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Abstract

In string theory various projections have to be imposed to ensure supersymme-
try. We study the consequences of these projections in the presence of world sheet
boundaries. A-type boundary conditions come in several classes; only boundary
fields that do not change the class preserve supersymmetry. Our analysis takes in
particular properly into account the resolution of fixed points under the projections.
Thus e.g. the compositeness of some previously considered boundary states of Gep-
ner models follows from chiral properties of the projections. Our arguments are
model independent; in particular, integrality of all annulus coefficients is ensured
by model independent arguments.
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1 Introduction

It has been appreciated for a long time that the construction of consistent superstring theories
requires appropriate projections on the underlying conformal field theory, most prominently
the GSO projection. A careful implementation of these projections is e.g. required when one
computes the massless spectrum of such theories. A clear conceptual understanding becomes
even more mandatory when it comes to specifying boundary conditions for open strings. The
analysis of the interplay between projections in superstring theories and boundary conditions
for open strings is our main concern in this paper. We will concentrate on compactifications
of type II superstring theories in which the internal part is an N =2 rational conformal field
theory, among them in particular the Gepner models. Our approach enables us e.g. to derive
formulas for Gepner model boundary states entirely from well-established principles. Where
comparable with the literature, these results differ from the formulas obtained elsewhere except
for some particularly simple models.

Let us be more explicit. In the construction of a superstring compactification one starts with
specifying the vacuum configuration. This amounts to choosing a conformal field theory Cint

for the ‘inner’ or ‘internal’ sector. Cint must satisfy a number of consistency constraints, such
as possessing the correct Virasoro central charge, enough supersymmetry on the world sheet,
and modular invariance. Afterwards, additional projections need to be imposed on Cint. This
includes in particular the GSO projection, which ensures space-time supersymmetry. But there
is another generic projection, too, which in the case of flat backgrounds looks quite innocent
and which nevertheless will play an important role below. Namely, the total conformal field
theory in question is a tensor product of the inner sector with the flat space-time part, and the
constraint that necessitates a projection is that the spin structures for all fermionic fields on
the world sheet must be aligned. In other words, the fermionic fields have to be either in the
Ramond or in the Neveu--Schwarz sector simultaneously in each factor of the tensor product.
As we will see, the interplay between these two projections has quite non-trivial consequences
in non-flat backgrounds, in particular for the description of boundary states.

Now it is well-known that just projecting out states from a conformal field theory typically
destroys its consistency, like e.g. modular invariance of the torus partition function. The projec-
tion therefore must be compensated by some additional manipulations, such as including new,
twisted, sectors. For instance, in the case of the Gepner [1] construction, the inner sector confor-
mal field theory Cint one starts with can be written as a tensor product Ck1k2...kr = Ck1⊗ · · ·⊗ Ckr

of N =2 minimal models. On this theory Ck1k2...kr one imposes fermion alignment and the GSO
projection, but at the same time includes additional states that do not appear in the spectrum
of the original tensor product theory [2]. Put differently, the torus partition function of the full
Gepner conformal field theory C(Gep) – i.e. the theory that is obtained by these manipulations of
projecting out old and of adding new states – contains non-diagonal (‘twisted’) contributions
when viewed in terms of primary fields of the N =2 tensor product. In particular the vacuum
field of the original theory Ck1k2...kr not only gets combined with itself, but also with other
fields – to be called simple currents – of the original theory. (The corresponding states play
in fact a crucial role in the space-time physics. The associated vertex operators provide e.g.
the gravitini.) At the chiral level, this means that the chiral symmetry algebra of the Gepner
model is extended beyond that of the N =2 tensor product, namely precisely by including the
relevant simple currents into the algebra [3]. Note that from the point of view of the extended
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chiral algebra, the partition function is diagonal. 1

In short, the Gepner construction amounts to extending the underlying tensor product of
Cint with the theory Cs−t that describes the surviving D flat non-compact space-time dimensions
by certain simple currents. For concreteness we refer to this new theory C(Gep) as the Gepner
extension. To separate generic aspects which are related to the space-time part from aspects
that depend on the chosen inner sector it turns out to be simpler, and conceptually clearer,
to break up the extension into two separate steps. Thus we first perform a suitable extension
on the inner sector Cint alone. This way we arrive at a theory to which we refer as the Cala-
bi--Yau extension C(CY). In models that possess a geometric interpretation as a sigma model
on a Calabi--Yau manifold, it is this theory C(CY), rather than the original theory Cint (e.g. the
mere tensor product Ck1k2...kr of minimal models) that should be compared with the geometrical
data. The proper combination of C(CY) with the space-time theory Cs−t then still requires further
projections. Thus in a second step, we tensor C(CY) with Cs−t, and thereafter perform yet another
extension that involves both C(CY) and Cs−t. As we will see, this latter extension is completely
straightforward. This allows us to concentrate our attention on C(CY).

Simple current fields possess a variety of nice properties which allow for a very general and
powerful treatment of arbitrary projections in which the chiral algebra gets enlarged [8–10].
Such simple current extensions have often been compared to orbifold constructions. For our
purposes it is, however, indispensable not to mix up the two operations of simple current ex-
tension and orbifolding. While the respective closed string partition functions indeed display
a certain similarity – both correspond to projecting out some states and adding new ‘twisted’
states – there is a significant difference at the level of the chiral symmetry algebras and, as a
consequence, at the level of chiral conformal field theory. Briefly, in a simple current extension
the chiral algebra A gets larger [10] – the new algebra Aext consists of the old one plus the sim-
ple current fields – while in the orbifold construction it gets smaller [11] – the new algebra AG

is the fixed point subalgebra of the old one with respect to the orbifold group G. Accordingly,
a simple current extension of a given theory has, generically, fewer primary fields (inequiva-
lent representations of the chiral algebra) than the original theory; the ‘twisted states’ that
appear in the partition function correspond to left-right asymmetric combinations of ordinary
A-representations. On the other hand, an orbifold has in general more primary fields than its
mother theory, and the additional states correspond to new fields which appear already at the
chiral level and carry ‘twisted representations’ of the original chiral algebra A. The differences
between the chiral aspects of the two constructions become particularly relevant when it comes
to the study of boundary effects. Still, these two types of constructing a new conformal field
theory from a given one are closely related – they are in fact each other’s inverse. The simple
currents form an abelian group G under the fusion product, and it can be shown [12] that the
operations of extension by a group G of simple currents and of taking the abelian orbifold with
respect to the character group G=G∗ are precisely inverse to each other. 2

The reason for emphasizing the differences between the various extended theories that arise

1 For simplicity, here we restrict ourselves to modular invariants of A-type for the N =2 minimal models.
Bulk spectra for other modular invariants have been computed in [3–5]. For a recent discussion of boundary
states in bulk theories with modular invariants of D-type or E-type (based on the results of [6]), see [7].

2 It follows e.g. that the sizes of the stabilizer groups of the simple current and of the orbifold action are
complementary, i.e. full simple current orbits correspond to orbifold fixed points and vice versa. For more
quantitative statements, see section 7 of [12].
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in a string compactification rests in the following observation. Once one works with the appro-
priate conformal field theory C(CY), the standard results for boundary conditions in (unitary)
conformal field theories can be employed. In particular, Cardy’s [13] construction of boundary
states for boundary conditions that preserve the full chiral algebra can be applied directly.

The main points of this paper are the following. After establishing the necessary information
about the Gepner and Calabi--Yau extensions (section 2), in section 3 we analyze in detail
which symmetries of a Gepner model must be preserved and which ones can be broken by a
given boundary condition. We also recall the recent increase of understanding of symmetry
breaking boundary conditions (see [14, 15], and also [16] for applications to WZW models)
and apply those results to Gepner models. We thereby obtain all boundary conditions that
preserve full N =2 world sheet and half of space-time supersymmetry, the so-called A-type
boundary conditions. This includes in particular the boundary states recently obtained in [17].
Our analysis reveals that within the boundary conditions of A-type, different ‘automorphism
types’ appear, so that the A-type conditions can be naturally partitioned into several subsets.
Boundary operators that change the automorphism type of the boundary conditions do not
respect the GSO projection and therefore, generically, describe unstable brane configurations.
Explicit formulas for all boundary states of Gepner models which preserve the full extended
algebra are given.

In section 4 we turn to boundary conditions for which the action of the chiral algebra of
the inner sector Cint is twisted by some automorphism, in particular the BC-type conditions
which are based on the mirror automorphism of the N =2 superconformal algebra. As the
relevant chiral algebra of the Gepner model is larger than that of Cint, it is necessary to lift the
automorphism to the simple current extension C(CY). In the analysis of both A- and B-type con-
ditions we encounter the problem that such a lift is typically not unique; we employ arguments
from quantum Galois theory to describe this non-uniqueness (more details are provided in the
appendix). Finally, in section 5 we comment on the relationship between various “singular”
structures encountered in Gepner models and their geometric counterparts and mention some
open problems.

2 The Gepner extension and the Calabi--Yau extension

2.1 The bosonic string map

The simple current machinery was mostly developed for unitary conformal field theories. But
since for maintaining the world sheet supersymmetry we must align the superghosts as well,
the conformal field theory of our interest is definitely not unitary. To deal with this problem,
we make use of the bosonic string map [18, 19, 1, 20]. This stratagem allows us to map the
non-unitary chiral conformal field theory of our primary interest to another chiral conformal
field theory that is unitary and that possesses the same topological data, i.e. modular matrices,
but also braiding and fusing matrices. In particular, both in the open and closed string sector
we can then work with ordinary partition functions rather than with supersymmetric partition
functions. It is worthwhile to point out that while the bosonic string map was originally
designed to construct heterotic theories, we use it here to simplify the description of type II
superstring theories which are supersymmetric both in the left and the right chiral part.
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Concretely, the fermions of the flat D-dimensional space-time theory Cs−t together with the
superghosts can be described by the lorentzian lattice DD/2,1; the first D/2 components come
from the bosonization of the space-time fermions, and the last one (with opposite sign in the
kinetic energy) from the bosonization of the superghost system. The bosonic string map B then
amounts to replacing the non-unitary conformal field theory DD/2,1 by the unitary conformal
field theory DD/2+3. Both of these theories have four primary fields, corresponding to the four
conjugacy classes of the D-type simple Lie algebras; the map exchanges the characters for the
zero (o) and vector (v) conjugacy classes and multiplies the characters for the spinor (s) and
conjugate spinor (c) conjugacy classes by −1. Thus B is encoded in the matrix

B =




0 11 0 0
11 0 0 0
0 0 −11 0
0 0 0 −11


 , (2.1)

where 11 is a unit matrix in the state space of the additional conformal field theory with which
the theory for fermions and superghosts gets tensored, i.e. of the inner sector theory Cint and
the bosonic part of Cs−t. Denoting by a tilde quantities before the string map (‘supersymmetric
quantities’), and without tilde the ones after the string map (‘ordinary CFT quantities’), we
thus have, schematically, χ̃=Bχ. For the modular transformation matrices this amounts to

S̃ = B S B−1 , T̃ = B T B−1 . (2.2)

Given the modular invariant torus partition function Z of the ordinary conformal field theory,
which satisfies [Z, S] = 0 = [Z, T ], it follows immediately that

Z̃ := B Z B−1 (2.3)

is modular invariant on the supersymmetric side.
The N = 2 superconformal algebra contains a u(1) current subalgebra. Via spectral flow,

space-time supersymmetry is achieved when all u(1) charges with respect to this subalgebra
are odd integers. This condition can be fulfilled by a suitable projection on the allowed repre-
sentations; this is precisely what the GSO projection does. Because of the exchange between
o and v and the r-dependence of the u(1) charge of Dr-spinors, the bosonic string map (2.1)
changes all charges with respect to the u(1) subalgebra of the N =2 algebra by 1 mod 2 [2].
This means in particular that while in the supersymmetric theory the GSO projection is to odd
integral u(1) charges, in the bosonic theory it is to even integral u(1) charges.

2.2 Simple current extensions

Starting from the tensor product theory Cs−t ⊗Cint, the Gepner construction proceeds by pro-
jecting out certain states and adding new ones [2]. As already mentioned, technically this can
be realized by the procedure of simple current extension. Basically, the simple current exten-
sion of a conformal field theory with chiral algebra A by some group G of simple currents of
integral conformal weight has the following effects [8, 10, 21].

When fused with any other primary field λ of the theory, a simple current J yields just a
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single field Jλ. Thus a simple current is invertible in the fusion ring. The group G then acts
on the fusion ring of the A-theory, and the simple current extension amounts to dividing out
this action of G.

The projection amounts to keep only those fields λ which obey QJ(λ) = 0 for all J∈G, where

QJ(λ) := ∆λ + ∆J − ∆Jλ mod Z = ∆λ − ∆Jλ mod Z (2.4)

is the so-called monodromy charge of the field λ of the A-theory with respect to the simple
current (with integral conformal weight) J∈G.

To obtain the primary fields of the extended theory we must organize the A-fields that survive
the projection into orbits [λ] under the fusion product with the currents in G.

The diagonal modular invariant of the extended theory reads

Zext =
∑
[λ]

QJ(λ)=0 ∀J∈G

|Sλ| |∑
J∈G/Sλ

χ
Jλ(τ)|2 , (2.5)

where Sλ⊆G is the so-called stabilizer of λ, i.e. the subgroup Sλ consisting of those elements of
G which leave λ fixed under the fusion product of the A-theory. Note that (2.5) is non-diagonal
when viewed in terms of the primaries of the original theory. The terms of the form χ

λ
χ∗

Jλ

indicate the inclusion of twisted states which are needed to ensure modular invariance. (For an
analysis in the WZW case, see [22].) Also, both the stabilizer subgroup Sλ and the monodromy
charge are well defined for orbits [λ], not only for individual fields λ.

When an orbit [λ] has a non-trivial stabilizer, the factor of |Sλ| in the partition function (2.5)
seems to indicate that the corresponding states occur several times. An additional ‘quantum
number’ distinguishing those states is provided by a character of Sλ, i.e. by ψλ ∈S∗

λ. Accord-
ingly, the primary fields of the extended theory are completely labeled as

λext = [λ, ψλ] . (2.6)

It is worth stressing that, while the prescription for projecting out states and adding new
ones is already in itself sufficient for obtaining the spectrum of the model, to determine the
complete modular properties of the model (and a fortiori for obtaining boundary conditions) it
is indispensable to take proper care of such additional quantum numbers. Naively, in the case
of a non-trivial stabilizer the projection rules appear to require the inclusion of the same state
several times into the partition function. This would spoil unitarity of the modular S-matrix
of the theory. The puzzle is resolved by realizing that those seemingly identical states are
indeed distinguished by a further quantum number. Simple currents constitute a convenient
conceptual framework for summarizing the required additional information.

The modular S-matrix Sext of the extended theory can be expressed in terms of the modular S-
matrix S of the A-theory and of similar matrices SJ with J∈G. The latter describe the modular
S-transformation of one-point chiral blocks (of the A-theory) on the torus with insertion J
[21, 23]. Explicitly [21, 14], the matrix elements of Sext (labeled, according to the above, by
G-orbits of monodromy charge zero A-primaries µ, supplemented by a character ψµ of the
stabilizer Sµ) read

(Sext)[λ,ψλ],[µ,ψµ] =
|G|

|Sλ| |Sµ|
∑

J∈Sλ∩Sµ

ψλ(J)ψµ(J)∗ SJ
λ,µ , (2.7)
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where SΩ ≡S is the ordinary S-matrix. When there are no fixed points (i.e., orbits with non-
trivial stabilizer), then this expression collapses to

(Sext)[λ],[µ] = |G|Sλ,µ , (2.8)

so in this particular case the original S-matrix already contains all information about Sext.
Actually the formula (2.7) does not cover the most general situation. In full generality we

rather have to account for the fact that the implementation of symmetries in quantum systems is
typically only projective. This can also happen for the symmetries studied here. Quantitatively,
the effect is described by a two-cocycle on the stabilizer group Sµ. What is remarkable is that
this two-cocycle can be computed entirely in terms of the matrices SJ. One can show [21] that
the projectivity is properly taken into account by replacing Sµ by the subgroup

Uµ ⊆ Sµ (2.9)

of Sµ on which the two-cocycle vanishes; Uµ is called the untwisted stabilizer of µ. 3 In Gepner
models with diagonal (or charge conjugation) torus partition function – the situation of our main
interest below – one always has Uµ =Sµ, so that henceforth we will ignore this modification.

Via the Verlinde formula, the fusion rules of the extended theory can then be expressed
through the fusion rules of the A-theory and the fixed point quantities Sλ and SJ. For instance,
for G = Z2 = {Ω, J} one finds

(Next)
[λ′′,ψ′′]

[λ,ψ],[λ′,ψ′] = 1
|Sλ| |Sλ′ | |Sλ′′ | [N λ′′

λ,λ′ + N λ′′
λ,Jλ′ + 2

∑
µ

Jµ=µ

(ψ′ψ′′ Sλ,µS
J
λ′,µS

J∗
λ′′,µ

SΩ,µ

+ ψψ′′ S
J
λ,µSλ′,µS

J∗
λ′′,µ

SΩ,µ
+ ψψ′ S

J
λ,µS

J
λ′,µS

∗
λ′′,µ

SΩ,µ
)] .

(2.10)

3 The formula for the extended S-matrix then reads

(Sext)[λ,ψ̂λ],[µ,ψ̂µ] = |G| [ |Sλ| |Uλ| |Sµ| |Uµ| ]−1/2
∑

J∈Uλ∩Uµ

ψ̂λ(J) ψ̂µ(J)∗ SJ
λ,µ ,

where ψ̂µ is a character of Uµ⊆Sµ⊆G. Note that in this general situation even the labeling of primary fields is
different from the case where Uµ coincides with Sµ for all µ; in place of the label (2.6) we now have λext = [λ, ψ̂λ].
Our notation for the simple current orbits is actually adapted to the general situation, as Gµ/Uµ acts non-trivially
on the characters ψ̂µ when Uµ is a proper subgroup of Sµ.
Also, while the arguments in [21] were not sufficient to prove the formula rigorously, a proof is possible by
combining them with the results of [24] on the uniqueness of the modularisation of a premodular category.
Independently, various aspects of the formula can be tested directly [21, 23]. For instance, with the help of
the computer program kac (see http://norma.nikhef.nl/̃ t58/kac.html) it was checked in a huge number
of cases that it produces non-negative integers when inserted into the Verlinde formula. Moreover, manifestly
the formula requires only information about the chiral conformal field theory, and even only information about
topological aspects of the chiral theory. In particular it does not involve any knowledge about boundary
conditions.
While in Gepner models with diagonal or charge conjugation invariant one always has Uµ =Sµ, for models
where the extension of the N =2 tensor product is by a larger group – e.g. corresponding to taking non-
diagonal modular invariants of the N =2 minimal models – cases where Uµ is a proper subgroup of Sµ can and
do arise. This must e.g. be taken into account when analyzing the boundary states introduced in [7].
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As is clear from (2.7), the rows and columns of the SJ-matrices are labeled by only those
primaries of the A-theory that are fixed under J. Thus unless at least two of the fields λ, λ′

and λ′′ are fixed under J, the corresponding terms in (2.10) vanish.
It is worth emphasizing that a simple current extension amounts to nothing else than to a

change of the underlying chiral conformal field theory. This fact, which is somewhat hidden
in other treatments of projections (compare e.g. [25]), is of central importance for gaining a
better understanding of boundary states in Gepner models. Namely, it implies in particular
that all the features that are revealed in the analysis of these projections can be understood
in a manner that is completely independent from our (yet uncomplete) understanding of world
sheet boundary effects. Since the relevant results have undergone extensive physical and math-
ematical consistency checks which do not use any information about boundary conditions, we
can safely exploit these structures as an input in the construction of boundary states for Gepner
models.

A crucial property of superconformal field theories is that the supersymmetry automatically
leads to the existence of certain simple currents. First of all, independently on the number of
world sheet supersymmetries, every superconformal field theory has a distinguished simple
current v: the generator of world sheet supersymmetry, which has order two and conformal
dimension ∆ =3/2. The monodromy charge with respect to v is 0 for primary fields in the
Neveu--Schwarz sector and 1/2 for primaries in the Ramond sector. The ‘superpartner’ of a
primary field λ is given by fusion product of λ with this simple current v.

In case the superconformal field theory has extended (N = 2) supersymmetry, there is yet
another simple current sint: the Ramond ground state R0 with highest u(1) charge. This can be
seen after expressing the u(1) current J of the N = 2 algebra in terms of a canonical free boson,
J(z) = i

√
c/3 ∂φ(z). Then the Ramond ground state is given by exp(i

√
c/12φ). Its conformal

dimension is ∆ = c/24, as befits a Ramond ground state, and it has the correct u(1) charge c/6.
In this formulation, it is easy to see that the monodromy charge with respect to this simple
current equals half of the superconformal u(1) charge of a field.

2.3 The Gepner extension

In this subsection we display the simple current extension that leads from an internal N =2
superconformal theory Cint to a consistent string background C(Gep). Let us point out that this
extension is not only applicable for the original Gepner models, but likewise for any other N =2
compactification in which the internal theory is a rational conformal field theory, for instance
for Kazama--Suzuki models.

The (flat) space-time bosons and Virasoro ghosts will play no role in what follows, and
accordingly we suppress their contribution to Cs−t. What then remains of the space-time theory
are the fermions and superghosts. After the bosonic string map, these are described by the
level one WZW theory based on the Lie algebra DD/2+3; this (unitary) conformal field theory
DD/2+3 has four primary fields, which we label as

$ ∈ {o, s, v, c} . (2.11)

The Gepner extension is the extension of the tensor product theory DD/2+3 ⊗Cint by a certain
simple current group K(Gep), which accounts for fermion alignment and GSO projection. The
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group K(Gep) is generated by some number r of order-two currents

vi := (v; vi,int) (2.12)

together with
stot := (s; sint) ; (2.13)

the fields vi will be referred to as alignment currents (rather than as vector currents, as is done
e.g. in [26]), and stot as the total spinor current . When the inner sector Cint can itself be written
as a tensor product (e.g. of N = 2 minimal models as in the original Gepner construction), then
each tensor factor provides us with one of the currents vi,int, which then is a non-trivial field
in the ith factor, tensored with the identity field of all other factors of Cint. The subspace with
lowest conformal weight of the representation space of the bosonic part of the N =2 algebra
corresponding to the field vi,int has a dimension which is a multiple of two; it contains the two
supercurrents G±

i of the ith tensor factor.
The order Ns of stot is model dependent. Also, depending on the model the resulting group

K(Gep) is either the direct product of the ZNs generated by the total spinor current stot and
of the Z2 groups generated by the alignment currents vi, or else some quotient of that direct
product group. The latter happens when the field (stot)

Ns/2 is contained in (Z2)
r, 4 and in that

case the corresponding quotient is, as an abstract abelian group, the direct product of ZNs with
r−1 copies of Z2. Thus the simple current group of the Gepner extension has the structure

K(Gep) = ZNs
× (Z2)

r−η with η∈{0, 1} . (2.14)

The extension by the group generated by the currents vi guarantees world sheet supersymmetry.
Indeed, the total N = 2 superconformal algebra must split into two modules of its bosonic subal-
gebra, the vacuum module and a module containing the supercurrents G± =

∑r
i=1G

±
i ; this is so

only after extension by the vi. (Concretely, e.g. the two terms in G±
1 +G±

2 ≡G±
1 ⊗1+1 ⊗G±

2 lie
in two distinct irreducible modules of Aint, and these modules get combined into an irreducible
module of the extended algebra precisely due to the extension by v1v2 = (o; v1,intv2,int).) The
extension by the total spinor current stot implements the GSO projection and hence ensures
space-time supersymmetry. The monodromy charge (2.4) with respect to the current stot can
be shown to coincide (modulo Z) with half of the superconformal u(1) charge of a state. Also,
a change from the o to the v conjugacy class results in a change of this monodromy charge by
1/2 mod Z, and in the Ramond sector the same effect results from the r-dependence of the u(1)
charge of the spinors of Dr. Recalling the form (2.1) of the bosonic string map, we thus see
again that it changes the effect of the GSO projection from a projection to odd integral u(1)
charges to a projection to even integral u(1) charges.

Let us remark that the abelian orbifold construction that brings us back from the Gepner
model C(Gep) to the tensor product DD/2+3 ⊗Cint consists of orbifolding by the group K(Gep) that
is generated by the automorphisms

vi 7→−vi , vj 7→ vj for j 6= i
stot 7→ stot ,

}
for i=1, 2, ... , r , and

vj 7→ vj for all j , stot 7→ exp(2πi/Ns) stot .

(2.15)

4 For instance, in N =2 minimal models with odd level k, the spinor current s (see formula (3.25) below)
satisfies s2k+4 = v. This results in the equality sNs/2

tot =
∏r
i=1 vi when Cint is the tensor product of r minimal

models with only odd levels. For more details, see subsection 3.5.
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Also note that the latter map corresponds to a shift φ 7→φ+4π
√

3/c/Ns of the free boson φ in

terms of which the spinor current can be written as stot = exp(i
√
c/12φ).

2.4 The Calabi--Yau extension

The original Gepner construction – reformulated in the previous subsection in terms of simple
current extensions – involves both the flat space-time part DD/2+3 and the inner sector Cint. This
tends to obscure the connection with the geometric formulation in terms of sigma models on
Calabi--Yau manifolds. The object in the Gepner model that corresponds to the compactification
manifold in the geometric setting is not simply the conformal field theory Cint – e.g. the tensor
product Ck1k2...kr of minimal models – but rather an extension of this tensor product, which
will be specified shortly; we shall denote it by C(CY) and call it the Calabi--Yau extension.
The connection to geometric compactifications is usually derived using a Landau--Ginzburg
description of the minimal models (for a different line of arguments, see [27]), and indeed this
construction involves a non-trivial projection on the tensor product, commonly referred to as
forming a Landau--Ginzburg orbifold [25]. In a second step, one combines this extended inner
sector C(CY) with flat space-time (i.e. tensors with the theory DD/2+3) and then performs an
additional extension, which has more similarities to the GSO projection in ten flat dimensions.
Unlike the step from Cint to C(CY), this further extension is completely straightforward. Let us
stress that the procedure that we call the Calabi--Yau extension can be performed independently
of any connection of the internal sector to a classical geometrical compactification.

Inspecting the Gepner extension, one observes that the group K(Gep) contains many currents
that have a trivial space-time part and therefore effectively define an extension of the internal
theory Cint alone. We denote the group of these currents by K(CY). Using the fusion rules of the
DD/2+3 theory (which are of the form Z2 ×Z2 when we compactify to D= d+2 =6 dimensions,
and Z4 for compactifications to D=4 or 8), we find that K(CY) is generated by all products of
any two of the currents vi,int, and hence by

wi := v1,int vi,int , i∈{2, 3, ... , r} (2.16)

which will again be called alignment currents, together with the current 5

u := s2
int(v1,int)

d/2 . (2.17)

This group has the structure
K(CY) = ZNs/2 × (Z2)

r−1−η , (2.18)

where the contribution η∈{0, 1} in the exponent accounts for the possibility that uNs/4 is
contained in the product of the r−1 Z2 groups that are generated by the currents wi (compare
the remarks before formula (2.14)).

The theory C(CY) that is obtained upon extension of Cint by K(CY) inherits a simple cur-
rent (sub)group {o(CY), s(CY), v(CY), c(CY)} that has the same fusion rules (i.e., Z2 ×Z2 and Z4,

5 The presence of the power of v1,int accounts for the fact that s2 = vd/2 in the DD/2+3 theory. More explicitly,
for compactifications to D=6, the group K(CY) contains all products of an even number of currents vi,int and
all products of (sint)2 with the former, while for compactifications to D=4 or 8 in addition to all products of
an even number of currents vi,int one has all products of (sint)2 with an odd number of vi,int.
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respectively) as the DD/2+3 theory. The final projections that bring us from DD/2+3 ⊗C(CY) to
the Gepner extension C(Gep) amount to extending by the simple current (v; v(CY)), which aligns
fermions in DD/2+3 and C(CY), and in addition by either (s; s(CY)) or (c; s(CY)). This very last
extension is the true analog of the GSO projection in flat space-time. In particular, when one
combines the left and right halves of the theory, the choice between type IIA and IIB theories
is equivalent to a choice between the extension by (s; s(CY)) both on the left and the right (or
equivalently, by (c; s(CY)) on both sides), or else by (s; s(CY)) on one side and by (c; s(CY)) on
the other. We remark that all currents in the extension of DD/2+3 ⊗C(CY) to C(Gep) act freely.
Thus the simple formula (2.8) for the modular S-matrix of the extension applies, and hence as
announced this extension is straightforward.

The dependence of the precise structure of the K(CY) extension on the number of compactified
dimensions can be traced back to the fact that the internal spectral flow operator, mapping the
R to the NS sector, changes the u(1) charge by cint/6, where cint =12−3d/2 is the central charge
of Cint. Thus, while in the NS sector we always project onto integral internal u(1) charge, the
internal u(1) charges in the R sector are either integers or in Z+1/2, depending on the external
dimension being 6 or 4, 8, respectively. The integrality of the u(1) charges in the NS sector
is necessary to make a correspondence between chiral primary fields and differential forms in
the geometric compactification possible, and is therefore highly welcome. In fact, s2

int can be
identified model independently as the square of the Ramond ground state with maximal u(1)
charge.

As we shall see below, there is yet another intermediate theory, to be denoted by Cwsusy,
that is of interest. This is the theory that one obtains from the inner sector Cint by extending
with the subgroup (Z2)

r−1⊂K(CY) generated by the alignment currents wi only, i.e. by enforcing
only fermion alignment, and hence world sheet supersymmetry, on the internal theory. Cwsusy

will play an important role in the analysis of boundary conditions. We summarize the relation
between the various extensions schematically as

DD/2+3 ⊗Cint ≺ DD/2+3 ⊗Cwsusy ≺ DD/2+3 ⊗C(CY) ≺ C(Gep) . (2.19)

Note that the group that furnishes the extension from Cwsusy to C(CY) is the cyclic group generated
by the image U of the simple current u (3.24) in the Cwsusy-theory. The order of U can differ
from the order Ns/2 of u by a factor of two; it is given by N ′

s/2 with

N ′
s = 2−ηNs , (2.20)

where η is the integer introduced in formula (2.14).
We can – and will – simplify the discussion and restrict our attention in the sequel to the

intermediate theory C(CY) (and later on also to Cwsusy). As the additional extension to C(Gep) is
so simple, we do not loose any essential features when doing so. In particular the issue of fixed
points arises always only in the study of C(CY). To conclude this section, let us emphasize that
the construction described above is model independent and does not rely on specific aspects of
the N = 2 superconformal field theory used in the inner sector.
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3 A-type boundary conditions

3.1 Intermediate chiral algebras

Already in closed string theory the simple current extension leading to C(CY) must be taken
into account properly. In particular, a careful treatment of fixed points is compulsory to find
the correct massless spectrum, compare e.g. [26, 28]. When open strings are present, for the
following reason an even deeper understanding of fixed point resolution is required. In the
computation of the massless spectrum one just counts states, thus a detailed understanding of
the underlying partition functions suffices. In contrast, as was first realized by Cardy [13], in
the construction of boundary states the modular S-matrix enters directly; therefore a complete
knowledge of this matrix in simple current extensions is required as well. Moreover, open string
partition functions (annulus amplitudes) also implicitly contain the modular matrices, so that
not even the open string spectrum can be obtained correctly without proper resolution of the
fixed points. In this context, it is an important observation that typically the Calabi--Yau
extension, and hence also the Gepner extension, do possess fixed points. For instance, as will
be discussed in subsection 3.5, in the case of a tensor product Cint = Ck1k2...kr of N = 2 minimal
models, fixed points arise precisely if at least one level ki is even.

The group of automorphisms of the N =2 superconformal algebra is the Lie group O(2).
This group has two connected components, and any element of the component not connected
to the identity can be obtained by composing an element of the identity component with the
mirror automorphism (see formula (4.2)). Those automorphisms of the chiral algebra of a ten-
sor product of internal models that respect the N =2 structure are generically given by O(2)
as well (but additional permutation symmetries are present when some of the factors of the
tensor product are identical). Accordingly, in such string compactifications one conventionally
distinguishes between two classes of boundary states: Those which correspond to an automor-
phism in the identity component of O(2), and those corresponding to an automorphism in the
other component. In the literature, the former states are often collectively referred to as A-type
boundary states , while latter are said to be of B-type. A-type boundary conditions leave the
chiral algebra Aint of the inner sector Cint invariant; insisting that also an N =2 subalgebra of
the extension C(CY) remains unbroken, the A-type automorphism must be the identity map. In
this section we study in detail boundary conditions |a〉(CY)

A which do preserve Aint, i.e. which
satisfy

(Yn ⊗ 1 + (−1)∆Y −1 1 ⊗Y−n)|a〉(CY)

A = 0 (3.1)

for every field Y (z) =
∑

n∈Z Ynz
−n−∆Y of conformal weight ∆Y in Aint.

We start our analysis by recalling that the total chiral algebra A(CY) of the Calabi--Yau
extension C(CY) is obtained from Aint by a simple current extension with the group K(CY). A
generic boundary state |a〉(CY)

A will not preserve all of A(CY), but only some subalgebra Aa

containing Aint. This subalgebra cannot be arbitrary, though. First of all, we are interested
in conformally invariant boundary conditions only, and hence the Virasoro subalgebra of A(CY)

must be preserved. This is automatically satisfied by the boundary states |a〉(CY)

A , since the
Virasoro algebra is already contained in the inner sector algebra Aint. But in addition the
preserved subalgebra must have enough structure to allow for the construction of conformal
blocks and, based on them, of correlation functions. One therefore has to require that Aa must
again be a vertex operator algebra. To get an overview over all boundary conditions of our
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present interest, we thus look for all vertex operator algebras A that lie between Aint and A(CY):

Aint ⊆ A ⊆ A(CY) . (3.2)

For general vertex operator algebras, this classification of subalgebras would be a hopeless
problem. Here, however, we know that the inner sector chiral algebra Aint can be characterized
as the subalgebra of A(CY) that is left pointwise fixed by the group K(CY) of automorphisms
of A(CY), described in formula (2.15), which is dual to K(CY). This observation allows us to
employ a basic result from the Galois theory for vertex operator algebras [29–31], which tells
us that the possible chiral algebras between Aint and A(CY) are in one-to-one correspondence
with subgroups of the group K(CY). We conclude that to every boundary state |a〉(CY)

A of C(CY)

we can associate a subgroup K(CY)
a of K(CY), such that the subalgebra of A(CY) that is preserved

by the boundary condition is the fixed point algebra with respect to K(CY)
a .

3.2 Boundary states and automorphism types

Boundary conditions that preserve a fixed point algebra of the bulk symmetries with respect
to some finite abelian group of automorphisms have been studied in [15, 12]. When applied to
the present situation, the pertinent results of [15, 12] may be summarized as follows.

Using notation from the unextended theory Cint, the boundary states can be labeled in a way
much similar to the labeling (2.6) of primary fields of the extended theory C(CY), namely as

a = [µ, ψµ] . (3.3)

The difference is that, unlike in (2.6), here µ can be any primary field label of Cint, i.e. now
there is no restriction on the monodromy charge. 6

When K(CY)
a is non-trivial, then |a〉(CY)

A can no longer be written as a linear combination of
Ishibashi states of C(CY). This is simply due to the fact that the preserved chiral symmetry is
then not big enough to guarantee that all A(CY)-descendants are reflected at the boundary in
the same way, so that different descendants must be treated differently. The boundary state
can, however, still be expressed in terms of suitable generalizations | · · ·〉〉 of the Ishibashi states
of the unextended theory Cint. These states are labeled by a pair (λ, ψλ), where now again the
restriction of zero monodromy charge is to be imposed on the primary field λ (but no simple
current orbit is taken any longer). 7

Heuristically the situation can be understood as follows. On the side of Ishibashi states,
only states with vanishing monodromy charge are present; in the orbifold language of [25], only
states in the untwisted sector appear. This means that the orbifold element in ‘space’ direction
on the torus is always trivial, whereas we still project, i.e. we still deal with non-trivial group
elements in ‘time’ direction. According to Cardy’s ideas, the boundary states are obtained by
a modular S-transformation from the Ishibashi states. After that transformation we only have

6 At this point, the possibility of having untwisted stabilizers Uµ⊂Sµ (see formula (2.9)) must in general
be taken into account. Then ψµ gets in fact replaced by a character ψ̂µ of the untwisted stabilizer Uµ, and the
simple current orbit is obtained by an action that also changes ψ̂µ in a non-trivial way. Also, the prefactor of
S̃ gets changed analogously as in the formula in footnote 3.

7 Here ψλ is always a character of the full stabilizer, even when the untwisted stabilizer is strictly smaller
than the stabilizer [15].
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the trivial group element in ‘time’ direction, which implies that there is no projection, so that
orbits appear. However, in ‘space’ direction we now have non-trivial elements, and therefore
the twisted sectors show up in the description of the boundary states.

To make these heuristic ideas quantitative, we introduce a matrix S̃ that takes over the role
that the usual S-matrix plays in the Cardy case. As shown in [15, 12], such a matrix indeed
exists. The following structures were uncovered.

The expansion of the boundary state |a〉(CY)

A with respect to the generalized Ishibashi states
reads

|[µ, ψµ]〉(CY)

A =
∑
λ,ψλ

S̃(λ,ψλ),[µ,ψµ]√
S̃(Ω),[µ,ψµ]

|(λ, ψλ)〉〉 . (3.4)

The matrix S̃ appearing here can be expressed as

S̃(λ,ψλ),[µ,ψµ] =
|G|

|Sλ| |Sµ|
∑

J∈Sλ∩Sµ

ψλ(J)ψµ(J)∗ SJ
λ,µ , (3.5)

which is similar to (2.7) (but remember that now also twisted sectors are allowed in the second
label). Complete information on the boundary state, like brane tensions or RR charges, is
encoded in this matrix S̃.

Note the similarity between the result (3.4) and Cardy’s formula [13] for symmetry preserving
boundary conditions, in which the modular S-matrix appears in place of S̃. It turns out that
the matrix S̃ has still more in common with the modular S-matrix. Indeed, as first realized
in [32,33], a subset of the sewing constraints [34] for correlation functions of a rational conformal
field theory can be isolated which leads to a simple non-linear equation for the bulk-boundary
coefficients for excitation of the vacuum field on the boundary. As pointed out in [35], this
equation means that the reflection coefficients constitute one-dimensional representations of a
certain finite-dimensional associative algebra, which generalizes the fusion rule algebra and is
called the classifying algebra. 8

These results allow us to introduce the notion of an elementary boundary condition; this fur-
nishes by definition an irreducible representation of the classifying algebra. Thus the elementary
boundary conditions are in one-to-one correspondence with the one-dimensional irreducible rep-
resentations of the classifying algebra. The matrix S̃ as given by (3.5) diagonalizes the structure
constants of the classifying algebra, analogously as the modular S-matrix diagonalizes the fusion
rules. In string theory, on the other hand, one must in addition introduce (Chan--Paton) mul-
tiplicities for boundary conditions. Thus the space of all boundary conditions to be considered
in string theory forms a cone over the elementary boundary conditions, and generically one is
dealing with higher-dimensional, and hence necessarily reducible, representations of the classi-
fying algebra. It is also quite common that some of the solutions that are present as elementary
boundary conditions in the conformal field theory possess a zero Chan--Paton multiplicity, i.e.
do not appear at the string theory level at all.

Based on the properties of the matrix S̃, the space of boundary conditions for A(CY) that
preserve Aint can be analyzed in detail [15,12]. One important result is that each of the boundary
states studied here possesses a definite automorphism type. This means that it can be written

8 Extending Cardy’s [13] work, it was shown in [12] that the structure constants of this algebra are traces
on suitable spaces of conformal blocks.
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as a linear combination of twisted Ishibashi states , where the twist is a fixed automorphism ω
of A(CY). Such a twisted Ishibashi state |[λ, ψλ]〉〉ω obeys the twisted Ward identity

(Yn ⊗1 + (−1)∆Y−1 1 ⊗ω(Y−n)) |[λ, ψλ]〉〉ω = 0 (3.6)

for every field Y of conformal weight ∆Y in A(CY). (This generalizes the usual definition of
Ishibashi states of Dirichlet-type for the free boson. In the terminology of [36,37], the relation
(3.6) says that ω provides the glueing condition of the boundary condition.)

The subset of Aω-type boundary states – that is, of all boundary states which preserve Aint

and which have some prescribed automorphism type ω – corresponds to a subalgebra of the
classifying algebra. The structure constants of this subalgebra can be expressed in terms of
traces of the action of ω on the space of the relevant three-point conformal blocks. This again
generalizes the Cardy case, in which the structure constants are just the fusion rules, which in
turn are nothing else than traces of the identity automorphism on spaces of three-point blocks.

The fact that the boundary states that preserve Aint come in several different automorphism
types can also be understood as follows. The identity map on Aint can be lifted to an automor-
phism of A(CY) in several distinct ways. The group of these lifts of automorphisms is just the
quantum Galois group for the extension. Each element of this group gives us an automorphism
type. Let us stress that the fact that all the boundary conditions that are commonly referred
to as A-type do possess an automorphism type is non-trivial indeed. It reflects the equally
non-trivial statement of quantum Galois theory that all intermediate algebras are obtained as
fixed algebras.

Once the boundary states are given explicitly, i.e. once the matrix S̃ is known, all annulus
amplitudes can be computed by sandwiching a string propagator qL0+L̃0−c/12 between the two
appropriate boundary states. But already from the general expression (3.5) above (and from
general properties of the matrices SJ), it can be established via representation theoretic argu-
ments [15] that in full generality the annulus coefficients are non-negative integers, as befits the
coefficients of the open string partition function. The completeness and associativity proper-
ties [33] of the annulus coefficients can be shown to be satisfied as well. Further, one can write
the annulus amplitude for two boundary conditions of automorphism types ω1 and ω2 as a sum
of characters χ′

[ν,ψν ]′ of the extension of Cint by the subgroup

Kω1ω2 := {J∈K(CY) |QJ(ω1) = 0 = QJ(ω2)} (3.7)

of K(CY). (Here the isomorphism between K(CY) and the dual group (K(CY))∗ is used, i.e. the
automorphisms are regarded as characters of K(CY).) The coefficients then read [15] 9

A
[ν,ψν ]′
[µ1,ψ1],[µ2,ψ2]

=
|Kω1ω2

|
|K(CY)|

∑
[λ,ψ′

λ]′

|Sλ|
|S′
λ|

∑
ψλ�ψ′

λ

S̃∗
(λ,ψλ),[µ1,ψ1]S̃(λ,ψλ),[µ2,ψ2]S

′
[λ,ψ′

λ]′,[ν,ψν ]′/S
′
[λ,ψ′

λ]′,[Ω]′ , (3.8)

where S ′ is the modular S-matrix of the Kω1ω2-extension of Cint, and where the second sum-
mation is over all Sλ-characters ψλ that restrict to the given character ψ′

λ of the subgroup
S ′
λ =Sλ ∩Kω1ω2 .

9 Here again we suppress the changes that arise when genuine untwisted stabilizer groups are present; see
formula (6.23) of [15].
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Another important conclusion to be drawn is that the monodromy charge constitutes a
grading of the annulus coefficients, in the following sense. It follows from the result (3.8) that

A
[ν,ψν ]′
[µ1,ψ1],[µ2,ψ2] = e2πi[QJ(µ2)−QJ(µ1)+QJ(ν)] · A[ν,ψν ]′

[µ1,ψ1],[µ2,ψ2]
, (3.9)

so that the annulus coefficient A
[ν,ψν ]′
[µ1,ψ1],[µ2,ψ2]

vanishes unless QJ(ν) =QJ(µ1)−QJ(µ2) for all

J∈K(CY). Thus all open string states that appear in the annulus amplitude for two boundary
conditions of automorphism types ω1 and ω2 have a common monodromy charge QJ with respect
to any current J in K(CY), and this common value is given by

exp(2πiQJ) = ω−1
1 ω2(J) . (3.10)

3.3 World sheet supersymmetry and space-time supersymmetry

We now analyze what boundary conditions in string compactifications of Gepner type preserve
the (super)symmetries that have to be imposed to obtain a consistent bulk theory. To this
end we study in more detail the twisted Ward identities (3.6). Again we start our discussion
with boundary states that preserve the chiral symmetry algebra Aint of the inner sector Cint.
As already mentioned, such boundary states are often collectively said to be of A-type, see
for instance [37–40]. However, as we have detailed above, the inner sector Cint of the string
compactification needs to be extended to C(CY), which does not have Aint as chiral symmetry,
but rather its simple current extension A(CY). To identify boundary states that are relevant for
string theory, in particular those that can be given a geometric interpretation as D-branes, it
is necessary to understand what part of the extended algebra A(CY) is preserved or broken by a
given boundary state.

Recall that the simple current extension from Cint to C(CY) consists of a part that ensures
world sheet supersymmetry and another part necessary for space-time supersymmetry. Accord-
ingly, the automorphism type ωa of a boundary condition that preserves Aint carries information
concerning both the extension by the alignment currents wi = v1,intvi,int (i=2, 3, ... , r) and the

extension by u = s2
intv

d/2
1,int. These individual pieces of information can be thought of as measur-

ing which supersymmetries are broken or conserved by the boundary state. More concretely,
we can attribute to every boundary state |a〉(CY)

A an element ωa of the orbifold group K(CY) that
is dual to K(CY). As an abstract abelian group, this is again ZNs/2×Z

r−1−η
2 . The automorphism

ωa occurs in the twisted Ward identities (3.6) satisfied by |a〉(CY)

A ; explicitly, we have

ωa(wi) = ζa,i wi with ζa,i ∈{±1} ,
ωa(u) = e2iϑa u with 2ϑa ∈ 2πZ/(Ns/2) ,

(3.11)

and hence
((wi)n ⊗1 + ζa,i (−1)∆wi−1 1 ⊗ (wi)−n) |a〉(CY)

A = 0 ,

(un ⊗ 1 + e2iϑa (−1)∆u−1 1 ⊗u−n) |a〉(CY)

A = 0 .
(3.12)

Also recall that for each tensor factor of the internal N =2 theory the field vi,int contains
the supersymmetry charges G±

i . Now N =1 world sheet supersymmetry plays the role of a
gauge symmetry of perturbative superstring theory. In order not to destroy this constitutive
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feature of superstrings, N = 1 world sheet supersymmetry must not be broken by any boundary
state that is present (i.e., has a non-zero Chan--Paton multiplicity) at the string theory level.
Concretely, we have the relation {QBRST, β}=G between the N = 1 supercurrent G, the BRST
charge QBRST and the superghost β. When combined with the identities

(QBRST ⊗1 − 1 ⊗QBRST) |a〉(CY)

A = 0 and (βr ⊗ 1 + iε1 ⊗β−r) |a〉(CY)

A = 0 (3.13)

(ε∈{±1}) which encode BRST invariance of the boundary state and the boundary condition for
the superghost (which is model independent and independent of the chosen boundary condition
for the theory C(CY)), this relation implies that we must also have

(Gr ⊗ 1 + iε1 ⊗G−r) |a〉(CY)

A = 0 . (3.14)

Comparison of this Ward identity with the result (3.12) then tells us that we must require the
invariance property ωa(G) =G of the N = 1 supercurrent.

The extended theory C(CY) actually possesses N = 2 world sheet supersymmetry, with su-
percurrents G± =

∑
iG

±
i , into which the N =1 supersymmetry can be embedded in several

different ways, namely as G=(eiγG++e−iγG−)/
√

2 for any γ ∈R. By inspecting the operator
products of the supercurrents, it follows that there exists some N = 1 subalgebra that is pre-
served if and only if in the relations (3.11) we have ζa,i = 1 for all i, i.e. if and only if the part of
the automorphism type that concerns the alignment currents is trivial. (This appears to have
been ignored in part of the literature.) As a matter of fact, in that case the boundary condition
preserves all N = 1 subalgebras, and hence even the whole N = 2 algebra.

Thus from now on we only admit those automorphism types which obey

ωa(wi) = wi . (3.15)

(Put differently, in the string theory any conformal field theory boundary condition which vio-
lates this relation is assigned Chan--Paton multiplicity zero.) According to the Ward identities
(3.12), the automorphism type of any of the remaining boundary conditions is then completely
characterized by a single number. This number is essentially given by ϑ∈ 2πZ/Ns; but we also
have to take into account that the order N ′

s/2 of the image U of u in the theory Cwsusy can be
different from the order Ns/2 of u itself. Thus the boundary conditions must rather be labeled
by

θ = 2πn/N ′
s with n∈{0, 1, ... , N ′

s−1} . (3.16)

We shall denote the corresponding automorphism type of branes by Aθ. Note that here we
use θ instead of 2θ as label, even though from the point of view of the Calabi--Yau extension,
the automorphism types θ and θ+π cannot be distinguished. We do so because in full string
theory (i.e., for C(Gep) rather than C(CY)), the two automorphism types differ on the final GSO
projection.

This restriction to boundary conditions that preserve not only Aint, but even its exten-
sion by the alignment currents i.e. the algebra Awsusy, also ensures that the annulus partition
function between any two boundary conditions has an open string spectrum with world sheet
supersymmetry.

In contrast to world sheet supersymmetry, space-time supersymmetry is not an indispensable
ingredient of a superstring theory. Also, it is not determined by chiral considerations alone, in

17



the sense that the space-time supersymmetry generators Q are given by closed string operators
in which left- and right-movers are combined. Indeed, they arise as zero modes

Q =

∫
d2z s(z, z̄) (3.17)

of fields in the full conformal field theory obtained by putting together both chiral halves. In
an N = 2 string compactification, the field s(z, z̄) consists of a spectral flow operator on one
chiral half combined with the vacuum field of the other chiral half (for more explicit expressions,
see e.g. [2, 40]). Thus there are both left- and right-moving supersymmetry charges, QL and
QR. In the context of open strings, a preserved space-time supersymmetry is a certain linear
combination of a left- and right-moving charge that annihilates the boundary state [41, 42]:

(QL +Q′
R) |a〉(CY)

A = 0 . (3.18)

If s is any left-moving spectral flow operator, ωa(s) will again have the properties of a spectral
flow, and therefore the sum of the corresponding left and right-moving zero modes will still con-
stitute a conserved supersymmetry. That different boundary states in Gepner models conserve
different space-time supersymmetry charges has been observed in [40]. What is new about the
analysis above is the observation that this corresponds to dealing with boundary conditions of
distinct automorphism types. Indeed, the fact that within the classification into A- and B-type
there exist subclasses of boundary states with different automorphism type has so far not been
appreciated in the literature.

Thus all boundary conditions in Gepner models that have been considered so far in the litera-
ture, and for which we have identified an automorphism type labeled by an element θ∈ 2πZ/N ′

s,
in fact do preserve half of space-time supersymmetry. In short, in all situations studied in this
paper, the presence of space-time supersymmetry in the closed string sector (ensured by the
GSO projection) together with the preservation of N = 1 world sheet supersymmetry by a
boundary state already guarantees that the boundary state is BPS. On the other hand, the
open string spectrum, encoded in the annulus partition function, will be space-time super-
symmetric only if the automorphism types of the boundary conditions on the two boundary
components of the annulus are equal. (Without reference to automorphism types, a condition
of this type for space-time supersymmetry of the partition function was also derived in [37].) In
that case all annuli can be expressed in terms of characters of the Calabi--Yau extension C(CY),
and as a consequence the GSO projection – which is a chiral issue – guarantees in particular the
absence of tachyons in the spectrum of open string states. Geometrically, the difference θ1 − θ2
between the labels of the two automorphism types can be given the intuitive interpretation of
an angle between two branes. The open string spectrum is space-time supersymmetric if the
angle between the two branes is zero. In contrast, when the angle is non-zero, then absence of
tachyons in the open string spectrum is not guaranteed any longer.

Thus in order to guarantee the absence of open string tachyons, among the Aθ-type boundary
conditions it is generically necessary to restrict to those with a single fixed value of θ. For
instance, when we decide to keep a boundary state with θ= 0, then we typically have to
dismiss all boundary states with θ 6= 0. However, in the case of type I theories, an orientifold
projection may stabilize the brane (for reviews see [43,44]); in such circumstances, Aθ boundary
conditions with several distinct values of θ could coexist. Whether this happens or not, and
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for what choices of θ, are model dependent questions. (The answer can in particular depend
on bulk moduli.) Furthermore, when we also include B-type conditions, it can happen that
requiring absence of open string tachyons restricts the allowed θ value of Aθ conditions even
when only a single θ is kept.

3.4 A0-type boundary conditions

The special class of boundary conditions of type A0 ≡Aθ=0 are just those of ‘trivial automor-
phism type’ ω= id, i.e. those for which the identity map of A(CY) is used as the extension of the
identity of Aint. These boundary conditions preserve the whole algebra A(CY). Put differently,
they are precisely the boundary conditions that were studied long ago by Cardy [13] for an
arbitrary rational conformal field theory. In the case of tensor products of minimal models,
various aspects of A0-type conditions have already been studied in [37, 40, 48, 17]. As far as
the space-time aspects of string theory are concerned, the A0-type boundary conditions are not
distinguished in any specific manner among the larger set of A-type boundary conditions, which
as explained above preserve both world sheet and space-time supersymmetry, too. However,
from a pure world sheet point of view, A0-type boundary conditions are special in that they
preserve the full chiral algebra A(CY) of the Calabi--Yau extension. This means that they are
directly accessibly by Cardy’s method, and we therefore still treat them separately here.

The only data that enter Cardy’s construction of boundary states are the entries of the
modular S-matrix of the conformal field theory, i.e. in our case the matrix (2.7) for the Cala-
bi--Yau extension C(CY). (In terms of the classifying algebra mentioned above, this result is
a manifestation of the fact that the invariant subalgebra that corresponds to the A0-type
boundary conditions is nothing but the fusion rule algebra of C(CY).) These data are well under
control (some explicit formulas will be presented below). Besides the boundary states, also
other aspects of these special boundary conditions are well understood (compare e.g. [45, 46]
for a general discussion of correlation functions). Therefore the case of trivial automorphism
type – which was also used as a starting point in the constructions in [15, 12] – is absolutely
under control.

In particular, the A0-type boundary states are in natural one-to-one correspondence with
the primary fields of the Calabi--Yau extension C(CY), and they can be expanded in the Ishibashi
states of C(CY):

|[µ, ψµ]〉(CY)

A0
=

∑
[λ,ψλ]

(S(CY))[λ,ψλ],[µ,ψµ]√
(S(CY))[Ω],[µ,ψµ]

|[λ, ψλ]〉〉 . (3.19)

Similarly, in the formula (3.8) for the annulus coefficients we now have Kω1ω2 =K(CY) as well as
S̃=S ′ =S(CY), so that it reduces to

A
[ν,ψν ]
[µ1,ψ1],[µ2,ψ2]

=
∑
[λ,ψλ]

(S(CY))∗[λ,ψλ],[µ1,ψ1](S
(CY))[λ,ψλ],[µ2,ψ2](S

(CY))[λ,ψλ],[ν,ψν ]/(S
(CY))[λ,ψλ],[Ω] . (3.20)

By comparison with the Verlinde formula for C(CY) we then learn that the annulus coefficients
indeed coincide with the structure constants of the fusion algebra of C(CY).
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3.5 Tensor products of minimal models

Let us now specialize to the Gepner models proper, where the inner sector Cint is a tensor product
Ck1k2...kr = Ck1⊗ · · ·⊗ Ckr of N =2 minimal models Cki

at levels ki ∈Z>0. We also restrict our
attention to the A0-type boundary conditions. In this special case it is particularly easy to
make the formula for S̃, and hence the description of boundary states, fully explicit. We first
recall the following information about such Gepner models that will be needed in the sequel.

It ist convenient to think of an N =2 minimal model at level k as a coset construction
su(2)k× u(1)4/u(1)2h, where h := k+2. Accordingly, we denote its primary fields by Φl,s

q . Then
the labels l, s, q are in the ranges l∈{0, 1, ... , k}, s∈{0, 1, 2, 3}, and q∈{0, 1, ... , 2h−1}, subject
to the parity selection rule l + s− q ∈ 2Z, and to the ‘field identification’ [47,3] Φl,s

q ≡Φk−l,s+2
q+h .

This labeling of primary fields refers to the bosonic subalgebra of the N =2 superconformal
algebra. For example, the two world sheet supercurrents are not regarded as descendants of
the vacuum but, rather, both correspond to the primary field Φ0,2

0 ≡Φk,0
±h. The identity primary

field is Ω =Φ0,0
0 . (For more details about minimal models see, for example, [3].)

The primary fields of Ck1k2...kr are then labeled as

(Φl1,s1
q1

,Φl2,s2
q2

, ... ,Φlr ,sr
qr ) (3.21)

where Φli,si
qi

is a primary field of the ith minimal model. For brevity, below we will also use the
notation

(λ, σ, ξ) ≡ (l1, s1, q1, ... , lr, sr, qr) (3.22)

for these collections of labels.
The simple current group K(CY) of the Calabi--Yau extension is of the form (2.18), with r the

number of minimal model factors. It is generated by the r−1 order-two currents

wi := (v,Ω, ... ,Ω, v,Ω, ... ,Ω) , i∈{2, 3, ... , r} , (3.23)

where the v-entries are in the first (say) and ith minimal model, together with the combination

u := (s, s, ... , s)2 (v,Ω, ... ,Ω)d/2 = (s2vd/2, s2, ... , s2) . (3.24)

Here v stands for the minimal model primary field Φ0,2
0 that contains the two world sheet

supercurrents, and s=Φ0,1
1 is the simple current in the Ramond sector whose action provides

the spectral flow. These fields

s = Φ0,1
1 and v = Φ0,2

0 (3.25)

have conformal weight c/24 = k/8(k+2) and 3/2, respectively.
The order of u is

ord(u) = Ns/2 = scmi=1,2...r{ηi hi} (3.26)

with hi≡ ki+2 and ηi =1 for ki even, ηi = 2 for ki odd.
Exploiting our knowledge about the minimal model fusion rules, it is straightforward com-

binatorics to establish the following group and fixed point structure of K(CY).
When all levels ki are odd, then we have

uNs/4 =
r∏
i=1

wi , (3.27)
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and hence K(CY) = ZNs/2 ×Z
r−2
2 . In this case there are no fixed points.

In contrast, when at least one level is even, then we have K(CY) = ZNs/2 ×Z
r−1
2 , and fixed

points do occur. In fact there is then a unique simple current L∈K(CY) having fixed points. L
is given by

L = uNs/4
r∏
i=1

(wi)
εi , (3.28)

where the value of εi ∈{0, 1} depends on the power of 2 contained in Ns/2. Namely, according
to (3.26), Ns/2 is always even; when it is also divisible by 4, then

εi =

{
1 when the power of 2 in hi is maximal ,

0 else .
(3.29)

When Ns/2 is not divisible by 4, then we have instead

εi =

{
1 when hi is odd ,

0 else .
(3.30)

It also follows that L has order 2, and that with the help of field identification it can be
rewritten as

L = (Φ0,0
0 , ... ,Φ0,0

0 ,Φ
kr′+1,0

0 , ... ,Φkr,0
0 ) . (3.31)

Here without loss of generality we assume that the hi have been ordered in such a way that those
containing the maximal power of 2 are the last r−r′ ones, i.e. are labeled by i∈{r′+1, ... , r}.
Fixed points of L are all fields (3.21) which obey li = ki/2 for every i= r′+1, ... , r, while all
other labels are arbitrary (except, of course, for the parity selection rule li+si−qi ∈ 2Z and the
restriction to zero monodromy charge with respect to K(CY)).

Employing the general formula (2.7), we are thus in a position to display the modular S-
matrix of the Calabi--Yau extension. For the tensor product theory Ck1k2...kr we have the tensor
product of the S-matrices of the individual factors:

S(λ,σ,ξ),(λ′,σ′,ξ′) = 2r
r∏
i=1

S
su(2)ki

li,l
′
i

S
u(1)4
si,s

′
i
(S
u(1)2hi

qi,q
′
i

)
∗

(3.32)

(the r factors of 2 stem from field identification in each of the r minimal models). The fixed
point matrix SL reads

SL
(λ,σ,ξ)L,(λ′,σ′,ξ′)L = 2r

r∏
i=1

S
u(1)4
si,s

′
i

(S
u(1)2hi

qi,q
′
i

)∗
r′∏
i=1

S
su(2)ki

li,l
′
i

r∏
i=r′+1

S
J su(2)ki

ki/2,ki/2
. (3.33)

(This is only defined when both fields involved are fixed points, which is indicated by attaching
the superscript of the labels (· · ·)L.) Here SJ su(2)k is the fixed point ‘matrix’ for the simple
current l= k of the su(2) WZW model at level k. As k acts by fusion as k ? l= k−l and hence
has just a single fixed point k/2, the quantity SJ su(2)k is in fact a single number, and in this

simple situation the results of [10] tell us immediately that S
J su(2)k

k/2,k/2 =e−2πi·3k/16. Moreover,∑r
i=r′+1 ki/16 must be a multiple of 1/12 [10], so that we have

∏r
i=r′+1 S

J su(2)ki

ki/2,ki/2
= eπi p/2 with
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p∈{0, 1, 2, 3} (inspecting the list of Gepner models, one sees that all values of p occur). For
further simplification, notice that

r∏
i=r′+1

(SJ su(2)ki )2 = (−1)
∑r

i=r′+1
3ki/4 = (−1)

∑r
i=r′+1

ki/4 (3.34)

and that
∑r

i=r′+1 ki/4 is always an integer, as follows from the condition on the central charge.
Putting this information together, we see that the modular S-matrix of C(CY) reads

S(CY)

[(λ,σ,ξ),ψ],[(λ′,σ′,ξ′),ψ′] = 22r−2−ηNs

r∏
i=1

S
u(1)4
si,s

′
i

(S
u(1)2hi

qi,q
′
i

)∗
r′∏
i=1

S
su(2)ki

li,l
′
i

[(1 − 3
4

r∏
i=r′+1

δli,ki/2
δl′i,ki/2

)
r∏

i=r′+1

S
su(2)ki

li,l
′
i

+ 1
4 ψψ

′
r∏

i=r′+1

δli,ki/2
δl′i,ki/2

S
J su(2)ki

ki/2,ki/2
]

=
2r−2−ηNs∏r

i=1 hi

r∏
i=1

eπi(qiq
′
i/hi−sis

′
i/2)

r′∏
i=1

sin ((li+1)(l′i+1)π
hi

)

[(1 − 3
4

r∏
i=r′+1

δli,ki/2
δl′i,ki/2

)
r∏

i=r′+1

sin ((li+1)(l′i+1)π
hi

)

+ 2−2+(r−r′)/2 (−1)
∑r

i=r′+1
ki/4 ψψ′

r∏
i=r′+1

δli,ki/2
δl′i,ki/2

h
1/2
i ] .

(3.35)

Recall that η=1 when all levels are odd, in which case there are no fixed points, and η=0
else. Upon insertion of (3.35) into the Verlinde formula, one obtains the fusion rule coefficients
of C(CY); for η=0 we arrive at the following expression (for η=1 the formula is similar, but
without the complications involving fixed points):

(N(CY))
[(λ′′,σ′′,ξ′′),ψ′′]

[(λ,σ,ξ),ψ],[(λ′,σ′,ξ′),ψ′] = 1
|Sλ| |Sλ′ | |Sλ′′ |

∑
n=0,...,Ns/4−1

∑
εj=0,1 ∀ j=1,2...,r
∑

j εj=0 mod 2

r′∏
i=1

(δ∆si+2n+2εiδ∆qi+2n N
l′′i

li,l
′
i

+ δ∆si+2n+2εi+2δ∆qi+2n+hi
N

l′′i
li,ki−l′i )

{∏r
i=r′+1 (δ∆si+2n+2εiδ∆qi+2n N

l′′i
li,l

′
i

+ δ∆si+2n+2εi+2δ∆qi+2n+hi
N

l′′i
li,ki−l′i )

+
∏r

i=r′+1 (δ∆si+2n+2εiδ∆qi+2n N
l′′i

li,ki−l′i + δ∆si+2n+2εi+2δ∆qi+2n+hi
N

l′′i
li,l

′
i
)

+ 2
∏r

i=r′+1 δ∆si+2n+2εiδ∆qi+2n [ψψ′ ∏r
i=r′+1(S

J su(2)ki )2 δli,ki/2
δl′i,ki/2

S∗
l′′
i
,k
i
/2

S0,ki/2

+ ψ′ψ′′ ∏r
i=r′+1 δl′i,ki/2

δl′′i ,ki/2

Sl
i
,k
i
/2

S0,ki/2
+ ψψ′′ ∏r

i=r′+1 δli,ki/2
δl′′i ,ki/2

Sl′
i
,k
i
/2

S0,ki/2
]

+ 2
∏r

i=r′+1 δ∆si+2n+2εi+2δ∆qi+2n+hi
[ψψ′ ∏r

i=r′+1(S
J su(2)ki )2 δli,ki/2

δl′i,ki/2

S∗
ki−l′′i ,ki/2
S0,ki/2

+ ψ′ψ′′ ∏r
i=r′+1 δl′i,ki/2

δl′′i ,ki/2

Sk
i
−l
i
,ki/2

S0,ki/2
+ ψψ′′ ∏r

i=r′+1 δli,ki/2
δl′′i ,ki/2

Sk
i
−l′
i
,k
i
/2

S0,ki/2
]} .

(3.36)
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Concerning the notation, the following remarks are in order. First, we put

∆si := si + s′i − s′′i , ∆qi := qi + q′i − q′′i . (3.37)

Second, the factors δx≡ δx,0 represent the fusion coefficients of the various u(1) factors; in par-
ticular, an appropriate periodicity in their subscripts is understood. Third, we have separated
the K(CY)-summation into a part involving the simple currents without fixed points (

∑
n,εi

) and
one that implements the order-two simple current L (the expression in curly brackets), compare
formula (2.10). Further, the innermost (pairwise) summation takes into account the field iden-
tification in the minimal models. Finally, ψ≡ψ(L)∈{±1} corresponds to the two irreducible
characters of the group Z2 = {Ω,L}.

The terms in formula (3.36) that involve factors of ψ can be simplified by using the identity
(3.34) and noting that

Sl,k/2
S0,k/2

= sin (π2 (l+1)) =

{
(−1)l/2 if l is even ,

0 if l is odd .
(3.38)

Both of the expressions in square brackets are thus non-zero only if the labels li, l
′
i, l

′′
i are even

for all i∈{r′+1, r′+2, ... , r}, in which case they read

ψψ′ (−1)
∑r

i=r′+1 ki/4+l
′′
i /2 Π Π′ + ψ′ψ′′ (−1)

∑r
i=r′+1 li/2 Π′ Π′′ + ψψ′′ (−1)

∑r
i=r′+1 l

′
i/2 Π Π′′ , (3.39)

where we introduced Π :=
∏r

i=r′+1 δli,ki/2 and analogously Π′ and Π′′. We also mention that
the annulus coefficients for annuli with two boundary conditions of A0-type are just given by
the fusion rules, so that the expression (3.36) directly provides us with the multiplicities of the
corresponding open string states.

3.6 A0-type boundary conditions for minimal model tensor products

Having collected these results about minimal model tensor products, we are now in a position
to write down the A0-type boundary states for the corresponding Calabi--Yau extensions C(CY).
According to Cardy’s results, the labeling of the A0-type boundary conditions is precisely the
same as for the primary fields of C(CY). Let us make this explicit. We start with the col-
lection (λ, σ, ξ)≡ (l1, s1, q1, ... , lr, sr, qr) of labels ranging over li ∈{0, 1, ... , ki}, si ∈{0, 1, 2, 3},
and qi ∈{0, 1, ... , 2hi}. We then implement the various projections by imposing the following
selections and identifications (both on bulk fields and on boundary conditions).

Selections:
We impose li + si + qi ∈ 2Z (minimal model selection rule), s1 + si ∈ 2Z for all i= 2, 3, ... , r
(fermion alignment), and Q≡ ∑r

i=1(−qi/hi + si/2) − s1d/4∈Z (charge projection).
Identifications:

We restrict the li to the range 0 ≤ li ≤ ki/2 (minimal model field identification). Representa-
tives for the orbits with respect to the alignment currents wi can be labeled by a single s∈{0, 1}
when d/2 + r is odd, and s∈{0, 1, 2, 3} when d/2 + r is even; all the si are equal to s mod 2.
Implementation of the identification implied by the current u is more difficult; it involves the
divisibility properties of the heights hi, which in general do not have a simple structure. In
special cases, for instance when lcmi{hi}=hj for some j, the corresponding label qj can be set
to zero using this identification.
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Explicit formulas for boundary states of Gepner models were first presented in [37], where
the boundary states were expressed in terms of the modular S-matrices of the su(2) and u(1)
building blocks of the minimal models. However, as explained above, the chiral algebra A(CY) of
the Gepner model is much larger than the chiral algebra Ak1k2...kr of the tensor product Ck1k2...kr

of minimal models. Accordingly, in the bulk the modular transformations are described by
the extended S-matrix S(CY). The non-trivial information contained in S(CY) that cannot be
obtained from the tensor product S-matrix alone stems from the presence of fixed points under
the Calabi--Yau extension. Once S(CY) has been determined, the usual description of boundary
conditions that preserve the full chiral algebra [13, 49] can be applied, though it is now to be
formulated with the help of the matrix S(CY) rather than S. It is therefore not guaranteed that
the boundary states can be written in the form presented in [37]. That the modular S-matrix
must be ‘properly resolved’ for the construction of boundary states in Gepner models was
emphasized in [48]. It was also noticed in [48] that some of the boundary states given in [37]
are not consistent with all projections in Gepner models, which explains certain discrepancies
between the results of [40] and [48]. More recently, it has been established in [17] that some of
the boundary states of [37] are not elementary.

In [17] A-type boundary states for Gepner models with D= 4 and r= 5 were constructed
by implementing the simple current extension (including in particular fixed point resolution)
directly on the boundary states of the underlying N =2 tensor product. On the other hand, the
results reported above clearly also allow to obtain these A-type boundary states by performing
the extension already in the bulk . When doing so, one obtains the boundary states by merely
combining standard results for simple current extensions in the bulk (which lead in particular
to the formula (3.35) for the modular S-matrix S(CY) of the Calabi--Yau extension) with the
general results of Cardy [13] for symmetry preserving boundary conditions in arbitrary rational
conformal field theories. Let us point out that this way we get the A-type boundary states for
every Gepner model, i.e. for D= 4, 6, 8 and for any allowed r. 10 Moreover, when proceeding in
this manner the boundary states are completely determined, up to over-all normalization, by
the algorithm. Thus there is e.g. no need to invoke integrality of the annulus coefficients in order
to fix the relative strength of the contributions from twisted and untwisted sectors. Indeed,
integrality of the annulus coefficients involving only A0-type boundary conditions coefficients is
just the Verlinde formula as applied to the extended theory, i.e. to the Calabi--Yau extension.

More concretely, the A0-type boundary states are given by the expression (3.19),

|[(λ, σ, ξ), ψ]〉(CY)

A0
=

∑
[(λ′,σ′,ξ′),ψ′]

(S(CY))[(λ,σ,ξ),ψ],[(λ′,σ′,ξ′),ψ′]√
(S(CY))[0,0,0],[λ′,σ′,ξ′),ψ′]

|[(λ′, σ′, ξ′), ψ′]〉〉 (3.40)

with S(CY) as presented in formula (3.35) and with the summation ranging over all primaries of
C(CY), 11 and the annulus coefficients for two boundary conditions of A0-type coincide with the
fusion rules (3.36). In the special case that (λ, σ, ξ) is not a fixed point of the current L (3.28),

10 To make contact to geometry, D/2+r must be odd. This can, however, always be achieved by introducing
a trivial k=0 minimal model as an additional factor of the tensor product.

11 We may wish to split the boundary state |a〉(CY)

A into its contributions involving only the Ishibashi states
for full K(CY)-orbits and only those for fixed points, respectively. Then the number

∏r
i=r′+1 h

1/2
i that is built

in S(CY) (see the last line of formula (3.35)) appears as a factor between the two parts. In [17] this factor was
obtained by imposing integrality of annulus coefficients.
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the expression (3.40) for the boundary state reduces to

|[(λ, σ, ξ)]〉(CY)

A0
= [2r−2−ηNs∏r

j=1 hj
]
1/2 ∑

[(λ′,σ′,ξ′),ψ′]
r∏
i=1

eπi(qiq
′
i/hi−sis

′
i/2)

sin((li+1)(l′i+1)π/hi)

( sin((l′i+1)π/hi))
1/2

|[(λ′, σ′, ξ′), ψ′]〉〉 .
(3.41)

For the boundary state in the full Gepner model, one has to combine this expression with

the space-time part of the boundary state, include a phase factor S
DD/2+3

$,$′ /
√
S

DD/2+3

o,$′ , a sign

from undoing the bosonic string map, and a factor of 2 from the remaining projections. The
resulting formula is then essentially the one reported in [37]; but even in this special case our
result differs in the power of 2 that appears in the prefactor.

In contrast, when (λ, σ, ξ) is a fixed point of L, then the additional terms in the formula
(3.35) for S(CY) contribute, and the expression for the boundary state gets a bit lengthier.
Boundary states |[(λ, σ, ξ), ψ]〉(CY)

A0
corresponding to resolved fixed points have been studied

in [17]. Apart from the proper power of 2, our result differs from the one presented in [17] also
by the absence of a factor of

√
Ns in the ψ-dependent terms.

3.7 General A-type boundary conditions

Boundary conditions of automorphism type Aθ with θ 6= 0 cannot be obtained from Cardy’s
results alone. In this subsection, we explain more explicitly how the generalizations developed
in [15, 12] allow to structurize and construct all A-type boundary conditions. We are faced
with the following situation. Given the theory C(CY), obtained from Cint by a simple current
extension with K(CY), we want to construct all boundary conditions that preserve at least the
chiral symmetry algebra of Cwsusy. Here Cwsusy is the theory obtained from Cint by extension
with the alignment currents wi alone; this means in particular that all boundary conditions
preserve world sheet supersymmetry.

The solution to this problem is as follows. The set of all such boundary conditions is the set of
irreducible representations of the classifying algebra C ≡ C(C(CY): Cwsusy). This set of boundary
conditions can be divided into subsets of definite automorphism type, here labeled by the angle
2θ with θ/2π∈Z/N ′

s. (Recall from subsection 3.3 that θ can be interpreted as specifying which
space-time supersymmetry is preserved by a boundary condition.) Furthermore, each of these
subsets furnishes the set of irreducible representations of an individual classifying algebra C2θ

which, just like C, is a semisimple commutative associative algebra over C , and one has

C =
⊕
θ

C2θ (3.42)

as a direct sum of algebras over C . We remark that the same situation arises in much simpler
models in statistical mechanics, too. In the critical three-state Potts model, for instance, there
are eight boundary conditions which come in two automorphism types that are distinguished by
the reflection condition for the W3-current [50]. Accordingly, in that case the classifying algebra
is a direct sum C+⊕C− of a six- and a two-dimensional algebra; the irreducible representations
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of C+ provide the three fixed and the three mixed boundary conditions of the Potts model,
while the ones of C− provide the free and ‘new’ [51] conditions.

In general there is no simple relationship between the various individual classifying algebras
C2θ. In the case of Gepner models, however, it turns out that there exist symmetries generated
by simple currents of the theory Cwsusy (the so-called ‘phase symmetries’), which act on the set of
boundary conditions and thereby relate individual classifying algebras for different θ with each
other. Because of those symmetries, the boundary conditions for θ 6=0 look still very similar
to the Cardy case. It follows in particular that the combinatorics of fixed points and their
resolution do not depend on the value of θ. (This can already be deduced from formula (3.31)
for the fixed point current L.) Those symmetries between boundary conditions with different
θ have been implicitly used in [52] for a nice organization of A-type boundary conditions.
Note, however, that this simplification is intrinsically linked to the special symmetries of N =2
minimal models and cannot be expected to be present in general.

For a more detailed description, we recall that the group that furnishes the extension from
Cwsusy to C(CY) is generated by the image U of the simple current u (3.24) in the Cwsusy-theory,
and that this current has order N ′

s/2 with N ′
s as defined in formula (2.20), i.e. N ′

s =Ns/2
η

with η ∈{0, 1}. The primary fields of Cwsusy are labeled by Λ := [(λ, σ, ξ)]′ where the prime
indicates that orbits are taken with respect to the group generated by the alignment currents
only (which do not have fixed points); thus in particular U = [u]′. A distinguished basis {Φ̃Λ}
of the classifying algebra C is then labeled by the set of all Cwsusy-fields Λ that have vanishing
monodromy charge with respect to U, together with a Z2 character accounting for a possibly
non-trivial stabilizer. Further, natural bases of the individual classifying algebras C2θ are pro-
vided by twisted sums Φ̃θ

Λ :=
∑(N ′

s/2)−1
j=0 e2ij θΦ̃UjΛ of the basis elements Φ̃Λ of C. The set of all

boundary conditions, on the other hand, is labeled by the set of orbits [Λ, ψ]′′ of fields of Cwsusy

with respect to the extension by U (again with proper account for stabilizers), but without
restriction on the value of QU. The set of boundary conditions with fixed automorphism type
Aθ then corresponds to orbits [Λ, ψ]′′, with the same minimal model and fermion alignment
selection and identification rules as for θ= 0, but with different charge projection condition

QU(Λ) = θ/π mod Z . (3.43)

Hereby in particular the counting of all Aθ-type boundary states is reduced to simple, if lengthy,
combinatorics, which can (and should) be directly implemented in a computer algorithm.

4 Remarks on B-type boundary conditions

So far we have restricted our attention exclusively to A-type boundary conditions. Recall that
these need not preserve all of the chiral algebra A(CY) of the Calabi--Yau extension, but at
least its subalgebra Awsusy, which in turn contains Aint, the chiral algebra of the unextended
inner sector Cint (see the chain (2.19) of embeddings). Now we rather want to study boundary
conditions that possess a non-trivial glueing condition already for the subalgebra Aint. To have
a well-defined total supercurrent for the tensor product, and for compatibility with the fermion
alignment, we must use the same automorphism of the N =2 algebra for each factor of the
tensor product Cint. As mentioned in subsection 3.1, generically the automorphism group we
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have to consider is the non-connected Lie group O(2). In the connected component of the
identity of O(2) we can only use the identity element ω= id itself; this gives rise to all A-type
boundary conditions, of all subtypes discussed above. Here we are interested in automorphisms
from the other connected component, which are characterized by

Jn 7→ −Jn , G+
r 7→ eiγG−

r , G−
r 7→ e−iγG+

r (4.1)

with γ ∈R. Unlike in the case of the identity component, where only the identity could be
chosen, we can allow for any arbitrary value of γ. Boundary conditions obtained this way
are referred to as B-type conditions. As a distinguished subset, they include those where the
breaking is induced by the mirror automorphism of the total N = 2 algebra, which is obtained
for γ=0:

Jn 7→ −Jn , G±
r 7→ G∓

r . (4.2)

We will use the name BC-type for these specific boundary conditions; the subscript C reminds
of charge conjugation.

As compared to A-type conditions, we have to face a new problem, which also arises in other
circumstances. Namely, we are only given an automorphism of the subalgebra Aint, but not an
automorphism of the full chiral algebra A(CY) of our interest. We have already seen above in the
case ω= id that there may exist several different lifts of an automorphism to a larger algebra.
But at a more fundamental level, there is even no guarantee that any of the automorphisms
of B-type can be lifted at all. Indeed, as explained in appendix A, in a general simple current
extension there can exist an obstruction to lifting a given automorphism.

Fortunately, in the specific situation of interest to us here, there is in fact no such obstruc-
tion. This follows from the fact [38] that A- and B-type conditions get exchanged by the mirror
map. In short, the B-type conditions of a Gepner model are well-defined for the full symmetry
algebra A(CY) because they correspond to the A-type conditions of the mirror model, which
by the results above are fully under control. In the bulk, the mirror map just amounts to
applying charge conjugation in the inner sector. But at least in many Gepner models it can
also be described alternatively [53] by forming the modular invariant that is associated [10] to
a suitable group of simple currents of non-integral conformal weight. These currents implement
the ‘phase symmetries’ of the minimal models. (In the literature [53–56] this is again usually
referred to as an orbifold construction.) Accordingly, the methods of [33, 57, 58], which show
how to deal with boundary conditions for torus partition functions associated to simple currents
of half-integral conformal weight, should be helpful for analyzing the B-type conditions.

But still the concrete details in the description of the B-type conditions are rather involved.
When formulated in terms of the chiral algebra Aint, the complication manifests itself in the
fact that the subalgebra that is preserved by the boundary conditions is neither contained in
Aint nor does it contain Aint. Roughly, one simultaneously tries to reduce the algebra – by
taking the orbifold with respect to the automorphism group Γ in question, e.g. with respect to
the Z2 generated by the mirror automorphism (4.2) – and to extend it – by the simple current
extension with the group K(CY). More concretely, we want to know a lift Γ̂ of the orbifold group
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Γ to A(CY) and a chiral algebra extension K̂ of (Aint)
Γ to (A(CY))Γ̂ such that the diagram

A(CY)

K(CY)↗ ↘Γ̂

Aint −−−−−→ (A(CY))Γ̂

Γ↘ ↗̂K

(Aint)
Γ

(4.3)

is commutative. Then in particular the map indicated by the dashed arrow is well defined. On
the other hand, for our study of boundary conditions the crucial issue is the relation between
the largest (A(CY)) and smallest ((Aint)

Γ) chiral algebra in the diagram. The latter is the orbifold
of the former by some automorphism group Γ(CY), and conversely, A(CY) is a certain extension
E of (Aint)

Γ:
A(CY)

K(CY)↗
Aint

Γ↘
(Aint)

Γ

| ↑↓ |Γ(CY)
E (4.4)

Note that Γ(CY) is not the direct product Γ×G of the orbifold group Γ (here Z2) and the
simple current group G (here K(CY)). In fact, the current u (3.24) is not invariant under the
mirror automorphism, so that even if one dealt with a group constructed out of Γ and G, it
could definitely not be their direct product. Closer inspection shows that the mirror orbifold
(Aint)

Γ of the tensor product theory is an orbifold of the Calabi--Yau extension A(CY) by a
non-abelian group Γ(CY). Conversely, in order to obtain the orbifold of C(CY) from the mirror
orbifold of Cint one must consider an extension E of the chiral algebra by fields not all of which
are simple currents, though still all have integral quantum dimension. One may expect that
Γ̂ is a subgroup of Γ(CY), and that the fields in K̂ form a subset of those in E . Some of the
necessary mathematical tools for attacking this problem have recently been established (see
e.g. [24, 59–62]), but they are not sufficient to obtain a complete description of the associated
B-type boundary conditions.

However, we can still draw some general conclusions about B-type conditions by again
invoking mirror symmetry. As a matter of fact, the statement that A- and B-type conditions
get exchanged by the mirror symmetry has to be refined, because the mirror automorphism
(4.2) only involves the total N =2 superconformal algebra of the tensor product, whereas
as noticed above for the complete specification of A-type (and likewise of B-type) boundary
conditions we have to prescribe the action of the automorphism on the full chiral algebra of the
Calabi--Yau extension. 12 To do so, we use the fact that, as a special case of more general T-
duality relations [12], those boundary conditions of a conformal field theory with torus partition

12 In addition, one should be aware of the fact that initially the mirror map refers to the situation before
applying the bosonic string map. However, the mirror map is compatible with the bosonic string map, so
that we can directly apply it here. The point is that, in conformal field theory terminology, the mirror map is
nothing but charge conjugation. But as a consequence of formula (2.2) we have C̃B=BC, where C is the charge
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function Z which leave invariant precisely the subalgebra of the chiral algebra that is pointwise
fixed under the charge conjugation automorphism ωC can be put in one-to-one correspondence
with the boundary conditions that preserve the full chiral algebra of a different conformal
field theory, namely the one with torus partition function CZ. 13 It follows that the A0-type
boundary conditions of a Gepner model correspond to the BC-type boundary conditions of
its mirror model, and vice versa. How this generalizes to the more general A- and B-type
conditions will be discussed elsewhere. In particular, this consideration tells us that there is
no obstruction to a lift of the mirror automorphism of the total N =2 algebra to the full chiral
algebra of the Calabi--Yau extension.

Finally let us mention that whenever the tensor product Cint contains identical factors, there
are additional automorphisms, beyond those belonging to O(2) discussed above, that can be
modded out without spoiling world sheet supersymmetry, namely the permutation symmetries
that interchange the identical factors.

5 Fixed points and singularities

We conclude this paper with a few comments on the relationship between fixed point structures
in Gepner models and various other ‘singular’ structures that occur in the analysis of string
compactifications on Calabi--Yau spaces and in Gepner models. The following list summarizes
various such structures.

It is generally believed that a Gepner model describes the exact solution of string theory
compactified on a certain Calabi--Yau manifold, at a specific point of its moduli space. There
is a general prescription for finding the polynomial constraints that provide the embedding of
the Calabi--Yau manifold in a weighted projective space, see e.g. [63,5,64]. When carrying this
construction through, one encounters the problem that the variety defined by those polynomial
constraints is not smooth, but has singularities. It is only after resolving these singularities
that one obtains the Calabi--Yau manifold.

The moduli of the Calabi--Yau manifold are related to the (c, c) and (a, c) rings of the N =2
superconformal field theory [65]. For instance, deformations of the complex structure of the
Calabi--Yau space correspond to Gepner model fields that are chiral primaries with respect to
both the left- and right-moving chiral algebras, with total u(1) charges 1. Fields that have
in addition identical left- and right-moving labels in each minimal model can be related to
polynomial deformations of the complex structure, i.e. to a change in the defining polynomial.
But it has been pointed out long ago [66] that polynomial deformations give neither a complete
nor an unambiguous enumeration of complex structure deformations. In the Gepner model,
this can be related to the existence of twisted, i.e. left-right asymmetric, modes in the (c, c)
ring, see e.g. [67]. 14

In the study of boundary states in Gepner models and their comparison with geometric D-

conjugation matrix of the bosonic theory (i.e., after the bosonic string map B) and C̃ the charge conjugation
matrix of the supersymmetric theory (before the bosonic string map).

13 The simplest instance of this phenomenon is the exchange between Neumann and Dirichlet conditions in
the theory of a single free boson.

14 These states can be obtained directly by the algorithms incorporating the simple current extension, e.g.
by the computer programs that were used to produce the bulk spectra in [3, 5, 67, 26, 28].
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branes and bundles in the corresponding Calabi--Yau manifolds [52,68–70,7], it was noticed that
several boundary states constructed in [37] are not elementary, in the sense that the annulus
coefficient of the vacuum field is larger than one [68]. In [69] it has been argued that this can
be understood if one assumes that the relevant boundary states correspond to branes carrying
reducible bundles.

There have been speculations that (some of) these different singular structures are intimately
related. Now in order for any definite relationship between geometrical and conformal field
theory structures to exist, at least the combinatorial data characterizing them should be similar.
In the situation at hand, this is actually not the case.

Let us first recall some of our results concerning A-type boundary conditions. As we have
explained, the construction of A-type boundary states in Gepner models is completely under
control, and only existing technology [13, 21, 15, 12] is needed. 15 We have also seen that the
fixed points in Gepner models are always of Z2 type, i.e. the only non-trivial stabilizer group
that occurs is of the form {Ω,L}. On the other hand, singularities in the construction of the
Calabi--Yau manifold as a complete intersection in a weighted projective space can occur if the
weights have common divisors, and are locally of the type Cd/Z` where d=2, 3 and ` can be
any integer, see, for example, [71].

It is also unlikely that there is any relationship between twisted modes in the (c, c) ring
and singularities in the construction of the Calabi--Yau space. By inspecting lists of twisted
(c, c) fields for particular Gepner models, it is easily checked that they do not display any
Z` structure. And indeed, the existence of non-polynomial deformations is not related to a
singularity occuring in the construction of the manifold, but to the presence of an obstruction
in the relevant cohomologies of the family of smooth manifolds [66]. On the conformal field
theory side, twisted modes may also be related to the presence of an enhanced symmetry. For
instance, compactification on K3 leads to N =4 world sheet supersymmetry, and half of the
modes in the (c, c) and (c, a) rings are twisted. Incidentally, in such a situation boundary
conditions might break different parts of this extended symmetry, so that a finer classification
of boundary conditions is possible.

Furthermore, fixed points in the Gepner extension do not seem to be related to the presence
of twisted modes in the (c, c) ring. In fact, the Gepner extension has fixed points whenever at
least one level is even. But many of those Gepner models do not possess any twisted modes
in their (c, c) ring. A simple example is provided by the Gepner model (2, 2) which does have
fixed points, but simply corresponds to a torus embedded in one-dimensional projective space,
without any singularities.

Finally we would like to point out that in our opinion several interesting problems concerning
boundary states in Gepner models and branes on Calabi--Yau compactifications are still open.
For example, the construction of states charged under twisted modes in the (c, c) ring, as well as
a better understanding of composite boundary states and their connection to reducible bundles,
is highly desirable.

15 In particular, the fixed points can already be understood entirely at the chiral level in closed string theory.
It is therefore e.g. unnecessary to study open string partition functions in order to fix normalization factors (as
advocated in [37,17]). Rather, the annulus coefficients are non-negative integers by construction. Also, nothing
is gained by separating boundary states or partition functions into a part from an ‘untwisted’ and one from a
‘twisted’ sector; all the relevant structures are already present in the closed string theory.
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A Lifting orbifold automorphisms

In the main text we have seen that when analyzing B-type boundary conditions one must
study the interplay between simple current extensions and orbifolds. Here we investigate this
issue, which is of interest also in other situations, in its own right. Thus consider an arbitrary
rational conformal field theory with chiral algebra A, a group G of simple currents (with integral
conformal weight) of the theory, and a group Γ of automorphisms of A. Every automorphism
ω of A induces a permutation of the (labels for) primary fields, which is an automorphism of
the fusion rules and which we denote by ω∗. By including the simple currents into the chiral
algebra, one obtains an extended theory with chiral algebra Aext ⊃A, while by dividing out the
automorphisms in Γ one obtains an orbifold theory with chiral algebra AΓ ⊂A. Our goal is
then to make sense of the symbol AΓ

ext. For simplicity and definiteness we restrict to the case
Γ = Z2, i.e. there is only a single non-trivial automorphism ω and it has order two.

A necessary prerequisite for attaining this goal is to lift the automorphism ω to some
automorphism ωext of the extended chiral algebra Aext. As a matter of fact, our first task should
be to determine whether such a lift is possible at all. Indeed there can be an obstruction, and
this will be studied below. But for the moment let us restrict to those cases where the lifting of
ω is not obstructed. In that case we need to investigate the uniqueness of the lift. We already
know from the discussion in the main text that typically even the identity automorphism of
A will possess several distinct lifts to Aext. To be more concrete, we use the fact that we
can characterize [15] A as the fixed algebra of Aext under an action of the group Gext :=G∗

of characters of the simple current group G. Further, Aω is the fixed algebra in A under ω.
Thus we can characterize Aω equally well as the subalgebra of the big algebra Aext under the
combined action of Gext and ωext, i.e. under the action of the group Hext generated by Gext and
ωext. Note that we do not assume here that ωext has order two.

We can then again employ the result from the Galois theory for vertex operator algebras
that the possible chiral algebras between Aω and Aext are in one-to-one correspondence with
subgroups of the group Hext. Now since A is the fixed point subalgebra of Aext under Gext, for
every g ∈Gext the element gω :=ω−1

ext·g·ωext ∈Hext acts on A as ω−1·1·ω=1, and by the Galois
correspondence every such gω already lies in Gext. This tells us that Gext is a normal abelian
subgroup of Hext, and the conjugation by ωext acts on Gext by an outer automorphism ω̂, i.e.
ω−1

ext g ωext = ω̂(g). As ω2
ext ∈Gext and Gext is abelian, the automorphism ω̂ has order two. So we

have the structure 16

0 → Gext → Hext → Z2 → 0 . (A.1)

As ωext does not necessarily have order two, the term ‘orbifold of Aext by ωext’ is to be interpreted
as the orbifold by the cyclic subgroup of Hext that is generated by ωext. But those elements of
this subgroup that are of the form (ωext)

2n form a cyclic subgroup G0
ext of Gext, so that we may

as well perform the orbifolding stepwise, first by G0
ext and afterwards by ωext which then has

order two on (Aext)
G0

ext . It follows that at the price of possibly working with a different simple
current extension than the original one, we may restrict our attention to the case when ωext

has order two.

16 It is instructive to think of Hext like of a compact Lie group with two connected components. The
‘identity component’ is Gext, and it has a natural unit element, while the other component, consisting of the
automorphisms of Aext whose restriction to A acts like ω, does not possess a natural base point.
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A simple illustration of the non-uniqueness of the lift is provided by the following c=1
theories. The original theory is the rational free boson X at compactification radius R2 =mn2

with n integral and m even integral. Thus the chiral algebra A is generated by the current
j= i∂X, giving rise to u(1)mn2 , and by the two fields Φ± = exp(±i

√
mnX); there are mn2

primary fields, which we label by the integers from 0 to mn2−1 and each of which is a simple
current. Extending this theory by the simple currents G = {`mn | `=0, 1, ... , n−1}∼= Zn, one
obtains the theory of a free boson with compactification radius R2 =m and chiral algebra Aext

generated by u(1)m and Φext
± = exp(±i

√
mX). On the other hand, dividing out the charge

conjugation automorphism ω from A one arrives at the Z2 orbifold of the free boson, with
mn2/2 +7 primary fields. The map ω acts on the fields generating A as

ω(j) = −j , ω(Φ±) = Φ∓ . (A.2)

It can be lifted to Aext as

ωext(j) = −j , ωext(Φ
ext
± ) = ζ±1 Φext

∓ , (A.3)

where ζ is an arbitrary nth root of unity. In terms of the free boson X, this reads

ωext(X) = −X + 2π`
n
√
m

(A.4)

with some `∈{0, 1, ... , n−1}. This example also displays nicely that even the identity map of
A can typically be lifted in several inequivalent ways. Clearly, for each nth root ζ of unity, the
map

idext(j) = j , idext(Φ
ext
± ) = ζ±1 Φext

± (A.5)

(acting on the free boson field as X 7→X +2π`/n
√
m for ζ = exp(2πi`/n)) is an automorphism

of Aext and restricts to the identity map on A. Note that while the order of the map given by
(A.3) is 2 independently of the value of ζ , this is no longer true for the map (A.5).

Let us now come back to the issue of existence of ωext. Under the most general circumstances
such a lift may actually not exist at all. First, clearly the compatibility condition ω∗(G) =G
must be satisfied. In the sequel we assume that this is the case. (In the situation of our interest,
this condition is indeed met. Also, the condition is automatically fulfilled whenever an extension
is by all integer spin simple currents of a given theory.) But even with this assumption the
existence of a lift ωext is not guaranteed. Rather, one has to study the relation between the
subgroup

G0 := {J∈G |ω∗(J) =J} (A.6)

of G and the group Gω of simple currents of the Aω-theory. By general orbifold rules [11, 16],
each J∈G0 gives rise to two simple currents J± in the untwisted sector of the orbifold theory
Aω. The fields J± form a subgroup Gω0 of Gω. Thus Gω0 is a Z2-extension of G0, i.e. there is an
exact sequence

0 → Z2 → Gω0 π→ G0 → 0 , (A.7)

where the projection π acts as π(J+) = J =π(J−). But Gω0 is not necessarily a direct product of
G0 with Z2; the obstruction is expressed by an element [ε] in H2(G0,Z2).

Inspecting the fusion rules among the fields J± in the orbifold theory Aω, one finds that this
cohomology class [ε] has the following conformal field theory interpretation. The associated
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commutator cocycle ε̄(J1, J2) := ε(J1, J2)/ε(J2, J1) (which only depends on the class [ε] and not
on the choice of a representative ε) can be expressed as

ε̄(J1, J2) =
∑
µ̇

S
(0)
J1,µ̇

S
(0)
J2,µ̇

(S
(0)
J1J2,µ̇

)∗ / S(0)
Ω,µ̇ . (A.8)

Here S(0) denotes the matrix that governs the modular behavior of the differences χµ+−χµ− of
orbifold characters in the untwisted sector coming from the same A-primary. More specifically,
under τ 7→−1/τ these differences become linear combinations of characters χµ̇ in the twisted
sector, with the coefficients given by S(0) (for more details, see [16]). By the consistency of
the orbifold fusion rules, ε̄ can only take the values ±1 and satisfies ε̄(J1, J2) = ε̄(J2, J1), and
therefore [72] indeed determines a unique class [ε] in H2(G0,Z2). In the special case where
G0 =G, for the construction of Aω

ext we must pick, for each J∈G, one of the fields J± ∈Gω of the
ω-orbifold, in such a manner that the chosen set of representatives closes under fusion. Thus
we must find a section σ: G0 →Gω for the exact sequence (A.7). Such a section exists only if
the extension is trivial, i.e. if [ε] = 1. In conclusion, there is an obstruction to the lift of ω to
an automorphism ωext of Aext; moreover, it is controlled by the twisted sector of the orbifold,
and hence computable.

For various classes of orbifold constructions the presence of an obstruction can be decided
without too much effort. For instance, from the results of [16] it follows immediately that there
is no obstruction when ω is an automorphism of the chiral algebra of a WZW model that comes
from an inner automorphism of the underlying simple Lie algebra. Similarly, no obstruction is
present for the charge conjugation orbifold of a single free boson 17 and for arbitrary permutation
orbifolds. As a matter of fact, we do not know of any orbifold construction where the obstruction
is present. It is tempting to expect that the obstruction is indeed absent in all cases that appear
in conformal field theory, but so far we do not have any general argument to this effect. In any
case, in all the applications in the main text we are able to show that the obstruction is absent.
Therefore in the present paper we do not attempt to push this issue further.

The fields in G which are not contained in the subgroup G0 (A.6) come in pairs J and ω∗(J),
and each such pair gives rise to a single field in Aω, which has quantum dimension 2, i.e. is not
a simple current any longer. As a consequence, these fields do not have a direct influence on the
presence of an obstruction. On the other hand, even when there is no obstruction, it turns out
to be quite non-trivial to describe such non-simple current fields in sufficiently explicit terms
in concrete models. In particular, consistency of the fusion rules of the A-theory does not seem
to be of any help.
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