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1. Introduction

Many sfermion mass patterns have been suggested in order to alleviate the effects

of the flavour non-diagonal contributions in the supersymmetric Flavour Changing

Neutral Current (FCNC) problems. Three main mechanisms have been proposed:

(i) degeneracy in the scalar masses; (ii) alignment between fermion and sfermion

mass matrices; (iii) decoupling of all virtual supersymmetric effects by large scalar

masses. Degeneracy seems natural in the context of gravity mediated sypersymmetry

breaking although it could also be pointed out that a generic flavour dependence of

the Kähler potential tends to spoil this degeneracy in the presence of a spontaneously

broken flavour symmetry, if unprotected by this symmetry. In the framework of

gauged flavour symmetries the induced D-type soft masses are especially dangerous
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in that respect. Actually, gauge mediation of supersymmetry breaking at a relatively

low scale would lead to negligible FCNC effects if the gravitino is light enough but

it apparently faces inherent problems to induce the correct electroweak symmetry

breaking.

The implementation of the alignment prescription via a rather ad hoc choice

of flavour symmetries has been advocated [1] to be the only natural solution, al-

though some of the arguments used have to be revised in the framework of broken

supergravity theories. The examples of such symmetries are sufficiently contrived

that one feels compelled to look for another possibility. On the other hand, decou-

pling has always served as a possible remedy for the inconsistencies of any model

beyond the standard theory. However, third generation scalars together with the

Higgs and gaugino sectors which control the electroweak symmetry breaking should

be kept light enough to avoid too much fine-tuning. Since FCNC effects are more

stringent within the first two generations of quarks and leptons, it has been envis-

aged that the first two generations could be considerably heavier than the other

supersymmetric particles [2] — actually, an efficient suppression of FCNC effects by

decoupling alone would require very heavy masses. As a matter of fact, the first

and second families of sfermion masses do enter the MSSM expression for the Z

boson mass when one takes into account the two loop effects. This has been used

to put limits on the mass gap between generations of scalars, mostly by requiring

the absence of an excessive fine-tuning. Other bounds have been obtained from

the positivity of the stop masses [3]. We will comment on these generic bounds

later on.

Realizations of supersymmetric models with such a pattern of scalar masses,

coined “inverse hierarchy models”, have been proposed in different frameworks. It

has been shown that models with an anomalous U(1) explaining the fermion mass

hierarchies [4, 5], naturally lead to an inversion of the sfermion spectrum with re-

spect to the corresponding fermion masses ordering [6, 7]. Other models provide an

inverse hierarchy whose origin springs from extra gauge symmetries at the unification

scale [8, 9].

Recently a new mechanism based on the existence of a quasi-fixed point in the

renormalization group evolution of scalar masses has been used in order to generate

dynamically a hierarchy between the first two families and the third one [10]. These

models are based upon the possibility for families with large Yukawa couplings to

evolve faster than families with smaller Yukawa couplings. On the one hand this

mechanism provides a dynamical explanation to the existence of an inverse hierarchy.

On the other hand the initial conditions have to be tailored in order to be in the

domain of attraction of the fixed points.

Our main interest here is to cast the decoupling approach within spontaneously

broken supersymmetry scenarios. In this context a very large gap between families

seems to be difficult to reach in the supergravity mediated framework due to the
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form of the scalar masses, assumed to be flavour diagonal, for simplicity,

m2i = m
2
3/2 +

〈Fa〉
〈
F̄b̄
〉

M2P
∂a∂b̄ ln(∂i∂īK) +Xi 〈DX〉 , (1.1)

where K is the Kähler potential, Xi is the gauge charge of the state whilst 〈Fa〉
and 〈DX〉 are the auxiliary fields responsible for supersymmetry breaking, which
(vectorially) add up to

√
3m3/2MP . This formula displays the dependence of the

sfermion masses on: (i) flavour independent terms such as m23/2; (ii) 〈Fa〉 along
directions where there is a dependence of the Kähler metric in the matter field

families; (iii) 〈DX〉 along flavour symmetries. One easily realizes from (1.1) that
scalars in different generations cannot be split by more than one order of magnitude,

unless (i) is compensated by (ii), like in no-scale supergravity.

In the presence of supersymmetry breaking and flavour symmetry breaking there

are two sources of “induced” supersymmetry breaking capable to yield flavour de-

pendent scalar mass splittings. Let us consider a simple situation [4] in order to

illustrate this point: an abelian flavour symmetry U(1)X broken by the value of a

Frogatt-Nielsen field φ with m3/2 ≤ 〈φ〉 ≤ MP . Assuming a vanishing cosmological
constant, from the supergravity lagrangians one obtains [6, 7, 11] the induced su-

persymmetry breaking 〈Fφ〉 ∼ m3/2 〈φ〉 along the φ direction and 〈DX〉 ∼ m2φ where
m23/2 is the total supersymmetry breaking and m

2
φ is the φ soft mass, of O(m

2
3/2). In

this case, the D-type splitting is always relevant, the F -type one being proportional

to 〈φ〉2 /M2P . This flavour dependence in the soft scalar masses can have several
physical consequences that are investigated in this paper.

1.1 iMSSM

We concentrate here on a class of inverse hierarchy models models which we denote

iMSSM. They are based on the assumption that an anomalous U(1)X gauge sym-

metry is present in the flavour sector of the theory. The anomaly is fixed by the

Green-Schwarz mechanism which then determines the scale of the flavour symmetry

breaking 〈φ〉. The inducedD-term produces a mass splitting,m2i−m2j = (Xi−Xj)m2φ.
In models where the anomalous U(1)X is responsible for the fermion mass hierarchy

the charge difference are roughly related to the fermions masses [6]

m2i −m2j ∝ ln
(
mFj
mFi

)
. (1.2)

This leads to an inverse hierarchy in the sfermion masses compared to the fermionic

hierarchy (quarks and leptons).

This fact was first pointed out in the framework of general broken supergravity

coupled to abelian flavour gauge symmetry [6] and, subsequently, in models with

dynamical supersymmetry breaking [7]. It has been noticed that, because the top
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Yukawa coupling is ofO(1), there is the relation (XtL+XtR+XH2) = 0, for the charges

of the top-Higgs sector, implying that the soft mass combination, (m2U3+m
2
Q3
+m2H2)

receives no contribution from the D−terms. Since this is the combination appearing
in the one-loop correction to the boson mass M2Z , the radiative gauge symmetry

breaking is automatically protected, at one-loop, against large D−terms that are
due to any gauge symmetry broken at scales below MP .

It goes without saying that the FCNC effects are particularly dangerous in the

iMSSM framework. It has been suggested that this problem can be evaded by a

suitable combination of degeneracy, alignment and, last but not least, decoupling of

the first two generations [6, 12]. The latter has prompted us to evaluate the two-loop

corrections. This is done in section 2.

1.2 A limit on two-loop effects

In section 3, we show that for inverse hierarchy models based on D-term splitting

the dominant contribution to the two loop terms in the renormalization evolution of

the scalar masses is proportional to the anomalies of the U(1)X group.
1

For the most relevant case of gauged U(1)X symmetries the anomalies must be

cancelled by the Green-Schwarz mechanism. We will concentrate on theories such as

the weakly coupled heterotic string with only one anomalous U(1)X and one dilaton-

axion to implement the Green-Schwarz mechanism.

An interesting aspect of this result is that despite the large variety of X charges

and choice of symmetry to explain the fermion hierarchy the U(1)X anomaly can be

fixed in a rather model independent way. Indeed by using the previously obtained

relations between the anomaly A and the fermion masses one gets [5]

mumcmt(memµmτ )
3(mdmsmb)

−2 ≈
(
g2XA
32π2

)A/2
sin3 β cos3 β(174GeV)6 , (1.3)

where the quark and lepton masses are taken at the scale gX
√AMP/4π, tanβ is

the ratio between the two Higgs vacuum expectation values (vev’s), gX is the U(1)X
gauge coupling andA is the U(1)X anomaly with respect to the standard model gauge
groups. The evaluation of (1.3) yields A ≈ 25±3. Remarquably enough this leads to
a prediction of the Cabibbo angle θC ≈ 0.2 in these models. This establishes a quite
model independent estimate of the two loop effects in inverse hierarchy models. It

turns out to be much smaller than values considered in previous discussions inspired

by these models [2, 3].

1This conclusion has already been reached in [9] for models with a D-term scalar mass. However

the approach there is different from ours. The anomalous U(1)X charges are chosen to shift the

first and second generation scalar masses while keeping a light sector for the third generation. The

anomaly is then compensated by the introduction of heavy extra-matter to stabilize the spectrum.

Our analysis includes the effects of the anomaly due to the MSSM states, which is directly related

to the fermion masses as below.
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1.3 Maximal hierarchy limit

As already stressed,in the iMSSM context, the supersymmetric flavour problem re-

quires very heavy sfermions in the first two generations, hence a large supersymme-

try breaking scale, m23/2 � M2Z . The fine-tuning problem becomes crucial. In the
cMSSM, where the coefficient of the universal soft scalar masses m20 in the expression

forM2Z is strongly suppressed — a Nature fine-tuning of the top massmt — for mod-

erate values of tan β, the necessary fine-tuning is mostly between M21/2 and µ
2. This

requires relatively large values for µ, yielding gaugino-like LSP. Several studies in the

literature [13] have already discussed how the predictions are modified by departing

from the cMSSM scalar degeneracy. The main point is that, in this case, the scalar

masses can also participate in cancelling the M21/2 term in the expression for M
2
Z ,

allowing for relatively low values of µ. For these small µ solutions, the spectrum will

consist of scalars heavier than gauginos, which are also heavier than the higgsinos.

The advantage of this class of models is that the fine-tuning now occurs mostly in

the ratio M21/2/m
2
3/2, which is more obviously related to the supersymmetry break-

ing mechanism, while the origin of the µ parameter, which could now be of O(MZ),

remains more mysterious.

In section 4, we investigate the possibility of large values of m23/2 together with

small µ values. The two-loop correction, controlled by the anomaly, contributes in

some cases. In this regime, the iMSSM does reveal an inverted mass spectrum as com-

pared with the cMSSM. We discuss approximate constraints in the neighbourhood

of the ‘infinitely’ fine-tuned solution for large tanβ, but this rough approximation

turns out to be quite appropriate from our numerical analysis.

The iMSSM mass patterns are displayed in section 5. We summarize our con-

clusions in the last section. The case of more than one U(1) flavour symmetries is

sketched in the appendix.

2. Two loop renormalization effects

Let us first treat the two loop renormalization group equations [14] of the scalar

masses in the following approximation,

dm2i
dt
= −8π2CA(i)

[
M2A −

g2A
16π2

tr

(
CAm

2

dA

)]
+2g21Yi

[
S +

g2A
4π2
tr(Y CAm

2)

]
, (2.1)

where the indices A = 1, 2, 3 correspond to the gauge group factors U(1), SU(2),

SU(3) respectively, gA is the corresponding gauge coupling, dA the algebra dimen-

sions, MA is the gaugino mass and CA(i) is the Casimir eigenvalue for the fer-

mion/sfermion labelled by i. Finally,

S = tr(Y m2) (2.2)

introduces a Y -dependent term in the scalar masses.
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The approximation (2.1) is appropriate for the class of models discussed herein

and corresponds to neglecting the two-loop corrections proportional to M2A which

are suppressed by a factor of g2ACA(i)/16π
2 with respect to the one loop terms. As

displayed, (2.1) is not valid for the stops. Including the top Yukawa couplings to

extend the calculation to the third family scalar masses and consistently neglecting

the terms in M2A which are higher order in g
2
A, yields the solution

m2i = m
2
i (0)−

a(i)

12
ρ
(
3m̄2 + 8M21/2 + (1− ρ)(AQ3(0) + 2M1/2)2 − δ

)
+

+ |t|C2A(i)g2A
(
8

(
g2A +

1

2

)
M21/2 − δ

)
+
Yi

22
[S(t)− S(0)] (2.3)

at the Fermi scale where the coefficients a(i) are a(U3) = 4, a(Q3) = 2, a(H2) = 6

and zero otherwise, 3m̄2 = (m2U3 +m
2
Q3 +m

2
H2), AQ3 is the soft coupling associated

to the top Yukawa coupling, and finally,

ρ =
ht

(ht)F.P.
≈ 0.72
sin2 β

. (2.4)

In approximating the solutions for m2i we are anticipating and taking advantage of

the fact that the two-loop term

δ =
1

4π2
tr

(
CAm

2

dA

)∣∣∣∣
t=0

(2.5)

is almost independent of the index A in the classes of models considered here, that

we now turn to discuss.

2.1 In the cMSSM

The most important effect of the radiative corrections on the SU(2)×U(1) breaking
appears in the Higgs parameter

m2H2 ≈ m2H2(0) + 0.52(M21/2 − 0.15δ)− 0.014S0 −
− 0.36
sin2 β

(
3m̄2 + 8M21/2 +

(
1− 0.72
sin2 β

)
(A0 + 2M1/2)

2 − δ
)
. (2.6)

Therefore the two loop effects due to possible heavy scalars in the first two generations

become relevant for δ ∼ O(fewM21/2). For instance assuming a degeneracy amongst
the heavy scalars of mass m in the first two generations this corresponds to m ∼
5M1/2.

It is well known that in the cMSSM with boundary conditions m2i (t = 0) = m
2
0

the coefficient of m20 in M
2
Z is small for large values of tanβ. Indeed the dependance

of m2H2 on m
2
0 in the tanβ � 1 limit is

m2H2 ≈ −0.1m20 + 0.3δ − 2.76M21/2 . (2.7)
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Taking the traces over all the MSSM scalars one gets tr(C3/8) = 6, tr(C2/3) = 7,

trC1 = 6.6, so that

δ ≈ m
2
0

2π
. (2.8)

The possibility of obtaining a relatively large value of m20 without worsening the

fine-tuning in M2Z remains at the two-loop level.

3. Anomalous U(1) models

As already emphasized in the introduction the natural realization of the inverse

hierarchy for squarks and sleptons occurs in models where the fermion mass hierarchy

is explained by a Frogatt-Nielsen mechanism with an anomalous U(1)X local flavour

symmetry. Recently it has been advocated that in type-IIB orientifold models of

string theory one could expect different anomalous U(1)X with their anomalies being

cancelled by a corresponding number of moduli fields [15]. We shall ignore this

possibility and remain within the more traditional heterotic-like picture with only

one anomalous U(1)X [16]. Of course one could postulate the existence of other

anomaly-free U(1) flavour gauge symmetries in order to explain the fermion mass

hierarchy. As discussed in the appendix the results are essentially similar in the

multi-U(1) models.

We refer to the comprehensive literature on this subject for the details and

quote the main results only. The anomaly cancellation is provided by the Green-

Schwarz mechanism. A necessary condition for the compensation of the anomalies

with respect to the standard model gauge symmetries as well as the gravitational

anomaly is the equality

A1 = A2 = A3 = tr(X)
24
, (3.1)

where AA = 2 tr(XCA)/dA. The Kac-Moody levels kA have all been taken to be one
to simplify the discussion. The coefficiient of the Fayet-Iliopoulos term required by

the U(1)X gauge invariance — which is nothing but the contribution of the dilaton

to DX — is given by

ξ2 =
kXg

2
XA

32π2
. (3.2)

Introducing a Froggat-Nielsen field φ which is standard model gauge singlet with a

charge X = −1 (by a suitable normalization of the U(1)X charges), the U(1)X gauge
symmetry is broken at the minimum of the scalar potential where

|φ|2 = ξ2M2P ,
〈Fφ〉 ∼ m3/2ξMP ,
〈DX〉 = m2φ , (3.3)
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where m2φ is the soft mass given by the supersymmetry breaking mechanism. The

〈Fφ〉 and 〈DX〉 vev’s are the induced supersymmetry breaking terms. The former
contributes to the scalar masses only as ξ2m23/2 and is neglected here.

2 The latter

gives an important D-term contribution to the scalar masses so that at the scale

ξMP ,

m2i = m̂
2
i +Xi 〈DX〉 , (3.4)

where m̂2i is the contribution from the supersymmetry breaking independent of the

DX breaking and the charges Xi are model dependent.

3.1 Two-loop correction and anomaly

In the inverse hierarchy models the two loop contributions of the heavy scalars to

the renormalization group equations turns out to be quite independent of the choice

of charges. Indeed, one gets from the definition (2.5) and the masses (3.4),

4π2δ =
∑
i

CA(i)

dA
(m̂2i +Xi〈DX〉) , (3.5)

which yields

δ = δ̂ +
1

8π2
A〈DX〉 . (3.6)

In obtaining this result we have used the equality of the anomalies (3.1). Hence,

the main two-loop contribution, coming from the D-terms in the scalar masses, is

proportional to the anomaly A. Of course, the two-loop corrections coming from
D-terms corresponding to non-anomalous U(1)′s cancel.
Interestingly enough, the anomaly A can be calculated from its relation to the

fermion masses. Indeed, even if the X-charges that control the fermion masses are

model dependent, it is possible to display a combination of masses that only depends

on the charges through A, as we now turn to discuss.
3.2 Calculation of the anomaly

In the anomalous U(1)X approach to the fermion hierarchy, with the abelian flavour

symmetry breaking given by the small parameter ξ as discussed above, the quark

and lepton Yukawa couplings to the Higgses are given by

Yfi ∼ ξfLi+fRi+h , (3.7)

where the fermion name (e.g., qi) also denotes its X-charge (resp., X(uLi) = X(dLi)),

and h is the X-charge of the appropriate Higgs field. In particular, one obtains, from

the values of the third generation Yukawa couplings, the relations:

q3 + u3 + h2 ≈ 0 ,
q3 + d3 + h1 ≈ l3 + e3 + h1 ≈ 4− ln tan β

ln ξ
, (3.8)

2Though, as discussed in [6], this contribution is relevant in the discussion of FCNC effects.
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and ξ is roughly the Cabibbo angle, θC ≈ ξ. The charges of the other family fermions
are more or less fixed by their Yukawa couplings and the Kobayashi-Maskawa mix-

ings.

Because of the condition (3.1) on the anomalies, A is related to the fermion
masses as follows,

mumcmt (memµmτ )
3 (mdmsmb)

−2 ≈ ξA sin3 β cos3 β(174GeV)6 , (3.9)

where ξ2 = g2XA/32π2, while for the Higgs charges one obtains,

(h1 + h2) ln ξ ≈ ln
(
mdmsmb

memµmτ

)
. (3.10)

The quark and lepton masses are defined at the scale ξMP . Putting the experi-

mental masses in (3.9) yields

A ln
(
32π2

g2XA
)
≈ (90± 3 ln sin 2β) , (3.11)

giving A ≈ 25± 3 and ξ ≈ 0.2, with the GUT value g2X = .5. This is in reasonable
agreement with the relation θC ≈ ξ. From (3.10) one gets (h1 + h2) ≈ 0, a result
that we shall use later. In the appendix we discuss the model dependence of these

relations.

Therefore, as a typical result, the relevant two-loop contribution to the low-

energy scalar masses (2.3) is given by a relatively low value,

δ ≈ m
2
φ

π
+ δ̂ , (3.12)

where we have used (3.3).

3.3 i+cMSSM

Let us first evaluate the impact of this two loop correction in a simple model

(i+cMSSM) with universality assumed for the primordial supersymmetry breaking,

namely, a contribution m20 to all scalar soft masses, and with an anomalous U(1)X
flavour symmetry as discussed above. In this case, 〈DX〉 = m20, and the scalar masses
at the flavour symmetry breaking scale are

m2i = m
2
0 (1 +Xi) . (3.13)

From (3.8), the parameter m̄2 of the one-loop correction in (2.3) is equal to m20, and,

from (3.12) and (2.8), the two-loop contribution depends on

δ ≈ m20
(
1

2π
+
1

π

)
≈ 0.5m20 . (3.14)

9
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The corresponding contribution to m2H2 is

∆m2H2 ≈
0.2m20
sin2 β

, (3.15)

which is about three times larger than the corresponding parameter in the cMSSM.

As we shall discuss in the next section, contrarily to what happens in the cMSSM,

this alone could be enough to allow for small µ models, in the large tanβ limit, even

if X(H2) = 0.

3.4 iMSSM

We now turn to discuss a more elaborate model [6] exhibiting the inverse hierarchy for

the scalar masses, where some flavour dependence is incorporated into the Kähler

potential besides the anomalous U(1)X gauged flavour symmetry and the Green-

Schwarz mechanism. The key assumption, which allows the model to be predictive, is

that the fermion mass hierarchies are fixed solely by the abelian flavour symmetries,

not by the moduli dependence. Amazingly, this assumption turns out to imply that

the (mass)2 differences between sfermions with the same SM quantum numbers are

proportional to the gravitino (mass)2, m23/2. Even without specifying the primordial

supersymmetry breaking along the dilaton and moduli directions in the iMSSM, the

sfermion masses can be parameterized in a simple and suggestive way, which we now

turn to summarize.

Let us denote by Φi the matter superfields and their scalars where Φ = Q, U ,

D, L, E refers to the standard model fields and i = 1, 2, 3 refers to the family index.

We denote by φi the X charges. At the scale ξMP the soft terms satisfy the relations

m2Φi −m2Φj = (φi − φj)m23/2
m2U3 +m

2
Q3
+m2H2 = M

2
1/2

m2D3 +m
2
Q3
+m2H1 = M

2
1/2 + (d3 + q3 + h1)m

2
3/2

m2E3 +m
2
L3
+m2H1 = M

2
1/2 + (e3 + l3 + h1)m

2
3/2

m2H2 +m
2
H1
= (2 + h2 + h1)m

2
3/2

AUi = (ui + qi + h2)m3/2 −M1/2
ADi = (di + qi + h1)m3/2 −M1/2
ALi = (ei + li + h1)m3/2 −M1/2
B = (2 + (h2 + h1)θ(h2 + h1))m3/2 . (3.16)

Actually, the terms proportional to the U(1)X charges come out as a particular combi-

nation of the 〈DX〉 induced breaking and the supersymmetry breaking in the moduli
sector, which give rise to this general form for the mass splitting between families.

We have only considered the soft terms which are diagonal in the family indices,

although the pattern of the off-diagonal terms give constraints on the U(1)X charges

from the FCNC bound. Other relations for the soft terms will be spelt out later.
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The fermion hierarchy requires a relatively strong family ordering of the charges

φ1 > φ2 > φ3. We concentrate on this situation and even more on the case where

M1/2 < m3/2. However we do not have to impose any particular choice for the charges

φi, in many of the physical issues discussed below since the two loop corrections that

are relevant to the inverse hierarchy scenario are controlled by the anomaly. This is

fixed by the fermion masses to

δ =
Am23/2
8π2

≈ m
2
3/2

π
. (3.17)

With the relations in (3.16) one has for instance

m2H2 = m
2
H2(t = 0)−

0.36

sin2 β

((
10− 0.72

sin2 β

)
M21/2 − δ

)
+0.52(M1/2−0.15δ) . (3.18)

Therefore, the two-loop corrections are basically negligible in the iMSSM. Neverthe-

less, the δ term is of some importance in the discussion of the next section.

4. Higgsino-like LSP and electro-weak symmetry breaking

It is well-known that by departing from the universality assumptions of the cMSSM

many of its striking predictions are dramatically affected. In particular the nature of

the LSP can change. This is mainly a matter of competition between the µ2 andM21/2
parameters that appear with different signs in the supersymmetric expression forM2Z .

The cMSSM coefficient of the universal soft scalar masses m20 is strongly suppressed

for rather large values of tanβ. As a general rule, the necessary fine-tuning between

M21/2 and µ
2 then favours a lighter gaugino than the Higgsino.3 In this section we

show that in the iMSSM discussed in the previous sections, the Higgsino turns out

to be a natural option for the LSP. Let us sketch the situation within an analytic

approximation to the supersymmetric SU(2)×U(1) breaking. In terms of t = tanβ,
the minimum equations read

m2H1 −m2H2 −Bµt
(
1− 1
t2

)
=M2Z

1− t2
1 + t2

m2H1 +m
2
H2 + 2µ

2 −Bµt
(
1 +
1

t2

)
= 0 (4.1)

at the classical level. The radiative corrections are important but the main contri-

butions can be included by redefining

m̂1
2 = m2H1 −

M2Z
2

1− t2
1 + t2

+ 3
h2t
16π2

µ2 ln

(
mt̃1mt̃2
m2t

)

m̂2
2 = m2H2 +

M2Z
2

1− t2
1 + t2

+ 3
h2t
16π2

(m2t̃1 +m
2
t̃2
) ln

(
mt̃1mt̃2
m2t

)
. (4.2)

3This applies mostly to the caseM1/2 ∼ O(m0). If m0 is much larger than the other parameters
the pattern may change. A recent analysis of these patterns can be found in ref. [17], where they

are nicely summarized in a figure.
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From the minimum equations we deduce that

µ =
Bt

2

(
1±

√
1− 4m̂

2
1

B2t2

)
, (4.3)

so that the small µ solution leading to a Higgsino-like LSP corresponds to the minus

sign in the previous equation. For large enough values of t (to be discussed later)

such that 0 < 4m̂21 � B2t2, one gets the following relations

µ ≈ m̂
2
1

Bt

(
1 +

m̂21
B2t2

)

m̂22 ≈
m̂21
t2

(
1− m̂

2
1

B2

)
. (4.4)

Namely the small µ regime corresponds to µ2 ∝ t−2 and m2H2 ∝ t−2. This suggests to
expand the solutions in powers of t−2. This is quite unphysical but mathematically
sound. Let us start with an approximation to the low energy masses parameterized

as follows

m2H1 = m
2
0(1− σH) +

1

2
(M21/2 − 0.15δ)

m2H2 = m
2
H1 + 2σHm

2
0 − 0.36

(
1 +
1

t2

)(
3m̄2 + 8M21/2 +∆− δ

)
, (4.5)

where

∆ =

(
0.28− 0.72

t2

)(
AU3 + 2M1/2

)2
(4.6)

is model dependent. In (4.5), m0 is the universal scalar mass in the cMSSM and

m0 = m3/2 in the iMSSM, as discussed before, and we have assumed m
2
H1
+m2H2 =

2m20 as consistent with h1 + h2 = 0.

As a first approximation we determine M21/2/m
2
0 by taking the large fine-tuning

limit, M2Z � m20. We also neglect the radiative corrections and we keep only the
relevant powers of tan β. Then, one can solve (4.4) for M1/2 in each of the models

discussed in the previous sections. For the sake of illustration, we take the values

predicted by the iMSSM, AU3 = −M1/2 and B = 2m0, but the latter only enters into
the term ∝ t−2.
(a) cMSSM. In this model, σH = 0, m̄

2 = m20, δ ≈ m20/(2π). One gets
M21/2

m20
≈ −0.02− 0.7

t2
, (4.7)

which excludes mathematically the small µ solution in the limit m20 � M2Z .
However, by putting back the radiative corrections (i.e., top-stop loops), the
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r.h.s. of (4.7) changes sign for t large enough. Actually, in the final expression

for m2H2 , the result of the cancellation between the tree level and the MSSSM

one-loop running of the term proportional tom0, the top-stop correction in (4.5)

and the two-loop contributions turn out to have roughly the same order of

magnitude. Of course, this entails that a precise determination of the ratio (4.7)

would require a complete two loop calculation [17].

(b) i+cMSSM. In this case, the universality is only broken by the U(1)X D-terms,

so that m̄2 = m20 from (3.8), δ ≈ 3m20/(2π) from (3.14), σH = h2, yielding,
M1/2

m20
≈ 0.04 + 0.4σH − 0.7 + 0.3σH

t2
. (4.8)

The existence of this solution, especially for h2 = 0, is due to the larger two-

loop contributions. The gauginos are much lighter than the sfermions for these

small µ solutions. In this example, a cancellation must occur between the one-

loop term in M21/2 and the two-loop term in m
2
0 for large values of the soft

masses.

(c) iMSSM. It is characterized by m̄2 = M21/2, from (3.16), and δ ≈ m23/2/π,
from (3.17). This leads to

M21/2

m23/2
≈ 0.36(1 + σH) + .05− 0.7 + 0.3σH

t2
. (4.9)

Roughly, the parameter σH can take values in the range [−1, 0]. E.g., if we
take the value σH = −0.25 and t = 2, we get 0.17 for the ratio (4.9), which is
close to the values obtained in a scanning of the parameter space. Notice that

the two-loop (anomaly) term contributes by about one-third to this result.

The ratio in (4.9) means a real fine-tuning, and in our numerical analysis

(after reintroduction of the radiative corrections and MZ in the expressions)

the deviations from this ‘infinite fine-tuning’ limit are rather small. In order to

allow for a big hierarchy in the sfermion masses, one has to take rather small

values of M1/2/m3/2, by increasing |σH |. This ratio is related to the Goldstino
angle sin θG = M1/2/

√
3m3/2. In a sense this is a better variable to be tuned

than µ/m3/2 since it is simply related to the nature of the supersymmetry

breaking. Still it has to be fine-tuned to match a quantity which, in the iMSSM,

depends on the parameter σH , related to the properties of the Higgs fields under

the U(1)X and modular symmetries.

Notice that the condition for a Higgsino-like LSP, µ2 < M21/2/6, is fulfilled with

tan β > 3, for σH > −.75. Otherwise, the LSP can be gaugino-like, while the lightest
chargino remains Higgsino-like. Therefore, the small µ solution of the iMSSM is
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generically characterized by (i) large values of m3/2, i.e., very heavy sfermions of the

two first generations; (ii) smaller values of M1/2, i.e., moderate gaugino masses; and

(iii) µ as low as O(MZ), i.e., a Higgsino as the LSP. Radiative corrections have been

neglected in this discussion, but the main effect of their inclusion, in this case, is to

increase the value of tanβ for a given set of parameters.

5. The iMass spectrum

In this section we shall discuss the typical mass spectrum that one can derive from

inverse hierarchy models. We will also comment briefly on the predictions for the

FCNC effects, a main issue in these models because of the large mass splitting be-

tween the families.

The mass spectrum of the iMSSM version [6] depends on three parameters σH ,

σL and σQ which measure the departure from scalar mass universality between the

two Higgs doublets, the leptons and the quarks of the third family, respectively.

These parameters define the solutions of (3.16) and so include the dependence on

the corresponding X-charges and, in this model, on their flavour dependent Kähler

geometry. They are family independent. Then, the family dependent mass terms,

accordingly to (3.16), depend only on the X-charge differences, e.g., q1 − q3. Such
charges can be chosen to get a good agreement with fermionic mass patterns and

mixing angles. The choice of charges plays also a role in the S term in the masses

(at the Fermi scale). The correction to the masses due to this term is

δm2i =
Yi
22
(S − S0) , (5.1)

where S0 comprises a term like tr(XY )m
2
3/2. From the renormalization group equa-

tions one finds that the evolution of S is given in first approximation by

S − S0 =
(
g21
g20
− 1
)
S0 ≈ −0.6S0 . (5.2)

The effect of this contribution has been often overestimated in the literature. In any

instance, the term (5.1) can be consistently included in the definition of σH , σL and

σQ, without loss of generality. This is understood in what follows.

The masses of the third family sleptons are then given by (κ =M2Z cos 2β)

m2τ̃L = (1 + σl)m
2
3/2 + 0.5(M

2
1/2 − 0.15δ) + 0.4κ

m2ν̃L = (1 + σl)m
2
3/2 + 0.5(M

2
1/2 − 0.15δ) +−0.5κ

m2τ̃R = 1.16M
2
1/2 − (σl − σH)m23/2 − 0.03δ + 0.23κ (5.3)
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and the third family squark masses are given by

m2
b̃L
= (1 + σq)m

2
3/2 + 6.9M

2
1/2 − 0.5δ −

ρ

6
((10− ρ)M21/2 − δ) + 0.42κ

m2
b̃R
= −(σq − σH)m23/2 + 7.4M21/2 − 0.43δ + 0.75κ

m2t̃L = (1 + σq)m
2
3/2 + 6.9M

2
1/2 − 0.5δ −

ρ

6
((10− ρ)M21/2 − δ)− 0.35κ (5.4)

m2t̃R = −(2 + σq + σH)m23/2 + 7.4M21/2 − 0.44δ −
ρ

3
((10− ρ)M21/2 − δ)− 0.15κ .

Since we are interested in the caseM1/2 � m3/2, the allowed range for the parameters
σH , σL and σQ, is strongly constrained, and σH has also to be consistent with the

electroweak break conditions (4.4).

Let us now present some generic features of the spectrum. The differences in

the charges between the first two generations and the third one are model dependent

to some extent. However, one can minimize these uncertainties by considering the

combinations that are more directly related to the fermion masses, as given by (3.7).

For the first family sfermions, as compared to the third family ones, one finds,

m2ẽL +m
2
ẽR
−m2τ̃L −m2τ̃R ≈

ln(me/mτ )

ln ξ
m23/2

m2
d̃L
+m2

d̃R
−m2

b̃L
−m2

b̃R
≈ ln(md/mb)

ln ξ
m23/2

m2ũL +m
2
ũR
−m2t̃L −m2t̃R ≈

ln(mu/mt)

ln ξ
m23/2 . (5.5)

These are high energy relations that remain valid at low energies as far as the masses

of the third generation are taken from (5.3) and (5.4) without the terms proportional

to ρ. Analogous expressions hold for the second generation of sfermions. Of course,

parity conjugated sfermions are usually splitted by a large amount with respect to

the above averages. If we take, as an example, σH ≈ σL ≈ σQ ≈ −1, which leads to
relatively light charginos (without further motivation for this particular choice), all

the third family sfermions are as light as the gauginos, the first and second families

are much heavier. The two-loop contributions are important in this case where the

fine-tuning between M1/2 and m3/2 is large.

In the numerical analysis, the radiative corrections are included, and the param-

eter space is scanned around the maximal fine-tuning values. As expected we find

Higgsino-like LSP’s degenerate with the lightest chargino. The chargino masses can

be as low as 100GeV. We have explicitly cut the spectrum by (arbitrarily) impos-

ing that the MSSM Higgs mass is greater than 100GeV. We do find Higgses within

the 100− 109GeV slot corresponding to a value of tanβ which does not exceed 18.
Among the squarks the left sbottoms are the lightest. We present in figure 1 the

mass spectrum as a function of σH . We have rescaled the masses and display them

in units of m3/2. As expected the hierarchy between families is not destroyed by the
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Figure 1: The mass spectrum in units of m3/2. We have displayed the lightest chargino

mass and the left-right average masses for the U squarks, the D squarks and the sleptons

as a function of σH appropriately shifted.

evolution down to the Fermi scale. The values of m3/2 chosen in the figure are be-

low 2TeV. Higher values of m3/2 would not modify the picture, only the fine-tuning

would be more severe.

Let us come back to one of the issues which prompted our study: the FCNC

effects and the decoupling of the first two families. The mass insertions that are

usually used to evaluate the FCNC contributions [18] are roughly given in terms of

the X charges of the particles by

δij ∼ 2 |Xi −Xj|
Xi +Xj

ξ|Xi−Xj | . (5.6)

The strong constraints on the mass insertions with i = 1 and j = 2, suggests [6]

a choice of some degeneracy and some alignment in the diagonal soft masses by

choosing d1 = d2 and e1 = e2. However, this is not enough and we still need

large values of the supersymmetry breaking parameter, m3/2 ∼ 2TeV for a sufficient
FCNC decoupling. Indeed, as noticed before, the flavour dependence of the soft terms

coming from the 〈F 〉 supersymmetry breaking have also to be taken into account.
They are reduced by at least a factor ξ2, as follows from (3.3), and more model

dependent, but still dangerous enough for the K− K̄ system. Fortunately we do get
such high values of m3/2 in our numerical scanning without further effort. Yet, the

contribution to εK comes out close to the phenomenological bounds in this model,

in spite of the combined use of all three anti-FCNC mechanisms, degeneracy and

alignment from the equality of some charges, together with decoupling through a

relatively large supersymmetry breaking scale in the scalar sector.
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Let us now comment on the possible implications for the B physics. In the

insertion approximation, the parameters δ23 and δ13, for both chiralities, can be

obtained from the charge differences, d1−d3, d2−d3, u1−u3, u2−u3, q1−q3, q2−q3,
which are all positive in these models. Using charge differences that are consistent

with fermion masses and mixings in (5.6), the δ13 and δ23 turn out to be all below the

present limits from B physics [19]. Since one stop and the (higgsino-like) chargino can

be relatively light, the insertion approximation may be a poor one. If one takes into

account the numerical analysis of limits on the MSSM parameters from B physics, as

given, e.g., in ref. [19, 20], one sees that the present model has several characteristics

that tend to reduce the FCNC effects in the B system: the chargino and the lighter

stop are lighter than the charged Higgs, which is predicted to be quite heavy, and

the quark-squark misalignement for the third family is characterized by small angles.

This implies that our model is generically consistent with the present B physics data,

for large m0. Still, a detailed analysis would certainly give some restrictions on the

parameter space of the model. And the presently running and future B experiments

could even challenge this class of models. However, the limits on CP violating soft

terms are less compelling as their phases are arbitrary parameters in these models.

Of course, a more elaborated flavour theory — e.g., with an additional U(1) — could

lower the FCNC effects [6].

It is worth noticing that the small M1/2/m3/2 and At/m3/2 ratios that character-

ize these models are what is needed [21] to avoid charge and colour breaking vacua

without need for further cosmological assumptions. In the large µ version of the

model, one can reduce the hierarchy and increase the degeneracy by increasing the

M1/2/m3/2 ratio. Besides the fact that it would bring back the issue of a fine-tuning of

the µ/M1/2 ratio, this would be strongly constrained by the wrong vacuum problems.

6. Summary and concluding remarks

We have studied the decoupling of the first two squark families in order to lower

the FCNC effects. This has been done using the gauged U(1) flavour symmetries

which had already been utilised to explain the fermion masses and the mixing an-

gles. Within this framework we have focused on more model-independent results.

In particular as soon as one tries to induce large mass hierarchies one faces the fine

tuning problem in the electroweak sector. Indeed the Fermi scale has to be main-

tained although the supersymmetry breaking scale is pushed up beyond the TeV

limit. This forces to study carefully the diverse compensations in the M2Z equation.

As a result one has to resort to a two-loop analysis of the Higgs sector. Fortunately

we have shown that the two-loop effects are solely governed by the Green-Schwarz

anomaly which is determined from the fermion masses. This allows a thorough study

of the minimum equations, and the possibility of a scenario where the fine-tuning

appears in the (M1/2, m3/2) sector with a small value for µ. This differs from the
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usual cMSSM where µ is large. This leads to a Higgsino-like LSP and a characteristic

mass spectrum. In particular we find light charginos. On the contrary, the sfermions

of the first and second families should be of order a few TeV, a nice experimental

signature, indeed.

Of course, the inverse hierarchy models based on abelian flavour symmetries are

especially affected by the FCNC problems. The supersymmetry breaking scale re-

quired to get an efficient decoupling would be very high. Therefore, it is not clear

whether they are a good choice to escape the flavour changing effects in spite of

the natural prediction of heavy sfermions in the first two families. On the other

hand they also possess some other nice features: a natural small scale from the

Fayet-Iliopoulos term, the presence of anomalous abelian symmetries in superstring

solutions, the simplicity of the fitting to the puzzling fermion hierarchy and, last but

not least, the relation between the fermion and sfermion spectrum. A compromise

could be obtained with additional flavour symmetries, for instance non-abelian ones,

to reduce the splitting between the sfermion in the first two families. More spec-

ulatively, one could hope that the more recent developments in string theory – see

for instance [15, 22] and references therein – would provide new insights into the old

quarrel of supersymmetry with flavour.

A. Anomalies and multiple U(1)’s

In the case of more than one abelian flavour charges, Xi, (i = 1, . . . , n), we introduce

an equal number of scalars, Φi, so that all the U(1)’s are broken. For the consistency

of the model, we make the following assumptions:

A) Only one U(1) symmetry is anomalous, which we call X1, and only the corre-

sponding D-term has a Fayet-Iliopoulos term with coefficient ξ. This is related

to the anomaly A through the Green-Schwarz mechanism by (3.2). It is manda-
tory that the other abelian charges fulfil the analogous of (3.1) and that they

do not introduce any other anomaly.

B) Let us denote by −φij the charge Xi of the scalar Φj . They are chosen so that
there is no term in the superpotential with the Φ′s alone. These U(1) charges
are normalized so that all the corresponding coupling constants are equal.

The relevant soft-terms are the masses mi of the scalars Φ
i. Let φ−1ij be the

inverse of the charge matrix φ defined above, which has an inverse because of our

assumption B). The equivalent of (3.3) is now

|φi|2 = φ−1i1ξ2M2P ,
〈DXi〉 = m2jφ−1ji . (A.1)
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Then, (3.9) is modified by the replacement,

ξA −→
∏(
φ−1i1ξ

2
)Ai/2 , (A.2)

where Ai = φ−1i1A. Therefore, in the pluri-U(1) case, the resulting value for the
anomaly can be slightly different from the value in section 3.

Finally, the contributions to the sfermion masses from the 〈DXi〉 terms are
m2jφ

−1
jiXi(a), where Xi(a) is the corresponding fermion charge. The contribution

to the two-loop scalar masses becomes,

δ = δ̂ +
1

8π2
m2jφ

−1
j1A , (A.3)

where δ is defined in (2.5). This allows for some variation with respect to the values

discussed in section 3, but the two-loop contributions generically remain as small.
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