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Abstract

Starting with the non-BPS D0-brane solution of IIB/(−1)FLI4

constructed recently by Eyras and Panda we construct via T-duality
the non-BPS D2-brane and D1-brane solutions of IIB/(−1)FLI4 and
IIA/(−1)FLI4 predicted by Sen. The D2-brane couples magnetically
to the vector field of the NS5B-brane living in the twisted sector of
the Type IIB orbifold, whereas the D1-brane couples (electrically and
magnetically) to the self-dual 2-form potential of the NS5A-brane that
is present in the twisted sector of the Type IIA orbifold construc-
tion. Finally we discuss the eleven dimensional interpretation of these
branes as originating from a non-BPS M1-brane solution of M-theory
orientifolded by ΩρI5.
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1 Introduction and Summary

The study of brane-antibrane systems in string and M-theory has brought
a new perspective onto the understanding of non-perturbative extended ob-
jects (see [1]-[4], and references therein). BPS branes arise as by-products
when the tachyonic mode of the open strings connecting the brane and the
antibrane condenses in a vortex-like configuration. Also, one can deduce
in this framework the presence of new non-BPS extended objects when the
tachyon condenses, instead, in a kink-like configuration. These objects have
subsequently been shown to play a key role in testing string dualities beyond
the BPS level. In Type II and M-theory they are however unstable, because
the open strings ending on them contain real tachyonic excitations, but the
instability can be cured when the theory is projected out by a certain symme-
try that removes the tachyons from the spectrum. This happens in particular
for some non-BPS branes in Type I and in certain orbifold/orientifold con-
structions of Type II and M-theory.

An interesting and still open problem is the construction of the supergrav-
ity solutions corresponding to these non-BPS branes. In the Type II theories
given that they are unstable one does not expect to find stable classical so-
lutions of the supergravity that could be associated to these branes. Only
in some cases it has been possible to construct stable solutions, like the one
corresponding to a Kaluza-Klein monopole-antimonopole pair in M-theory,
that is stabilized by suspending the system in an external magnetic field (see
[5] and [6, 7, 8, 9, 10] for related work), or the solution of the, unstable, non-
BPS D-instanton of Type IIA constructed in [11]. For the stable non-BPS
branes one however expects to find solutions of the supergravity equations
of motion that describe these branes in the strong coupling regime.

Recently, using the boundary state formalism, Eyras and Panda [12] found
the asymptotic behavior of the solution corresponding to the non-BPS D0-
brane of the Type IIB theory orbifolded by (−1)FLI4 [13, 14]1. This theory
is S-dual to Type IIB orientifolded by ΩI4, Ω being the worldsheet parity
reversal operation. The twisted sector of this orientifold construction of
Type IIB consists on 16 O5 orientifold fixed planes together with a D5-
brane on top of each plane, therefore it carries an SO(2) vector potential.
This theory contains massive non-BPS states in the perturbative spectrum
arising from open strings stretched between a D5-brane and its image [15].
These states are stable, since they are charged under the SO(2) gauge field
of the twisted sector, and correspond in the strong coupling limit to the

1Here FL denotes the left-moving spacetime fermion number, and I4 : xi → −xi ; i =
1, . . . 4.
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non-BPS D0-branes of IIB/(−1)FLI4 [13, 14]. These non-BPS D0-branes are
also charged with respect to the SO(2) vector field of the, S-dual, twisted
sector, and this renders them stable. Moreover, for a critical value of the
radii of the compact orbifold a pair of branes satisfies a no force condition
[16], and this allows to pile up a number of them. This opens the possibility
of constructing solutions corresponding to a large number of parallel non-
BPS D0-branes, which could correctly describe the weak coupling regime of
the theory. More importantly for our discussion, it is possible to construct
infinite arrays of non-BPS D0-branes, from where one can derive other non-
BPS D-brane solutions via T-duality transformations.

In this paper we concentrate on this and other stable non-BPS branes,
that occur in the six dimensional orbifold/orientifold constructions obtained
by projecting out the Type IIB theory by ΩI4 and duality-related operations.
In particular, we focus on the Type IIB and Type IIA theories divided out by
(−1)FLI4. The (−1)FL operation is identified in the strong coupling limit as
the transformation reversing the orientation of open D-strings (D2-branes)
in the Type IIB (Type IIA) theory, as implied by its connexion via S-duality
with the Ω symmetry of Type IIB [17] (in Type IIA a further T-duality trans-
formation is required). Therefore, the twisted sector of Type IIB/(−1)FLI4

can be described non-perturbatively as 16 O5-NS5B systems [18, 19], and
that of Type IIA/(−1)FLI4 as the same number of O5-NS5A systems [18].
An O5-plane with a NS5-brane on top of it contains an SO(2) gauge field
associated to open D-strings ending on the NS5-brane2, and the non-BPS
D0-branes are charged with respect to this twisted field. In the Type IIA
theory, the O5-NS5A system contains a self-dual 2-form field associated to
open D2-branes ending on the NS5A-brane, and therefore the twisted sector
contributes with an SO(2) self-dual 2-form potential3.

In [1] Sen conjectured that together with the non-BPS D0-brane, coupled
electrically to the SO(2) vector field of the NS5B-O5 system, there is a non-
BPS D2-brane, placed on the orbifold plane, that couples magnetically to
the same vector field, and arises from open D3-branes stretched between a
NS5B-brane and its mirror. Also, T-duality predicts a non-BPS D1-brane in
IIA/(−1)FLI4 located on an orbifold plane, which should couple, electrically
and magnetically, to the self-dual 2-form potential of the twisted sector, and
arise from open D2-branes stretched between a NS5A-brane and its mirror.

In this note we construct these D-brane solutions. We also show that
there is a non-BPS M1-brane solution of M-theory orientifolded by ΩρI5

2Note that in the non-perturbative resolution of the orbifold fixed plane, its U(1) gauge
symmetry is broken to SO(2), since this is the gauge field corresponding to the O5-NS5B,
as implied by its S-duality with the O5-D5 system.

3See [18] and [20, 21] for the detailed description of the twisted sector.
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[20, 21], where Ωρ reverses the orientation of the M2-brane, to which all
these branes are related by reduction and dualities. This provides a unifying
picture within M-theory of the stable non-BPS branes that occur in the six
dimensional orbifold/orientifold constructions related to ΩρI5.

M-theory orientifolded by ΩρI5 contains a twisted sector that can be iden-
tified as a system of 32 O5 orientifold fixed planes with one M5-brane located
on top of each plane, in order to cancel its charge. This theory contains
non-BPS M1-branes that arise from open M2-branes stretched between an
M5-brane and its mirror [15]. They couple, electrically and magnetically,
to the self-dual 2-form potential living in the M5-brane, what makes them
stable. In reducing to the Type IIA theory one can consider two possibilities:

1. Reduce along a worldvolume direction of the M5-O5 system. In this
case one obtains Type IIA orientifolded by ΩI5, whose twisted sec-
tor can be interpreted as 32 D4-O4 systems. This theory contains
perturbative massive non-BPS states, which can be interpreted in M-
theory as non-BPS M1-branes wrapped on the eleventh direction [15],
as well as non-perturbative non-BPS strings coming from open D2-
branes stretched between a D4-brane and its mirror, which correspond
to unwrapped M1-branes in M-theory [1]. T-duality along one of the
orbifolded directions gives then rise to the Type IIB theory orien-
tifolded by ΩI4, whose twisted sector is described by 16 D5-O5 sys-
tems. This theory contains perturbative non-BPS particle states and
non-perturbative non-BPS 2-branes, connected by T-duality with the
non-BPS objects of IIA.

2. Reduce M-theory/ΩρI5 along one of the orbifolded directions. In this
case one obtains Type IIA projected out by (−1)FLI4, with a twisted
sector consisting of 16 NS5-O5 systems. The non-BPS M1-brane gives
rise to a non-BPS D1-brane in IIA that couples (electrically and mag-
netically) to the self-dual 2-form potential living in the worldvolume
of the NS5A-O5. Now T-duality along a worldvolume direction of the
NS5A-O5 maps the theory onto Type IIB divided by (−1)FLI4, with a
twisted sector identified as 16 NS5-O5 systems. Non-BPS D0-branes
are coupled electrically to the SO(2) vector field of the twisted sector,
and non-BPS D2-branes magnetically. These branes are related to the
non-BPS D1-brane by T-duality.

Consistently with the whole duality picture [22], the two theories that are ob-
tained by either reducing along an M5-brane direction and then T-dualizing
along a transverse direction, or viceversa, are related by S-duality. In par-
ticular one obtains IIB/ΩI4 and IIB/(−1)FLI4 respectively. We also see that
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the non-BPS M1-brane of M-theory/ΩρI5 is the eleven dimensional origin of
the non-BPS branes that can be defined in the Type II orbifolds/orientifolds
obtained by reduction.

2 The non-BPS D0-brane solution of [12]

The asymptotic behavior of the solution corresponding to the non-BPS D0-
brane of Type IIB orbifolded by (−1)FLI4 has been derived in [12] using
the boundary state formalism. In this formalism one can compute the long
distance behavior of the massless fields generated by the D-brane and predict
in this manner the asymptotic behavior of the corresponding classical solution
[23]. A pair of non-BPS D0-branes satisfies a no-force condition when the
orbifold is compactified to a particular critical value of the radii [16]. When
this happens it is possible to construct periodic infinite arrays of non-BPS
D0-branes and compute T-dual solutions, which is what we shall be doing in
the next sections.

The asymptotic form of the solution of [12], corresponding to a D0-brane
situated at one of the fixed points of the orbifold, reads, in string frame4:

ds2
D0 = −(1 − 1

3

κ6T0

2π2Ω4

1

|y|3 + . . .)dt2 +

+(1 +
1

3

κ6T0

2π2Ω4

1

|y|3 + . . .)δmndymdyn +

+gij(y)dxidxj ; m, n = 1, . . . 5 ; i, j = 1, . . . 4 ,

eφ = 1 +
1

2

κ6T0

2π2Ω4

1

|y|3 + . . . ,

C
(1)
0 = −1

3

κ6Q0√
2Ω4

1

|y|3 + . . . . (2.1)

Here we have taken α′ = 1 but otherwise the notation is that in [12]. Namely,
κ2

D = 8πGD, κ2
D−d = κ2

D/Vd, with Vd the volume of the d dimensional space,
Ω4 is the area of a unit sphere surrounding the D0-brane, T0 is the tension of

4In [12] a somewhat more general solution depending on a free parameter a is given,
derived by impossing the no-force condition of a pair of branes at the critical radii as
a constraint for the background fields. Here we have chosen to work with the strictly
linearized solution, though the same kind of generalization can be done for our solutions.
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the brane, Q0 its charge5, ym, m = 1, . . . 5 the longitudinal directions along
the NS5B-O5 worldvolume, and xi, i = 1, . . . 4, the transverse, orbifolded
directions. The critical value of the radii: Rc = 1/

√
2, has already been

substituted in the solution. C(1) is the vector potential coming from the
twisted sector, under which the D0-brane is charged.

As discussed in [12] the components of the metric associated to the orb-
ifolded directions cannot be inferred from the boundary state formalism. We
will see however in the last section that it is possible under certain assump-
tions about the symmetry of the solutions to infer their asymptotic behavior.

3 The non-BPS D1-brane of IIA/(−1)FLI4

Considering a periodic infinite array of non-BPS D0-branes along the y5

direction we can construct via T-duality a non-BPS D1-brane solution in the
Type IIA theory projected out by (−1)FLI4. This brane is situated at one
of the fixed points of the orbifold with its worldsheet extended along the
non-compact spacetime. We find:

ds2
D1 = (1 − κ6T1

4π2Ω3

1

|y|2 + . . .)(−dt2 + dσ2) +

+(1 +
κ6T1

4π2Ω3

1

|y|2 + . . .)δmndymdyn + gij(y)dxidxj ;

m, n = 1, . . . 4 ; i, j = 1, . . . 4 ,

eφ = 1 +
κ6T1

4π2Ω3

1

|y|2 + . . . ,

C
(2)
0σ =

1

2

κ6Q1√
2Ω3

1

|y|2 + . . . . (3.1)

Here T1 is the tension of the brane, Q1 its charge and Ω3 the area of the
unit 3-sphere surrounding the string. The twisted sector consists on a 2-form
potential, under which the D1-brane is charged. T-duality implies that this
field is to be interpreted as the 2-form potential living in a O5-NS5A system.

This D1-brane solution can be interpreted as a ten dimensional 1-brane
located at the origin of the four-dimensional compact space. Considering first

5Impossing open-closed string consistency for boundary states, T0 and Q0 are fixed to:
T0 = 8π7/2, Q0 = 8

√
2π3/2, (see [12]).

6



a single compactified direction, a 1-brane sitting at the origin of the S1 can
be seen from the point of view of the covering space of the S1 as an equally
spaced array of D1-branes in the S1 direction. If ~x denotes a vector in the
full nine dimensional transverse space, we can then approximate6 1/|x|6 by a
sum

∑
n∈Z 1/(r2 + (x9 − 2πnR9)

2)3, with r2 =
∑4

m=1 ymym +
∑3

i=1 xixi, and,
assuming that the size of the compact direction is smaller than the distance in
the non-compact space, we can further approximate the sum by an integral.
Repeating this process for the four compact directions we can finally write
(see for instance [24] for more details):

1

|y|2 ∼ 1

|x|6Π4
i=1(2πRi)(I1I2I3I4)

−1 , (3.2)

where Ri are the radii of the compactified orbifold and In ≡ ∫ π
0 dθ sinn θ.

Substituting back in the expression for the D1-brane solution in the compact
orbifold we can then obtain the corresponding solution in the uncompactified
case:

ds2
D1 = (1 − 1

6

κ10T1

Ω7

1

|x|6 + . . .)(−dt2 + dσ2) +

+(1 +
1

6

κ10T1

Ω7

1

|x|6 + . . .)δmndymdyn + gijdxidxj ;

m, n = 1, . . . 4 ; i, j = 1, . . . 4 ,

eφ = 1 +
1

6

κ10T1

Ω7

1

|x|6 + . . . ,

C
(2)
0σ =

1

2

κ6Q1√
2Ω3

1

|y|2 + . . . . (3.3)

Now Ω7 is the area of the unit 7-sphere surrounding the string. The expres-
sion for the 2-form potential is the same as in the compactified case since it
lives in the twisted sector. In [12] it is shown that for the non-BPS D0-brane
this kind of approach in order to relate the uncompactified and the compact-
ified solutions gives the same answer than the boundary state analysis of the
uncompactified orbifold. This should be the case also for the D1-brane.

It is straightforward to check that the D1-brane solution solves the equa-
tions of motion derived from an action Suntwisted + Stwisted, where:

6The choice of this function will be clear below.
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Suntwisted =
1

2κ2
10

∫
d10x e−2φ

√
|detg|

(
R + 4(∂φ)2

)
, (3.4)

and the action corresponding to the twisted sector is proportional to the
action associated to a pair NS5A-O5. This reads, in string frame and to first
order in α′:

Stwisted ∼ ∫
d6y

√
|detg|

(
1 + (H(3))2 + . . .

)
− ∫

d6y
√
|detg| =

=
∫

d6y
√
|detg|(H(3))2 + . . . .

(3.5)

Here H(3) is the field strength associated to the self-dual 2-form potential
of the NS5A-brane, with the self-duality condition impossed at the level of
the equations of motion, and the metric is restricted to the position of the
orientifold fixed plane.

4 The non-BPS D2-brane of IIB/(−1)FLI4

Performing now a T-duality transformation of the D1-brane solution along
the y4 direction we obtain a D2-brane solution of IIB/(−1)FLI4. This brane
is located at one of the fixed points of the orbifold, with its worldvolume ex-
tending along the non-compact spacetime. Taking the non-BPS D1-brane in
the compactified orbifold at the critical radii, where it is possible to construct
periodic infinite arrays of strings since they satisfy a no-force condition, and
applying the T-duality rules we find:

ds2
D2 = (1 − κ6T2

2π2Ω2

1

|y| + . . .)(−dt2 + dσ2
1 + dσ2

2) +

+(1 +
κ6T2

2π2Ω2

1

|y| + . . .)δmndymdyn + gij(y)dxidxj ;

m, n = 1, . . . 3 ; i, j = 1, . . . 4 ,

eφ = 1 +
κ6T2

4π2Ω2

1

|y| + . . . ,

C
(3)
0σ1σ2

= − κ6Q2√
2Ω2

1

|y| + . . . . (4.1)
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Here T2 is the tension of the brane, Q2 its charge and Ω2 the area of the unit
2-sphere surrounding the 2-brane.

The same analysis of the previous section gives the following form for the
solution in the uncompactified case:

ds2
D2 = (1 − 1

5

κ10T2

Ω6

1

|x|5 + . . .)(−dt2 + dσ2
1 + dσ2

2) +

+(1 +
1

5

κ10T2

Ω6

1

|x|5 + . . .)δmndymdyn + gijdxidxj ;

m, n = 1, . . . 3 ; i, j = 1, . . . 4 ,

eφ = 1 +
1

10

κ10T2

Ω6

1

|x|5 + . . . ,

C
(3)
0σ1σ2

= − κ6Q2√
2Ω2

1

|y| + . . . . (4.2)

Now Ω6 is the area of the unit 6-sphere surrounding the membrane.
This brane is electrically charged with respect to the 3-form potential of

the NS5B-O5 system, or equivalently, magnetically charged with respect to
its vector potential. Therefore, it solves the equations of motion derived from
Suntwisted + Stwisted, with:

Stwisted ∼ ∫
d6y

√
|detg|

(
1 + (F̃ (4))2 + . . .

)
− ∫

d6y
√
|detg| =

=
∫

d6y
√
|detg|(F̃ (4))2 + . . . ,

(4.3)

where we have dualized the vector field of the NS5B-brane onto a 3-form
potential with field strength F̃ (4), and the metric is restricted to the position
of the orientifold fixed plane.

5 The non-BPS M1-brane of M-theory/ΩρI5

Oxidizing the D1-brane solution of the Type IIA theory on the orbifold we can
obtain the expression for a stable M1-brane solution of M-theory orientifolded
by ΩρI5:

dŝ2
M1 = (1 − 5

18

κ10T1

Ω7

1

|x|6 + . . .)(−dt2 + dσ2) +
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+(1 +
1

8

κ10T1

Ω7

1

|x|6 + . . .)δmndymdyn +

+(1 − 1

9

κ10T1

Ω7

1

|x|6 + . . .)gijdxidxj + (1 +
2

9

κ10T1

Ω7

1

|x|6 + . . .)dz2 ;

m, n = 1, . . . 4 ; i, j = 1, . . . 4 ,

Ĉ
(2)
0σ =

2

3

κ6Q1√
2Ω4

1

|y|2 + . . . . (5.1)

This solution describes a string wrapped on the z-direction, and exhibits an
SO(1, 1) × SO(4) × SO(4) × U(1) symmetry. As we did in the previous
sections we can interpret this solution as an M1-brane located at the origin
of the z-circle, and find the expression for the corresponding solution in the
uncompactified case:

dŝ2
M1 = (1 − 5

21

κ̂11T̂1

Ω8

1

|x|7 + . . .)(−dt2 + dσ2) +

+(1 +
1

21

κ̂11T̂1

Ω8

1

|x|7 + . . .)δmndymdyn + (5.2)

+(1 − 2

21

κ̂11T̂1

Ω8

1

|x|7 + . . .)gijdxidxj + (1 +
4

21

κ̂11T̂1

Ω8

1

|x|7 + . . .)dz2 .

Here Ω8 is the area of the unit 8-sphere surrounding the string, and we have
used κ̂11 = κ10 (2πRz)

1/2, T̂1 = T1 κ̂11/κ10. Ĉ(2) remains the same since it
lives in the twisted sector. This solution however does not exhibit the full
SO(1, 1) × SO(4) × SO(5) symmetry of M-theory projected out by ΩρI5 in
the presence of a 1-brane. This symmetry is only recovered if the transverse
metric gij is chosen as:

gij = (1 +
2

7

κ̂11T̂1

Ω8

1

|x|7 + . . .)δij . (5.3)

Therefore, we have found a symmetry-based argument that allows to fix
the components of the transverse metric, which remained otherwise undeter-
mined in the boundary state formalism [12]. The key point for this derivation
is that when the non-BPS D1-brane solution is uplifted to M-theory the met-
ric along the eleventh direction is fixed by the value of the ten dimensional
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dilaton, and this determines in the end the whole transverse metric when
we imposse that the uncompactified solution has SO(1, 1)× SO(4)× SO(5)
symmetry.

Finally, the contribution to the supergravity action from the twisted
sector is proportional to the action describing an M5-O5 system, which in
quadratic approximation reads:

Ŝtwisted ∼
∫

d6ŷ
√
|detĝ|(Ĥ(3))2 + . . . (5.4)

Here Ĥ(3) is the field strength associated to the self-dual 2-form potential of
the M5-brane worldvolume, with the self-duality condition impossed at the
level of the equations of motion, and the metric is restricted to the position
of the orientifold fixed plane.
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