
hep-ph/0004240

CERN-TH/2000-125

CPHT-S041.0400

April 2000

LIMITS ON THE SIZE OF EXTRA DIMENSIONS1

I. Antoniadis a and K. Benakli b
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ABSTRACT

We give a brief summary of present bounds on the size of possible extra-dimensions from

collider experiments.
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1 Introduction

In how many dimensions do we live? Could they be more than the four we are aware of?

If so, why don’t we see the other dimensions? Is there a way to detect them?. While the

possibility of extra-dimensions has been considered by physicists for long time, a compelling

reason for their existence has arisen with string theory. It seems that a quantum theory

of gravity requires that we live in more than four dimensions, probably in ten or eleven

dimensions. The remaining (space-like) six or seven dimensions are hidden to us: observed

particles do not propagate in them. The theory does not tell us yet why four and only

four have been accessible to us. However, it predicts that this is only a low-energy effect:

with increasing energy, particles which propagate in a higher dimensional space could be

produced. What is the value of the needed high energy scale? could it be just close by, at

reach of near future experiments?

Another scale which appears in our attempts to answer the previous questions is related

to the extended nature of fundamental objects. It is the scale at which internal degrees of

freedom are excited. In string theory this scale Ms is related to the string tension and sets

the mass of the first heavy oscillation mode. The point-like behavior of known particles as

observed at present colliders allows to conclude that Ms has to be higher than a few hundred

GeV. However to answer the question of what energies should be reached before starting

to probe this substructure of the “fundamental particles”, more precise determination of

experimental lower bounds onMs and understanding the assumptions behind them is needed.

It is the aim of this talk as to provide a short summary of the present status of limits on

these scales of new physics: extra-dimensions and string-like sub-structure of matter.

2 Hiding Extra-Dimensions

There is a simple and elegant way to hide the extra-dimensions: compactification. It is simple

because it relies on an elementary observation. Suppose that the extra-dimensions form, at

each point of our four-dimensional space, aD-dimensional torus of volume (2π)DR1R2 · · ·RD.

The (4 + D)-dimensional Poincare invariance is replaced by a four-dimensional one times

the symmetry group of the D-dimensional space which contains translations along the D

extra directions. The (4 + D)-dimensional momentum satisfies the mass-shell condition

P 2
(4+D) = p2

0 − p2
1 − p2

2 − p2
3 −

∑
i p

2
i = m2

0 and looks from the four-dimensional point of view

2



as a (squared) mass M2
KK = p2

0 − p2
1 − p2

2 − p2
3 = m2

0 +
∑

i p
2
i . Assuming periodicity of the

wave functions along each compact direction, one has pi = ni/Ri which leads to:

M2
KK ≡M2

~n = m2
0 +

n2
1

R2
1

+
n2

2

R2
2

+ · · · + n2
D

R2
D

, (1)

with m0 the four-dimensional mass and ni0 non-negative integers. The states with
∑

i ni 6= 0

are called Kaluza-Klein (KK) states. It is clear that getting aware of the ith extra-dimension

would require experiments that probe at least an energy of the order of min(1/Ri) with

sizable couplings of the KK states to four-dimensional matter.

Let us discuss further some properties of the KK states that will be useful for us below.

We parametrise the “internal” D-dimensional box by yi ∈ [−πRi, πRi], i = 1, · · · , D while

the four-dimensional Minkowski spacetime is spanned by the coordinates xµ, µ = 0, · · ·3. It

is useful to choose for the KK wave functions the basis:

Φα
~n,~e(x

µ, yi) = Φα(xµ)
∏
i

[
(1 − ei) cos(

niyi

Ri
) + ei sin(

niyi

Ri
)
]
, (2)

where the vector ~n = (n1, n2, · · · , nD) gives the energy of the state following Eq. 1 while

~e = (e1, · · · , eD) with ei = 0 or 1 correspond to a choice of cosine or sine dependence in the

coordinate yi, respectively. The index α refers to other quantum numbers of Φ.

The simplest example of the models we will be using for getting experimental bounds are

obtained by gauging the Z2 parity: yi → −yi mod 2πRi. This leads to compactification on

segments of size πRi. In general, the consistency of this “orbifold” projection implies that

the Z2 space parity should be associated with a Z2 action on the internal quantum numbers

α of Φ. As a result one has the following properties:

• Only states invariant under this Z2 are kept while the others are projected out. There

are two classes of states left in the theory: those for which Φ(even)(xµ) is even under

Z2 action and ei = 0 and those for which Φ(odd)(xµ) is odd and ei = 1. It is important

to notice that the latter are not present as light four-dimensional states i.e. they have∑
i ni 6= 0 and thus always correspond to higher KK states.

• At the boundaries yi = 0, πR fixed by the Z2 action, new states Φ(loc)(xµ), have to

be included. These “twisted” states are localized at the fixed points. They can not

propagate in the extra-dimension and thus have no KK excitations.

• The odd bulk states Φ(odd)(xµ) (ei = 1) have a wave function which vanishes (the

sin(niyi

Ri
) in Eq. 1 ) at the boundaries. Their coupling to localized states involves a
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derivative along yi. For example three boson interactions of the form ∂iφ
(odd))φ(loc)φ(loc)

can be non-vanishing.

• The even states, in contrast, can have non-derivative couplings to localized states. The

gauge couplings for instance are given by:

gn =
√

2δ−|~n
R
|2/M2

s g (3)

where δ > 1 is a model dependent number (δ = 1/2 in the case of Z2). The
√

2

comes from the relative normalization of cos(niyi

Ri
) wave function with respect to the

zero mode while the exponential damping is a result of tree-level string computations

that we do not present here.

Use of compactification is an elegant way to hide extra-dimensions because some of the

quantum numbers and interactions of the elementary particles could be accounted to by the

topological and geometrical properties of the internal space. For instance chirality, number

of families in the standard model, gauge and supersymmetry breaking as well as as some

selection rules in the interactions of light states could be reproduced through judicious choice

of more complicated internal spaces.

3 Theoretical constraints

The basic requirement on the theoretical side is that there exist theories that allow the

correct magnitude for the strength of the gauge and gravitational couplings for given com-

pactification and string scales just above the present experimental energies. In the simplest

string models, the four-dimensional Planck mass can be expressed as:

M2
pl ≡ fpl

(MD
s VD)

gp
s

M2
s , (4)

where VD is the D-dimensional internal volume felt by gravitational interactions, gs the

string coupling and p an integer. The four-dimensional gauge coupling can be written as

1

g2
Y M

≡ fY M
(Md

s Vd)

gq
s

, (5)

where Vd is the d-dimensional internal volume felt by gauge interactions, and the coeffi-

cients fpl, fY M have been computed for known classical string vacua. In the lowest order

approximation, they are moduli-independent O(1) constants.
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In the past, weakly coupled heterotic strings were providing the most promising frame-

work for phenomenological applications. In this case, the standard model was considered as

descending from the ten-dimensional E8 gauge symmetry, and we have Vd = VD, D = d = 6

and p = q = 2. Taking the ratio of the two equations, one finds M2
s

M2
pl

= fY M

fpl
g2

Y M ∼ g2
Y M .

Requiring gY M ∼ O(1), it was concluded that both the string scale Ms and the compactifi-

cation scale R−1 ≡ V
−1/6
6 had to lie just below the Planck scale, at energies ∼ 1018GeV far

out of reach of any near future experiment [3, 4].

The situation changed during recent years [5] when it was discovered that string theory

provides classical solutions (vacua) where gauge degrees of freedom live on subspaces i.e. d <

D along with the possibility of p 6= q. For instance, while D = 6 and p = 2, (d, q) = (d, 1) in

type I and (d, q) = (2, 0) in type II or weakly coupled heterotic strings with small instantons.

In these cases, it is an easy exercise to check that both the string and compactification scales

can be made arbitrarily low [4, 6].

Lowering the string scale, one increases the strength of higher (non-renormalizable) op-

erators leading to the possibility of inducing exotic processes at experimentally excluded

rates. Although an explicit string realization of the scenario is necessary in order to have a

satisfactory solution, at the effective field theory level many discrete or global symmetries

can be displayed that forbid these operators.

4 Experimental constraints

4.1 The scenario:

In order to pursue further, we need to provide the quantum numbers and couplings of the

relevant light states. In the scenario we consider:

• Gravitons 3 which describe fluctuations of the metric propagate in the whole 10- or

11-dimensional space.

• In all generality, the gauge bosons propagate on a (3 + d)-brane, with d = 0, ..., 6.

However, as we have seen in the previous section, a freedom of choice for the values

of the string and compactification scales requires that gravity and gauge degrees of

3Along with gravitons, string models predict the presence of other very weakly coupled states as gravitinos,

dilatons, moduli, Ramond-Ramond fields....These might alter the bounds obtained in Section 4.3.
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freedom live in spaces with different dimensionalities. This means that dmax = 5 or 6

for 10- or 11-dimensional theories, respectively. The value of d represents the number

of dimensions felt by KK excitations of gauge bosons.

• The matter fermions, quarks and leptons, are localized on a 3-brane and have no KK

excitations. Their coupling to KK modes of gauge bosons are given in Eq. 3. This is

the main assumption in our analysis and limits derived in the next subsection depend

on it. In a more general study it could be relaxed by assuming that only part of the

fermions are localized. However, if all states are propagating in the bulk, then the KK

excitations are stable and a discussion of the cosmology will be necessary in order to

explain why they have not been seen as isotopes.

The possible localization of the Higgs scalar, as well as the possible existence of super-

symmetric partners do not lead to important modifications for most of the obtained bounds.

4.2 Extra-dimensions along the world brane: KK excitations of

gauge bosons

To simplify the discussion, let us first consider the case d = 1 where some of the gauge fields

arise from a 4-brane. Since the couplings of the corresponding gauge groups are reduced by

the size of the large dimension R‖Ms compared to the others, if SU(3) has KK modes all

three group factors must have. Otherwise it is difficult to reconcile the suppression of the

strong coupling at the string scale with the observed reverse situation. As a result, there

are 5 distinct cases that we denote (l, l, l), (t, l, l), (t, l, t), (t, t, l) and (t, t, t), where the three

positions in the brackets correspond to the 3 gauge group factors of the standard model

SU(3)c × SU(2)w × U(1)Y and those with l feel the extra-dimension, while those with t

(transverse) do not.

The experimental signatures of extra-dimensions are of two types:

• Observation of resonances due to KK excitations. This needs a collider energy
√
s >∼

1/R‖ at LHC. The discovery limits in the case of one extra-dimension are given in

table 1.

• Virtual exchange of the KK excitations which lead to measurable deviations in cross-

sections compared to the standard model prediction. The exchange of KK states gives
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Table 1: Limits on R−1
‖ in TeV at present and future colliders. The luminosity is given in

fb−1.

Collider Luminosity Gluons W± γ + Z

Discovery of Resonances

LHC 100 5 6 6

Observation of Deviation

LEP 200 4 × 200 - - 1.9

TevatronI 0.11 - - 0.9

TevatronII 2 - - 1.2

TevatronII 20 4 - 1.3

LHC 10 15 8.2 6.7

LHC 100 20 14 12

NLC500 75 - - 8

NLC1000 200 - - 13

rise to an effective operator:

ψ̄1ψ2ψ̄3ψ4

∑
|~n|

g2(|~n|)
m2

0 + |~n|2
R2

‖

. (6)

The usual approximation of taking g2(|~n|) independent of |~n| fails for more than one

dimension because the sum
∑

ni

1
n2

1+n2
2+...

becomes divergent. This divergence is regu-

larized by the exponential damping of Eq. 3. For d > 1 the result depends then on

both parameters R‖ and Ms. Example of analysis for d = 2 can be found in Ref. [7].

The simpler case of d = 1 has been studied in detail. Possible reaches of colliders

experiments [8, 7] are summarized in table 1.

The effects of exchange of virtual KK modes are also constrained by high precision

data [9, 10], such as the fit of the measured values of MW , Γll and Γhad. If the Higgs

is assumed to be a bulk state like the gauge bosons, then one finds R−1 >∼ 3.5 TeV.

Inclusion ofQW measurement, which does not give a good agreement with the standard

model itself, raises the bound to R−1 >∼ 3.9 TeV [10]. The presence of a localized Higgs
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allows tree-level mixing of different KK, and makes the bounds model dependent [10].

There are some ways to distinguish the corresponding signals from other possible origin of

new physics, such as models with new gauge bosons. In the case of observation of resonances,

one expects three resonances in the (l, l, l) case and two in the (t, l, l) and (t, l, t) cases, located

practically at the same mass value. This property is not shared by most of other new gauge

boson models. Moreover, the heights and widths of the resonances are directly related to

those of standard model gauge bosons in the corresponding channels. In the case of virtual

effects, these are not reproduced by a tail of Bright-Wigner shape and a deep is expected just

before the resonance of the photon+Z, due to the interference between the two. However,

good statistics will be necessary.

4.3 Extra-dimensions transverse to the brane world: KK excita-

tions of gravitons

The localization of (infinitely massive) branes in the (D − d) dimensions breaks transla-

tion invariance along these directions. Thus, the corresponding momenta are not conserved:

particles, as gravitons, could be absorbed or emitted from the brane into the (D−d) dimen-

sions. Non observation of the effects of such processes allow us to get bounds on the size of

these transverse extra dimensions. In order to simplify the analysis, it is usually assumed

that among the D − d dimensions n have very large common radius R⊥ � M−1
s , while the

remaining D − d− n have sizes of the order of the string length.

During a collision of center of mass energy
√
s, there are (

√
sR⊥)n KK excitations of

gravitons with mass mKK⊥ <
√
s < Ms, which can be emitted. Each of these states looks

from the four-dimensional point of view as a massive, quasi-stable, extremely weakly coupled

(s/M2
pl suppressed) particle that escapes from the detector. The total effect is a missing-

energy cross section roughly of order:

(
√
sR⊥)n

M2
pl

∼ 1

s
(

√
s

Ms

)n+2 (7)

Explicit computation of these effects leads to the bounds given in table 2 [11]. The results

require some remarks:

• The amplitude for emission of each of the KK gravitons is taken to be well approx-

imated by the tree-level coupling of the massless graviton as derived from General

Relativity. Eq. 3 suggests that this is likely to be a good approximation for R⊥Ms � 1.
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• The cross-section depends on the size R⊥ of the transverse dimensions and allows to

derive bounds on this physical scale. As it can be seen from Eq. 3, transforming these

bounds to limits on Ms there is an ambiguity on different factors involved, such as the

string coupling. This is sometimes absorbed in the so called “fundamental quantum

gravity scale M(4+n)”. Generically M(4+n) is bigger than Ms, and in some cases, as in

type II strings or in heterotic strings with small instantons, it can be many orders of

magnitude higher than Ms, so it does not correspond to a scale where some physical

phenomena open up.

• There is a particular energy and angular distribution of the produced gravitons that

arises from the distribution in mass of KK states given in Eq. 1. It might be a smoking

gun for the extra-dimensional nature of such observable signal.

• For given value of Ms, the cross section for graviton emission decreases with the number

of large transverse dimensions. The effects are more likely to be observed for the lowest

values of Ms and n.

• Finally, while the obtained bounds forR−1
⊥ are smaller than those that could be checked

in table-top experiments probing macroscopic gravity at small distances, one should

keep in mind that larger radii are allowed if one relaxes the assumption of isotropy, by

taking for instance two large dimensions with different radii.

In table 2, we have also included astrophysical and cosmological bounds. Astrophysical

bounds [13, 14] arise from the requirement that the radiation of gravitons should not carry

on too much of the gravitational binding energy released during core collapse of supernovae.

In fact, the measurements of Kamiokande and IMB for SN1987A suggest that the main

channel is neutrino fluxes.

The best cosmological bound [15] is obtained from requiring that decay of bulk gravi-

tons to photons do not generate a spike in the energy spectrum of the photon background

measured by the COMPTEL instrument. The bulk gravitons are themselves expected to be

produced just before nucleosynthesis due to thermal radiation from the brane. The limits

assume that the temperature was at most 1 MeV as nucleosynthesis begins, and become

stronger if the temperature is increased.

9



Table 2: Limits on R⊥ in mm from missing-energy processes.

Experiment R⊥(n = 2) R⊥(n = 4) R⊥(n = 6)

Collider bounds

LEP 2 4.8 × 10−1 1.9 × 10−8 6.8 × 10−11

Tevatron 5.5 × 10−1 1.4 × 10−8 4.1 × 10−11

LHC 4.5 × 10−3 5.6 × 10−10 2.7 × 10−12

NLC 1.2 × 10−2 1.2 × 10−9 6.5 × 10−12

Present non-collider bounds

SN1987A 3 × 10−4 1 × 10−8 6 × 10−10

COMPTEL 5 × 10−5 - -

4.4 Dimension-Eight Operators and Limits on The String Scale:

At low energies, the interaction of light (string) states is described by an effective field theory.

Non-renormalizable dimension-six operators are due to the exchange of KK excitations of

gauge bosons between localized states. If these are absent, then there are deviations to the

standard model expectations from dimension-eight operators. There are two generic sources

for such operators: exchange of virtual KK excitations of bulk fields (gravitons,...) and form

factors due to the extended nature of strings.

The exchange of virtual KK excitations of bulk gravitons is described in the effective

field theory by an amplitude involving the sum 1
M2

p

∑
n

1

s− ~n2

R2
⊥

. For n > 1, this sum diverges

and one cannot compute it in field theory but it only in a fundamental (string) theory. In

analogy with the case of exchange of gauge bosons, one expects the string scale to act as a

cut-off with a result:

Ag2
s

TµνT
µν − 1

1+d⊥
T µ

µ T
ν
ν

M4
s

. (8)

The approximation A = log M2
s

s
for d⊥ = 2 and A = 2

d⊥−2
for d⊥ > 2 is usually used for

quantitative discussions. There are some reasons which might invalidate this approximation

for particular cases. In fact, the result is very much model dependent: in type I string

models it reflects the ultraviolet behavior of open string one-loop diagrams which are model
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(compactification) dependent.

In order to understand better this issue, it is important to remind that in type I string

models, gravitons and other bulk particles correspond to excitations of closed strings. Their

tree-level exchange is described by a cylinder joining the initial |Bin > and final |Bout >
closed strings lying on the brane. This cylinder can be be seen on the other hand as an open

string with one of its end-points describing the closed (loop) string |Bin >, while the other

end draws |Bout >. In other words, the cylinder can be seen as an annulus which is a one-

loop diagram of open strings with boundaries |Bin > and |Bout >. Note that the validity

of this duality, which only assumes the branes to be Dirichelet branes of string theory, seems

to require the presence of other weakly interacting closed strings besides gravitons.

More important is that when the gauge degrees of freedom arise from Dirichelet branes,

it is expected that the dominant source of dimension-eight operators is not the exchange of

KK states but instead the effects of massive open string oscillators [8, 12]. These give rise to

contributions to tree-level scattering that behave as gss/M
4
s . Thus, they are enhanced by a

string-loop factor g−1
s compared to the field theory estimate based on KK graviton exchanges.

Although the precise value of gs requires a detail analysis of threshold corrections, a rough

estimate can be obtained by taking gs ' α ∼ 1/25, implying an enhancement by one order

of magnitude.

What is the simplest thing one could do in practice?. There are some processes for which

there is only one allowed dimension-eight operator; an example is f f̄ → γγ. The coefficient

of this operator can then be computed in terms of gs and Ms. As a result, in the only

framework where computation of such operators is possible to carry out, one cannot rely

on the effects of exchange of KK graviton excitations in order to derive bounds on extra-

dimensions or the string scale. Instead, one can use the dimension-eight operator arising

from stringy form-factors.
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