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Abstract

In this report is presented an investigation of the Cherenkov angle resolutionσθc achiev-
able in the High Momentum Particle Identification (HMPID) CsI-RICH detector of ALICE.
Two angle reconstruction procedures are described and the single contributions affecting
the resolution are evaluated through the analytical treatment and the Monte Carlo simu-
lation programRICHSIM. The σθc dependence on various detector parameters, namely
the radiator thickness, the proximity gap thickness and the chamber gain, has been studied
carrying out beam tests of CsI-RICH prototypes. A ring resolution of about 2 mrad has
been achieved, forβ=1 particles, in the optimal detector configuration (10 mm C6F14 radi-
ator thickness, 103 mm proximity gap and 40 ADC channels single electron average pulse
height).
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1 Introduction.
The High Momentum Particle Identification (HMPID) RICH detector of ALICE is de-

voted to the detection ofπ, K and p in the 1 to 5 GeV/c momentum range. It has a proximity
focusing geometry and consists of a 10 mm liquid C6F14 radiator, contained by a 5 mm quartz
window and separated by a 103 mm gap (filled with CH4) from the Cherenkov photon detection
plane, which is a CsI photocathode segmented into pads for two-dimensional readout. Detailed
descriptions of the HMPID detector and of the test-beam setup (used to assess the performance
of several prototypes) are given in [1, 2, 3].
Here is presented a detailed study of the Cherenkov angle resolution achieved in single particle
test-beam events, based on the estimation of the single contributions to the resolution via the
Monte Carlo simulation programRICHSIM (described in [1]) and the analytical calculation.

2 Angle reconstruction algorithms and analytical treatment.
The Cherenkov angle is affected by the following errors:

(1) Thechromatic error, related to the variation of the radiator refractive indexn with the pho-
ton energyE. It is generated by the dispersiondn/dE of the radiator medium index and by the
spread of the detector response over the effective photon energy range. The detector response,
in turn, is determined by the convolution of the CsI photocathode (PC) quantum efficiency (QE)
with the transmission of the media traversed by the Cherenkov photons inside the detector: 10
mm liquid C6F14 radiator, 5 mm quartz window and about 100 mm of gas mixture, basically
composed by CH4, occasionally with a small percentage of i-C4H10 and few ppm’s of oxygen
and water vapour pollutant. (fig. 1).
(2) Thegeometric error, related to the spread of the emission point along the particle path in
the Cherenkov radiator. It depends on the ratioTr/Tg between the radiator thickness,Tr, and
the proximity gap thickness,Tg; it can be minimized mainly by increasingTg since a reduction
of Tr will decrease the number of Cherenkov photons per ring and therefore the pattern recog-
nition capability.
(3) The localization error, related to the precision with which the photon and particle impact
coordinates can be measured. It is determined by the photodetector geometry (pad size, sense
wires pitch) and by the photon feedback.
(4) The trackincidence angle error, related to the particle angleθp and to the precision of the
tracking devices.
While the chromatic and geometric error are intrinsic, respectively, to the radiator properties
and to the proximity focusing technique the last two are determined by experimental condi-
tions, like the photodetector gainA0 and the tracking quality.
The reconstruction of the Cherenkov angleθc is obtained through a transformation of the mea-
sured ring radiusR. Then, from the resulting functional dependence,θc = θc(R, E, Tr, θp), the
spread of the reconstructed Cherenkov angle distribution can be analytically estimated as:

σθc = [
4∑

i=1

(
∂θc

∂vi

σvi
)2]1/2, (1)

where the variablesvi are:E, Tr, R, θp andσvi
are the respective rms errors.

Two methods have been used for the Cherenkov angle reconstruction, in real and simulated
events. The first one, theloop-method, is based on the search of the best angle through an
iterative procedure described in [4]. The other, calledβ-method, is a simple transformation of
the Cherenkov ring radius based on the knowledge of the particleβ which eliminates the direct
analytical dependence onn. Since the photonemission pointin the radiator,Xep and the photon
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Figure 1: (a) Measured UV transmission of 10 mm C6F14 and 5 mm quartz plates, supplied
by two different companies. (b) UV transmission of CH4 and i-C4H10, calculated from [5] and
[6] respectively, for a photon path of 180 mm equivalent to a distance traveled in a proximity
gap of 103 mm by Cherenkov photons emitted in C6F14 by β = 1 particles. (c) UV absorption
cross section of oxygen [7] and water vapour [8]. (d) photocathode PC32 QE evaluated from
test-beam data and the convolution with the total transmission.

energy are unknown, in both methods, the angle reconstruction has been achieved by fixing
them at the most probable values. In particular,Xep is about 5.2 mm for perpendicular tracks in
a 10 mm radiator; it is not at the radiator centre since photons generated in the first radiator half
have larger probability of beeing absorbed due to the longer path in the C6F14). The average
energyEav is 181 nm (6.85 eV) over the detector response (fig. 1d).
Fig. 2 shows the single photon experimental distributions of ring radius and the corresponding
reconstructed Cherenkov angle distributions, either single photon or ring averaged (withσring

θc
∼

σsingle
θc√
Nphot

), obtained by means of the two mentioned procedures. Theβ algorithm provides, of

course, the best resolution; however its application to the analysis of real multi-particle events
needs either a pre-filtering by a general method estimating theβ associated to each considered
particle or a probability table allowing to test the hypothesis concerning the possible kind of
particle.
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Figure 2: Single photon and ring averaged, radius distributions (a) and Cherenkov angle distri-
butions from: (b) theloop-methodand (c) theβ-method. Experimental data from SPS test-beam
(350 GeV/c π), PC32, chamber gainA0 ∼ 40 ADC channels (1 ADC = 0.17 fC).

2.1 Theloop-method.
In the first step, the angleφc, defined by the plane containing the particle trajectory and

the photon impact, is calculated and, assumingθc = θc(Eav) andβ = 1, photon tracking is
executed starting fromXep through the media up to the CsI PC, producing an impact point at
a distance∆s from the measured point of coordinates (xc, yc). Then a new tracking is started
after having increasedθc andφc by (dθc/ds)∆s and (dφc/ds)∆s respectively, with the deriva-
tives evaluated with a 0.5 mrad variation of each angle. The condition which stops the iteration
is ∆s ≤ 0.1 mm, a value which is much smaller than the spatial resolution of 2 mm estimated
for the photodetector and resulting from the photon feedback [1].
A vector ray trace with refraction at all surfaces in the detector media gives the following equa-
tion for the photon coordinates [9]:

xc = Rax, (2)

yc = Ray, (3)
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where

R =
Tr

az
+

Tq√
a2

z + (nq

n
)2 − 1

+
Tg√

a2
z + ( 1

n
)2 − 1

. (4)

Tr, Tq andTg are the thicknesses of radiator, quartz window and proximity gap, respectively;
ax, ay, az are the photon direction cosines in the detector reference system. In the limit case
Tr, Tq → 0, an explicit solution givingθc as a function of the measured quantities (xc, yc, θp) is
obtained:

cosθc = cosφpsinθpax + sinφpsinθpay + cosθpaz, (5)

with φp particle track azimuthal angle,ax = xc/nr, ay = yc/nr, az =
√

1− x2
c+y2

c

n2r2 and
r2 = x2

c + y2
c + T 2

g . Thus, the explicit dependence onxc, yc, θp allows to evaluate directly
the localization and incidence angle contributions:

∂θc

∂xc
=

βk1/2

Tgα
[k(cosφ′cosφp − cosθpsinφ′sinφp)− αµ

β2
sinθpsinφ′], (6)

∂θc

∂yc

=
βk1/2

Tgα
[k(cosφ′sinφp + cosθpsinφ′cosφp) +

αε

β2
sinθpsinφ′], (7)

∂θc

∂θp
= −cosφ′, (8)

wherek = 1− n2 + α2

β2 , φ′ = φc− φp andε, µ, α are the photon direction cosines in the system
of the particle:

ε = sinθpcosφp + tanθc(cosθpcosφ
′cosφp − sinφ′sinφp), (9)

µ = sinθpsinφp + tanθc(cosθpcosφ
′sinφp + sinφ′cosφp), (10)

α = cosθp − tanθccosφ
′sinθp. (11)

Finally, the chromatic and geometric contributions have to be calculated considering the implicit
dependence ofθc onn andL through the measured variablesxc, yc :

∂θc

∂n
=

cosθp

α

n2β2

ntanθc

, (12)

∂θc

∂Tr
= (

1

1 + εTr k
α2cos2θc

)(
βk3/2tanθcλ

Tgα2
+

1 + εTrkβ2

α2(1 + εTr)

k1/2tanθc

Tgβ
(1− λ)), (13)

where

εTr =
Tr −Xep

Tg

βk1/2

α
, (14)

λ = 1− sin2θpsin
2φc. (15)
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2.2 Theβ-method.
Fig. 3 illustrates the geometry for the angle reconstruction with perpendicular incidence

particles; in the case of oblique tracks an image correction through a detector rotation is needed.
The measured ring radiusR can be expressed as:

R = ∆Rrad + ∆Rqz + Ro, (16)

where∆Rrad = (Tr − Xep) · tanθc(Eav) and∆Rqz = Tqtanθqz(Eav) are constant terms and
Ro = Tg · tanθo. θo can be simply expressed as a function ofθc by means of Snell’s law; then,
assuming the refractive index of the gas medium in the proximity gap equal to 1, we get:

Ro = Tg
nsinθc√

1− n2sin2θc

. (17)

Using the Cherenkov relation,cosθc = 1
nβ

, in the previous expression, the following equation

R

QW

quartz window

GAPRW

radiator

x

cθ
θqz

θo

∆ R∆ qzRrad

oR

particle

ep

CsI PC

Figure 3: Cherenkov photon optical path through the detector and geometry for theβ-method
angle reconstruction.

is obtained:

n =

√√√√ 1

1 +
T 2

g

R2
o

+
1

β2
, (18)

which can in turn be put in the Cherenkov relation to calculate the angle as:

θc = acos(
1√

β2

1+
T2

g

R2
o

+ 1
), (19)

whereTg and theβ of the particle are known andRo can be deduced from the measured radius
R through the relation (16).
In this caseθc depends, directly, only onR; then the localization contribution to the resolution
will be simply:

∂θc

∂R
=

∂θc

∂Ro
=

cos2θc

tanθc
β2 T 2

g Ro

(T 2
g + R2

o)
2
. (20)
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To find the errors associated to the remaining variables, it is needed to estimate the variation of
R with the same variables and finally calculate(∂θc/∂vi) using the following expression:

∂θc

∂vi
=

∂θc

∂R

∂R

∂vi
. (21)

The result is:

∂R

∂n
= (Tr −Xep)

nβ2

tanθc
+ Tq

n

nqh2

1

( 1
h
− 1

n2
q
)3/2

+ Tg
n

h2

1

( 1
h
− 1)3/2

, (22)

∂R

∂Tr
= tanθc, (23)

whereh = 1
n2− 1

β2
andnq is the quartz refractive index.

The contribution of the particle track polar and azimuthal angles,θp andφp respectively, can be
evaluated by considering the following relation:

∂θc

∂θp

=
∂θc

∂R

∂R

∂az

∂az

∂θp

, (24)

and a similar one forφp. Here the variablesR andaz are those defined in theloop algorithm;
indeed in the case of oblique tracks the ring image is tranformed through a detector rotation,
according to the photons polar and azimuthal angles in the proximity gap reconstructed by the
loop-method. In the limit caseTr, Tq → 0, the resulting contributions are:

∂θc

∂θp
= −cos(φc − φp) (25)

and
∂θc

∂φp
= −sinθpsin(φc − φp). (26)

2.3 Evaluation of the rms errors.
The final step of the analytical treatment is the evaluation of the rms errorsσvi

to be used
in the relation (1). Such quantities are strictly related to the detector response, while the partial
derivatives listed above represent a general feature of the proximity focusing configuration.
The evaluation of the chromatic rms error,σE = (dn/dE)σdet

E , was shown to be very crucial to
reproduce the measured angular resolution, either withRICHSIM or by means of the analytical
treatment. The parameterdn/dE is a physical property of the liquid radiator. The first measure-
ment of the C6F14 refractive index, from J. Seguinot [8], was limited to the range from 195 to
250 nm and the experimental data were best fit withn(E) = a + b · E with a = 1.2177 and
b = dn/dE = 0.00928 eV−1 (fig. 4). Such a curve does not reproduce our test beam data: at the
average wavelength of detected Cherenkov photons of 181 nm (fig. 1d) the index is 1.28127, a
value corresponding to a ring radius of 144.5 mm (forβ = 1 particles and a proximity gap of 103
mm), instead of the observed 156 mm (fig. 2a). The value needed to obtain the right ring radius
(and to reconstruct correctly the Cherenkov angle) isn = 1.2948, at the average detected pho-
ton wavelength. The index dispersion has been adjusted in order to get, in Monte Carlo events,
the correct spread in the distributions of either the ring radius and the reconstructed Cherenkov
angle. Indeeda andb have been estimated with a trial and error method, taking into account all
the tunable parameters (namely the photon feedback rate and the CsI quantum efficiency). The
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values giving the best fit to data are:a = 1.177 andb = 0.0172 eV−1. The corresponding curve
is also shown in fig. 4, together with the recent DELPHI measurements (data by courtesy of E.
Fokitis, S. Maltezos and P.G. Moyssides [10]). Although they refer to two different tempera-
tures (27.5oC for DELPHI and 22.5oC for the HMPIDRICHSIM), the two sets of data are in
good agreement, since the experimental error quoted for the DELPH index corresponds to an
uncertainty of about 4oC, according to the temperature coefficientdn/dT = −5 × 10−4 oC−1

given by the supplier.
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Figure 4: The C6F14 refractive index. The J. Seguinot [8] and DELPHI [10] values are experi-
mental, while the HMPID curve has been deduced to best reproduce with Monte Carlo events
test beam distributions. A linear fit withn(E) = a+b·E is also superimposed, witha andb bee-
ing 1.2177 and 0.00928 eV−1, for J. Seguinot data, and 1.177 and 0.0172 eV−1, for RICHSIM
data.

The second factor in theσE expression,σdet
E , represents the standard deviation of the

detected Cherenkov photon spectrum resulting by the convolution of all media UV-transmission
with the CsI QE (fig. 1d). The shape of that distribution suggests a triangular response of the
detector to UV photons and, therefore,σdet

E can be approximated by∆E/
√

24 = 1.8/
√

24 eV.
Finally, the resulting chromatic rms error is:σE = 6.33× 10−4.
For the geometric rms error,σTr , the calculation is straightforward:σTr = Tr/(

√
12cosθp) =

2.89 mm/cosθp.
The total localization rms error,σR, includes the indeterminacy of both particle and photonx, y
coordinates; it has been evaluated with the support of simulation and dedicated measurements of
pad response. Along thex direction, the spatial resolution achievable with the center of gravity
method is typically less than 1 mm; along they direction, which, in our case, is perpendicular
to the anode wires, the impact position can only be associated to the closest wire and, therefore,
the localization error ispitch/

√
12. Nevertheless, the values used to calculateσR areσx = 2

mm andσy = 2.5 mm, either for photons or for particles, which are very close, respectively,
to x andy pad size/

√
12 (with 8×8.4 mm pad). Indeed there are several factors contributing to
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the deterioration of the spatial resolution. A first error is introduced by the finite sampling of
the charge related to the detector pad segmentation [1]. Then, in the case of photons, a large
fraction (∼45%) of pad clusters are made by a single pad and the centroid evaluation is not
possible. Finally, the photon feedback can affect the localization accuracy, especially in the
case of particles, due to the larger total charge developed.
Lastly, the particle track angles rms errors will depend on the tracking system. In the present test
configuration, theφp contribution can be considered negligible while the rms error concerning
θp has been assumed equal to 5 mrad.
Figure 5 shows the variation of the calculated contributions to the total angular resolution as a
function of the angleφc, for two particle track anglesθp, 0 (a) and 7.5 (b) degrees, respectively;
the second value is the average track polar angle expected in the ALICE HMPID detector [1].
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Figure 5: Variation of the contributions to the Cherenkov angle resolution, from theloop-
method, with the photons azimuthal angleφc, at particle track angles (a)θp = 0o and (b)θp =
7.5o .

In the following theθp contribution will not be quoted in tables and plots but just included
in the calculation of total the angular resolution.
In table 1 are reported the results of analytical estimation of each contribution in the two meth-
ods; for comparison, the same errors have been evaluated with the Monte Carlo simulation
program, described in [1]. The presented values refer toβ = 1, Tr = 10 mm,Tq = 5 mm and
Tg = 103 mm.

CALCULATION SIMULATION
Error β-method loop-method β-method loop-method

(mrad) (mrad) (mrad) (mrad)
chromatic 5.7 9.4 5.9 9.7
geometric 2.5 4.1 2.6 4.2

localization 3.1 4.8 3.1 5

Table 1: Single photon Cherenkov angle errors from analytical treatment and simulation.

8



3 Optimization of the angular resolution in beam tests.
The analytical treatment and the simulation have been developed aiming at a better under-

standing of experimental data and, hence, at the optimization of the detector response in terms
of angular resolution. Several studies have been carried out in beam-tests, at the CERN PS and
SPS, allowing to analyse, in single particle events, the angular resolution dependence on:

– the Cherenkov ring radius (proximity gap dependent),
– the chamber gain (high voltage and gas mixture dependent),
– the radiator thickness,
– the particle incidence angleθp.

In fig. 6 is reported the measured ring angular resolution, from theloop-method, as a function of
the number of resolved clusters, corresponding to the reconstructed hits of Cherenkov photons.
The data have been fit with a functiony =

√
a
x

+ b, with
√

a = 11.7 mrad beeing very close to

the single photon angular resolution and b=1 mrad2 a parameter related to the intrinsic detector
resolution.
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Figure 6: Ring angular resolution, from Cherenkov angles reconstructed with theloop-method,
as a function of the number of resolved cluster per event. The superimposed curve is a fit show-
ing the proportionality to 1√

Nphot
.

In fig. 7 are reported the calculated single errors ((∂θc/∂vi)σvi
) and the total angular res-

olution (σθc), estimated from analytical calculation,RICHSIM events and test-beam events, for
both reconstruction algorithms, as a function of the ring radius. The results quoted in these plots
point out the dominance of the chromatic error over the other contributions, especially at ring
radii > 100 mm; therefore a reduction of the localization error, which could be obtained with
a finer detector segmentation, would produce a only a marginal improvement of the angular
resolution, not compensating the effort needed to increase the number of electronic channels.
In fig. 8 are reported the single photon and ring angular resolution, from measurements and
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Figure 7: Single photon Cherenkov angle errors from analytical treatment and simulation, in the
loop-method(a) and theβ-method(b), as a function of the ring radius.

simulation, as a function of the chamber gain (represented by the single electron average pulse
heightA0). The stability of the single photonσθc with the increase ofA0, could result by the sum
of two opposite effects: the larger feedback contribution, deteriorating the resolution, and the
smaller fraction of single pad clusters, improving the resolution mainly in thex direction. The
deterioration of the ring angular resolution at lowerA0 values is originated by a reduced detec-
tion efficiency which decreases the number of photoelectrons. In the mixture with i-C4H10 the
single photon resolution is better than in pure CH4, probably due to the lower UV-transmission
of i-C4H10 reducing the chromatic aberration and the photon feedback contribution; however
the ring averaged resolution is similar to that in pure CH4 because of the smaller number of
Cherenkov photons determined by the presence of i-C4H10 [1].
In fig. 9 are reported the single photon and ring angular resolution, from measurements and
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mm, in two gas mixtures; circles and triangles: measurements; crosses: simulation. SPS beam-
test (350 GeV/c π), PC32.

simulation, as a function of the particle incidence angleθp. No significant deterioration of the
resolution is observed in the range ofθp where most of the HMPID expected tracks will fall.

Finally, fig. 10 shows the single photon and ring angular resolution, from measurements
and simulation, as a function of the radiator thicknessTr. The small variations of the single
photonσθc are related to changes of the ring radius and of the spectrum of the transmitted
Cherenkov photons withTr. As expected, the ringσθc worsen at smallerTr as a consequence of
the reduced number of emitted Cherenkov photons.

4 Conclusions.
The Cherenkov angle resolution of the ALICE CsI-RICH detector has been studied com-

bining the analysis of single particle test-beam events with either the analysis of Monte Carlo
events and the analytical treatment of the Cherenkov angle errors.
Two angle reconstruction algorithms have been described and for both the single contributions
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to the angular resolution have been estimated via the simulation and the analytical treatment.
The agreement between analytical treatment, simulation and test-beam results is very accurate
in the considered detector parameters dependencies.
Theβ-methodprovides the best ring angle resolution (1.9 mrad withβ = 1 particles, 10 mm
C6F14 radiator and 103 mm proximity gap. However the application of such an algorithm to
real multi-particle events relies on the estimation of the particleβ to be used in the angle recon-
struction.
The chromatic aberration is the most limiting factor in the overall Cherenkov angle resolu-
tion; hence a reduction of the geometric and localization errors will not determine a significant
improvement of the angular resolution. As a consequence, basic detector parameters like the
radiator thickness, the proximity gap and the PC pad size could be varied within suitable ranges
in order to satisfy other requirements than the angular resolution. For example, an increase of
the radiator thickness will produce a larger number of photons per ring, or a larger pad size will
reduce the number of readout channels and therefore the front-end electronics costs. These and
other aspects are currently under evaluation to optimize the detector design.
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