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algebra of smooth functions on a symplectic manifold to a noncommutative product,
namely the star-product, in a way such that Diracs quantization condition is ful�lled.
The mathematical framework hereby used is the deformation theory of algebras from
Gerstenhaber [8]. By the fundamental work of deWilde, Lecomte [27], Kara-
sev,Maslov [12], Fedosov [6] and Omori, Yaedi, Yoshioka [14] one knows that
every symplectic manifold has a star-product. The mathematical methods used by the
di�erent authors to prove the existence theorem for star-products vary considerably,
from methods of Hochschild homology of algebras [27] over sheaf theory and Lagrangian
geometry [12] to methods using symplectic connections [6] or di�erential geometry and
�Chech cohomolgy [14]. Though the existence of star-products on symplectic manifolds
is now well-known, it remains to single out - if possible - classes of canonical star-
products ful�lling natural properties like closedness or functoriality with respect to an
appropriate class of morphisms.

In this paper we construct a natural quantization scheme respectively star-product
on a particular class of symplectic manifolds, namely cotangent bundles over Rieman-
nian manifolds. This quantization comes from a generalization of the Weyl quantization
on Rn - or in other words from the Moyal product on Rn - to arbitrary Riemannian man-
ifolds. We show that Weyl quantization maps real classical observables to (formally)
selfadjoint pseudodi�erential operators. Moreover it is proved that the star-product
corresponding to the Weyl quantization on Riemannian manifolds is strongly closed.
Hence we give a positive answer to the question posed by Flato, Sternheimer [7],
x2.6 on the strong closedness of star-products induced by di�erent symbol calculi for
pseudodi�erential operators on manifolds.

The paper is organized as follows. In the �rst section we introduce our concept of a
deformation quantization. By using a sheaf theoretical language we succeed in setting
up a general language of deformation theory for (sheaves of) algebras. Thus we keep
the language close to algebraic geometry (cf. Hartshorne [11]) and complex analysis
(cf. Gindikin, Khenkin [9]), but unlike in algebraic geometry we allow sheaves of
noncommutative algebras for deformation. The advantage of using sheaves lies in the
fact that it allows to formulate not only deformations over a formal parameter but also
deformations over an arbitrary commutative locally ringed space.

In the following section the theory of �-symbol calculus for pseudodi�erential op-
erators on Riemannian manifolds is explained. On the one hand it comprises a gen-
eralization of the symbol calculus introduced by Widom [26] and on the other hand
a generalization of the �-ordered pseudodi�erential calulus on Euclidean space Rn to
manifolds. Furthermore in this section we provide some analytical properties of the �-
symbol calculus like a trace formula, adjointness relations and an asymptotic expansion
for the �-symbol of the product of two pseudodi�erential operators.

In the third section the analytical tools from the previous one are used to construct a
scale of quantizations of symbol sheaves resp. sheaves of observables polynomial in mo-
mentum. Finally we consider the scale of star-products induced by these quantizations
and show that these star-products are all equivalent and strongly closed.
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1 The concept of deformation quantization

First let us brie
y recall the notion of a ringed space. A ringed space is a pair (X;A)
where X is a topological space and A a sheaf of rings on X. A is called the structure
sheaf of the ringed space. It gives the topological space X an additional structure
like that of a smooth manifold, complex space, scheme or supermanifold and can be
regarded as a space of germs of admissible generalized functions on X. If the stalks
A x with x in X are all commutative (resp. noncommutative, local) we call (X;A) a
commutative (resp. noncommutative, locally) ringed space. If all the sections A(U)
with U open in X are k-algebras, where k is a �eld, one says (X;A) to be a k-ringed
space or a ringed space over k.

A morphism of ringed spaces from (X;A) to (Y;B) is a pair (f; �), where f :
X ! Y is a continuous map and � : B ! f�(A) a morphism of sheaves on Y with
values in the category of rings. Here f�(A) is the direct image of A via f , that means
f�(A(U)) = A (f�1(U)) for all open U � Y . If the ringed spaces (X;A) and (Y;B) are
locally ringed, we require �x : Bf(x) ! A x to be local for all x in X. In case (X;A)
and (Y;B) are ringed spaces over k, it is assumed that �(U) : B(U)! A (f�1(U)) is a
homomorphism of k-algebras for all U � X open.

The notion of a �bered morphism of ringed spaces is crucial for the de�nition of a
deformation.

De�nition 1.1 A morphism (f; �) : (X;A)! (P;S) of ringed spaces is called �bered,
if the following conditions are ful�lled:

(i) (P;S) is a commutative locally ringed space.

(ii) f : X ! P is surjective.

(iii) �x : Sf(x) !Ax maps Sf(x) into the center of Ax for all x 2 X.

The �ber of F over a point p of P then is the ringed space (Xp;A p) de�ned by

Xp = f�1(p); A p = Ajf�1(p)=mpAjf�1(p);

where mp is the maximal ideal in Sp which acts on Ajf�1(p) via �.

A deformation now is a �bered morphism which in a certain sense is locally trivial.

De�nition 1.2 A deformation of a ringed space (X;A) over the (commutative locally
ringed) parameter space (P;S) consists of a �bered morphism D = (d;�) : (Y;B)!
(P;S) and a point � 2 X such that (d�1(�);B�) is isomorphic to (X;A) and B is locally
trivial over S in the algebraic sense, i.e. for every p 2 P , y 2 d�1(P ) and m 2 N� the
homomorphism �y : Sp ! By induces a 
at morphism �m

y : Sp=m
m
p ! By=m

m
p By, where

mp is the maximal ideal of Sp.
If (P;S) = (�; C [[~]]), then the deformation is called a formal one, if (P;S) =

(R; C1) the deformation is called smooth over R.

ByBourbaki [5] Chapter III, x5.2 the above 
atness-condition guarantees in the formal
case that for every x 2 X the stalk Bx is isomorphic to Ax[[~]] as a vector space. In
any case it guarantees local triviality (cf. Hartshorne [11]).

In quantization theory one is interested in deformations ofPoisson spaces, i.e. com-
mutative ringed spaces (X;A) which posses a Poisson bracket f ; g : A�A ! A.
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De�nition 1.3 Let (X;A) be a Poisson space. A smooth (resp. formal) deformation of
(X;A) then consists of a smooth (resp. formal) deformation D = (d;�) : (X�P;B)!
(P;S) of (X;A) and a quantization morphism Q = (q; q) : (X � P;B) ! (X;A) with
q = pr1 such that

(i) In the formal case q is the canonical embedding A! B �= A[[~]].

(ii) The composition A
q

! B ! B� �= A is the identity.

(iii) q(1) = 1.

(iv) The canonical commutation relations

[q(a); q(b)] = �i~q (fa; b; g) + o(~2) (1)

are satis�ed for every a; b 2 A(U), U � X open.

Let X be a symplectic manifold, and consider the sheaf C1M of smooth functions on X.
Then (X; C1X ) is a Poisson space. A formal quantization of (X; C1X ) then gives rise to a
star-product in the sense of Bayen et.al. [2] on C1(X)[[~]] and vice versa. In the
case X is the cotangent bundle T �M of a smooth manifoldM we will consider the Pois-
son space (M;D0) of classical observables polynomial in momentum or in other
words of smooth functions on T �M which are polynomial in the �bers. That means we
have for U � M open D0(U) = fa 2 C1(T �U)j8x 2 U a is polynomial on T �

xMg, and
the Poisson bracket on D0 comes from the canonical symplectic structure on T �M .

In the following we will construct a scale of smooth and formal quantizations of the
Poisson space (M;D0) and the Poisson space of (asymptotic) symbols on M .

2 Weyl symbol calculus

Before setting up the Weyl symbol calculus for pseudodi�erential operators on Rieman-
nian manifolds let us �x some notation.

Let M always be a Riemannian manifold of dimension n, g its metric tensor and !
the canonical symplectic form on T �M . Further letW � TM be an open neighborhood
of the zero section such that exp is injective on the �bersW . By  : TM ! [0; 1] we de-
note a cut-o� function having support inW and being identical to 1 on a neighborhood
of the zero section of TM . The Riemannian structure on M induces a unique volume
density � on M , and for every x 2 M canonical volume densities �x on TxM and ��x
on T �

xM . Denote for any x 2M by �x : ~Wx ! R+ with ~Wx = exp(W \ (fxg�M)) the
smooth function having the property

�x �j ~Wx
= (expx)�(�x): (2)

Note that � : ~W ! R+ , (x; y) 7! �x(y) with ~W =
S

x2Mfxg �
~Wx is smooth as well.

Now let U � M be an open subset on which an orthonormal frame e = (e1; :::; en)
exists. Then for any x 2 U there exist uniquely de�ned normal coordinates zx of M at
x such that @zx;kjx = ek(x) for k = 1; :::; n. Finally denote by (zx; �x) the coordinates
of the cotangent bundle T �M induced by zx.
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By Sm(M), m 2 R we understand the symbols on T �M of H�ormander type,
i. e. Sm(M) consists of all smooth functions a 2 C1(T �M) such that uniformly on
compact subsets K � U of any coordinate patch U � M���@�x @�� a(x; �)��� � CK;�;�<�>

m��; x 2 K; � 2 R
n : (3)

Hereby (x1; :::; xn) are coordinates over U , (x1; :::; xn; �1; :::�n) the induced coordinates
on T �U , <�> = (1 + jj�jj2)1=2 and CK;�;� > 0. As usual we de�ne S1(M) =
[m2R S

m(M) and S�1(M) = \m2R S
m(M). Note that for any m 2 R [ f�1g we

receive a sheaf Sm on M whose spaces of sections are given by Sm(U) for U � M
open. The space 	m(M) of pseudodi�erential operators onM of order m consists of all
pseudolocal continuous mappings D(M) ! D0(M) which in a local coordinate system
� : U ! Rn have a representation of the form

D(U) 3 u 7!

�
x 7!

1

(2�)n

Z
Rn

Z
Rn

ei<�;�(x)�y> a(�(x); y; �) (u � ��1)(y) dy d�

�
2 C1(U)

(4)

with a 2 S1(�(U) � �(U);Rn). Obviously the mapping U 7! 	m(U), where U runs
through all open sets of M , de�nes a presheaf 	m on M . By 	�1(M) we denote
the space of all smoothing pseudodi�erential operators on M , and by 	�1

vtr (M) the
smoothing pseudodi�erential operators with vanishing trace.

Now let � 2 [0; 1] be a parameter. We then associate to every a 2 S1(M) an
operator Op�(a) 2 Hom(D(M);D0(M)) by

< Op�(a) u; v >=
1

(2�)n=2

Z
T �M

a(�)��u;v(�) d
(�); (5)

where 
 = !n is the Liouville volume form on T �M , u; v 2 C1cpt(M) and ��u;v is the
Wigner kernel

��u;v(�) =
1

(2�)n=2

Z
T�(�)M

e�i<�;X> u(exp(1� �)X) v(exp(��X)) (X) d�x(X) (6)

for the parameter value �. In the case � = 0 one can think of Op(a) = Op0(a) as
the normally ordered operator associated to a, Opa(a) = Op1(a) is the antinormally
ordered operator associated to a, and OpW(a) = Op1=2(a) gives the Weyl operator of a.

Theorem 2.1 Let � 2 [0; 1]. Then Op� : S1(M) ! Hom(D(M);D0(M)) is a linear
mapping with the following properties:

(i) For a 2 Sm(M) the operator Op�(a) is pseudodi�erential of order m and does not
depend on the choice of the cut-o� function  up to elements of 	�1

vtr (M).

(ii) The formal adjoint of Op�(a) is given by Op�(a)
� = Op1��(a). In particular the

Weyl operator of a symbol a is formally self-adjoint if and only if a is real-valued.
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(iii) Any operator Op�(a) has an integral representation of the form

[Op�(a) u] (x) =

=
1

(2�)n

Z
TxM�T �xM

e�i<�;X> a
�
T �
expx(�X) exp

�1
x (�)

�
u(exp(X)) ~ (X) �exp(�X)(x) dX d�;

(7)

where u 2 D(M), x 2M and ~ is the cut-o� function TX 3 X 7!  (TX expX) 2
[0; 1].

(iv) The Schwartz-kernel K�(a) of Op�(a) is given as the oscillatory integral

K�(a)(x; y) = �
�1
x (y) �exp(� exp�1x (y))(x)

~ 
�
exp�1x (y)

�
�

�
1

(2�)n

Z
T �xM

e�i<�;exp
�1
x (y)> a

�
T �
expx(� exp

�1
x (y))

exp�1x

�
d�:

(8)

Proof: (i) By de�nition Op�(a) has a kernel K�(a) 2 D0(M � M). Now the
phase-function T�(X)M 3 � 7!<�;X >2 C in Eq. (6) is singular if and only if X = 0.
Hence the singular support of K�(a) lies in the diagonal � � M �M , and Op�(a) is
a pseudodi�erential operator of order m. The fact that Op�(a) does not depend on
the choice of  up to elements of 	�1

vtr (M) follows immediately from (iv) which will be
proven later.
Let us now show (iii). Assuming � 6= 0 and a 2 S�1(M) we get by using the Gau�
Lemma

< Op�(a) u; v >=

=
1

(2�)n

Z
T �M

Z
T�(�)M

e�i<�;X> a(�) u(exp(1� �)X) v(exp(��X)) (X) d��(�)(X) d
(�)

=
1

(2��)n

Z
T �M

Z
M

ei<�;�
�1 exp�1

�(�)
(x)> a(�) u

�
exp�(�)

�
��1(�� 1) exp�1�(�)(x)

��
v(x)

 
�
���1 exp�1�(�)(x)

�
��(�)(x) d�(x) d
(�)

=
1

(2��)n

Z
M

Z
T �M

e�i<T
� expx(�);�

�1 exp�1x (�(�))> a(�) u
�
expx

�
��1 exp�1x (�(�))

��
v(x)

 
�
���1 exp�1�(�)(x)

�
��(�)(x) d
(�) d�(x)

=
1

(2��)n

Z
M

v(x)

Z
TxM�T �xM

e�i<�;�
�1X> a

�
T �
expx(X) exp

�1
x (�)

�
u
�
expx

�
��1X

��
 (��1TX expX)�expxX(x) d
x(X; �) d�(x)

=
1

(2�)n

Z
M

v(x)

Z
TxM�T �xM

e�i<�;X> a
�
T �
expx(�X) exp

�1
x (�)

�
u (expx (X))

~ (X) �expx(�X)(x) dX d� d�(x):

(9)
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By continuity in � this equation holds for � = 0 as well. Now S�1(M) is dense in
Sm(M) in the topology of S ~m(M) for any ~m > m. Continuity of both sides of Eq. (9)
with respect to a 2 S ~m(M) entails that Eq. (9) is true for any a 2 S1(M). Hence (iii)
follows.
(ii) Assume u; v 2 C1cpt(M; C ). Then

< Op�(a)
�u; v >= < Op�(a)v; u >

=
1

(2�)n

Z
T �M

a(�)

Z
T�(�)M

e�i<�;X> v (exp(1� �)X) u (exp(��X)) d��(�)(X) d


=
1

(2�)n

Z
T �M

a(�)

Z
T�(�)M

ei<�;X> v (exp(1� �)X) u (exp(��X)) d��(�)(X) d


=
1

(2�)n

Z
T �M

a(�)

Z
T�(�)M

e�i<�;X> u (exp(�X)) v (exp(�(1� �)X)) d��(�)(X) d


=< Op1��(a)u; v > :

(10)

Finally (iv) is an immediate consequence of (iii). 2

Let us brie
y consider as an example the case where M is Euclidean space Rn . Then

[Op�(a) u] (x) =
1

(2�)n

Z
Rn

Z
Rn

e�i<�;X> a (x� �X; �) u(x+X) dX d� =

=
1

(2�)n

Z
Rn

Z
Rn

ei<�;x�y> a ((1� �)x+ �y; �) u(y) dy d�;

(11)

which gives the well-known �-ordered symbol calculus for pseudodi�erential operators
on Rn .

In the following we determine operators Op�(a) of traceclass and calculate their
trace in terms of a.

Proposition 2.2 Let a 2 Sm(M) with m < �dim(M) and �(supp a) � M compact.
Then Op�(a) is traceclass, and a is integrable with respect to the Liouville measure on
T �M . Furthermore

trOp�(a) =
1

(2�)n

Z
T �M

a d
: (12)

Proof: The claim follows immediately from Theorem 2.1 (iv) by the following
equality:

trOp�(a) =

Z
M

K�(a)(x; x) d�(x) =
1

(2�)n

Z
M

Z
T �xM

a(�) d� d�(x)

=
1

(2�)n

Z
T �M

a d
:

(13)

2

Next we will study quasiinverses of the maps Op�, the so-called symbol maps.
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Theorem 2.3 (i) Let ' : ~W ! R be the phase-function (x; �) 7!< �; exp�1�(�)(x) >,

where ~W =
n
(x; �) 2 X � T �Xj x 2 exp ~W�(�)

o
. Then for every A 2 	1(M) the

normal symbol �(A) = �0(A) 2 S1(M) is de�ned by

T �M 3 � 7! �(A)(�) = A
�
 � exp�1�(�) e

i'(�;�)
�
(�(�)) 2 C : (14)

The normal symbol provides a map � : 	1(M)! S1(M) which is quasiinvers to
Op, i.e. which is invers to Op modulo S�1(M) resp. 	�1(M).

(ii) For every � 2 [0; 1] there exists a map �� : 	
1(M)! S1(M) which is quasiinvers

to Op�. The symbol ��(A) is called the �-symbol of the operator A 2 	1(M).

(iii) The following asymptotic expansions hold with x = �(�):

�0(A)(�) �
X

�;�2Nn

(�i�)j�+�j

�! �!

h
@�zx @

�+�
�x

��(A)
i
(�)
�
@�zx�(�)(x)

�
(x) (15)

��(A)(�) � �0(A)(�) +
X
k�1

(�1)k
X

�1;:::;�k2N�

(�i�)j�1+:::+�kj

�1! � ::: � �k!

�
@�1zx @

�1
�x

��
x1=x
�1=� 

@�2zx1@
�2
�x1

���
x2=x1
�2=�1

 
::: @�kzxk�1

@�k�xk�1

���
xk=xk�1
�k=�k�1

�
�0(A)(�k) �xk(x)

�
:::

!
�x1(x)

!#
:

(16)

In the last asymptotic expansion the partial derivatives @�kzxk
@�k�xk

��
xk+1=y

�k+1=�

act on the vari-

ables xk+1 resp. �k+1 and are evaluted at xk+1 = y resp. �k+1 = �.

Proof: The proof of (i) is an immediate consequence of Widom [26], Proposition
3.5 or Pflaum [16], Theorem 3.2. Consider the orthonormal basis V = (V1; :::; Vn)
of TxM with Vk = @zx;kjx for k = 1; :::; n, and let � = (�1; :::; �n) be the dual basis
of V . Then by Theorem 2.1 (iii) and the asymptotic expansion of the symbol of a
pseudodi�erential operator on Rn �= TxM (cf. Grigis, Sj�ostrand [10], Theorem 3.4)
we have the following asymptotic expansion of the normal symbol of A = Op�(a) with
a 2 Sm(M)

�0(A)(�) �
X
�2Nn

i�j�j

�!
@�V @

�
�

�
a
�
T �
exp �V exp

�1
x (�)

�
�exp �V (x)

���
V=0;�=�

=
X
�2Nn

i�j�j

�!
�j�j @�zx @

�
�x

�
a �(�)(x)

�
(�)

=
X

�;�2Nn

(�i�)j�+�j

�! �!

h
@�zx @

�+�
�x

a
i
(�)
�
@�zx�(�)(x)

�
(x):

(17)

If we can yet show that this asymptotic expansion determines the symbol a up to
smoothing symbols, we could set ��(A) = a and thus prove Eq. (15) and (ii).

By Eq. (15) a and �0(A) coincide modulo Sm�1(M). Assume now that modulo
Sm�k(M), k � 0 there is only one a 2 Sm(M) ful�lling Eq. (15). Denote by tl(a),
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l 2 N the sum of all terms in the right hand side of Eq. (17) such that j� + �j = l,
and let ~a 2 Sm(M) be a symbol ful�lling �0(A) �

P
l2N tl(~a). By assumption we have

a� ~a 2 Sm�k(M). Hence tl(a� ~a) 2 Sm�k�1(M) for l � 1 and

a� ~a =
X
l�k+1

tl(a� ~a) = 0 modSm�k�1(M): (18)

Inductively this shows a� ~a 2 S�1(M).
It remains to prove Eq.(16). De�ne inductively symbols ak 2 Sm(M) by

a0 = �0(A); ak+1 = �0(A)�
X
�2N�

(�i�)j�j

�!
@�zx@

�
�x

�
ak �(�)(x)

�
(�): (19)

Then a1 � a0 2 Sm�1(M), and by induction on k ak+1 � ak 2 Sm�k�1(M). Hence (ak)
is a Cauchy-sequence with respect to the topology of asymptotic convergence. Its limit
a = limk!1 ak satis�es Eq. (17), so a = ��(A). But by de�nition the symbol a is equal
to the right hand side of Eq. (16). This proves the claim. 2

The above theorem enables us to calculate the �-symbol of a pseudodi�erential
operator out of its normal symbol and vice versa. In the following proposition this
method is used to determine the various symbols of the Laplacian on a Riemannian
manifold.

Proposition 2.4 Assume D 2 Di�(M) � Hom(C1(M; C ); C1(M; C )) to be a second
order di�erential operator on the Riemannian manifold M , and express the normal
symbol a = �0(D) of D in the form

a(�) = T kl�k�l +Xk�k + r; � 2 T �M; (20)

where T is a symmetric contravariant 2-tensor �eld, X a vector �eld and r a smooth
function on M . Then the �-symbol of D is given in terms of T;X and r by

��(D)(�) =T
kl�k�l + i 2�

�
rkT

kl
�
�l � �2rkrlT

kl +

+Xk�k � i�rkX
k + r; � 2 T �M:

(21)

Vice versa, if a 2 S2(M) is a symbol of the form (20), then

Op�(a) =� T klrkrl � 2�
�
rkT

kl
�
rl � �2rkrlT

kl �

� iXkrk � i�rkX
k + r:

(22)

In the particular case, where a(�) = jj�jj2, the equality

Op�(a) = ��g (23)

holds, where �g is the Laplacian with respect to g.

Proof: Let us assume for simplicity X = 0 and r = 0. The calculations for
nonvanishing X and r are similar and will be omitted. Recall that the Christo�el
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symbols ofr and the inverse Jacobian �(�)(x) have the following expansions with respect
to the normal coordinates zx (cf. Berline, Getzler, Vergne [3], Chapter 1.3):

�kij(y) = �
1

3
Rk
ijl(x) zx;l(y) + o(zx(y)

3); (24)

�y(x) = 1 +
1

6
Rickl(x) zx;k(y)zx;l(y) + o(zx(y)

3); (25)

where R is the curvature and Ric the Ricci-tensor of g. Then we have for all x; y 2 M
close enough with respect to the normal coordinates zx:

rkrlT
kl(x) = @zx;k@zx;lT

kl(x) +
�
@zx;k�

k
lr

�
T rl +

�
@zx;k�

l
lr

�
T kr

= @zx;k@zx;lT
kl(x)�

1

3

�
Rk

lrk(x)T
rl(x) + Rl

lrk(x)T
kr(x)

�
= @zx;k@zx;lT

kl(x) +
1

3
Rickl(x)T

kl(x):

(26)

Now express the symbol a = ��(D) in the form

��(D)(�) = T kl�k�l + Y k�k + s; (27)

where Y is a smooth vector �eld and s a smooth function on M . Hence we receive by
Eq. (15)

a(�) = ��(D)(�)� i 2�
h
@z�(�);kT

kl
i
(�(�)) ��(�);l(�)�

� �2
h
@z�(�);k@z�(�);lT

kl + T kl @z�(�);k@z�(�);l �(�)(�(�))
i
(�(�))� i�@z�(�);k Y

k

= ��(D)(�)� i 2�
�
rkT

kl
�
�l � �2

�
rkrlT

kl
�
(�(�))� i�rkY

k:

(28)

This gives

��(D)(�) = T kl�k�l + i 2�
�
rkT

kl
�
�l + �2

�
rkrlT

kl
�
(�(�)) + i�rkY

k (29)

for all � 2 T �M , and implies Y l = i 2�rkT
kl. Now (21) follows immediately. In the

case a(�) = jj�2jj we have D := Op0(jj�jj
2) = ��g. As rg = 0 Eq. (21) entails

��(D)(�) = jj�2jj; (30)

hence Eq. (23) follows. By analogous arguments one proves Eq. (22). 2

Finally in this section we want to provide an asymptotic expansion for the �-symbol
of the product of two pseudodi�erential operators in terms of the symbols of its com-
ponents.

Proposition 2.5 Let a 2 Sm(M), b 2 Sm
0

(M) be two symbols on M . Then the �-
symbol c = ��(Op�(a) �Op�(b)) 2 Sm+m0

(M) of the product of the two pseudodi�erential
operators Op�(a) and Op�(b) has an asymptotic expansion of the form

c(�) �ab � i
nX
l=1

h
(1� �)

�
@��(�);la

� �
@z�(�);lb

�
� �

�
@z�(�);la

� �
@�

�(�);l
b
�i

(�) +

+
X

�;~�;�;~�2Nn

j�+1
2
~�j�2

f�
�;�;~�;~�

(�)
�
@�z�(�)@

�
��(�)

a
� �

@ ~�
z�(�)

@
~�
��(�)

b
�
(�);

(31)
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where the f�
�;�;~�;~�

are polynomials in the �bers of T �M of degree �
���� + 1

2
~�
��� and depend

only on the derivatives of the curvature of g.

Proof: For the case of the normal symbol �0 Eq. (31) holds true by Widom [26],
Proposition 3.6 or Pflaum [16], Theorem 5.4. Let A = Op�(a) and B = Op�(b). Then
by Theorem 2.3 (iii) one has expansions

�0(A) = a� i�
nX
l=1

@z�(�);l @��(�);la+ ra; (32)

�0(B) = a� i�
nX
l=1

@z�(�);l @��(�);lb+ rb; (33)

where ra 2 Sm�2(M) and rb 2 Sm
0�2(M). Using Eq. (31) for the case of � = 0 we

receive

�0(AB) = ab� i
nX
l=1

h�
@��(�);la

� �
@z�(�);lb

�
+ �

�
a @z�(�);l@��(�);lb + b @z�(�);l@��(�);la

�i
+ r0;

(34)

where r0 2 Sm+m0�2(M). Applying Theorem 2.3 (iii) again �nally yields

��(AB) = ab� i
nX
l=1

h
(1� �)

�
@��(�);la

� �
@z�(�);lb

�
� �

�
@z�(�);la

� �
@��(�);lb

�i
+ r�;

(35)

where r� 2 Sm+m0�2(M). It remains to show that the remainder terms r� have the
required form. For � = 0 it is already known that r0 has the claimed asymptotic
expansion (see Pflaum [16], Theorem 5.4), hence Theorem 2.3 (iii) entails that r� has
it as well. 2

3 Quantization of symbols

With the help of the analytical tools from the previous section we now want to to con-
struct a scale of concrete deformations of the symbol sheaf over a Riemannian manifold.

Let us de�ne for every m 2 R a sheaf Bm on X =M � R by

Bm(U � I) = fa 2 C1(T �U � I)jI 3 ~ 7! a(�; ~) 2 Sm(U) is continuousg ; (36)

where U � M and I � R are open. The sheaves Bm give rise to further sheaves
B1 = limn!1A

m and B�1 = limn!�1A
m. We denote their quotient B1=B�1 by

B. Now let ~ 2 R n f0g, and denote by �~ : S
1(M) ! S1(M) the map a 7! (T �M 3

� 7! a(~�) 2 C ). Obviously �~ is invertible with inverse �~�1 . With the help of the
morphisms �~ we are now able to de�ne for every � 2 [0; 1] a bilinear map �� on the
sheaf B1 by

(a; b) 7! (a �� b) (�; ~) =

�
�~�1�� [Op� (�~(a(�; ~))) �Op� (�~(b(�; ~)))] for ~ 2 I n f0g;
a(�; 0) � (b(�; 0) for ~ = 0;

(37)
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where a; b 2 B1(U � I) and U � M , I � R open. By Proposition 2.5 a �� b is smooth
even at ~ = 0 and lies in B1(U � I) indeed. Moreover it induces an associative product
�� on B. We denote the resulting sheaf of algebras by B� and call it the sheaf of �-
ordered quantized symbols. In case � = 0 (resp. � = 1 or � = 1

2
) B� will also

be called the sheaf of normally (resp. antinormally or Weyl) ordered quantized

symbols on M .
Let us now show that (X;B�) gives rise to a smooth deformation of the ringed space

(M; S1=S�1) with distinguished point ~ = 0. Denote by D = (d�;�) : (X;B�) !
(R; C1

R
) the �bered morphism

d� = pr2 : X ! R;
(x; ~) ! ~;

(38)

�I : C1(I) ! B�(M � I)
f 7! f � pr2 + B�1(M � I):

(39)

Furthermore let C1
~

be the stalk of C1M at ~ 2 R and m~ the maximal ideal of C1
~
.

Then it follows by Proposition 2.5 that � (C1
R
) lies in the center of B�. Moreover

by the de�nition of B the sheaves B��;0 := B�jM�f0g =m0 B�jM�f0g and S1M=S
�1 are

isomorphic. It remains to show the 
atness-condition for B. We have for m 2 N
� ,

~ 2 R and x 2M the following isomorphies:

C1
~
=mm

~
�= C

m ; (40)

B(x;~)=m
m
~
B(x;~)

�=
�
S1M=S

�1
�m
x
�=
�
C1x

(N)
�m

: (41)

But
�
C1x

(N)
�m

is de�nitely 
at over C m , hence B is locally trivial over C1
R

and D a

deformation of the sheaf S1M=S
�1 of asymptotic symbols on M . As the Poisson

bracket on C1(T �M) leaves the sheaf S�1M invariant, it induces a Poisson structure on
the ringed space (M; S1M=S

�1). The abovely de�ned deformation D will give rise to a
quantization of (M; S1M=S

�1).

Theorem 3.1 Let M be a Riemannian manifold with metric g, � 2 [0; 1] and B� the
sheaf of �-ordered quantized symbols. Then the morphism D = (d�;�) : (X;B�) !
(R; C1

R
) together with the morphism

Q = (q; q) :(X;B�)! (M; S1=S�1) (42)

M � R 3 (x; ~) 7! q(x; ~) = x 2 M (43)

S1M=S
�1 3 a 7! q(a) = a � pr1 2 B� (44)

CoDeTe comprises a smooth quantization of the Poisson space (M; S1M=S
�1) of asymp-

totic symbols on M , the so-called �-ordered quantization of S1M=S
�1. For every

~ 6= 0 the map

B1(M) 3 a 7! Op� (�~(a(�; ~))) 2 	1(M) (45)

induces an isomorphism from the sheaf B��;~ := B�jM�f0g =m~ B�jM�f0g to the sheaf

	1
M=	

�1.
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Proof: The canonical commutation relations for the quantization map q are ful�lled
by Eq. (35). The other conditions for a smooth quantization have been shown above
respectively are obvious. Hence the theorem is shown. 2

Corollary 3.2 The �-ordered quantization of the sheaf of asymptotic symbols induces a
smooth quantization of the sheaf D0 of �berwise polynomial smooth functions on T

�M to
the sheaf Di�M of di�erential operators on M . Its quantization map q�;~ : D0 ! Di�M
for a particular value ~ 2 R� is given by

q�;~(a) = Op� (�~(a)) : (46)

In the case of Weyl quantization, i.e. � = 1
2
, q�;~ maps selfadjoint classical observables

to (formally) selfadjoint operators on the Hilbert space L2(M).

Proof: As D0 is a subsheaf of S1M=S
�1 and Di�M a subsheaf of 	1

M=	
�1, the

claim follows immediately from the preceding result and Theorem 2.1 (ii). 2

Let us now give some examples of quantizations of classical observables polynomial
in momentum by applying the corollary. First consider the harmonic oscillator on
M = Rn with Hamiltonian H(�) = 1

2m
jj�jj2 + 1

2
m!2jjxjj2, where m is the mass of the

oscillator and ! its angular frequency. Then H has �-ordered quantization q�;~(H) =

� ~2

2m
� + 1

2
m!2jjxjj2. More generally, if M is a Riemannian manifold and H(�) =

1
2m
jj�jj2 + V (�(�)) the Hamiltonian of a particle moving on M in an external �eld

with potential V , the quantized Hamiltonian is the di�erential operator q�;~(H) =

� ~
2

2m
� + V . In the special case of the Hydrogen atom with classical Hamiltonian

H = 1
2m
jj�2jj � e2

jjxjj
we receive q�;~(H) = � ~2

2m
�� e2

jjxjj
. The quantization of the angular

momentum Lj = xk�l � xl�k with (j; k; l) is a cyclic permutation of (1; 2; 3), is given
by q�;~(Lj) = �i~ (xk@l � xl@k). More interesting than the quantization of the angular
momentum is the quantization of the Lenz-Runge vector Aj =

1
m
(Lk�l � Ll�k)+ e2

xj
jjxjj

.
Using Proposition 2.4 we get

q�;~(Aj) = �
~2

m

�
xk@k@j + xl@l@j � xj

�
@2k + @2l

�
+ 2�@j

�
+ e2

xj
jjxjj

: (47)

Now q�;~(Aj) is formally selfadjoint if and only if � = 1
2
, i.e. in the case of Weyl

quantization. By Theorem 2.1 (ii) it is a general feature of Weyl quantization that it
maps selfadjoint classical obsevables to (formally) selfadjoint operators on the Hilbert
space L2(M) of square integrable functions on M . By construction Weyl quantization
is functorial on the category of Riemannian manifolds with isometric embeddings as
morphisms. Hence Weyl quantization seems to be the correct quantization scheme for
cotangent bundles on Riemannian manifolds.

Finally in this article we consider the star-products induced by �-ordered quantiza-
tions on cotangent bundles.

Theorem 3.3 Let M be a Riemannian manifold. Then for every � 2 [0; 1] the �-
ordered quantization induces a strongly closed formal star-product ?� on the space
C1(T �M) of smooth functions on the symplectic manifold T �M . Any two of these
star-products are equivalent.
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Proof: By Proposition 2.5 the quantization q�;~ induces the star-product

a ?� b = ab� i~
nX
l=1

h
(1� �)

�
@��(�);la

� �
@z�(�);lb

�
� �

�
@z�(�);la

� �
@��(�);lb

�i
+

+
X

�;~�;�;~�2Nn

j�+1
2
~�j�2

~
j�+~�j f�

�;�;~�;~�

�
@�z�(�)@

�
��(�)

a
� �

@ ~�
z�(�)

@
~�
��(�)

b
�
;

(48)

where a; b 2 C1(T �M). By de�nition of ?� and Proposition 2.2

C1(T �M)[[~]] 3 a =
X
k2N

ak~
k 7!

1

(2�~)n

Z
T �M

a d
 2 C [~�1 ; ~]] (49)

de�nes a C [~�1 ; ~]]-valued trace on (C1(T �M)[[~]]; ?�), hence ?� is strongly closed. To
prove equivalence of two starproducts ?�1 and ?�2 with �1; �2 2 [0; 1], it su�ces to show
that ?� and ?0 are equivalent for any � 2 [0; 1]. By Theorem 2.3 (iii) the map

C1 3 a 7!
X

�;�2Nn

(�i�~)j�+�j

�! �!

h
@�zx @

�+�
�x

a
i �
@�zx�(�)(x)

�
2 C1(T �M)[[~]] (50)

de�nes an isomorphism from (C1(T �M)[[~]]; ?�) to (C
1(T �M)[[~]]; ?0). This proves the

theorem. 2
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