L=

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by CERN Document Server

EXT-2000-137
01/08/1997

)

A deformation theoretical approach to Weyl
quantization on Riemannian manifolds

Markus J. Plaum*
28th July 1997

Abstract

Abstract. By using a sheaf theoretical language we introduce a notion of defor-
mation quantization allowing not only for formal deformation parameters but for
real or complex ones as well. As a model for this approach to deformation quan-
tization we construct a quantization scheme for cotangent bundles of Riemannian
manifolds. Hereby we essentially use a complete symbol calculus for pseudodif-
ferential operators on a Riemannian manifold. Depending on a scaling parameter
our quantization scheme corresponds to normally ordered, Weyl or antinormally
ordered quantization. Finally it is shown that our quantization scheme induces a
family of pairwise isomorphic strongly closed star-products on a cotangent bun-
dle.
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In the theory of star-products by BAYEN, FLATO, FRONSDAL, LICHNEROWICZ and
STERNHEIMER/[2] one approaches quantization theory by deforming the product on the
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algebra of smooth functions on a symplectic manifold to a noncommutative product,
namely the star-product, in a way such that Diracs quantization condition is fulfilled.
The mathematical framework hereby used is the deformation theory of algebras from
GERSTENHABER [8]. By the fundamental work of DEWILDE, LECOMTE [27], KARA-
SEV,MAsLoOV [12], FEDOSOV [6] and OMORI, YAEDI, YOSHIOKA [14] one knows that
every symplectic manifold has a star-product. The mathematical methods used by the
different authors to prove the existence theorem for star-products vary considerably,
from methods of Hochschild homology of algebras [27] over sheaf theory and Lagrangian
geometry [12] to methods using symplectic connections [6] or differential geometry and
Chech cohomolgy [14]. Though the existence of star-products on symplectic manifolds
is now well-known, it remains to single out - if possible - classes of canonical star-
products fulfilling natural properties like closedness or functoriality with respect to an
appropriate class of morphisms.

In this paper we construct a natural quantization scheme respectively star-product
on a particular class of symplectic manifolds, namely cotangent bundles over Rieman-
nian manifolds. This quantization comes from a generalization of the Weyl quantization
on R” - or in other words from the Moyal product on R” - to arbitrary Riemannian man-
ifolds. We show that Weyl quantization maps real classical observables to (formally)
selfadjoint pseudodifferential operators. Moreover it is proved that the star-product
corresponding to the Weyl quantization on Riemannian manifolds is strongly closed.
Hence we give a positive answer to the question posed by FLATO, STERNHEIMER [7],
§2.6 on the strong closedness of star-products induced by different symbol calculi for
pseudodifferential operators on manifolds.

The paper is organized as follows. In the first section we introduce our concept of a
deformation quantization. By using a sheaf theoretical language we succeed in setting
up a general language of deformation theory for (sheaves of) algebras. Thus we keep
the language close to algebraic geometry (cf. HARTSHORNE [11]) and complex analysis
(cf. GINDIKIN, KHENKIN [9]), but unlike in algebraic geometry we allow sheaves of
noncommutative algebras for deformation. The advantage of using sheaves lies in the
fact that it allows to formulate not only deformations over a formal parameter but also
deformations over an arbitrary commutative locally ringed space.

In the following section the theory of A-symbol calculus for pseudodifferential op-
erators on Riemannian manifolds is explained. On the one hand it comprises a gen-
eralization of the symbol calculus introduced by Wipowm [26] and on the other hand
a generalization of the A-ordered pseudodifferential calulus on Euclidean space R" to
manifolds. Furthermore in this section we provide some analytical properties of the \-
symbol calculus like a trace formula, adjointness relations and an asymptotic expansion
for the A-symbol of the product of two pseudodifferential operators.

In the third section the analytical tools from the previous one are used to construct a
scale of quantizations of symbol sheaves resp. sheaves of observables polynomial in mo-
mentum. Finally we consider the scale of star-products induced by these quantizations
and show that these star-products are all equivalent and strongly closed.
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1 The concept of deformation quantization

First let us briefly recall the notion of a ringed space. A ringed space is a pair (X, .A)
where X is a topological space and A a sheaf of rings on X. A is called the structure
sheaf of the ringed space. It gives the topological space X an additional structure
like that of a smooth manifold, complex space, scheme or supermanifold and can be
regarded as a space of germs of admissible generalized functions on X. If the stalks
A, with z in X are all commutative (resp. noncommutative, local) we call (X, .A) a
commutative (resp. noncommutative, locally) ringed space. If all the sections A(U)
with U open in X are k-algebras, where k is a field, one says (X,.A) to be a k-ringed
space or a ringed space over k.

A morphism of ringed spaces from (X, A) to (Y, B) is a pair (f,¢), where f :
X — Y is a continuous map and ¢ : B — f.(A) a morphism of sheaves on Y with
values in the category of rings. Here f,(A) is the direct image of A via f, that means
f(AU)) = A(f~Y(U)) for all open U C Y. If the ringed spaces (X,.A) and (Y, B) are
locally ringed, we require ¢, : Bfi) — A, to be local for all z in X. In case (X,.A)
and (Y, B) are ringed spaces over k, it is assumed that ¢(U) : B(U) — A (f~1(U)) is a
homomorphism of k-algebras for all U C X open.

The notion of a fibered morphism of ringed spaces is crucial for the definition of a
deformation.

Definition 1.1 A morphism (f, ¢) : (X, A) — (P,S) of ringed spaces is called fibered,
if the following conditions are fulfilled:

(1) (P,S) is a commutative locally ringed space.
(17) f: X — P is surjective.
(4i1) ¢g : Sp)y = Az maps Sy into the center of A, for all x € X.
The fiber of F' over a point p of P then is the ringed space (X,, A,) defined by

Xp = fﬁl(p)a Ap = A|f_1(p)/mp"4|f_l(p)7
where my, is the mazimal ideal in S, which acts on Al via .
A deformation now is a fibered morphism which in a certain sense is locally trivial.

Definition 1.2 A deformation of a ringed space (X, A) over the (commutative locally
ringed) parameter space (P,S) consists of a fibered morphism D = (d,A) : (Y,B) —
(P,S) and a point @ € X such that (d~1(e), B,) is isomorphic to (X, A) and B is locally
trivial over S in the algebraic sense, i.e. for everyp € P, y € d~'(P) and m € N* the
homomorphism A, : S, — By induces a flat morphism AJ Sp/myt — By /m'B,, where
my, is the mazimal ideal of S,.

If (P,S) = (e,C[[R]]), then the deformation is called a formal one, if (P,S) =
(R,C>®) the deformation is called smooth over R.

By BourBAKI [5] Chapter I1I, §5.2 the above flatness-condition guarantees in the formal
case that for every € X the stalk B, is isomorphic to A,[[h]] as a vector space. In
any case it guarantees local triviality (cf. HARTSHORNE [11]).

In quantization theory one is interested in deformations of Poisson spaces, i.e. com-
mutative ringed spaces (X,.4) which posses a Poisson bracket {, } : A x A — A.
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Definition 1.3 Let (X, .A) be a Poisson space. A smooth (resp. formal) deformation of
(X, A) then consists of a smooth (resp. formal) deformation D = (d,A) : (X x P,B) —
(P,S) of (X, A) and a quantization morphism @ = (q,q) : (X x P,B) — (X, .A) with
q = pry such that

(1) In the formal case q is the canonical embedding A — B = Al[h]].
The composition A % B — B, = A is the identity.

(#77) q(1) =

(iv) The canonical commutation relations

[a(a), a(b)] = —iha ({a, b, }) + o(1?) (1)

are satisfied for every a,b € A(U), U C X open.

)
(i4)
)
)

Let X be a symplectic manifold, and consider the sheaf C3; of smooth functions on X.
Then (X,C%) is a Poisson space. A formal quantization of (X, CS) then gives rise to a
star-product in the sense of BAYEN ET.AL. [2] on C*°(X)[[A]] and vice versa. In the
case X is the cotangent bundle T*M of a smooth manifold M we will consider the Pois-
son space (M, Dy) of classical observables polynomial in momentum or in other
words of smooth functions on T*M which are polynomial in the fibers. That means we
have for U C M open Dy(U) = {a € C>®(T*U)|Vx € U a is polynomial on T M}, and
the Poisson bracket on Dy comes from the canonical symplectic structure on 7*M.

In the following we will construct a scale of smooth and formal quantizations of the
Poisson space (M, Dy) and the Poisson space of (asymptotic) symbols on M.

2  Weyl symbol calculus

Before setting up the Weyl symbol calculus for pseudodifferential operators on Rieman-
nian manifolds let us fix some notation.

Let M always be a Riemannian manifold of dimension n, g its metric tensor and w
the canonical symplectic form on T*M. Further let W C T'M be an open neighborhood
of the zero section such that exp is injective on the fibers W. By ¢ : TM — [0, 1] we de-
note a cut-off function having support in W and being identical to 1 on a neighborhood
of the zero section of TM. The Riemannian structure on M induces a unique volume
density p on M, and for every x € M canonical volume densities p, on T, M and p
on T*M. Denote for any z € M by p, : W, — Rt with W, = exp(W N ({z} x M)) the
smooth function having the property

pa iy, = (€xpy)s(fi)- (2)

Note that p : W — R, (z,y) — p,(y) with W = Upen iz} x W, is smooth as well.
Now let U C M be an open subset on which an orthonormal frame e = (e, ..., e,)
exists. Then for any & € U there exist uniquely defined normal coordinates z, of M at
x such that 0,, x| = ex(x) for k =1,...,n. Finally denote by (z,(;) the coordinates
of the cotangent bundle T*M induced by z,.
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By S™(M), m € R we understand the symbols on T*M of Hérmander type,
i. e. S™(M) consists of all smooth functions a € C>°(T*M) such that uniformly on
compact subsets K C U of any coordinate patch U C M

agafa(x,g)‘ < COgap<&>"P zcK, £EcR". (3)

Hereby (z1,...,z,) are coordinates over U, (z1, ..., Ty, &1, ...&,) the induced coordinates
on T*U, <&> = (1 + ||¢]))/? and Cgap > 0. As usual we define S®(M) =
Umer S™(M) and S™°(M) = Nper S™(M). Note that for any m € R U {+oo} we
receive a sheaf S™ on M whose spaces of sections are given by S™(U) for U C M
open. The space U™ (M) of pseudodifferential operators on M of order m consists of all
pseudolocal continuous mappings D(M) — D'(M) which in a local coordinate system
k : U — R" have a representation of the form

D(U) 5 u s (x - (Qi)n / n / ED I o(5(2), ,€) (wo 1 )(y) dydf) € C>(U)

(4)
with a € S*®(k(U) x k(U),R"). Obviously the mapping U — U™(U), where U runs
through all open sets of M, defines a presheaf U™ on M. By ¥~>*°(M) we denote

the space of all smoothing pseudodifferential operators on M, and by U °(M) the
smoothing pseudodifferential operators with vanishing trace.

Now let A € [0,1] be a parameter. We then associate to every a € S®(M) an
operator Op,(a) € Hom (D(M),D'(M)) by

<On(@u>= G [ a© el ane) )

where © = w" is the Liouville volume form on T*M, u,v € Co (M) and ¢, is the
Wigner kernel

OO = G [ e ulexn(1 = D) Texp(-AX) B(X) din () (6)

for the parameter value A. In the case A = 0 one can think of Op(a) = Opy(a) as
the normally ordered operator associated to a, Op,(a) = Op,(a) is the antinormally
ordered operator associated to a, and Opyy(a) = Op; »(a) gives the Weyl operator of a.

Theorem 2.1 Let A € [0,1]. Then Op, : S*®°(M) — Hom (D(M),D'(M)) is a linear
mapping with the following properties:

(1) Fora € S™(M) the operator Op,(a) is pseudodifferential of order m and does not
depend on the choice of the cut-off function 1 up to elements of W 3°(M).

vir

(1) The formal adjoint of Op,(a) is given by Op,(a)* = Op,_,(a). In particular the
Weyl operator of a symbol a is formally self-adjoint if and only if a is real-valued.
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(i7i) Any operator Op,(a) has an integral representation of the form

[Opx(a) u] (z) =

1 —i * — 7
— i € 0 (T o0, (6)) (exp)) BOX) sy () A
(2m) Ty M XT*M
(7)
whereu € D(M), z € M and v is the cut-off function TX > X — (Txexp X) €

[0,1].

(iv) The Schwartz-kernel Ky(a) of Op,(a) is given as the oscillatory integral
K)\(a) (IL', y) = p;I(y) pexp()\ expz 1 (y)) (l‘) 77; (expa_:l(y)) ’

: <eows! (8)
: —i<g,exp, - (y)> * 1
(27—‘-)TL L*GM a <TeXpl,()\ exp;l(y)) eng; ) dg

PROOF: (i) By definition Op,(a) has a kernel K,(a) € D'(M x M). Now the
phase-function Trx)M 3 { —»<§, X >€ Cin Eq. (6) is singular if and only if X = 0.
Hence the singular support of K,(a) lies in the diagonal 6 C M x M, and Op,(a) is
a pseudodifferential operator of order m. The fact that Op,(a) does not depend on
the choice of ¢ up to elements of W °(M) follows immediately from (iv) which will be
proven later.

Let us now show (iii). Assuming A # 0 and a € S™°(M) we get by using the Gauf}
Lemma

vir

<OpA Yu, v >=

G S Al ulexn(t — 0 Tep(=AX) UOX) dieio (X) d6)

TreyM

S<ENTTexpZl (2)> a(§) u(exp,r(g) ()\—1()\ —1) exp;(lg) (x))) u(x)
U (=AM exp g (0)) peco (@) din(2) d2(E)

T*M J M

o~ i<T" exp,, ()AL expr ! (n(€))> a(ﬁ) u(expm ()\—1 exp;l(ﬂ(g)))) E(m)
M JT*M
U (=" exp (@) pre () dAE) du(a)
1 : -1
CENE /Mﬁ(m) /TMi;Zj\jA il (Te);p (x )eXP;1(§)> u (exp, (A7 X))

PO T exp X, x () A2 (X, €) dp()

1 )
= e [, 7 [ 0 (T 097'©) s ()

(X)) Pexp, ) (7) dX dE du(x).
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By continuity in A this equation holds for A = 0 as well. Now S™°(M) is dense in
S™(M) in the topology of S™(M) for any m > m. Continuity of both sides of Eq. (9)
with respect to a € S™(M) entails that Eq. (9) is true for any a € S*°(M). Hence (iii)
follows.

(ii) Assume u,v € Coy (M, C). Then

< Opy(a)*u,v >= < Op, (a)v,u >
= [l [ e (= 0)X) T(exp(-AX) diure (X) d2
2m)" Jpep )M

*M

= O [ (= 0)X) wexp(-AX)) () d2

— e [ O [ e ep(0X) Tlexp(—(1 = N)X) diage (X) 492
2m)™ Jpem TreyM
=< Op;_\(@)u,v > .
(10)
Finally (iv) is an immediate consequence of (iii). O

Let us briefly consider as an example the case where M is Euclidean space R". Then

[Op,(a)u] (x) = e IEN> g (2 — AXL ) u(r + X) dX dE =

n

ST a (1= Nz + Ay, €) uly) dy de,

n

n

(11)

n

which gives the well-known A-ordered symbol calculus for pseudodifferential operators
on R".

In the following we determine operators Op,(a) of traceclass and calculate their
trace in terms of a.

Proposition 2.2 Let a € S™(M) with m < —dim(M) and w(suppa) C M compact.

Then Op,(a) is traceclass, and a is integrable with respect to the Liouville measure on
T*M. Furthermore

1

trOp, (a) = / a dS). 12
/\( ) (27_‘_),1 T ( )
PROOF: The claim follows immediately from Theorem 2.1 (iv) by the following

equality:

tr Op, (a / Ky(a)(z,z) du(x ) d¢ dp(x)
= a dS2.
(27T) /T*M

O

Next we will study quasiinverses of the maps Op,, the so-called symbol maps.
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Theorem 2.3 (i) Let ¢ : W — R be the phase-function (z,€) —< f,exp;(lg) (x) >,
where W = {(I,f) € X xT*X|x € exp W,r(g)}. Then for every A € W>°(M) the
normal symbol 0(A) = og(A) € S*®(M) is defined by

T*M > € s o(A)(€) = A (¢ o expry, ew@f)) (r(£)) € C. (14)

The normal symbol provides a map o : W*°(M) — S°°(M) which is quasiinvers to
Op, i.e. which is invers to Op modulo S™° (M) resp. W=>°(M).

(17) For every A € [0, 1] there exists a map oy : W (M) — S°° (M) which is quasiinvers
to Opy. The symbol ox(A) is called the A-symbol of the operator A € U (M).

(173) The following asymptotic expansions hold with © = 7(§):

—i)\)letsl
()€~ Y T [0 0 o) (© [0%0(0)] @ (15
a,BEN?
— |t +...+ag
<8§;2182;21 _— < 8?:}6718&1_1 — (UU(A)(Ck)pIk(x)>...) P (x))] .

(16)

In the last asymptotic expansion the partial derivatives 82;’1 ;! ’“k 2pi1=y act on the vari-

Ckr1=¢
ables xryq resp. (x41 and are evaluted at xxyy = y resp. (xyr1 = &.

PROOF:  The proof of (i) is an immediate consequence of WIDOM [26], Proposition
3.5 or PFLAUM [16], Theorem 3.2. Consider the orthonormal basis V' = (Vi,...,V},)
of T,M with V}, = 0,, x|, for k = 1,...,n, and let ¢ = ((i,...,(,) be the dual basis
of V. Then by Theorem 2.1 (iii) and the asymptotic expansion of the symbol of a
pseudodifferential operator on R" = T, M (cf. GRIGIS, SIOSTRAND [10], Theorem 3.4)
we have the following asymptotic expansion of the normal symbol of A = Op,(a) with
a € S™(M)

—lal

— 00 0 [a (T rv 3, () Pespav (@] g

acNn - "
=D A0z g [ap(@)] (€) (17)
—i\)lats]
S B [ @ [9no@) @)
a,BeNn

If we can yet show that this asymptotic expansion determines the symbol a up to
smoothing symbols, we could set o)(A) = a and thus prove Eq. (15) and (ii).

By Eq. (15) a and 0¢(A) coincide modulo S™'(M). Assume now that modulo
Sm=k(M), k > 0 there is only one a € S™(M) fulfilling Eq. (15). Denote by t;(a),



2 WEYL SYMBOL CALCULUS 9

[ € N the sum of all terms in the right hand side of Eq. (17) such that | + 3] = I,
and let a € S™(M) be a symbol fulfilling oo(A) ~ >, ti(@). By assumption we have
a—a e S™¥*(M). Hence t;(a —a) € S™*1(M) for | > 1 and

a—a= ti(a—a) =0 modS™ *1(M). (18)
I<k+1

Inductively this shows a —a € S™>°(M).
[t remains to prove Eq.(16). Define inductively symbols a; € S™(M) by

(—iX)lel
o!

a = 09(A), app1=o09(A)— ) 0292 [ar, py(2)] (£). (19)

aeN*

Then a; — ap € S™ (M), and by induction on k a1 — ap € S™ * 1(M). Hence (ay)
is a Cauchy-sequence with respect to the topology of asymptotic convergence. Its limit
a = limy_, ay, satisfies Eq. (17), so a = 0,(A). But by definition the symbol a is equal
to the right hand side of Eq. (16). This proves the claim. O

The above theorem enables us to calculate the A-symbol of a pseudodifferential
operator out of its normal symbol and vice versa. In the following proposition this
method is used to determine the various symbols of the Laplacian on a Riemannian
manifold.

Proposition 2.4 Assume D € Diff(M) C Hom(C*>*(M,C),C>(M,C)) to be a second
order differential operator on the Riemannian manifold M, and express the normal
symbol a = oo(D) of D in the form

a(&) = THGE G + XFg, +r, €€ TM, (20)

where T is a symmetric contravariant 2-tensor field, X a vector field and r a smooth
function on M. Then the \-symbol of D is given in terms of T, X and r by

oA(D)(&) =TH&& + 02X (ViTH) & — NV, v TH +

+XFE —IAVLXE £y, £ € THM. (1)
Vice versa, if a € S (M) is a symbol of the form (20), then
Opy(a) = = TV V, = 20 (V, T) v, = N>V, Vv, T — (22
—iX*V —iAV X F 47
In the particular case, where a(§) = ||€|%, the equality
Opy(a) = -4, (23)
holds, where Ay is the Laplacian with respect to g.
PrROOF: Let us assume for simplicity X = 0 and »r = 0. The calculations for

nonvanishing X and r are similar and will be omitted. Recall that the Christoffel
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symbols of V and the inverse Jacobian p(.y(x) have the following expansions with respect
to the normal coordinates z, (cf. BERLINE, GETZLER, VERGNE [3], Chapter 1.3):

i) = 5 RE () 20aly) + oz (1)), (24)

() = 14 Ricu () 20 (0)0(0) + 0(2:(0)°), (25)

where R is the curvature and Ric the Ricci-tensor of g. Then we have for all z,y € M
close enough with respect to the normal coordinates z,:

ViViT*(x) = 8., 10, T () + (O s 1) T + (O 1) T
= 02,402 T () — 5 (REa() () + Rlys(0) () (o)
= 0,, 400, T () + %Rickl (2) T*(z).
Now express the symbol a = 0,(D) in the form

oa(D)(€) = TH&& + Y e, + 5, (27)

where Y is a smooth vector field and s a smooth function on M. Hence we receive by
Eq. (15)

a(€) = oa(D)(E) — 122 [0, o 4T*] (7()) Ca(€) -
= N[0 kD T+ TH O 1D 0 p0(7(E))] (7(8)) = 120k Y (28)
=o\(D) (&) —i2X (ViT™) & — N (Vi V,TM) (w(€)) — iAV, Y™,
This gives
oA(D)(&) = THE& + 02X (ViTH) & + N (Vi ViTH) (n(€)) +iAViYr  (29)

for all £ € T*M, and implies Y! = i 2AV, T*¥. Now (21) follows immediately. In the
case a(§) = ||€2|| we have D := Opy(||¢]]?) = —A,. As Vg =0 Eq. (21) entails

ox(D)(&) = |16 (30)
hence Eq. (23) follows. By analogous arguments one proves Eq. (22). O

Finally in this section we want to provide an asymptotic expansion for the A-symbol
of the product of two pseudodifferential operators in terms of the symbols of its com-
ponents.

Proposition 2.5 Let a € S™(M), b € S™ (M) be two symbols on M. Then the -
symbol ¢ = o (Opy (a)-Opy (b)) € S™™ (M) of the product of the two pseudodifferential
operators Opy (a) and Op,(b) has an asymptotic expansion of the form

)~ = i3 (1) (9] () = (o) (2,0,0)] © +

A G 31
S P (0% 00 ) (02 02 ) (©), (31

«,&,3,3eNn
|6+44]>2
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where the fo/>5 ap e polynomials in the fibers of T*M of degree < ‘ﬂ + %B‘ and depend

only on the derivatives of the curvature of g.

PROOF:  For the case of the normal symbol oy Eq. (31) holds true by Wipowm [26],
Proposition 3.6 or PFLAUM [16], Theorem 5.4. Let A = Op,(a) and B = Op,(b). Then
by Theorem 2.3 (iii) one has expansions

oo(A) = a — i\ Z Oz Ve @+ Tas (32)

=1

o0(B) = a — i\ Z Ozriers Ocrier 0+ T, (33)

=1

where 7, € S™ 2(M) and r, € S™ 2(M). Using Eq. (31) for the case of A\ = 0 we
receive

00(AB) = ab — Zi [(a@r(o,la) (8%(&),11)) +A (a Oz 61,1 Otre) 10+ aZw(»:),la@(E%la)] + 7o,
-1
(34)

where ro € S™*™ ~2(M). Applying Theorem 2.3 (iii) again finally yields

ox(AB) = ab — zi [(1 - ) (agﬂ—(g),la/> (azﬂ—(g),lb> —A (azw(g),la> (a@r(é),l b)] T
(35)

where 7, € S™t™=2(M). Tt remains to show that the remainder terms r, have the
required form. For A = 0 it is already known that ry has the claimed asymptotic
expansion (see PFLAUM [16], Theorem 5.4), hence Theorem 2.3 (iii) entails that r) has
it as well. a

3 Quantization of symbols

With the help of the analytical tools from the previous section we now want to to con-
struct a scale of concrete deformations of the symbol sheaf over a Riemannian manifold.
Let us define for every m € R a sheaf B™ on X = M x R by

B™(U xI)={aecC®T"U xI)|I >h~ a(-,h) € S"(U) is continuous}, (36)

where U C M and I C R are open. The sheaves B™ give rise to further sheaves
B* = lim, ,, A™ and B~ = lim,, -, .A™. We denote their quotient B>*/B~>° by
B. Now let i € R\ {0}, and denote by ¢ : S®°(M) — S*®°(M) the map a — (T*M >
¢ — a(hg) € C). Obviously ¢y is invertible with inverse tp-1. With the help of the
morphisms 1 we are now able to define for every A € [0,1] a bilinear map %, on the
sheaf B> by

o0 e ) = { G A S
(37)
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where a,b € B¥(U x I) and U C M, I C R open. By Proposition 2.5 a *) b is smooth
even at i = 0 and lies in B¥(U x I) indeed. Moreover it induces an associative product
x) on B. We denote the resulting sheaf of algebras by By and call it the sheaf of \-
ordered quantized symbols. In case A = 0 (resp. A = 1 or A = 1) B, will also
be called the sheaf of normally (resp. antinormally or Weyl) ordered quantized
symbols on M.

Let us now show that (X, By) gives rise to a smooth deformation of the ringed space
(M,S>*/S™*°) with distinguished point i = 0. Denote by D = (d,A) : (X,B)) —
(R,C2) the fibered morphism

d=prs: X — R,
(x,h) — B,
Ap: C®(I) — By(M x1I)
f —  fopro+ B (M x I).

(38)
(39)

Furthermore let Cp° be the stalk of C3; at 7 € R and m;, the maximal ideal of C;°.
Then it follows by Proposition 2.5 that A (Cg°) lies in the center of By. Moreover
by the definition of B the sheaves B, o := B[y, 0 /mo Balpry oy and S§7/S™°° are
isomorphic. It remains to show the flatness-condition for B. We have for m € N*,
h € R and x € M the following isomorphies:

Cefmi 2 O™, (40)
Biawy/mii By 2 (8%/8 )1 = (c2™) " (41)

But (C;"(N))m is definitely flat over C™, hence B is locally trivial over Cg° and D a

deformation of the sheaf S3;/S™* of asymptotic symbols on M. As the Poisson
bracket on C*®(T % M) leaves the sheaf S;;° invariant, it induces a Poisson structure on
the ringed space (M, S33/S™>°). The abovely defined deformation D will give rise to a
quantization of (M, S35/S™>°).

Theorem 3.1 Let M be a Riemannian manifold with metric g, A € [0,1] and By the
sheaf of A-ordered quantized symbols. Then the morphism D = (d,A) : (X,By) —
(R,C2°) together with the morphism

Q = (¢,9) :(X, By) = (M,5*/5°%) (42)
M xR> (z,h)—q(x,h) =z € M (43)
S3/S ™ 2> a—q(a) =aopr, € By (44)

CoDeTe comprises a smooth quantization of the Poisson space (M,S33/S™%) of asymp-
totic symbols on M, the so-called \-ordered quantization of S%3/S™>°. For every
h # 0 the map

B*(M) > a— Op, (tp(a(-, h))) € (M) (45)

induces an isomorphism from the sheaf B,, p = B,\|MX{0} /my B,\|MX{0} to the sheaf
WS /e,
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PrROOF: The canonical commutation relations for the quantization map q are fulfilled
by Eq. (35). The other conditions for a smooth quantization have been shown above
respectively are obvious. Hence the theorem is shown. a

Corollary 3.2 The A-ordered quantization of the sheaf of asymptotic symbols induces a
smooth quantization of the sheaf Dy of fiberwise polynomial smooth functions on T* M to
the sheaf Diffyr of differential operators on M. Its quantization map qy 5 : Dy — Diff
for a particular value h € R* is given by

axn(a) = Opy (u(a))- (46)

In the case of Weyl quantization, i.e. A = %, axn maps selfadjoint classical observables
to (formally) selfadjoint operators on the Hilbert space L*(M).

PROOF: As Dy is a subsheaf of S§7/S™>° and Diff); a subsheaf of U35/U~> the
claim follows immediately from the preceding result and Theorem 2.1 (ii). O

Let us now give some examples of quantizations of classical observables polynomial
in momentum by applying the corollary. First consider the harmonic oscillator on
M = R* with Hamiltonian H(£) = 5= |€]|* + 3mw?||z||?, where m is the mass of the
oscillator and w its angular frequency. Then H has A-ordered quantization gy ,(H) =
—%A + smw?|[z|[?. More generally, if M is a Riemannian manifold and H(£) =
=||¢|[* + V(7 (€)) the Hamiltonian of a particle moving on M in an external field

with potential V', the quantized Hamiltonian is the differential operator gy ,(H) =
—%A + V. In the special case of the Hydrogen atom with classical Hamiltonian
H = 3-||€%|| - HQTQH we receive q, ,(H) = —%A - He_;H The quantization of the angular
momentum L; = x,&§ — 2§, with (j,k,() is a cyclic permutation of (1,2, 3), is given
by axn(L;) = —ih (x40, — 2,0)). More interesting than the quantization of the angular

momentum is the quantization of the Lenz-Runge vector A; = = (Ly& — L&) + 62%.
Using Proposition 2.4 we get
A) = " (0000, + 0N, — 3 (57 + ) + 200,) + ¢~
ina(Aj) = m(mkkﬂ+$lla x](k+ l)+2 J)+e||x||‘ (47)

Now gy 4(4;) is formally selfadjoint if and only if A = 1, i.e. in the case of Weyl
quantization. By Theorem 2.1 (ii) it is a general feature of Weyl quantization that it
maps selfadjoint classical obsevables to (formally) selfadjoint operators on the Hilbert
space L*(M) of square integrable functions on M. By construction Weyl quantization
is functorial on the category of Riemannian manifolds with isometric embeddings as
morphisms. Hence Weyl quantization seems to be the correct quantization scheme for

cotangent bundles on Riemannian manifolds.

Finally in this article we consider the star-products induced by A-ordered quantiza-
tions on cotangent bundles.

Theorem 3.3 Let M be a Riemannian manifold. Then for every A € [0,1] the \-
ordered quantization induces a strongly closed formal star-product %y on the space
Ce(T*M) of smooth functions on the symplectic manifold T*M. Any two of these
star-products are equivalent.
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PRrROOF: By Proposition 2.5 the quantization g ; induces the star-product

a*Ab—ab—th (1= (9e910) (0igd) = A (9eri00) (9ed) ] +

o (48)
+ j{: ﬁW+B|ﬁimdﬁ (6&(06f(@a) (6@(@62(@b),

o,&,8,5eNNn
|6+%5|22

where a,b € C®(T*M). By definition of x, and Proposition 2.2

1
(2mh)™

C(T*M)[[h]] > a = Zakhk —

keN

/ 0 dQ € " 1] (49)

defines a C[i~", h]]-valued trace on (C°°(T*M)[[h]], %), hence x, is strongly closed. To
prove equivalence of two starproducts xy, and %y, with A;, Ay € [0, 1], it suffices to show
that %, and %, are equivalent for any A € [0, 1]. By Theorem 2.3 (iii) the map

—i\h)latb
¢ sam Y COET o opv9a) (02 0 (@)] € ¥ an(n] (50

1 51
a,BeNn o ﬁ

defines an isomorphism from (C°°(T*M)[[A]], *») to (C>°(T*M)|[h]], *o). This proves the
theorem. O
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