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Abstract

Classical confidence limits are compared to Bayesian error bounds by study-
ing relevant examples. The performance of the two methods is investigated
relative to the properties coherence, precision, bias, universality, smplicity. A
proposal to define error limits in various cases is derived from the compar-
ison. It is based on the likelihood function only and follows in most cases
the general practice in high energy physics. Classical methods are discarded
because they violate the likelihood principle, they can produce physically in-
consistent results, suffer from alack of precision and generality. Also the ex-
treme Bayesian approach with arbitrary choice of the prior probability density
or priors deduced from scaling laws is rejected.

1. PURPOSE, CRITERIA, DEFINITIONS

The progress of experimental sciences to alarge extent is due to their practice to assign uncertainties to
results. The information contained in a measurement, or a parameter deduced from it, is incompletely
documented and more or less useless unless some kind of error is attributed to the data. The precision of
measurements has to be known i) to combine data from different experiments, ii) to deduce secondary
parameters from it and iii) to test predictions of theories. Different statistical methods have to be judged
on their ability to fulfill these tasks.

Narsky [1] who compares severa different approaches to the estimation of upper Poisson limits,
states: “There is no such thing as the best procedure for upper limit estimation. An experimentalist is
free to choose any procedure she/he likes, based on her/his belief and experience. The only requirement
is that the chosen procedure must have a strict mathematical foundation.” This opinion is typica for
many papers on confidence limits. However, “the real test of the pudding isin its eating” and not in
contemplating the beauty of the cooking recipe. We should not forget that what we measure has practical
implications.

In this paper, the emphasisis put on performance and not on the mathematical and statistical foun-
dation. The intention is to confront the procedures with the problems to be solved in physics. Simple
transparent examples are selected. Important properties are among others consistency, precision, univer-
sality, smplicity and objectivity.

Consistency is indispensable in any case. A. W. F. Edwards writes [2]: “Relative support (of a
hypothesis or a parameter) must be consistent in different applications, so that we are content to react
equally to equal values, and it must not be affected by information judged intuitively to be irrelevant.”

Part of the content of this article has been presented in a comment [3] to the unified approach [4].

1.1 Classical confidencelimits

Classical confidence limits (CCL) are based on tail probabilities. The defining property is coverage: If a
large number of experiments perform measurements of a parameter with confidence level «, the fraction
« of the limits will contain the true value of the parameter inside the confidence limits.

We illustrate the concept of CCL for a measurement (statistic) consisting of a two-dimensional
observation (z1, z2) and atwo dimensional parameter space (see Fig. 1). In afirst step we associate to
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each point 6, 6, in the parameter space a closed probability contour in the sample space containing a
measurement with probability «. For example, the probability contour labeled a in the sample space
corresponds to the parameter values of point A in the parameter space. The curve (confidence con-
tour) connecting all points in the parameter space with probability contours in the sample space passing
through the actual measurement x1 , z2 encloses the confidence region of confidence level «.

A sample space A parameter space

//”'\X/ ! confidence contour
/

/ i / B

X, X, > 6, >

Fig. 1: Two parameter classical confidence limit for a measurement 1, x2. The dashed contours labeled with small lettersin
the sample space correspond to probability contours of the parameter pairs labeled with capital lettersin the parameter space.

Figure 1 demonstrates some of the requirements necessary for the construction of an exact con-
fidence region: 1. The sample space must be continuous. (Discrete distributions and thus all digital
measurements and in principle also Poisson processes are excluded.) 2. The praobability contours should
enclose asimply connected region. 3. The parameter space has to be continuous.

The restriction (1) usually is overcome by relaxing the requirement of exact coverage and by
requiring minimum overcoverage. Thisis not an elegant solution.

There is considerable freedom in the choice of the probability contours but to insure coverage
they have to be defined independently of the result of the experiment. Usually, contours are locations of
constant probability density. In one dimension also central intervals and intervals leading to minimum
sized confidence intervals are popular. Clearly, thereis alack of standardization. The unified approach
[4] defines the probability regions through the likelihood ratio.

1.2 Likeihood limits and Bayesian conventions

Likelihood intervals enclose a region where the likelihood function decreases by a fixed ratio, equal to
\/e for one standard deviation and e? for two standard deviations etc..

Bayesiansintegrate the normalized likelihood function and form either probability regions or mo-
ments to define the limits. | will discuss only uniform prior densities. This does not restrict the freedom
of the scientist because there is the equivalent possibility to choose the parameter. For example an anal-
ysis using the mean life parameter with the prior 1/72 is equivalent to an analysis of the decay constant
~ with uniform prior.
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Fig. 2: Likelihood limits (left) and Bayesian limits (right).

1.3 Thelikeihood principle

Assume we have two hypotheses characterized by the parameters 6, and 6. For a measurement x; the
relative support to the two hypotheses is given by the likelihood ratio

P(z1]61)

R(x1|91, 02) = m

Another measurement x» is equivalent to z if the likelihood ratios are the same:

P(z1]61) _ P(x2/61)

P(z1]02)  P(z2]02)

When we have more than two hypotheses we require that equivalent data provide the same like-
lihood ratio for all combinations of parameters. Consequently, for a pdf depending on a continuous
parameter ¢, we have to require that the likelihood functions for the two measurements are proportional
to each other. These considerations correspond to the Likelihood Principle (LP): The likelihood function
contains the full information relative to the parameter. Inference should be based on the likelihood func-
tion only. The LP is due to Fisher, Birnbaum and others. Proofs and discussions can be found in Refs.
[5, 6, 2].

Methods that provide different results for measurement that have proportional likelihood functions
areinconsistent.

2. EXAMPLES
2.1 Example la: Gaussian with physical boundary

A physical quantity like the mass of a particle with a resolution following normal distributions is con-
strained to positive values. Figure 3 shows typical central confidence bounds which extend into the
unphysical region. In extreme cases a measurement may produce a 90% confidence interval which does
not cover positive values at al. The unified approach and the Bayesian method avoid unphysical confi-
dence limits.

2.2 Example 1b: Superposition of Gaussiansin the unified approach

The prescription for the construction of the probability intervals according to the likelihood ratio ordering
leads to disconnected interval regions when the pdf has tails and cannot produce confidence intervals.
Thisisshownin Fig. 4 top.
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Fig. 3: Gaussian errors near physical boundary (c: classical, cu: unified, I: likelihood, b: Bayesian). Left: 68.3% errors,
right:90% upper limits.
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Fig. 4: Disconected probability intervals in the unified approach. Gaussians (top) and Breit-Wigner (bottom).
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2.3 Example 1c: Breit-Wigner distribution
The same difficulty arisesfor the Breit-Wigner distribution (see Fig. 4 bottom).

The problem is absent if the pdf f fulfills the condition d? In f /dz? > 0. This condition restricts
the application of the unified approach to pdfs similar to Gaussians.

2.4 Example 2: Gaussian in two dimension and physical boundary

Let us assume that we have a Gaussian resolution in z,y and a physical boundary in y (Fig. 5). The
probability contours are deformed in the unified approach as indicated in the sketch. As a consequence
the error in x shrinks due to a boundary in y even though the two parameters are independent. One
has to be careful in the interpretation of two-dimensional confidence limits as they occur for examplein
neutrino oscillation experiments.

unphysical

/ unified

allowed
region

anentional

Fig. 5: Probabilty contours (schematic) for atwo-dimensional Gaussian near a boundary in the unified approach.

2.5 Example 3: Slopeof alinear distribution

Thisisafrequent distribution in particle physics. A linear distribution is always restricted in the sample
and the parameter space to avoid negative probabilities. We choose

1
f(m|9):§(1—|—0z); ~-1<60,z2<1

asisrealized in many asymmetry distributions. For a sample of 100 events following the distribu-
tion of Equ. 2.4, alikelihood analysis gives abest value for the slope parameter of 6 =0.92 (seeFig. 6).
There is no simple statistic allowing to compute central classical 62.8% confidence limits because the
parameter is undefined outside the interval [1,1]. Contrary to the conventional classical approach, the
unified approach is able to handl e the problem by working in the full sample space (hundred dimensional
in our case) This requires a considerable computing effort?.

Likelihood limits are possible - the upper limit would coincide with the boundary - but not well
suited to measure the precision.

2.6 Example4: Digital measurements

A particletrack is passing at the unknown position p through a proportional wire chamber. The measured
coordinate x is set equal to the wire location x,,,. The probability density for a measurement x

f(@,p) = 6(x — )

'In my presentation at the meeting | had not realized this solution in the unified approach. | thank Fred James and Gary
Feldman for explaining it to me.
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is independent of the true location p. Thusit isimpossible to define a sensible classical confidence or
likelihood interval, except atrivial one with full overcoverage. This difficulty is common to al digital
measurements because they violate condition 1 of section 2.1. Thus a large class of measurements is
not handled in classical statistics. A Bayesian treatment with uniform prior is the common solution. It
providesthe r.m.s. error pitch/+/12.

100 events generated with slope = 0.9

likelihood

04 05 06 07 08 09 10

slope parameter

Fig. 6: Likelihood for a slope parameter.

2.7 Example5: Gaussian with two physical boundaries

A particle passes through a small scintillator and another position sensitive detector with Gaussian res-
olution. Both boundaries of the classical error interval are in the region forbidden by the scintillator
signal. (seeFig. 7) Theclassical error istwice aslarge asther.m.s. width. It ismeaningless. The unified
classical and the likelihood limits contain the full physical region and thus are useless. Again only the
Bayesian method gives reasonable results.
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Fig. 7: Two-sided physical boundary. Classical error bounds cover the full physical region.
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2.8 Example6: Gaussian with variable width
A theory, depending on the unknown parameter 6 predicts the Gaussian probability density

25 625(t — 6)?
f(t) = Jong2 &P <—(2t@4)>

for the time ¢ of an earthquake. The classical confidence interval for a measurement at ¢t = 10 his
7.66 < t3 < oo. Itisshown together with the likelihood function in Fig. 8. When we ook at the two
distinct parameter values, predicting the time of an earthquake
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Fig. 8: Predictions from two discrete hypothesis H;, H2 and measurement (&) and log-likelihood for parametrization of the two
hypotheses (b). The likelihood ratio strongly favors Hi which is excluded by the classical confidence limits.

Hi: t1= (7.50 + 2.25) h
Hsy. to= (50 + 100) h

we realize that the first is excluded by the classical bounds, the second by the likelihood limits. The
Fig. 8b shows the two probability densities together with the measurement. Clearly, we would rather
accept H,. This choiceis aso supported by the likelihood ratio which isin favor of H; by afactor 26.
Thus the likelihood limits are intuitively more acceptable than the classical ones.

The preceding example shows that the concept of classical confidence limits for continuous pa-
rameters is not compatible with methods based on the likelihood values. We may construct a transition
from the discrete case to the continuous one by adding more and more hypothesis but a transition from
likelihood based methodsto CCL isimpossible. Thetwo classical approaches CCL and Neyman-Pearson
test lack a common bases.
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2.9 Example6b: Number of neutrinos

Thisexamplewas presented by Cousins[7]: Markll had measured the number of neutrinosto be2.8+0.6
and deduced a 95% confidence upper limit of 3.9 excluding 4 neutrino generations. The likelihood ratio
of 7.0 produces a much weaker exclusion of the discrete hypothesis.

2.10 Example7: Stopping rule

A rate measurement may be stopped for reasons like: i) There are enough events. ii) For along time no
event has been observed. iii) A “golden” event was recorded.

These actions do not introduce a bias as has been first realized by Barnard and co-workers [8].
The reason is that the likelihood function is independent of the stopping rule. This may be visualized by
an infinitely long measurement which is cut in pieces each corresponding to a experiment stopped by the
samerule. Theindividual experiment cannot be biased since the full chainisunbiased. Thisisillustrated
in Fig. 9 where the experiments are stopped whenever 3 events are recorded in a short time interval.

Fig. 9: A sequential stopping rule does not introduce a bias.

The Figure 10 shows the likelihood function for an experiment where 4 events are observed in a
time interval of one second. The classical results depend on the stopping condition: a) the time interval
had been fixed, b) the experiment was stopped after the forth event. The likelihood principle states that
the two data sets are equivalent. Thusthe classical limits are inconsistent.

4 events recorded in 1 second — classical 1 event
or 1 second needed to obsene 4 ev. /. N_ _¢cc . . i
A L : cu classical, fixed time
- 0= 4(-1.92,+1.92) class, fixed time|
e}
o 0= 4 (-1.92,+3.16) class., 4 ev. o -
9 0= 4 (-1.68,+2.36) likelihood | 2 likelihood
5 T
2 =
0 4 8 12 16 20 0 2 4 6
decay rate decay rate

Fig. 10: Stopping after afixed time or when afixed number of events has been observed (same likelihood) gives different results
in classical statistics.
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The differences become even larger when we take the example of 1 event recorded in 1 second (see
Fig. 10 right). The likelihood functions given by the lifetime distribution and the Poisson distribution,
respectively are proportional to each other

FEA) = e
P =

1!

211 Example 8: Poisson signal with background

In a garden there are apple and pear trees. Usually during night some pears fall from the trees. One
morning looking from his window, the proprietor who is interested in apples find that no fruit is lying
in the grass. Sinceit is till quite dark he is unable to distinguish apples from pears. He concludes that
the average rate of falling apples per night is less the 2.3 with 90% confidence level. His wife who is
a classical statistician tells him that his rate limit is too high because he has forgotten to subtract the
expected pears background. He argues, “there are no pears’, but she insists and explains him that if he
ignores the pears that could have been there but weren’t, he would violate the coverage requirement. In
the meantime it has become bright outside and pears and apples - which both are not there - are now
distinguishable. Even though the evidence has not changed, the classical limit has.

The 90% confidence limits for zero events observed and background expectation b = 0 ispy =
2.3. Forb = 2itisy’ = 0.3 much lower. CCL are different for two experiments with exactly the
same experimental evidence relative to the signal (no signal event seen). This situation is absolutely
intolerable. Feldman and Cousins consider this kind of objections as “based on a misplaced Bayesian
interpretation of classical intervals’ [4]. It is hard to detect a Bayesian origin in a generally accepted
principle in science, namely, two measurements containing the same information should give identical
results. Thecriticshereisnot that CCLsareinherently wrong but that their application to the computation
of upper limits when background is expected does not make sense, i.e. these limits do not measure the
precision of the experiment.

Theeffect islessdramatic but also present in the unified approach: An experiment finding no event
n=0 with background expectation b=3 produces a 90% confidence limit 1.08 for the signal (see Table 1).
Then the flux isdoubled and the background is eliminated. The limit becomes 2.44/2=1.22, worse than
before. This problem is absent in the versions proposed by Roe and Woodroofe [9] and also in that of
Punzi [10]. These methods are however restricted to the Poisson case.

Table 1: Poisson limitsin classical and Bayesian approaches

n=0, b=0 | n=0, b=1 | n=0, b=2 | n=0, b=3 | n=2, b=2
standard classical | 2.30 1.30 0.30 -0.70 3.32
unified classical 2.44 161 1.26 1.08 391
uniform Bayesian | 2.30 2.30 2.30 2.30 3.88

To avoid the unacceptable situation, | have proposed a modified frequentist approach to the cal-
culation of the Poissonian limits including the information of the limited number of background events
[11]. There the confidence level is normalized to the probability to observe 0 < n;, < n background
events as known from the measurement.

i=o P(ilp 1+ b)

l—a= -
i=o P(i[b)

The resulting limits respect the likelihood principle (see below) and thus are consistent. They coincide
with those of the uniform Bayesian method and provide afrequentist interpretation of the Bayesian limits.
However, as has been pointed out by Highland [12], the limits do not have minimum overcoverage as
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required by the strict application of the Neyman construction. This is correct [13] but in my paper no
claim relative coverage had been made. The method has been applied to a Higgs search [14].

Often the background expectation is not known precisely since it is estimated from side bands
or from other measurements with limited statistics. So far, there is no classical recipe which alows to
incorporate an uncertainty of the background estimate.

Likelihood limits also give asensible description of the data. Whether likelihood limitsor Bayesian
limits obtained from the integration are more sensible depends on the shape of the likelihood function.
Ideally both limits should be given.

Figure 11 compares the coverage of the unified classical and the Bayesian limits. At small signals
both overcover strongly. For large signalsthe Bayesian method slightly undercovers and oscillates around
the nominal value.
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Fig. 11: Coverage in the unified classical and the Bayesian approach (dotted) and interval lengths (bottom).

212 Example 9: Combining lifetime measurements

Two events are observed from an exponential decay with true mean life 7o = 1/70. The maximum
likelihood estimate is used either for 7 or . We assume that an infinite number of identical experiments
is performed and that the results are combined. In Table 2 we summarize the results of different averaging
procedures. There is no prescription for averaging classical intervals. The unified methods have to
explain how they intend to combine their measurements. To compute the classical result given in the
table, the maximum likelihood estimate and central intervals were used.
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Table 2: Average of an infinite number of equivalent lifetime measurements using different weighting procedures

method <T/T0> <7/7 >
adding log likelihood functions 1 1
classical, weight: o2 0.0 0.67
likelihood, weight: PDG 0.26 0.80
Bayesian mean, uniform prior, weight: c=2 | oo 1

In this special example a consistent result is obtained in the Bayesian method with uniform prior

for the decay constant. It shows also how critical the choice of the parameter isin the Bayesian approach.
It isaso clear that an educated choice is also important for the pragmatic procedures. It is obvious that
the decay constant is the better parameter (see also Fig. 12). Methods approximating the likelihood
function provide reasonable results unless the likelihood function is very asymmetric. The weighting
procedure of the PDG applied to the likelihood errors gives reasonabl e results. Asiswell known, adding
the log-likelihood functions always produces a correct result.

In L(decay rate)

In L(lifetime)

log likelihood

lifetime / decaf/ rate

Fig. 12: Log-likelihood function of the mean life and the decay rate.

3. CONCLUSIONS
3.1 Conventional classical method

The conventional classical schemes suffer from the following problems:

There are inconsistencies ( Poisson limits, stopping rule, discrete vs. continuous parameters).
Thereisalack of precision (unphysical limits).

They have arestricted range of application (problems with digital measurements, discrete param-
eters).

They are not invariant against sample variable transformations (except central intervals in one
dimension).

They are subjective (coverage requires pre-experimental fixing of cuts and decision to publish).
There are unsolved problems. (It is not clear how to combine measurements. The inclusion of
background errors in Poisson processesis not possible.)

There is no obvious treatment of nuisance parameters.
Systematic errors cannot be included.
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3.2 Unified approach
Compared to the conventional method there are improvements:

e The inconsistencies in Poisson processes are weaker ( and absent in the version of Roe and
Woodroofe)

e Non-physical limits are avoided.

e Itisinvariant with respect to variable and parameter transformations.

However most problems remain (inconsistencies, lack of precision, background uncertainty in
Poisson limits), and:

It is restricted to specific pdfs (Gaussian like).

It is complicated and requires considerable computing efforts.

The combination of measurements is even more unclear.

Artificial error correlations are introduced near boundaries.

The proposed treatment [ 16] of nuisance parameters (use best estimate may |ead to undercoverage.

3.3 Likelihood limits
Likelihood limits have attractive properties

e They are consistent.

They provide optimum precision.

They are invariant against variable and parameter transformations.

They provide a coherent transition to discrete hypothesis (likelihood ratio)
e Measurements can easily be combined

There are aso restrictions in the application:

¢ Digital measurements and uniform distributions cannot be handled.

3.4 Bayesian limits
The Bayesian philosophy is very genera and flexible:

¢ All problems can be treated. (Nuisance parameters, digital measurements, unphysical boundaries
etc.)

but:
e They depend on the parameter choice.

4. PROPOSED CONVENTIONS
The conventions proposed here represent by no means the only reasonable prescription.

Since the complete information is contained in the likelihood function, classical approaches are
not considered. (They cannot be computed from the likelihood function alone.) An even stronger reason
for there exclusion are the obvious inconsistencies of this method.

The main objection against Bayesian methods is their dependence on the selected parameter. |
find it rather natural to choose a sensible parameter space. For some application like pattern recognition
- which, by the way, cannot be done with classical statistics - it is absolutely necessary.
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The proposed conventions are:

1. Whenever possible the full likelihood function should be published. It contains the experimental
information and permits to combine the results of different experiments in an optimum way. This
is especially important when the likelihood is strongly non-Gaussian (strongly asymmetric, cut by
external bounds, has several maximaetc.).

2. Data are combined by adding the log-likelihoods. When not known, parametrizations are used to
approximate it.

3. Ifthelikelihood is smooth and has asingle maximum the likelihood limits should be given to define
the error interval. These limits are invariant under parameter transformation. For the measurement
of the parameter the value maximizing the likelihood function is chosen. No correction for biased
likelihood estimatorsis applied. The errors usually are asymmetric. These limits can also beinter-
preted as Bayesian one standard deviation errors for the specific choice of the parameter variable
where the likelihood of the parameter has a Gaussian shape.

4. Nuisance parameters are eliminated by integrating them out using an uniform prior. A correlation
coefficient should be computed.

5. For digital measurements the Bayesian mean and r.m.s. should be used.

6. In cases wherethe likelihood function is restricted by physical or mathematical bounds and where
there are no good reasons to reject an uniform prior the measurement and its errors defined as the
mean and r.m.s. should be computed in the Bayesian way.

7. Upper and lower limits are computed from the tails of the Bayesian probability distributions. (In
some cases likelihood limits may be more informative. [15])

8. Non-uniform prior densities should not be used.

9. Itisthe scientist’s choice whether to present an error interval or an upper limit.

10. In any case the applied procedure has to be documented.

These recipes correspond more or less to our every day practice. An exception are Poisson limits
where for strange reasons the coverage principle - though only approximately realized - has gained
preference in neutrino experiments.
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Discussion after talk of Ginter Zech. Chairman: David Cassel.

Bob Cousins

What would you do about goodness of fit?

G. Zech

I think classical methods are very valuable for testing schemes, and the goodness-of-fit test is
something very important and one should do it in the classical way. But | don’t think that the chi-squared
you get out of the goodness of fit should enter into the error. Thisisadifferent scheme. It was mentioned
yesterday in one of the discussions and | felt that people wanted to do this. | think also coverage is good
for testing. If you have a scheme where you get big under-coverage | would not like this. | don't reject
classical methods, | think they are very valuable. You should use both methods, and select the better
ones. Statisticsis partialy some kind of experimental science. One hasto find out what is good and what
not. It's not just mathematics.

Fred James

That's an interesting comment about goodness of fit because in the recent paper by Berger who is
astrong Bayesian, he now admits that Bayesian methods are not necessary for parameter estimation, but
he says they’re till necessary for testing hypotheses. So you say it the other way round.

G. Zech

I think we are not members of parties. Everybody should have his own opinion.

F. James

You say that one reason you don't like frequentist intervals is that they can be disconnected in
the parameter space, but, of course, if the likelihood has several peaks, Bayesian methods can also give
disconnected intervals in the parameter space.

G. Zech

The likelihood ratio has additional peaks to those of the likelihood function. | think, when the
likelihood function has several peaks, the conventional scheme is completely ruined. | discuss only
simple cases, but even in the simple case you get problems in the classical scheme. If you have severa
peaks in the likelihood function, then you should just publish the likelihood function, and not try to
parametrize it by one value. This does not make much sense.

G. Feldman

You mentioned the problem of disconnected regionsin the variable space and came to the conclu-
sion that the unified approach is only useful for Gaussians. Let me point out that it’s been successfully
used in neutrino oscillations which are highly non-Gaussian, actually oscillatory. Second, | would like
to ask whether you have any examples from area experiment where people were trying to set limits and
where this method would not work.
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G. Zech

Well we were told not to be nasty, but now | say it's not my job to check al the problems of this
approach. | think it'syour job to find out where it works and where it does not work. | have found several
cases where | see problems and so | think you really should find out what is the application range of the
scheme, and it's not by using a specific example that you can prove the validity of a general scheme. |
mean, had | gone to complicated examples, | would have been stuck with one single example and not had
timefor several. It’'swith the simple exampleswhere you can find the problems, not with the complicated
case studies.

M. Woodroofe

How do you deal with the likelihood principle in the case of a non-parametric problem? Those
can be very simple. | can have a sample from a population, maybe | want to estimate the median but |
don’t have any basis for making assumptions about the shape of the distribution, so it cannot be reduced
to one or two simple parameters. What is unknown is the distribution function, and | want to estimate
the median. How would you implement the likelihood principle in a case like that?

G. Zech

I cannot answer this. | am not a statistician and | think for the examples which | have shown, the
likelihood principle is valid. We have in physics relatively simple cases and not very complicated ones.
| would be glad if somebody shows me areal example disproving the likelihood principle in a simple
case. I'll give him abottle of champagne if he finds one.

Don Groom

In your example 10 with the lifetime and again in your summary, what is this PDG prescription?
[Laughter]

G. Zech

Well maybe | should ask Fred to explain it. When you have asymmetric errors, thereis an iterative
procedure to combine different measurements. If the final average is on the left or on the right from a
measurement, you use either the left-hand or the right-hand error with some interpolation. So it depends
on where you are with respect to the weighted average whether you use the left-hand or the right-hand
error with interpolation. Infact, if the likelihood function is parametrized by your asymmetric error, you
roughly add the logs of likelihood functions. | think it's very reasonable.

G. D’ Agostini

Concerning the comment of Feldman: The fact that the method is used by several people doesn’t
prove it's good, it's correct. First, because we don't know after the publication the truth, so we cannot
check coverage or not coverage; it’s not like an exercise when you get the solution at the end of the book.
Second, asfar as| understand, interviewing alot of people, many of them don’t understand, don’t agree.
They (not al but most) useit becauseit’s blessed by PDG.
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