolve from q to Qi without 
branching. 
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Q 

Thus the overall NLL probability is 

which gives R3(Qi, Q) after integration over Q1 < q < Q. 
We can improve the description of 3-jet distributions throughout the region Yqg, Yqg > Yl 

by using the full tree-level matrix element squared Mqqg in place of the NLL branching prob
ability rq(q, Q). We first generate qij9 momentum configurations according to Mqqg, with kr

resolution cutoff Yii > Yl = QUQ2, then weight each configuration with an extra factor of 

[Llq(Q1,Q)]2Ll9(Q1,q) where q2 = min{yq9,yq9}Q2. For consistency we also use a8(q) in Mqqg· 
For four or more jets, there are several branching configurations with different colour factors. 

For example there is a contribution from q _..... q9 branching at scale q followed by 9 _..... 99 at 
scale q': 

The probability of this is 

which contributes to the term with colour factor CpCA. The product rq(q,Q)r9(q',q) is an 
approximation to the full matrix element squared Mqqgg in the kinematic region where y99 is 
smallest interparton separation. Thus it is legitimate in NLLA to replace it by Mqqgg in that 
region. The remaining factor of (Llq(Q1, Q)]2Ll9(Q1, q)Ll9(Q1, q') is the extra Sudakov weight to 
be applied. 

In general, the proposed procedure for generating n-parton configurations is thus as follows: 

• First distribute the parton momenta according to the relevant n-parton matrix element 
squared Mm using a fixed value a8(Q1) for the strong coupling. 

• Use the kr-clustering algorithm to determine the resolution values y2 = 1 > y3 > ... , > 
Yn > Yl at which 2; 3, . . . , n jets are resolved. These give the nodal values of Qj = Q ../fij 
for a tree diagram that specifies the kr-clustering sequence for that configuration. 

• Apply a coupling-constant weight factor of a8(q3)a8(q4) · · · a8(qn)/(a8(Q1)r-2 < l. 

• For each internal Jine of type i from a node at scale qi to Qk < qi, apply a Sudakov weight 
factor Ll;(Q1,Qj)/b..;(Q1,Qk) < l. For an external line from a node at scale qj, the weight 
factor is b..; ( Q1, Qj). 
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Since the weight factors are all less than unity, unweighted events can be generated by rejecting 
those for which the product of weights is less than a random number-. 

As an example, the following clustering sequence for e+e- _, qijggg 

has Sudakov weight 

A9(Q1, Q) A9(Q1, Q) A9(Q1, q3) 
A9(Q1, q3) Aq(Q1, q4) A9(Q1, q5) 

x Aq(Q1, q3)nq(Q1, q4)n9(Q1, q4) [n9(Q1, q5)]2 

[nq(Q1, Q)]2n9(Q1, q3)n9(Q1, q4)n9(Q1, q5) 

Note that the weight factor is actually independent of the structure of the clustering tree and is 
the same as that for the Abelian (QED-like) graph with the same nodal scale values {qj}· The 
clustering of partons will sometimes be 'wrong' but this should not affect LL and NLL terms. 
Other clustering procedures can be envisaged 4 which should be equivalent in the dominant 
regions. 

3 Vetoed Parton Showers 

Having generated multijet distributions above the resolution value y1 according to matrix ele
ments modified by form factors, it remains to generate distributions at lower values of Yij by 
means of parton showers. This should be done in such a way that the dominant (LL and NLL) 
dependence on the arbitrary parameter Yl cancels. Any residual dependence on Y1 could be 
useful for tuning less singular terms to obtain optimal agreement with data. 

Note that Y1 must set an upper limit on interparton separations Yij generated in the showers. 
Otherwise the exclusive jet rates at resolution Yl could be changed by showering. At first sight, 
this might suggest that we should evolve the showers from the scale Q1 = Qy1fh instead of Q. 
However, this would not lead to cancellation of dependence on log Yl . 

Consider, for example, the 2-jet rate at resolution Yo = Q6/Q2 < Yl· If we start from R2 
at scale Q1 and then evolve from Q1 to Qo, we obtain a 2-jet rate of [Aq(Q1, Q)n9(Qo, Qi)]2 
instead of the correct result R2(Qo, Q) = [Aq(Qo, Q)j2. This is because, although Yij values in 
the showers are limited by Y1, the angular regions in which they evolve should still correspond 
to scale Q rather than Q1. Consequently we should allow the showers to evolve from scale Q 
but veto any branching with scale q > Q1 - i.e., the selected parton branching is forbidden but 
that parton has its scale reset to q for subsequent branching. 

The 2-jet rate at any scale Qo < Q1 is now given by the sum of probabilities of 0, 1, 2, . . .  
vetoed branchings (represented b y  crosses) and n o  actual resolved branchings: 
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The sum of these probabilities for the quark line is 

The series sums to 1/ i:i.q(Qi, Q), cancelling the Yi dependence and giving i:i.q(Qo, Q). Similarly 
for the antiquark line. 

For the 3-jet rate at scale Qo < Qi there are two possibilities: either the event is a 2-jet at 
scale Qi and then has one branching resolved at scale Qo, or it is a 3-jet at scale Qi and remains 
so at scale Qo. The probability of the first case is 

2[i:i.q(Qi.Q)]2 [�:���:��r1o:1 dqfq(q,Q)i:i.g(Qo,q) 

while that of the second case is 

The sum is indeed Yi-independent and equal to R3(Qo, Q). Similarly for higher jet multiplicities. 
Notice that evolution after a branching at scale q > Qi starts at scale q rather than Q or 

Qi. In general, vetoed showers should evolve in the phase space for angular-ordered branching of 
each parton 9. This depends on the colour structure of the matrix element. As illustrated below, 
the angular region for parton i is a cone bounded by the direction of parton j (and vice-versa), 
where i and j are colour-connected. 

· 

j 

If the colour structure is not unique, colour connections must be selected according to their 
relative contributions to the matrix element squared, which are well-defined in the limit that 
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the number of colours Ne is large. Corrections to the large-Ne limit are normally of relative 
order l /N'; , so this approximation is adequate to� 103.  For high parton multiplicity, when the 
colour structure is not known even at large Ne, it may be possible to use the clustering scheme 
discussed above as a first approximation in assigning colour connections. 

4 Comments/Conclusions 

• Modified matrix elements plus vetoed parton showers, interfaced at some value YI of the 
kT-resolution parameter, should provide a convenient way to describe simultaneously the 
hard multi-jet and jet fragmentation regions. 

• The matrix element modifications are coupling-constant and Sudakbv weights computed 
directly from the kT-clustering sequence. 

• Dependence on YI is cancelled to NLLA by vetoing Yij > YI in the parton showers. 

• This prescription avoids double-counting problems and missed phase-space regions. 

• In principle one needs the matrix elements Mn for Yij > YI at all values of n. In practice, 
if we haven::; N, then YI must be chosen large enough for Rn>N(QI, Q) to be negligible. 

• This approach is being implemented (with N = 5) in the e+e- event generator APACIC++10. 

• It should be possible to extend it to lepton-hadron and hadron-hadron collisions. 

• Extension to NLO along the lines of ref. 5 may also be possible. 
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