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ABSTRACT

We propose a way to generate the electroweak symmetry breaking radiatively in non-

supersymmetric type I models with string scale in the TeV region. By identifying the Higgs

field with a tree-level massless open string state, we find that a negative squared mass term

can be generated at one loop. It is finite, computable and typically a loop factor smaller

than the string scale, that acts as an ultraviolet cutoff in the effective field theory. When

the Higgs open string has both ends confined on our world brane, its mass is predicted to

be around 120 GeV, i.e. that of the lightest Higgs in the minimal supersymmetric model

for large tanβ and mA. Moreover, the string scale turns out to be one to two orders of

magnitude higher than the weak scale. We also discuss possible effects of higher order string

threshold corrections that might increase the string scale and the Higgs mass.
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2Unité mixte du CNRS et de l’ENS, UMR 8549.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25283124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Following the recent understanding of string theory, the string scale, Ms, is not tied to

the Planck mass but corresponds to an independent arbitrary parameter [1]-[4], restricted

by present experimental data to be Ms
>∼ 1 TeV [5]. Therefore a non-supersymmetric

string model with a string scale in the TeV range provides a natural solution, alternative

to supersymmetry, to the gauge hierarchy problem [2, 3]. For such models an important

question is to understand the origin of electroweak symmetry breaking, and explain the mild

hierarchy between the weak and string scales. In string models all tree-level masses are fixed

by the string scale, except for flat directions that give arbitrary masses to the fields that

couple to them. This implies that electroweak symmetry breaking should occur radiatively

in two possible ways: a) If the Higgs corresponds to a massless field with a quartic tree-level

potential, and a negative squared mass is generated by string one-loop radiative corrections

which are not protected by supersymmetry. b) If the Higgs vacuum expectation value (VEV)

is classically undetermined by a flat direction which is lifted radiatively and fixed at a local

minimum of the effective potential.

In this Letter we study these issues in the context of type I string models possessing non-

supersymmetric brane configurations [6, 7]. We will first present a one-loop computation

of the effective potential in the presence of a Wilson-line background that corresponds to a

classically flat direction. We will show that the resulting potential has a non-trivial minimum

which fixes the VEV of the Wilson line or, equivalently, the distance between the branes

in the T -dual picture. Although the obtained VEV is of the order of the string scale, the

potential provides a negative squared-mass term when expanded around the origin. Next

we discuss models, obtained by orbifolding the previous example, where the Wilson line is

projected away from the spectrum while keeping charged massless fields with quartic tree-

level terms. These fields acquire one-loop negative squared masses, that can be computed

using the previous calculation. By identifying them with the Higgs field we can achieve

radiative electroweak symmetry breaking 3, and obtain the mild hierarchy between the weak

and string scales in terms of a loop factor.

This mechanism becomes very predictive in a class of models where the Higgs field cor-

responds to a charged massless excitation of an open string with both ends confined on our

world brane (analog to the untwisted states of heterotic orbifolds). In this case, the tree-

level potential can be obtained by an appropriate tree-level truncation of a supersymmetric

theory leading to two predictions. On the one hand, the Higgs mass is predicted to be that

3For an earlier attempt to generate a non-trivial minimum of the potential, see Ref. [8].
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of the lightest Higgs in the minimal supersymmetric model (MSSM) for large values of tanβ

and mA, i.e. ∼ 120 GeV [9]. On the other hand, the string scale is computable and turns

out to be around one to two orders of magnitude higher than the weak scale, roughly 1− 10

TeV. This mechanism is similar to the Coleman-Weinberg idea, except that there are no

logarithms in the computation. Indeed, from the field theory point of view the string scale

provides an ultraviolet cutoff which regulates the quadratic divergence of the Higgs mass.

Finally, we discuss higher order string threshold corrections which can affect the above re-

sults, for instance by large logarithms when there are massless bulk fields that propagate in

two large transverse dimensions [3, 10]. In this case, the string scale and possibly the Higgs

mass could be pushed up to higher values.

The reader who is not familiar with string theory could skip the following rather technical

section and go directly to Eq. (9) and Fig. 2, which provides an estimate of the generated

string one-loop mass term for a tree-level massless scalar on our world brane.

One-loop effective potential

Here we will consider a simple non-supersymmetric tachyon-free Z2 orientifold of type IIB

superstring compactified to four dimensions on T 4/Z2 × T 2 [6]. Cancellation of Ramond-

Ramond charges requires the presence of 32 D9 and 32 anti-D5 (D5̄) branes 4. The bulk

(closed strings) as well as the D9 branes are N = 2 supersymmetric while supersymmetry

is broken on the world-volume of the D5̄’s. The massless closed string spectrum contains

the graviton-, 19 vector- and 4 hyper-multiplets, while the massless open string spectrum on

the D9 branes contains an N = 2 vector multiplet in the adjoint of the SO(16) × SO(16)

gauge group and a hypermultiplet in the (16,16) representation. When all D5̄ branes are

put at the origin of T 4, the non-supersymmetric D5̄ sector contains gauge fields and complex

scalars in the adjoint representation of USp(16) × USp(16) gauge group, a pair of complex

scalars in the (16,16) representation, and Dirac fermions in the (120,1) + (1,120) +

(16,16) representations. Finally there are 95̄ strings giving rise to complex scalars in the

(16,1;1,16) + (1,16;16,1) together with Weyl fermions in the (16,1;16,1) + (1,16;1,16)

representations, with respect to SO(16) × SO(16) × USp(16) × USp(16). Note that the 95̄

spectrum is supersymmetric when D5̄ gauge interactions are turned off.

We will restrict ourselves to the effective potential involving the scalars of the D5̄ branes,

4In general arbitrary numbers of pairs D9+D9̄ and D5+D5̄ can also be added [7].
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namely the adjoints and bifundamentals of the USp(16)×USp(16) gauge group. The relevant

part of the one-loop partition function corresponding to 5̄5̄ open strings is

A5̄ =
1

4
(d1 + d2)

2V8 − S8

η8
W4P2 +

1

4
(d1 − d2)

2 V4O4 − O4V4 − C4C4 + S4S4

η8

(
2η

θ2

)2

P2

M5̄ =
1

4
(d1 + d2)

 V̂8 + Ŝ8

η̂8
W4 +

V̂4Ô4 − Ô4V̂4 + Ĉ4Ĉ4 − Ŝ4Ŝ4

η̂8

(
2η̂

θ̂2

)2
P2 (1)

where A and M denote the contributions from the annulus and Möbius strip, respectively.

In the above equation d1 = d2 = 16, while V2n, O2n, C2n and S2n are the SO(2n) characters,

V2n =
θn
3 − θn

4

2ηn
, O2n =

θn
3 + θn

4

2ηn
, C2n =

θn
2 − inθn

1

2ηn
, S2n =

θn
2 + inθn

1

2ηn
,

where θi are the Jacobi theta functions and η the Dedekind eta function, depending on the

usual complex variable τ = it/2, with t being the (real) annulus parameter. In the product

of characters, the first factor stands for the contribution of space-time and T 2 world-sheet

fermions, while the second factor represents the corresponding contribution from the internal

T 4. The hatted functions are defined by f̂ ≡ f(τ + 1/2). Finally, P2 (W4) denotes the

momentum (winding) lattice sum along the T2 (T4) torus ; for one dimension, they read:

P1(τ) =
∑
m

e
2iπτm2α′/R2

‖ ; W1(τ) =
∑
n

e2iπτn2R2
⊥/α′

, (2)

where α′ ≡ M−2
s is the Regge slope, and R‖ (R⊥) denotes the radius of the corresponding

dimension parallel (transverse) to the D-brane.

In both the annulus and Möbius amplitudes the first term stands for the untwisted con-

tribution while the second term accounts for the Z2 orbifold projection which differentiates

T 4 and T 2 contributions. Its presence is due to the non-freely action of Z2 at the origin

of T 4 and thus it depends only on the lattice of T 2. It is obvious from Eq. (1) that the

Z2 projection acts in a supersymmetric way, and therefore the second terms containing the

twisted contribution vanish identically and will not play any role in our calculation.

In the first terms containing the untwisted contribution, V8 and S8 arise from bosons

and fermions, respectively. Here, supersymmetry is explicitly broken via the orientifold

projection realized by the Möbius amplitude. Indeed, from the change of sign of S8 between

A and M, it is manifest that the orientifold projection acts in opposite ways for bosons

and fermions and breaks supersymmetry. More precisely, it symmetrizes the bosons and

antisymmetrizes the fermions in each USp(16) factor.
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The tree-level scalar potential can be obtained by a truncation of an N = 2 supersym-

metric theory and has flat directions corresponding to the Wilson lines a along the T 2 or T 4

directions. For longitudinal directions they amount to shifting the momenta m → m + a in

Eq. (2), while for transverse directions they shift the windings n → n+a and describe brane

separation. It follows that at one-loop level the flat directions are lifted since the Wilson

lines acquire a potential from the Möbius amplitude which breaks supersymmetry. Without

loss of generality we will consider a Wilson line a along one direction of T 2 of radius R, and

treat the other, upon T-duality, on the same footing as the dimensions of T 4 with a common

radius r. After transforming the amplitudes (1) in the transverse (closed string) channel

and using the standard θ-function Riemann identity, the one loop effective potential for the

Wilson line is given by :

Veff(a) =
1

32π4α′2

∫ ∞

0
dl

θ4
2

4η12

(
il +

1

2

)
R

r5

∑
~m

e−2π ~m2

r2 l
∑
n

e−4iπnae−2πn2R2l (3)

=
1

32π4α′2

∫ ∞

0
dl

θ4
2

4η12

(
il +

1

2

)
R

r5

∑
~m

e−2π ~m2

r2 l

(
1 + 2

∑
n>0

cos(4πna)e−2πn2R2l

)
,

where the radii R and r are defined in units of α′.

In this setup, the canonically normalized scalar field h associated to the Wilson line a is

h = a/gR, where g is the gauge coupling, as can be easily seen by dimensional reduction.

Let us first expand the effective potential in powers of h and extract its quadratic (squared

mass) term µ2h2/2. The result is:

µ2 = − g2

2π2α′

∫ ∞

0
dl

θ4
2

4η12

(
il +

1

2

)
R3

r5

∑
~m

e−2π ~m2

r2 l
∑
n

n2e−2πn2R2l . (4)

It is easy to see that the integral converges. In fact, in the limit l → ∞ the integrand falls

off exponentially, while for l → 0 one can use the Poisson resummations

∑
m

e−2π m2

r2 l =
r√
2l

∑
p

e−π r2

2l
p2

, (5)

∑
n

n2e−2πn2R2l =
1

R
√

2l

∑
n

(
1

4πR2l
− n2

4R4l2

)
e−

π
2R2l

n2

, (6)

and the identity
θ4
2

η12

(
il +

1

2

)
= (2l)4 θ4

2

η12

(
i

4l
+

1

2

)
,

to show that the integrand goes to a constant. Moreover, µ2 is negative which implies that

the origin is unstable and h must acquire a non trivial VEV breaking the gauge symmetry.
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Note that the negative sign comes from the expansion of cos 4πna in Eq. (3) and is corre-

lated with the positive sign of the contribution from the same states to the cosmological

constant. Although this seems to be a general property in these models, we do not have a

deeper understanding of the correlation between the sign of the mass term and the (massive)

spectrum of the theory.

Even if a is a periodic variable of period 1, Veff is periodic under the shift a → a+1/2, since

its contribution originates from the Möbius amplitude. Moreover, in this particular example,

the one-loop effective potential has a global minimum at a = 1/4. This follows trivially from

its expression (3), whose derivative with respect to a is a sum of terms proportional to

sin 4πna, while its second derivative gives

V ′′
eff |a=1/4=

1

2π2α′2

∫ ∞

0
dl

θ4
2

4η12

(
il +

1

2

)
R

r5

∑
~m

e−2π ~m2

r2 l
∑
n

(−)n+1n2e−2πn2R2l . (7)

Positivity of the integrand is manifest for all factors with the exception of the last sum for

which a careful analysis is required. This sum can be written as ∂τθ4(τ)/2iπ with τ = 2 iR2l,

which can be easily shown to be a positive function.

In the T -dual picture, the VEV a = 1/4 corresponds to separating a brane at a distance

from the origin equal to half the compactification interval πR. By turning on all Wilson lines

aI , the effective potential becomes a sum
∑

I Veff(aI), with Veff(aI) given in (3), which upon

minimization fixes all aI at the same value 1/4. Thus, the global minimum of all Wilson

lines corresponds to put all branes at the same point in the middle of the compactification

interval. The USp(16) × USp(16) gauge group is then broken down to a U(8) × U(8) or

USp(16) subgroup, corresponding to turning on Wilson lines along the T 2 or T 4 directions,

transforming in the adjoint or in the bifundamental representation, respectively.

In order to make a numerical estimate of the results, we will consider the case of a 4-

brane with five large transverse dimensions by taking the limit r → ∞ and keeping the

radius R (along the 4-brane) as a parameter. To take the limit r → ∞, we use Eq. (5) for

each of the five transverse dimensions, and note that only p = 0 contributes in the sum. In

fact, non vanishing values of p may contribute only in the region l → ∞, in which case the

corresponding integrand in Eq. (3) vanishes as l−5/2. It follows that in the limit r → ∞ the

potential becomes:

Veff(a, R) =
R

32π4α′2

∫ ∞

0

dl

(2 l)5/2

θ4
2

4η12

(
il +

1

2

)∑
n

e−4iπnae−2πn2R2l . (8)

The effective potential (8) is plotted in Fig. 1 for the range of values of the radius 2 ≤ R ≤ 3
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as a function of a inside its period (−1/2, 1/2). Following our previous analysis, it has a

maximum at the origin and a minimum at a = ±1/4 for any value of R.

-0.4 -0.2 0 0.2 0.4

a

2

2.2

2.4

2.6

2.8

3

R

5.54

5.55

5.56

Veff

-0.4 -0.2 0 0 2

Figure 1: Effective potential as a function of a, for 2 ≤ R ≤ 3 in units of 10−4M4
s .

The mass term at the origin, in the limit r → ∞ and for arbitrary R, can be equally

computed from Eq. (4) using the Poisson resummation (5). The result is:

µ2(R) = −ε2(R) g2 M2
s (9)

with

ε2(R) =
1

2π2

∫ ∞

0

dl

(2 l)5/2

θ4
2

4η12

(
il +

1

2

)
R3
∑
n

n2e−2πn2R2l . (10)

7



The parameter ε is plotted in Fig. 2 as a function of R in a typical range 1/4 < R < 5. At

the lower end, it has almost reached its asymptotic value for R → 0 5, ε(0) ' 0.14, while at

large R it falls off exponentially, as can be seen from its expression (10).

0.25 1.00 1.75 2.50 3.25 4.00 4.75
R

0.00

0.05

0.10

0.15

0.20

ε

Figure 2: The parameter ε in (10) as a function of R in α′ units.

Notice that the mass term (9) we found for the Wilson line a also applies, by gauge

invariance, to the charged massless fields which belong to the same representation.

Electroweak symmetry breaking

In the previous example we obtained a VEV of the order of the string scale, because we

only considered Wilson lines, which correspond to tree-level flat directions in the Cartan

subalgebra of the gauge group, and have put to zero the VEV’s of all other fields. Thus,

the total potential to be minimized appeared at the one-loop level. Had we minimized

the effective potential with respect to fields charged under the Cartan subalgebra, we would

have found the same solution (which corresponds to a true minimum in the multidimensional

field space) since the charged fields acquire, from the Wilson lines, positive tree-level squared

masses and have vanishing VEV’s. In more realistic models, the Wilson lines are at least

5This limit corresponds, upon T-duality, to a large transverse dimension of radius 1/R.
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partially projected away by an orbifold projection which also breaks the gauge group. If

the orbifold projection acts in a supersymmetric way, as was the case of the Z2 in the

previous example, the calculation of the squared mass term remains valid for the left-over

charged scalars in the spectrum, up to an overall numerical factor given by the order of

the orbifold group (1/N for a ZN orbifold). Moreover, the charged scalars have a tree-level

potential which can be obtained by an appropriate truncation, dictated by the orbifold,

of a supersymmetric theory. These two facts allow the existence of a (local) perturbative

minimum, around which higher order terms in the expansion of the one loop potential can be

neglected since the charged scalars would acquire a VEV controlled by the quadratic terms.

We will illustrate these points within the context of the toy model described in the

previous section. The crucial property is that the bosonic sector of the non-supersymmetric

D5̄ branes is identical to the one of an N = 2 supersymmetric theory obtained by a Z2

orbifold projection from an N = 4 theory based on a “fictitious” USp(32) gauge group. The

latter contains six adjoint scalars that can be organized in three N = 1 chiral multiplets Φi

with i = 1, 2, 3. Notice that in this model supersymmetry is explicitly broken because the

fermions belong to the antisymmetric instead of the adjoint (symmetric) representation of

USp(32). The Z2 projection breaks USp(32) into USp(16)×USp(16) and keeps the adjoint

of USp(16)×USp(16) from Φ1 and the (16, 16) components from Φ2,3. The tree-level scalar

potential can be obtained straightforwardly by a corresponding truncation of the potential

of the N = 4 theory:

VN=4 =
g2

2
Tr

∑
i,j

|[Φi, Φj ]|2 +

(∑
i

[
Φi, Φ

†
i

])2
 . (11)

The result is identical to the potential of an N = 2 theory with USp(16) × USp(16) gauge

group and one hypermultiplet in the (16, 16) representation. In N = 1 notation, it corre-

sponds to the superpotential W = g/
√

2 ϕ2ϕ1ϕ3 where ϕ1 is the adjoint from Φ1 and ϕ2,3

are the two bifundamental chiral multiplets from Φ2,3. The F - and D-term contributions to

the potential come from the first and second term of Eq. (11), respectively.

As we discussed in detail after Eq. (2), the Z2 orbifold projection does not by itself break

all supersymmetries and does not play any role in the computation of the potential. As

a result, the scalar mass terms generated at one loop receive contributions only from the

untwisted sector which treats the adjoint and the (16, 16) scalars in the same way, as an

adjoint of USp(32). Thus, the generated masses of the different scalars can be obtained from

the same functional of the radii through permutations. In particular, this means that scalars
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describing displacement of branes in dimensions of the same size acquire equal masses. For

instance, in the isotropic 3-brane limit of six large transverse dimensions, r → ∞ and R → 0,

the result (9) applies for all scalar components.

We would like now to discuss possible phenomenological applications of these results. Let

us assume that there is a sequence of “supersymmetric” orbifold projections that lead to the

Standard Model living on some non-supersymmetric brane configuration along the line of

the toy model presented above. In the minimal case, where there is only one Higgs doublet

h originating from the untwisted sector, the scalar potential would be:

V = λ(h†h)2 + µ2(h†h) , (12)

where λ arises at tree-level and is given by an appropriate truncation of a supersymmetric

theory. Within the minimal spectrum of the Standard Model, λ = (g2
2 + g′2)/8, with g2

and g′ the SU(2) and U(1)Y gauge couplings, as in the MSSM. On the other hand, µ2 is

generated at one loop and can be estimated by Eqs. (9) and (10).

The potential (12) has a minimum at 〈h〉 = (0, v/
√

2), where v is the VEV of the neutral

component of the h doublet, fixed by v2 = −µ2/λ. Using the relation of v with the Z gauge

boson mass, M2
Z = (g2

2 + g′2)v2/4, and the fact that the quartic Higgs interaction is provided

by the gauge couplings as in supersymmetric theories, one obtains for the Higgs mass a

prediction which is the MSSM value for tanβ → ∞ and mA → ∞:

Mh = MZ . (13)

Furthermore, one can compute Mh in terms of the string scale Ms, as M2
h = −2µ2 = 2ε2g2M2

s ,

or equivalently

Ms =
Mh√
2 gε

(14)

The lowest order relations (13) and (14) receive in general two kinds of higher order

corrections. On the one hand, there might be important string corrections that we will

discuss in the next section. On the other hand, from the point of view of the effective field

theory, they are valid at the string scale Ms, and Standard Model radiative corrections should

be taken into account for scales between Ms and MZ . In particular, the tree level Higgs mass

has been shown to receive important radiative corrections from the top-quark sector. For

present experimental values of the top-quark mass, the Higgs mass in Eqs. (13) and (14) is

raised to values around 120 GeV [9]. Moreover from Eq. (14), we can compute the string scale

Ms. There is a first ambiguity in the value of the gauge coupling g at Ms, which depends
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on the details of the model. Here, we use a typical unification value g ' 1/
√

2. A second

ambiguity concerns the numerical coefficient ε which is in general model dependent. In our

calculation, this is partly reflected in its R-dependence, as seen in Fig. 2. Varying R from 0

to 5, that covers the whole range of values for a transverse dimension 1 < 1/R < ∞, as well

as a reasonable range for a longitudinal dimension 1 < R <∼ 5, one obtains Ms ' 1− 5 TeV.

A further model dependence of ε comes from the order of the orbifold group. As mentioned

above, had we considered a higher order orbifold, e.g. Z2N instead of Z2 as required by more

realistic models, ε would decrease by a factor 1
√

N . As a result, the radiative electroweak

symmetry breaking can be consistent with a string scale as heavy as O(10) TeV.

In a more general context, the Higgs sector may be more complicated and the scalar

potential could have classically undetermined flat directions as discussed in the introduction.

For concreteness we will consider the case of two Higgs doublets h1 and h2 with a tree-level

potential, obtained by an appropriate truncation of a supersymmetric theory, and equal to

that of the MSSM. We are also assuming two different one-loop generated squared mass

terms µ2
1 and µ2

2 for the Higgs fields:

V = λ
(
|h1|2 − |h2|2

)2
+ ρ |h∗

1h2|2 + µ2
1 |h1|2 + µ2

2 |h2|2 (15)

where λ = (g2
2 + g′2)/8 and ρ = g2

2/2. The conditions for having a stable minimum are

µ2
1 + µ2

2 > 0 and µ2
1µ

2
2 < 0. These conditions are fulfilled provided that one of the masses,

say µ2
2, is negative and the other, say µ2

1, is positive. In this case we get the VEV’s 〈h1〉 = 0

and 〈h2〉 = (0, v/
√

2), where v2 = −µ2
2/λ. Using again the relation of v with MZ , we obtain

the tree-level Higgs mass spectrum :

Mh2 = MZ , M2
h0
1

= µ2
1 + µ2

2 , M2
h−
1

= M2
h0
1
+ M2

W , (16)

where h2 corresponds to the Standard Model Higgs, and h0
1, h−

1 to the neutral and charged

components of the h1 doublet. Moreover, the string scale is given by

Ms =
Mh2√
2 gε2

(17)

with µ2
2 = −ε2

2g
2M2

s .

Again, these are tree-level relations which are subject to both string and Standard Model

radiative corrections. In particular, the latter provide important contributions to the mass of

the Standard Model Higgs h2, which is increased roughly to ∼ 120 GeV, and accordingly to

the string scale given in Eq. (17). It is interesting that we obtained the same relations as in

11



the previous example with a single Higgs field. The difference is that there is also a left-over

scalar doublet whose neutral and charged components acquire masses given in Eq. (16). As

we have pointed out, in this case one needs the one-loop generated squared masses for the

two scalar doublets, µ2
1, µ2

2, to be different and opposite in sign. Although our toy string

example allows for different values by introducing different radii, the change in sign requires

more general models, such as those obtained for instance by introducing additional pairs of

branes - anti-branes [7].

Discussion on string threshold corrections

We discuss now string threshold corrections to the relations (13) and (14). These are moduli

dependent and may become very important only when some radii become large compared

to the string length. Otherwise, if all radii are of order one in string units, higher loop

corrections are order one numbers multiplied by loop factors which are suppressed when

string theory is weakly coupled. Of course, these (model dependent) corrections are needed

for a detailed phenomenological analysis and could be as important as those of the MSSM

that increase the Higgs mass by roughly 10%. An estimate of these corrections can be done by

an explicit computation of the a4 terms in the expansion of the potential (8). Notice though

that these terms do not determine uniquely the one-loop corrections to the quartic couplings

of the charged fields, partly because there are more than one gauge invariant combinations.

An additional subtlety is the existence of an infrared divergence as l → 0, which is due to

the low energy running of the couplings and must be appropriately subtracted to obtain the

string threshold corrections in a definite renormalization scheme [11].

For dimensions longitudinal to our world brane, the large radius limit leads in general the

theory very rapidly to a non perturbative regime, since the (ten-dimensional) string coupling

becomes strong when four-dimensional gauge couplings are of order unity. On the other hand,

for large transverse dimensions, the tree-level string coupling remains perturbative (of order

of the gauge couplings), and therefore their size can in principle become as large as desired.

If this is the case, the decompactification limit exists, and threshold corrections are again

controlled by the string coupling and are suppressed by loop factors. However, this limit

does not exist in general when there are massless bulk fields that propagate in one or two

transverse dimensions, and threshold corrections become very important [3].

A way to see how these large corrections to the parameters of the effective lagrangian
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on the brane arise, is to look at the ultraviolet open string loop diagrams as emission of

massless closed strings in the bulk at the location of distant sources created by other branes or

orientifold planes. This emission leads to corrections that diverge linearly or logarithmically

with the size of transverse space, if there are massless closed string states propagating in

one or two dimensions, respectively. The case of one large transverse dimension is similar to

that of a large longitudinal one, since threshold corrections grow linearly with the radius and

bring rapidly the theory to a non-perturbative regime [12]. In this case, one can fine-tune

the radius to a narrow region near the string scale and the low energy parameters will be

very sensitive to the initial conditions.

In the case of two large transverse dimensions, the logarithmic contributions to the pa-

rameters of the effective action on the brane are similar to those in a renormalizable theory

and can be resummed as in the renormalization group improved MSSM [3]. In this analogy,

the string scale Ms plays the role of the supersymmetry breaking scale, while the size of

the transverse space replaces the ultraviolet cutoff at the Planck mass, MP . For instance, if

the bulk contains n large transverse dimensions of common radius R⊥, while the remaining

6 − n have string size, one obtains the familiar relation M2
P = M2+n

s Rn
⊥. When there are

massless bulk fields propagating in two of them, like e.g. twisted moduli localized at an n−2

dimensional subspace, the logarithmic corrections are ∝ log(R⊥Ms) = (2/n) log(MP /Ms).

Concerning the Higgs mass considered here, such large radius dependent contributions

would arise if there are bulk massless fields emitted by the Higgs at zero external momentum.

The vanishing of such tree-level couplings, as for instance with bulk gravitons, implies the

absence of large threshold corrections for the Higgs mass at the one-loop level. This is in

agreement with our result (4) which remains finite in the decompactification limit for any

number of large transverse dimensions. However, large corrections can arise at higher orders,

e.g. through gravitons emitted from open string loops. While computation of such effects is

out of the scope of this work, we would like to discuss the general structure of such corrections

and comment on their phenomenological implications.

In the simplest case, the relevant part of the world brane action in the string frame is:

Lbrane = e−φ

{
ω2|DH|2 +

1 + tan2 θW

8
ω4(H†H)2 +

1

4
(F 2

SU(2) + cot2 θW F 2
Y )

}
− ε2M2

s ω4|H|2 ,

(18)

where φ is the string dilaton, ω the scale factor of the four-dimensional (world brane) metric,

H the Higgs scalar (in the string frame) and D the gauge covariant derivative. The weak

angle at the string scale θW must be correctly determined in the string model. Notice that
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the last term has no eφ dependence since it corresponds to a one loop correction. The bulk

fields φ and ω are evaluated in the transverse coordinates at the position of the brane. The

physical couplings g2, λ and the mass µ2 are given by

g2 = eφ/2 , λ =
1 + tan2 θW

8
eφ , µ2 = −ε2eφω2M2

s , (19)

while Eq. (13) remains unchanged and the relation (14) becomes

Ms =
Mh√

2 ε eφ/2ω
. (20)

The lowest order result (14) corresponds to the (bare) value ω = 1.

As we discussed above, when the bulk fields φ and ω propagate in two large transverse di-

mensions, they acquire a logarithmic dependence on these coordinates due to distant sources.

Since the value of φ at the position of the world brane is fixed by the value of the gauge

coupling in Eq. (19), the relation (13) for the Higgs mass is not affected, while Eq. (20) for

the string scale is corrected by a renormalization of ω which takes the generic form:

ω = 1 + bωg2
2 ln(R⊥Ms) , (21)

where bω is a numerical coefficient. This correction is similar to a usual renormalization factor

in field theory, which here is due to an infrared running in the transverse space. Depending

on the sign of bω, it can enhance (bω < 0) or decrease (bω > 0) the value of the string scale by

the factor 1/ω. This effect can be important since the involved logarithm is large, varying

between 7 and 35, for R⊥ between 1 fm and 1 mm.

In more general models, there are additional bulk fields entering in the expression of low

energy couplings on the brane, such as the twisted moduli localized at the orbifold fixed

points. As a result, every term in the lagrangian (18) may be multiplied by a different

combination of the bulk fields that acquires an independent correction, similarly to Eq. (21).

Thus, in the generic case, both relations (13) and (14) may be modified by corresponding

renormalization factors that are computable in every specific model. In particular, the

prediction of ∼ 120 GeV for the Higgs mass, which coincides with that of the lightest Higgs

in the MSSM for large values of tanβ and mA, can change by this effect.

A final important question that we have not addressed in this letter is the possible

signatures of Higgs production in brane world models. Previous works done in the context

of the effective field theory suggest that there may be new effects, leading in general to

signatures that are different from those in the Standard Model or the MSSM [13]. It will

14



be interesting to study this issue in the framework of the non-supersymmetric type I string

models we discussed here.
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