
CERN-IT-2000-002
 15 February 2000

1

Integrating Autonomous
Problem Resolution Models with Remedy

Miguel Marquina, Raúl Ramos, José Padilla
CERN, IT Division, User Support Group

This paper briefly defines the concept of Problem Resolution Model and shows possible approaches to the issues which
may arise when integrating various PRMs to present a consistent view to the end user, despite of the peculiarities of each
physical implementation.

Integration refers to various autonomous PRMs having to interact as problems pass from one to another in the resolution
flow. This process should be transparent to the user and internally there must be a way to track in which stage of the
resolution process any problem is. This means addressing two different issues. On one side PRMs which are to be
integrated need to comply with certain interface standards. These standards must ensure that problems exchanged between
them can always be traced. On the other side problems owned by different PRMs should be presented to the end user
under a homogeneous view. This means having an uniform criteria for automatic notification messages, a single reference
point (www) where users can query the status of problems regardless who owns them , etc.

Remedy Action Request System® (ARS) is a specialized development system designed to implement PRMs and it is the
current choice of IT Division for such a system. When integrating Remedy ARS based PRMs systems there are some
difficulties arising which are intrinsic to Remedy ARS's design. In this paper we describe our assessment of those difficulties
and their Remedy ARS specific implementational implications.

1. Basic Concepts.
A Problem Resolution Model (PRM) is a defined strategy to
handle the action requests which arrive to the problem-solving
section of an organization. Within IT’s helpdesks, action
requests are problems which may arise regarding the usage of
the computing facilities.

A PRM defines and states the ways in which an action
request is going to be treated all along its lifecycle until its
resolution, providing the means to facilitate the flow of
information generated by the interventions required to
address each action request. It also defines the different layers
that are involved in this process (the different escalating levels),
integration between layers, information required at each stage,
integration with other systems, etcetera.

A PRM is often specified using a flow diagram or workflow . A
workflow describes the states, transitions and actions an action
request may go through. A
state is a particular condition
(or status) of the action
request inside a workflow. In
every moment each action
request is in one and only
one state. A transition
constitutes a change of state
of an action request. An
action is an event (or set of
events) associated to a certain transition which occur when
that transition is triggered. Figure 1 shows a simple workflow
containing two states (In Service and Closed), one transition

named Close and one action happening in that transition (an
email notification).

Operations following a certain workflow may be performed
with the help of a computer application. Typically applications
implementing PRMs consist of a database containing action
requests and a set of user interfaces through which anyone
involved in the resolution of an action request can trigger
transitions, manipulate information concerning action
requests, etc. These systems range from simple database
manipulation packages to complex architectures to account
for different logistics such as security levels for different
people solving action requests, integration with other systems,
customizable workflows, etc. There are several software
products in the market specialized in implementing PRMs.
The current choice of CERN’s IT Division for such a system
is Remedy Corporation’s Action Request System® (ARS).

Remedy ARS applications are made of a set of custom objects
(forms and dependant elements) plus the associate database
tables and accessory elements (e-mail gateways, etc.). Typically
each Remedy ARS application implements a workflow, but it
may also be the case of a Remedy ARS application
implementing several workflows. This will be the main
scenario of this paper. We denote by global PRM a set of
PRM acting jointly to perform a homogeneous and defined
service. In this context a support service (or simply service) is a
support task that is performed by a group of people.
Sometimes different support services adopt different PRM
which become part of the global PRM of the organization.
Detailed information about these ideas can be found in [1]
and [2].

CLOSE
Action: Notify
user

IN SERVICE

 CLOSED

Figure 1: Simple Workflow

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25282175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

2. Interacting Problem Resolution Models.
In complex organizations such as CERN, tasks are usually
distributed between independent teams, which are responsible
for a certain part of the whole process. Their members are
specialized in the tasks at their charge and the overall quality
of the service is improved. Every team has its own resources
and needs related to their situation, staff available, work
methodology, etc. This heterogeneity makes their integration
towards achieving a global task a complex issue.

Ideally, a unique global PRM should accommodate every team
in a consensuated way. However, we believe true global
integration must take into account the intrinsic heterogeneity
of independent teams by providing means of interacting
between existing PRMs. Sometimes this interaction may just
be a transitory step towards global unification of PRMs, other
times it will allow truly independent PRMs to participate in a
global PRM without loosing their independence.

This context leads to the necessity of envisaging a global
workflow to perform a service, interacting eventually with
other workflows (such as exchanging action requests,
information, etc.) The key idea of interacting workflows is that
of an interface between them. An interface is a transition
between workflows. As defined for stand-alone workflows, a
transition leads univocally from one state to another,
triggering certain actions. Transitions, as interfaces between
workflows, take us from one state in a source workflow to a
state in a destination workflow, optionally triggering certain
actions or carrying certain information between workflows.
Figure 2 shows two independent workflows with two
interfaces between them. One interface to transfer an action
request from workflow A to B, and another interface to
transfer the action request back from B to A.

An entry point is the state through which an action request
enters the system. Similarly an exit point is the last state for
every action request in the system. Every action request
should finish in an exit point. Typically, an action request
enters a workflow through an operator at a helpdesk manually
entering the problem in a user interface, a mail gateway
automatically processing mails sent to a specific support mail
address, etc. Linking workflows through interfaces may result
in different combinations of entry and exit points to take into
account when agreeing on establishing an interface.

2.1 Multiple entry and exit points.
This is the case linked workflows have independent entry and
exit points but they are interacting with each other and have
certain transitions that link from one to the other. This is
shown in figure 2.

This case typically represents the fact of independent support
lines available to users, such as two helpdesks for different
kinds of problems, or one email address for the support line
of team A and a different email address for the support line of
team B. Figure 2 shows that an action request which starts in

the entry point of the workflow “A” may finish in the exit
point of workflow “B” or vice-versa, depending on the actual
definition of the interfaces.

Workflow A Workflow B
 Initial
State "A"

In Service

In external
 Service

Solved "A"

 Initial
State "B"

Assigned Opened

Solved "B"

Assi
gn

Open

Solve

Assi
gn

So
lv

e

Send to External Service
Solve

Open

Solve External Problem

Send to External Service Send to other

Support G
roup

Figure 2

2.2 Single entry and exit points.
In this case there are common entry and exit points, no matter
which of the workflows finally handles the request. This is the
case of, for instance, team B delegating problem receptioning
to team A and providing criteria to distinguish the action
requests which must be sent to them.

Workflow A Workflow B
 Initial
State "A"

In service

In External
 Service

Solved"A"

 Initial
State "B"

Assigned Opened

Solved "B"

Assi
gn

Open

Solve

Assi
gn

So
lv

e

Send to Ext. Service

Solve

Open

Close

Assign to External Unit

Reject

Figure 3

Figure 3 shows an example of this type of interface. The entry
point for this system is the state Initial State “A” and the exit
point is Solved “A”. These are the states the action request will
always start and finish in, although during the resolution
process the action request may pass to the workflow “B” and
come back to workflow “A” as many times as needed.

3 Implementational issues for PRM
interactions.
As stated above, a PRM defines workflow, which is
implemented by an application. Depending on the choice of
software certain restrictions apply to the way workflows and
interfaces are implemented by applications. Within an
organization, the deployment and adoption of workflows and
applications implementing them gives rise to different
scenarios:

3

a. Single workflow – single application.
The organization defines a unique workflow accommodating
the needs of all support teams. This workflow is implemented
in a single application that is also used by all support teams.

b. Multiple workflows – multiple applications.
Different teams work following different independent
workflows, and each workflow is implemented by a different
application.

c. Multiple workflows – single application.
Different teams work following different independent
workflows, but they are all implemented in the same
application which accommodates all the logistics required by
the workflows.

d. Single workflow – multiple applications.
A workflow is implemented by several applications. It is not
very likely to happen in normal cases. Only when special
requirements need to be met, such as handling enormous
amounts of data, distributed applications, etc. We are not
going to consider this case.

Any of these alternatives has pros and cons that everyone
involved in the definition and deployment of a (set of) PRMs
must bear in mind. Apart from material constrains; the only
real requirement that any of these alternatives must follow is
to be transparent to the user. This means that the user must
not be aware all the internals of the workflows involved in
dealing with his problem, in terms of user interfaces,
perceived resolution cycles, etc.

Alternative a. is the simplest. With only one application and
one workflow, there is no integration problem and no need to
define interfaces. It implies a considerable initial effort to
design a consensuated workflow suiting everyone’s needs.
From the application point of view, it requires a central
development team to build and maintain the application,
which may be as complex or simple as the compromises
implied by the consensuated workflow. A compromise should
also be reached in terms of future modifications/updates of
the system since it affects every team.

Alternative b preserves independence between teams in terms
of workflow to adopt and they way to implement it. It
requires to define proper interfaces between each interacting
team. Changes to a local workflow won’t affect to the rest as
long as interfaces are respected. On the other hand it requires
each team to provide resources to build and maintain their
own application. Otherwise, a large enough central
development team must take care of everyone’s application.

Alternative c. combines the aspects of the other two. It is an
hybrid solution, where there is a single central application
implementing several workflows. It increases the complexity
of the application but it still gives different teams the

independence to design their own workflow without having to
dedicate resources to build and maintain the application that
implements it.

The concept that an application can implement several
workflows may be better understood with the example of
figure 4. In this case we have an application which is
implementing two workflows. Workflow 1 is a simple one,
action request always enter in the state New and from it they
can be sent to somebody’s queue or be solved directly. From
In Queue action requests are put In Service where they are sent
to In External Service or they are Solved. Workflow 2 starts in
the same state New but then the action requests can only go to
In Service from where they can be Solved or kept On Hold, where
they can be Solved or Closed.

New

In Queue

In Service

On Hold

Solved

In External
 Service

Workflow 1

Workflow 2

Closed

Figure 4

A single application implementing both workflows must
provide mechanisms to determine which transitions are
available at a certain moment. For instance, when submitting a
problem only the transitions to the states In Queue and Solved
should be available to a member of the team using workflow
1, while for a member of the team using workflow 2 only the
transition to state In Service should be available. The
complexity of the single application grows rapidly according
to the quantity of workflows it implements and their
differences. This implies that the maintainability of this kind
of applications is greatly affected with the diversity and
quantity of workflows it implements. This limits the practical
applicability of this alternative. Also, the facilities that the
development environment provides to handle complex
projects plays a very important role. Table 1 summarizes the
tradeoff between diversity and resources of the different
alternatives.

4

Applications
Complexity

Interface
Complexity

Necessary Resources Versatility / customization

a. One Workflow
One Application

Moderate. Low One relatively small centralized group of
developers

Low. Every modification affects everybody

b. Several Workflows
Several Applications

Moderate,
according to each

team

Very High. Necessary
agreed interface.

Every group need invest resources for
developing the tool.

Very high. Every team writes its own application
according to its needs. Only limited by interfaces

c. Several Workflows
One Application.

Very High Medium. One relatively large centralized group of
developers

Medium, depending on the complexity of the
application.

Table 1

These choices always represent a compromise between
centralization and independence. These compromises are not
always to achieve for different reasons. With the background
aim of rationalization in mind, as intermediate choices one
may also adopt the following scenarios: (1) having a single
application implementing a single workflow but allowing a
limited number of variations over the workflow to different
teams. (2) having one main workflow along with its
application for everyone, tolerating teams willing to dedicate
resources to create applications as long as they comply with
certain interfaces with the main workflow.

3. Requirements for a global PRM at CERN.

3.1 End user requirements.
There are some requirements that have to be achieved no
matter which choice is elected for the physical implementation
of a global PRM. They influence the complexity of the final
system, and they are more easily achieved with some
alternatives than with other.

From the user point of view, the requirements can be reduced
to uniformity. The user does not have to know about how the
any PRM is designed or how many teams are involved in
solving the problem (s)he has submitted. From a general point
of view, the following non-exhaustive list of requirements
must me addressed when designing a global PRM strategy:

Single access point for entering problem. For the average
user has to address to a single point to submit problems. This
eliminates possible user confusion when confronted to having
to choose between different support lines.

Single query point. The user must have a single place where
to check the current status of submitted problems.

Single access to FAQ with the most common problems.
To avoid submission of problems that users can solve by
themselves.

3.2 Problem solving staff requirements.
For the problem solving staff (the persons in charge of
solving the problems), the final system must be easy to use
and the learning cycle short. Although simple, it must have all
the tools that are needed for the problem solving process

available in a single environment when possible. These and
other desired characteristics are:

Simple interface, easy to use. The interface should be role-
based, offering the useful features available for every kind of
analyst. (i.e. A Helpdesk operator does not have the same
needs that the problem solving staff specialized in solving web
problems). For this the system must be customizable enough
to be able to show different features according to what the
analyst needs, adapting what the problem solving staff see to
what they normally use.

Uniform look & feel of the application. Despite the
peculiarities that every role needs, there are some common
elements, which should be uniformly distributed for all the
roles. This way we reduce the adaptation time when a member
of the problem solving staff changes his role in the
organization when only a few singular characteristics
differentiate each role. This uniform presentation should be
present independently from the different implementations
that it may hide.

Homogeneous and simple searching and manipulation.
When using the interface, the problem solving staff are
constantly manipulating the different tools that they have
available. This daily process should be comfortable and simple
for them.

Fast access (consult / insertion) to a knowledge base.
(Q&As database). Apart from the access to the usual
problems, the problem solving staff should have access to
“added value” Questions and Answers knowledge bases with
high quality and very detailed explanations. They should be
responsible for promoting typical problems to the status of
questions and answers by enhancing the answer and making
the information available to others.

Access to the current status/details of a problem. There
should be a simple way of access to every action request
(except the confidential ones) in the global PRM, in which the
problem solving staff should have access to all the
information (including the comments and internal stuff)
available for a given action request.

4 Constraints of Remedy’s ARS.
As described in [3], the main constraint of Remedy’s ARS is
its limitations to handle in a maintainable way complex

5

applications. This affects options b. and c. The practical
consequence of this is that it becomes necessary to develop
several coexistent applications as soon as a certain level of
complexity is reached (for handling the diversity of the
different stages and escalations in the resolution process).
Once we have several applications interacting in a single PRM
we have to design coherent interfaces allowing action requests
to pass from one application to another.

If application developers follow certain rules, Remedy allows
an easy design of interfaces between applications keeping the
traceability of the action requests. One important aspect to
fulfill the requirements described in last section is keeping an
unique identifier of the action request, no matter in which
application (or workflow) it is. Remedy does not provide
built-in facilities to guarantee uniform action request
numbering across applications, so this must be ensured by the
interfaces between application and requires every application
to conform to those interfaces. Also, applications must
exchange or feed data to keep a central consult point for
checking the current status. This process may be more or less
simple depending on the complexity of the different
applications and the central consulting system.

Summarizing, Remedy’s particular characteristics constraint in
a significant way choices for integration and heterogeneity.
However Remedy's conceptualizations and tools still provide a
rapid development environment for well established
workflows.

5 A proposal for centralization.
Bearing in mind all the previous considerations we think that
the best alternative in the long term is a global common
application implementing a consensuated global workflow and
establish certain interfaces and rules of interaction with other
applications. Those teams willing to invest the resources to
implement their singularities are to be encouraged to use these
rules to still be part of the global architecture and maintain
uniformity towards the end user.

Those interfaces and rules should be aimed at ensuring the
requirements of section 3 and should be tightly integrated
with the global application design. Well known procedures
must be established for applications to join and define
responsibilities for the maintenance and evolution of the
overall system.

Other solutions can be adopted on a global basis. Searching of
action requests in the PRM, no matter who is handling them may
be achieved by web based solutions, avoiding the dependency
from the Remedy clients specially for the end user. Extraction
of data from Remedy’s database to web engines may be done
using regular scripts with the Remedy API or SQL queries
triggered at regular intervals. This unifies the search of
information coming from Remedy with the one that is not in
Remedy such as documentation, Frequently Asked Questions

etc. which may be searchable from the same place. Backups of
data and applications can also be implemented in a centralized
way as a service for Remedy administrators. Periodic reporting
facilities both batch and interactive improve usability and add
value to problem solving staff and end users. Centralized
version control mechanisms and statistical facilities are also
valuable assets to any application developer and problem
solving staff.

In general, a sound architecture will grow confidence on those
teams confronted with the choice of joining the global
workflow or creating their own. This benefits in the long term
the homogenization of the different problem solving
processes existing within the organization, avoiding in the
present and in the future, cumbersome decisional processes to
teams for whom problem solving constitutes a means to reach
their goals.

6 Conclusions.
In this paper we defined the concept of Problem Resolution
Model and showed approaches to the issues which may arise
when having various PRM interacting as action requests pass
from one to another in the resolution flow.

We also discussed the specific difficulties that appear when
various PRM that interact are implemented in Remedy AR
System.

Finally we presented an assessment to overcome both the
general and Remedy AR System specific drawbacks which
intrinsically derive from integration.

7 References.
[1] M. Marquina, R. Ramos and J. Padilla "Implementing

Problem Resolution Models in Remedy " IT Report
CERN-IT-2000-001. February 2000.

[2] Remedy Corporation, "Action Request System 4.0
Concepts Guide". December 1998

[3] A. Ballaminut and R. Ramos, "Evaluation of Remedy's
Problem Report Management System", Technical
Report CERN-IT-US-1998-05. July 1998.

