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Abstract
Classical confidence limits are compared to Bayesian error bounds by study-
ing relevant examples. The performance of the two methods is investigated
relative to the properties coherence, precision, bias, universality, simplicity. A
proposal to define error limits in various cases is derived from the compar-
ison. It is based on the likelihood function only and follows in most cases
the general practice in high energy physics. Classical methods are discarded
because they violate the likelihood principle, they can produce physically in-
consistent results, suffer from a lack of precision and generality. Also the ex-
tremeBayesian approach with arbitrary choiceof theprior probability density
or priors deduced from scaling laws is rejected.

1. PURPOSE, CRITERIA, DEFINITIONS

The progress of experimental sciences to a large extent is due to their practice to assign uncertainties to
results. The information contained in a measurement, or a parameter deduced from it, is incompletely
documented and moreor lessuselessunlesssomekind of error isattributed to thedata. Theprecision of
measurements has to be known i) to combine data from different experiments, ii) to deduce secondary
parameters from it and iii) to test predictions of theories. Different statistical methods have to be judged
on their ability to fulfill these tasks.

Narsky [1] who compares several different approaches to the estimation of upper Poisson limits,
states: “There is no such thing as the best procedure for upper limit estimation. An experimentalist is
free to choose any procedure she/he likes, based on her/his belief and experience. The only requirement
is that the chosen procedure must have a strict mathematical foundation.” This opinion is typical for
many papers on confidence limits. However, “ the real test of the pudding is in its eating” and not in
contemplating thebeauty of thecooking recipe. Weshould not forget that what wemeasurehaspractical
implications.

In thispaper, theemphasis isput on performanceand not on themathematical and statistical foun-
dation. The intention is to confront the procedures with the problems to be solved in physics. Simple
transparent examplesareselected. Important propertiesareamong othersconsistency, precision, univer-
sality, simplicity and objectivity.

Consistency is indispensable in any case. A. W. F. Edwards writes [2]: “Relative support (of a
hypothesis or a parameter) must be consistent in different applications, so that we are content to react
equally to equal values, and it must not beaffected by information judged intuitively to be irrelevant.”

Part of thecontent of this articlehas been presented in acomment [3] to theunified approach [4].

1.1 Classical confidence limits

Classical confidence limits (CCL) arebased on tail probabilities. Thedefining property iscoverage: If a
largenumber of experimentsperform measurementsof aparameter with confidence level � , the fraction� of the limits will contain the truevalueof theparameter inside theconfidence limits.

We illustrate the concept of CCL for a measurement (statistic) consisting of a two-dimensional
observation (��������� ) and a two dimensional parameter space (see Fig. 1). In a first step we associate to
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each point
	 � � 	 � in the parameter space a closed probability contour in the sample space containing a

measurement with probability � . For example, the probability contour labeled 
 in the sample space
corresponds to the parameter values of point � in the parameter space. The curve (confidence con-
tour) connecting all points in the parameter space with probability contours in the sample space passing
through theactual measurement � � ��� � encloses theconfidence region of confidence level � .
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Fig. 1: Two parameter classical confidence limit for a measurement .0/21 .43 . The dashed contours labeled with small letters in

thesamplespacecorrespond to probability contours of theparameter pairs labeled with capital letters in theparameter space.

Figure 1 demonstrates some of the requirements necessary for the construction of an exact con-
fidence region: 1. The sample space must be continuous. (Discrete distributions and thus all digital
measurementsand in principlealso Poisson processesareexcluded.) 2. Theprobability contoursshould
encloseasimply connected region. 3. Theparameter spacehas to becontinuous.

The restriction (1) usually is overcome by relaxing the requirement of exact coverage and by
requiring minimum overcoverage. This is not an elegant solution.

There is considerable freedom in the choice of the probability contours but to insure coverage
they have to be defined independently of the result of the experiment. Usually, contours are locations of
constant probability density. In one dimension also central intervals and intervals leading to minimum
sized confidence intervals are popular. Clearly, there is a lack of standardization. The unified approach
[4] defines theprobability regions through the likelihood ratio.

1.2 Likelihood limits and Bayesian conventions

Likelihood intervals enclose a region where the likelihood function decreases by a fixed ratio, equal to5 6
for onestandard deviation and

6 � for two standard deviations etc..

Bayesians integrate thenormalized likelihood function and form either probability regionsor mo-
ments to define the limits. I will discuss only uniform prior densities. This does not restrict the freedom
of the scientist because there is the equivalent possibility to choose the parameter. For example an anal-
ysis using the mean life parameter with the prior 798;: � is equivalent to an analysis of the decay constant< with uniform prior.
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Fig. 2: Likelihood limits (left) and Bayesian limits (right).

1.3 The likelihood pr inciple

Assume we have two hypotheses characterized by the parameters
	 � and

	 � . For a measurement � � the
relativesupport to the two hypotheses is given by the likelihood ratio

=?> � �9@ 	 � � 	 �BADC
EF> ��� @ 	 � AEF> � �B@ 	 �BA

Another measurement � � is equivalent to � � if the likelihood ratios are thesame:
EG> � �9@ 	 ��AEG> � �9@ 	 �9A C

EG> � �H@ 	 ��AEG> � �H@ 	 �9A
When we have more than two hypotheses we require that equivalent data provide the same like-

lihood ratio for all combinations of parameters. Consequently, for a pdf depending on a continuous
parameter

	 � we have to require that the likelihood functions for the two measurements are proportional
to each other. Theseconsiderationscorrespond to theLikelihood Principle (LP): The likelihood function
contains the full information relative to theparameter. Inferenceshould bebased on the likelihood func-
tion only. The LP is due to Fisher, Birnbaum and others. Proofs and discussions can be found in Refs.
[5, 6, 2].

Methodsthat providedifferent resultsfor measurement that haveproportional likelihood functions
are inconsistent.

2. EXAMPLES

2.1 Example1a: Gaussian with physical boundary

A physical quantity like the mass of a particle with a resolution following normal distributions is con-
strained to positive values. Figure 3 shows typical central confidence bounds which extend into the
unphysical region. In extreme cases a measurement may produce a 90% confidence interval which does
not cover positive values at all. The unified approach and the Bayesian method avoid unphysical confi-
dence limits.

2.2 Example1b: Superposition of Gaussians in theunified approach

Theprescription for theconstruction of theprobability intervalsaccording to thelikelihood ratio ordering
leads to disconnected interval regions when the pdf has tails and cannot produce confidence intervals.
This is shown in Fig. 4 top.
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Fig. 3: Gaussian errors near physical boundary (c: classical, cu: unified, l: likelihood, b: Bayesian). Left: 68.3% errors,

right:90% upper limits.
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Fig. 4: Disconected probability intervals in theunified approach. Gaussians (top) and Breit-Wigner (bottom).
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2.3 Example1c: Breit-Wigner distr ibution

Thesamedifficulty arises for theBreit-Wigner distribution (seeFig. 4 bottom).

The problem is absent if the pdf P fulfills the condition Q �DR S PT8BQU� �WVYX . This condition restricts
theapplication of theunified approach to pdfs similar to Gaussians.

2.4 Example2: Gaussian in two dimension and physical boundary

Let us assume that we have a Gaussian resolution in ����Z and a physical boundary in Z (Fig. 5). The
probability contours are deformed in the unified approach as indicated in the sketch. As a consequence
the error in � shrinks due to a boundary in Z even though the two parameters are independent. One
has to be careful in the interpretation of two-dimensional confidence limits as they occur for example in
neutrino oscillation experiments.

unified

conventional[

unphysical

allowed
region

Fig. 5: Probabilty contours (schematic) for a two-dimensional Gaussian near aboundary in theunified approach.

2.5 Example3: Slopeof a linear distr ibution

This is a frequent distribution in particle physics. A linear distribution is always restricted in the sample
and theparameter space to avoid negativeprobabilities. Wechoose

P > � @ 	 ADC 7\ > 7^] 	 � A`_ a 7cb 	 ���dbe7
as is realized in many asymmetry distributions. For asampleof 100 events following thedistribu-

tion of Equ. 2.4, a likelihood analysisgivesabest value for theslopeparameter of f	 C X9gih \ (seeFig. 6).
There is no simple statistic allowing to compute central classical j

\ gikBl confidence limits because the
parameter is undefined outside the interval [1,1]. Contrary to the conventional classical approach, the
unified approach isableto handletheproblem by working in thefull samplespace(hundred dimensional
in our case) This requires aconsiderablecomputing effort1.

Likelihood limits are possible - the upper limit would coincide with the boundary - but not well
suited to measure theprecision.

2.6 Example4: Digital measurements

A particletrack ispassing at theunknown position m through aproportional wirechamber. Themeasured
coordinate � is set equal to thewire location ��n . Theprobability density for ameasurement �

P > �o��m ADCep > � a ��n A
1In my presentation at the meeting I had not realized this solution in the unified approach. I thank Fred James and Gary

Feldman for explaining it to me.
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is independent of the true location m . Thus it is impossible to define a sensible classical confidence or
likelihood interval, except a trivial one with full overcoverage. This difficulty is common to all digital
measurements because they violate condition 1 of section 2.1. Thus a large class of measurements is
not handled in classical statistics. A Bayesian treatment with uniform prior is the common solution. It
provides the r.m.s. error q9rts�uwv08 5 7

\
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Fig. 6: Likelihood for aslopeparameter.

2.7 Example5: Gaussian with two physical boundar ies

A particle passes through a small scintillator and another position sensitive detector with Gaussian res-
olution. Both boundaries of the classical error interval are in the region forbidden by the scintillator
signal. (seeFig. 7) Theclassical error is twiceas largeas ther.m.s. width. It ismeaningless. Theunified
classical and the likelihood limits contain the full physical region and thus are useless. Again only the
Bayesian method gives reasonable results.
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Fig. 7: Two-sided physical boundary. Classical error bounds cover the full physical region.
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2.8 Example6: Gaussian with var iablewidth

A theory, depending on theunknown parameter
	

predicts theGaussian probability density

P > s A{C
\9|

5 \�} 	 ��~w��� a j
\B| > s a 	 A �\ 	��

for the time s of an earthquake. The classical confidence interval for a measurement at s C 7 X h is� g jBj���s������ . It is shown together with the likelihood function in Fig. 8. When we look at the two
distinct parameter values, predicting the timeof an earthquake
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Fig. 8: Predictions from two discretehypothesisH / , H 3 and measurement (a) and log-likelihood for parametrization of the two

hypotheses (b). The likelihood ratio strongly favors H / which isexcluded by theclassical confidence limits.

� � : s ��C > � g | X�� \ g \9| A h� � : s �FC > | X^� 7 X9X A h

we realize that the first is excluded by the classical bounds, the second by the likelihood limits. The
Fig. 8b shows the two probability densities together with the measurement. Clearly, we would rather
accept

� � . This choice is also supported by the likelihood ratio which is in favor of H � by a factor 26.
Thus the likelihood limits are intuitively moreacceptable than theclassical ones.

The preceding example shows that the concept of classical confidence limits for continuous pa-
rameters is not compatible with methods based on the likelihood values. We may construct a transition
from the discrete case to the continuous one by adding more and more hypothesis but a transition from
likelihood based methodsto CCL isimpossible. Thetwo classical approachesCCL and Neyman-Pearson
test lack acommon bases.
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2.9 Example6b: Number of neutr inos

Thisexamplewaspresented by Cousins[7]: MarkII had measured thenumber of neutrinosto be
\ g�k���X9g j

and deduced a 95% confidence upper limit of 3.9 excluding 4 neutrino generations. The likelihood ratio
of 7.0 produces amuch weaker exclusion of thediscretehypothesis.

2.10 Example7: Stopping rule

A rate measurement may be stopped for reasons like: i) There are enough events. ii) For a long time no
event has been observed. iii) A “golden” event was recorded.

These actions do not introduce a bias as has been first realized by Barnard and co-workers [8].
The reason is that the likelihood function is independent of thestopping rule. Thismay bevisualized by
an infinitely long measurement which iscut in pieceseach corresponding to aexperiment stopped by the
samerule. Theindividual experiment cannot bebiased sincethefull chain isunbiased. This is illustrated
in Fig. 9 where theexperimentsarestopped whenever 3 events are recorded in ashort time interval.

Fig. 9: A sequential stopping ruledoes not introduceabias.

The Figure 10 shows the likelihood function for an experiment where 4 events are observed in a
time interval of one second. The classical results depend on the stopping condition: a) the time interval
had been fixed, b) the experiment was stopped after the forth event. The likelihood principle states that
the two datasets areequivalent. Thus theclassical limitsare inconsistent.
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Fig. 10: Stopping after afixed timeor when afixed number of eventshasbeen observed (samelikelihood) givesdifferent results

in classical statistics.
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Thedifferencesbecomeeven larger when wetaketheexampleof 1 event recorded in 1 second (see
Fig. 10 right). The likelihood functions given by the lifetime distribution and the Poisson distribution,
respectively areproportional to each other

P > s @ ³�A´Ce³ 6¶µ�·¹¸EF> 7 @ ³�AºC¼»w½¿¾ · /�ÁÀ
2.11 Example8: Poisson signal with background

In a garden there are apple and pear trees. Usually during night some pears fall from the trees. One
morning looking from his window, the proprietor who is interested in apples find that no fruit is lying
in the grass. Since it is still quite dark he is unable to distinguish apples from pears. He concludes that
the average rate of falling apples per night is less the 2.3 with 90% confidence level. His wife who is
a classical statistician tells him that his rate limit is too high because he has forgotten to subtract the
expected pears background. He argues, “ there are no pears” , but she insists and explains him that if he
ignores the pears that could have been there but weren’t, he would violate the coverage requirement. In
the meantime it has become bright outside and pears and apples - which both are not there - are now
distinguishable. Even though theevidencehasnot changed, theclassical limit has.

The 90% confidence limits for zero events observed and background expectation Â C X is m C\ giÃ . For Â C
\

it is mÅÄ C X9giÃ much lower. CCL are different for two experiments with exactly the
same experimental evidence relative to the signal (no signal event seen). This situation is absolutely
intolerable. Feldman and Cousins consider this kind of objections as “based on a misplaced Bayesian
interpretation of classical intervals” [4]. It is hard to detect a Bayesian origin in a generally accepted
principle in science, namely, two measurements containing the same information should give identical
results. Thecriticshereisnot that CCLsareinherently wrongbut that their application to thecomputation
of upper limits when background is expected does not make sense, i.e. these limits do not measure the
precision of theexperiment.

Theeffect is lessdramatic but also present in theunified approach: An experiment finding no event
n=0 with background expectation b=3 producesa90% confidence limit 1.08 for thesignal (seeTable1).
Then the flux isdoubled and the background is eliminated. The limit becomes 2.44/2=1.22, worse than
before. This problem is absent in the versions proposed by Roe and Woodroofe [9] and also in that of
Punzi [10]. Thesemethods arehowever restricted to thePoisson case.

Table1: Poisson limits in classical and Bayesian approaches

n=0, b=0 n=0, b=1 n=0, b=2 n=0, b=3 n=2, b=2
standard classical 2.30 1.30 0.30 -0.70 3.32
unified classical 2.44 1.61 1.26 1.08 3.91
uniform Bayesian 2.30 2.30 2.30 2.30 3.88

To avoid the unacceptable situation, I have proposed a modified frequentist approach to the cal-
culation of the Poissonian limits including the information of the limited number of background events
[11]. There the confidence level is normalized to the probability to observe X bÇÆÉÈÊbËÆ background
eventsas known from themeasurement.

7 a � C
ÌÍ2Î�Ï EF> r @ mÐ]ÑÂ AÌÍÒÎ�Ï EF> r @ Â A

The resulting limits respect the likelihood principle (see below) and thus are consistent. They coincide
with thoseof theuniformBayesianmethodandprovideafrequentist interpretationof theBayesian limits.
However, as has been pointed out by Highland [12], the limits do not have minimum overcoverage as
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required by the strict application of the Neyman construction. This is correct [13] but in my paper no
claim relativecoveragehad been made. Themethod has been applied to aHiggssearch [14].

Often the background expectation is not known precisely since it is estimated from side bands
or from other measurements with limited statistics. So far, there is no classical recipe which allows to
incorporatean uncertainty of thebackground estimate.

Likelihood limitsalsogiveasensibledescriptionof thedata. Whether likelihood limitsor Bayesian
limits obtained from the integration are more sensible depends on the shape of the likelihood function.
Ideally both limits should begiven.

Figure11 compares thecoverageof theunified classical and theBayesian limits. At small signals
bothovercover strongly. For largesignalstheBayesianmethodslightly undercoversandoscillatesaround
thenominal value.
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Fig. 11: Coverage in theunified classical and theBayesian approach (dotted) and interval lengths (bottom).

2.12 Example9: Combining lifetimemeasurements

Two events are observed from an exponential decay with true mean life : Ï C 7B8 < Ï . The maximum
likelihood estimate is used either for : or < . Weassume that an infinitenumber of identical experiments
isperformed and that theresultsarecombined. In Table2 wesummarizetheresultsof different averaging
procedures. There is no prescription for averaging classical intervals. The unified methods have to
explain how they intend to combine their measurements. To compute the classical result given in the
table, themaximum likelihood estimateand central intervalswereused.
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Table2: Averageof an infinitenumber of equivalent lifetimemeasurements using different weighting procedures

method �Ö:É8�: ÏF× � < 8 < ÏF×
adding log likelihood functions 7 7
classical, weight: Ø µ � X9giX X9g j �
likelihood, weight: PDG X9g \ j X9gik9X
Bayesian mean, uniform prior, weight: Ø µ � � 7

In this special example a consistent result is obtained in the Bayesian method with uniform prior
for thedecay constant. It showsalso how critical thechoiceof theparameter is in theBayesian approach.
It is also clear that an educated choice is also important for the pragmatic procedures. It is obvious that
the decay constant is the better parameter (see also Fig. 12). Methods approximating the likelihood
function provide reasonable results unless the likelihood function is very asymmetric. The weighting
procedureof thePDG applied to the likelihood errorsgivesreasonable results. As iswell known, adding
the log-likelihood functions always produces acorrect result.
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Fig. 12: Log-likelihood function of themean lifeand thedecay rate.

3. CONCLUSIONS

3.1 Conventional classical method

Theconventional classical schemes suffer from the following problems:
Ù Thereare inconsistencies ( Poisson limits, stopping rule, discretevs. continuous parameters).Ù There is a lack of precision (unphysical limits).Ù They have a restricted range of application (problems with digital measurements, discrete param-

eters).Ù They are not invariant against sample variable transformations (except central intervals in one
dimension).Ù They aresubjective (coverage requirespre-experimental fixing of cuts and decision to publish).Ù There are unsolved problems. (It is not clear how to combine measurements. The inclusion of
background errors in Poisson processes is not possible.)Ù There is no obvious treatment of nuisanceparameters.Ù Systematic errors cannot be included.
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3.2 Unified approach

Compared to theconventional method thereare improvements:
Ù The inconsistencies in Poisson processes are weaker ( and absent in the version of Roe and

Woodroofe)Ù Non-physical limits areavoided.Ù It is invariant with respect to variableand parameter transformations.

However most problems remain (inconsistencies, lack of precision, background uncertainty in
Poisson limits), and:

Ù It is restricted to specific pdfs (Gaussian like).Ù It is complicated and requires considerablecomputing efforts.Ù Thecombination of measurements is even moreunclear.Ù Artificial error correlations are introduced near boundaries.Ù Theproposed treatment [16] of nuisanceparameters(usebest estimatemay lead to undercoverage.

3.3 Likelihood limits

Likelihood limits haveattractiveproperties
Ù They areconsistent.Ù They provideoptimum precision.Ù They are invariant against variableand parameter transformations.Ù They provideacoherent transition to discretehypothesis (likelihood ratio)Ù Measurements can easily becombined

Therearealso restrictions in theapplication:
Ù Digital measurements and uniform distributions cannot behandled.

3.4 Bayesian limits

TheBayesian philosophy is very general and flexible:
Ù All problems can be treated. (Nuisance parameters, digital measurements, unphysical boundaries

etc.)

but:

Ù They depend on theparameter choice.

4. PROPOSED CONVENTIONS

Theconventions proposed here represent by no means theonly reasonableprescription.

Since the complete information is contained in the likelihood function, classical approaches are
not considered. (They cannot becomputed from the likelihood function alone.) An even stronger reason
for thereexclusion are theobvious inconsistencies of this method.

The main objection against Bayesian methods is their dependence on the selected parameter. I
find it rather natural to choose a sensible parameter space. For some application like pattern recognition
- which, by theway, cannot bedonewith classical statistics - it is absolutely necessary.
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Theproposed conventions are:

1. Whenever possible the full likelihood function should be published. It contains the experimental
information and permits to combine the results of different experiments in an optimum way. This
isespecially important when the likelihood isstrongly non-Gaussian (strongly asymmetric, cut by
external bounds, has several maximaetc.).

2. Data are combined by adding the log-likelihoods. When not known, parametrizations are used to
approximate it.

3. If thelikelihood issmoothandhasasinglemaximum thelikelihood limitsshouldbegiven todefine
theerror interval. These limitsare invariant under parameter transformation. For themeasurement
of the parameter the value maximizing the likelihood function is chosen. No correction for biased
likelihood estimators isapplied. Theerrorsusually areasymmetric. These limitscan also be inter-
preted as Bayesian one standard deviation errors for the specific choice of the parameter variable
where the likelihood of theparameter has aGaussian shape.

4. Nuisance parameters are eliminated by integrating them out using an uniform prior. A correlation
coefficient should becomputed.

5. For digital measurements theBayesian mean and r.m.s. should beused.

6. In caseswhere the likelihood function is restricted by physical or mathematical boundsand where
there are no good reasons to reject an uniform prior the measurement and its errors defined as the
mean and r.m.s. should becomputed in theBayesian way.

7. Upper and lower limits are computed from the tails of the Bayesian probability distributions. (In
somecases likelihood limits may bemore informative. [15])

8. Non-uniform prior densities should not beused.

9. It is thescientist’s choicewhether to present an error interval or an upper limit.

10. In any case theapplied procedurehas to bedocumented.

These recipes correspond more or less to our every day practice. An exception are Poisson limits
where for strange reasons the coverage principle - though only approximately realized - has gained
preference in neutrino experiments.
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Discussion after talk of Günter Zech. Chairman: David Cassel.

Bob Cousins

What would you do about goodness of fit?

G. Zech

I think classical methods are very valuable for testing schemes, and the goodness-of-fit test is
something very important and oneshould do it in theclassical way. But I don’t think that thechi-squared
you get out of thegoodnessof fit should enter into theerror. This isadifferent scheme. It wasmentioned
yesterday in oneof thediscussionsand I felt that peoplewanted to do this. I think also coverage isgood
for testing. If you have a scheme where you get big under-coverage I would not like this. I don’t reject
classical methods, I think they are very valuable. You should use both methods, and select the better
ones. Statistics ispartially somekind of experimental science. Onehasto find out what isgood and what
not. It’s not just mathematics.

Fred James

That’s an interesting comment about goodness of fit because in the recent paper by Berger who is
astrong Bayesian, henow admits that Bayesian methodsarenot necessary for parameter estimation, but
hesays they’restill necessary for testing hypotheses. So you say it theother way round.

G. Zech

I think wearenot members of parties. Everybody should havehis own opinion.

F. James

You say that one reason you don’t like frequentist intervals is that they can be disconnected in
the parameter space, but, of course, if the likelihood has several peaks, Bayesian methods can also give
disconnected intervals in theparameter space.

G. Zech

The likelihood ratio has additional peaks to those of the likelihood function. I think, when the
likelihood function has several peaks, the conventional scheme is completely ruined. I discuss only
simple cases, but even in the simple case you get problems in the classical scheme. If you have several
peaks in the likelihood function, then you should just publish the likelihood function, and not try to
parametrize it by onevalue. This does not makemuch sense.

G. Feldman

You mentioned theproblem of disconnected regions in thevariablespaceand cameto theconclu-
sion that the unified approach is only useful for Gaussians. Let me point out that it’s been successfully
used in neutrino oscillations which are highly non-Gaussian, actually oscillatory. Second, I would like
to ask whether you haveany examples from areal experiment wherepeoplewere trying to set limitsand
where this method would not work.
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G. Zech

Well we were told not to be nasty, but now I say it’s not my job to check all the problems of this
approach. I think it’syour job to find out whereit worksand whereit doesnot work. I havefound several
cases where I see problems and so I think you really should find out what is the application range of the
scheme, and it’s not by using a specific example that you can prove the validity of a general scheme. I
mean, had I goneto complicated examples, I would havebeen stuck with onesingleexampleand not had
timefor several. It’swith thesimpleexampleswhereyou can find theproblems, not with thecomplicated
casestudies.

M. Woodroofe

How do you deal with the likelihood principle in the case of a non-parametric problem? Those
can be very simple. I can have a sample from a population, maybe I want to estimate the median but I
don’t haveany basis for making assumptions about theshapeof thedistribution, so it cannot be reduced
to one or two simple parameters. What is unknown is the distribution function, and I want to estimate
themedian. How would you implement the likelihood principle in acase like that?

G. Zech

I cannot answer this. I am not a statistician and I think for the examples which I have shown, the
likelihood principle is valid. We have in physics relatively simple cases and not very complicated ones.
I would be glad if somebody shows me a real example disproving the likelihood principle in a simple
case. I’ ll givehim abottleof champagne if hefinds one.

Don Groom

In your example 10 with the lifetime and again in your summary, what is this PDG prescription?
[Laughter]

G. Zech

Well maybeI should ask Fred to explain it. When you haveasymmetric errors, there isan iterative
procedure to combine different measurements. If the final average is on the left or on the right from a
measurement, you useeither the left-hand or the right-hand error with some interpolation. So it depends
on where you are with respect to the weighted average whether you use the left-hand or the right-hand
error with interpolation. In fact, if the likelihood function isparametrized by your asymmetric error, you
roughly add the logs of likelihood functions. I think it’s very reasonable.

G. D’Agostini

Concerning the comment of Feldman: The fact that the method is used by several people doesn’t
prove it’s good, it’s correct. First, because we don’t know after the publication the truth, so we cannot
check coverageor not coverage; it’snot likean exercisewhen you get thesolution at theend of thebook.
Second, as far as I understand, interviewing a lot of people, many of them don’t understand, don’t agree.
They (not all but most) use it because it’s blessed by PDG.

156


