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1 Introduction

Electroweak baryogenesis in the Minimal Supersymmetric Standard Model (MSSM) is
a viable option for explaining the matter-antimatter asymmetry observed in the present
Universe, provided that there is a mild hierarchy between the right and left-handed
stop masses [1]–[6]. The dominantly right-handed stop should be lighter than the top
in order to make a strong transition, yet the left-handed stop should be rather heavy,
∼ 1 TeV, in order to raise the Higgs mass upper bound to ∼ 110 GeV. Various details
of the electroweak phase transition in this regime are constantly being investigated [7].

Here we will be concerned with the thermodynamics of the phase transition. In the
perturbative approach, this problem is approached by computing the effective potential
for the Higgs field to some order in the loop expansion. In general, such a computation
in a weakly coupled gauge theory faces two problems: (i) The system has a hierarchy of
mass scales (2πT, gT, g2T ), which spoils a straightforward perturbative computation.
Historically, this was observed by finding large “linear terms” at 2-loop level [8], which
were then shown to be absent after an appropriate resummation [9]. (ii) At momenta
of the order of the lowest of the mass scales (g2T ), the system is also inherently non-
perturbative [10].

The resummations needed at 2-loop level for dealing with the heavy scale 2πT were
discussed in detail by Arnold and Espinosa [11]. However, the problem can also be
dealt with in another way, namely by constructing a sequence of effective field theories
by integrating out, to a given order in perturbation theory, the scales 2πT, gT [12, 13].
This construction is highly accurate in the Standard Model [14, 15]. The final theory
is three-dimensional (3d), purely bosonic, and contains only the momentum scale g2T .
A perturbative analysis of the 3d theory automatically reproduces the results of the
resummed 4d effective potential, but the theory can also be studied efficiently with
relatively simple lattice simulations [16], to account for the non-perturbative part.

The problem we consider here is the observation that the hierarchy of mass scales can
be even more severe in extensions of the Standard Model such as the MSSM. Indeed,
there one tends to have new mass parameters that are not related to the temperature
in the same way as mH is in the Standard Model, where mH ∼ gTc. In particular,
as mentioned above, one prefers rather large left-handed squark mass parameters, say
mQ ∼ 1 TeV. Previously, the effects of mQ have been considered (on the 2-loop or non-
perturbative level) only in the high temperature expansion, or in the extreme limit
mQ � 2πT where the finite temperature effects decouple completely.

Our objective here is to treat in some detail the general situation mQ ∼ 2πT . First
of all, we discuss how the resummations used previously need to be changed in such
a situation (Sec. 3). We then show with a simple example how the full resummed
2-loop effective potential could be computed without any temperature expansions re-
lated to mQ, and how the result can be used for a 2-loop computation of the mass
parameter of an effective 3d field theory (Sec. 4). Finally we consider a particular
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observable sensitive to mQ, the critical temperature of the electroweak phase transi-
tion, and estimate the accuracy of the high and low temperature expansions employed
earlier on (Sec. 5). We conclude in Sec. 6 and discuss several possible extensions of the
computations presented in this paper. The expressions used for the 1-loop tadpole and
bubble, as well as 2-loop sunset graphs are discussed in the appendices.

2 Parametric conventions

In order to be explicit yet concise, we illustrate the situation with a simple model
reminiscent of the scalar sector of the MSSM. We take

L = m2
HH†H + m2

UU∗
αUα + m2

QQ†
αQα

+ h2
1H

†HU∗
αUα + h2

2H
†QαQ†

αH + h3

(

AH†QαUα + H.c.
)

+ ... . (2.1)

Here H is an SU(2) doublet, U an SU(3) (anti-)triplet, while Q changes under both
groups. We ignore gauge interactions for the moment. We assume that h1 ∼ h2 ∼
h3 ∼ g are small couplings, and m2

H , m2
U ∼ (gT )2. It is also important to specify the

order of magnitude of the dimensionful parameter A in Eq. (2.1). In this paper we
work under the assumption that

|Â|2 ≡ |A|2
m2

Q

∼ g2, (2.2)

which simplifies the procedure considerably.
In the imaginary time formalism, the fields in Eq. (2.1) can be divided into Matsubara

modes. We assume that the only light modes are the zero Matsubara modes of H, U .
The non-zero Matsubara modes of H, U have effectively a mass parameter ≥ (2πT )2.
For the field Q, we assume that mQ itself is large, mQ ∼ 2πT , so that even the zero
Matsubara mode is heavy. If mQ ∼ gT , then the zero Matsubara mode of Q is light
as well and the procedure is the one described in [17]. If mQ ∼ 2πT/g, on the other
hand, Q can be integrated out at T = 0 with exponentially small corrections.

The issue of resummation can now be formulated as follows. Due to the presence of
the heavy mass scales, the n = 0 modes of H, U can receive radiative corrections as large
as the tree-level terms, δm2

H,U ∼ g2(m2
Q, T 2). Such corrections have to be resummed.

In fact, close to the phase transition point, the effective mass parameters m2
Heff,Ueff can

be even smaller, of the non-perturbative magnitude ∼ (g2T )2. Then resummation has
to be extended to the 2-loop level. Non-zero Matsubara modes, or the field Q, on the
other hand, do not require resummation [11], since the mass corrections g2T 2, g2m2

Q

are according to our convention small compared with the tree-level terms.
This statement can be formulated more precisely as follows. Let us write down the

effective Lagrangian obtained after integrating out all the heavy modes. The light fields
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P1 P1P2 P1P2P3

Figure 1: The 2-loop graphs considered. The blob means a counterterm. Different
particles are denoted by Pi = H, U, Q.

being the n = 0 modes of H, U , the form of the Lagrangian is

Leff = m2
HeffH

†H + m2
UeffU

∗
αUα + h2

1effH
†HU∗

αUα + ... . (2.3)

Our aim is now to compute expressions of the form3

m2
Heff = m2

H + #g2(m2
H , m2

U) + #g2m2
Q(1 + #g2) + #g2T 2(1 + #g2). (2.4)

3 Leading order resummation

In order to carry out the resummation explicitly, let us consider the effective potential
of the theory. To illustrate the procedure, it is enough to consider only the field H ,
keeping the expectation value of U at zero. Introducing 〈H〉 = (0 , φ)T/

√
2 changes

the mass spectrum of the system, m → mφ = m + δφm. We are interested in a certain
range of φ ∼ 0...T . Then, in the case of heavy modes, δφm � m, and we can expand
in δφm, while in the case of light modes we cannot. For the purpose of illustration, let
us suppress m for the light modes here.

Then, in the standard thermal case, the 1-loop and 2-loop contributions to the
effective potential behave at small φ as

δV1-loop ∼ T 2(δmφ)
2 + T (δmφ)

3 + ..., (3.1)

δV2-loop ∼ g2T 3δmφ + g2T 2(δmφ)
2 + ... . (3.2)

The statement of resummation is now that the dominant 2-loop terms, the “linear” ones
∼ g2T 3δmφ, arise from a badly convergent series which can be resummed into a better
convergent one [9]. The way the resummation proceeds is obvious from Eqs. (3.1),
(3.2): the non-analytic 1-loop and 2-loop terms combine to

T (δmφ)
3 + g2T 3δmφ → T (g2T 2 + δm2

φ)
3/2. (3.3)

This corresponds simply to the corrections of order g2T 2 in Eq. (2.4). The extension
we make here is that when mQ ∼ 2πT , the contribution to be resummed goes to a

non-trivial function g2T 2f(mQ/T, |Â|2).
3In a gauge theory there are also corrections of order g3T 2.
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In order to proceed systematically, we write the mass parameters related to the light
modes as

m2
H = m2

Heff − δrm
2
H , m2

U = m2
Ueff − δrm

2
U , (3.4)

where m2
Heff, m

2
Ueff appear in the propagators, and δrm

2
H , δrm

2
U are treated as interac-

tions. Denoting the heavy modes by solid lines and the light modes by dashed lines,
the graphs

suggest that

δrm
2
H = 3h2

1In 6=0(mU) + 3h2
2I(mQ) + 3h2

3|Â|2
[

I(mQ) − In 6=0(0)
]

, (3.5)

δrm
2
U = 2h2

1In 6=0(mH) + 2h2
3|Â|2

[

I(mQ) − In 6=0(0)
]

. (3.6)

Here I, In 6=0 are tadpole integrals defined in Eqs. (A.1), (A.11), and we have made

use of m2
H , m2

U � m2
Q. Note that the fact that |Â|2 is small, Eq. (2.2), implies that

wave function corrections need not be considered, since their effect would be of order
∼ h2

3|Â|2m2
H ∼ g4m2

H , beyond Eq. (2.4). For the same reason, we have dropped any
m2

H , m2
U dependence in the terms proportional to |Â|2.

In addition to the mass parameters of the scalar fields, resummation of course also
affects the zero components of the gauge fields. In fact, as is well known [8, 9], in
the Standard Model the latter effect is more important for physical observables such
as the strength of the phase transition, while the former is important particularly for
the critical temperature. We do not discuss infrared dominated observables such as
the strength of the phase transition, nor gauge fields, to any length in this paper, but
let us nevertheless note that the contributions of H, U, Q to the Debye masses of the
SU(2) and SU(3) fields A0, C0 are, in the presence of mQ ∼ 2πT ,

δrm
2
A0

= g2T
d

dT

(

In 6=0(mH) + 3IT (mQ)
)

, (3.7)

δrm
2
C0

= g2
ST

d

dT

(

In 6=0(mU) + 2IT (mQ)
)

, (3.8)

where gS is the SU(3) gauge coupling. In addition to these terms, the Debye masses of
course contain the usual gauge and fermion contributions.

In order to now show that the procedure introduced in Eqs. (3.4), (3.5), (3.6) is a
consistent one, we need to demonstrate that all “linear terms” at 2-loop level cancel,
and the remainder is quadratic in δmφ. Recalling that we have set the quartic Higgs
self-coupling to zero (at tree-level) for the purpose of simplicity, we get for the shifts
in the mass parameters (Q1(2) denote the upper (lower) SU(2) component of Q)

δφm
2
Heff = 0, δφm

2
Ueff =

1

2
h2

1φ
2, (3.9)
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δφm
2
Q1

= 0, δφm
2
Q2

=
1

2
h2

2φ
2. (3.10)

Note that due to the assumption |Â|2 ∼ g2 we can ignore all corrections involving Â
here, since the corresponding 2-loop contributions are at most of order ∼ h2

i h
2
3|Â|2 ∼ g6.

We will denote (mφ
Heff)

2 = m2
Heff + δφm

2
Heff, etc.

Linear terms in the effective potential arise from graphs of the types (H), (U), (HU),
(HQ), (HUQ) in the notation of Fig. 1. Denoting by I3d the 3d tadpole in Eq. (A.12)
and by H the bosonic sunset integral in Eq. (C.1), we obtain

(H) + (U) = −2δrm
2
HI3d(m

φ
Heff) − 3δrm

2
UI3d(m

φ
Ueff), (3.11)

(HU) + (HQ) = 6h2
1I(mφ

Heff)I(mφ
Ueff) + 3h2

2I(mφ
Heff)

[

I(mφ
Q1

) + I(mφ
Q2

)
]

, (3.12)

(HUQ) = −3h2
3|A|2

[

H(mφ
Q1, m

φ
Heff, m

φ
Ueff) + H(mφ

Q2, m
φ
Heff, m

φ
Ueff)

]

. (3.13)

We then expand these contributions in δφm. Employing the expansions

I(mφ
Q) = I(mQ) − δφm

2
QD(mQ) + O(δφmQ)4, (3.14)

I(mφ
eff) = In 6=0(meff) + I3d(m

φ
eff) − δφm

2
effDn 6=0(meff) + O(δφmeff)

4, (3.15)

H(mφ
Q, mφ

Heff ,mφ
Ueff) =

1

m2
Q

[(

I3d(m
φ
Heff) + I3d(m

φ
Ueff)

)(

−I(mQ) + In 6=0(0)
)

+I3d(m
φ
Heff)I3d(m

φ
Ueff)

]

+ O(δφm)2, (3.16)

where D, Dn 6=0 are from Eqs. (B.5), (B.10) and we have used Eq. (C.17), we find that:

• there are linear terms ∝ I3d(m
φ
Heff), I3d(m

φ
Ueff) which are however all cancelled,

when the choice in Eqs. (3.5), (3.6) is made for δrm
2
H , δrm

2
U .

• there is an infrared sensitive contribution, quadratic in the masses, from the
Matsubara zero modes in the graphs (HU), (HUQ):

(HU) + (HUQ)|IR = 6(h2
1 − h2

3|Â|2)I3d(m
φ
Heff)I3d(m

φ
Ueff). (3.17)

The appearance of h2
1 − h2

3|Â|2 corresponds to coupling constant resummation
which we however do not discuss in any detail here, since the corresponding
effects are in principle beyond the accuracy of Eq. (2.4). Similarly, the graph
(HUQ) also produces terms of order ∼ h4|Â|2φ2, again beyond Eq. (2.4).

• finally, there are ultraviolet sensitive (not from the zero modes) quadratic terms
from the graphs (HU), (HQ):

(HU) + (HQ)|UV = −6h2
1δφm2

UeffIn 6=0(mH)Dn 6=0(mU)

−3h2
2δφm2

Q2
In 6=0(mH)D(mQ) + O(δφm)4. (3.18)

To summarize, we have observed that the linear terms are cancelled when the thermal
counterterms are chosen according to Eq. (3.11). The remainder involves quadratic
terms, which can either come from the ultraviolet or the infrared.
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4 Next-to-leading order

We next evaluate the 2-loop contributions from the remaining graphs, and expand them
again in δφm; however, these graphs do not involve contributions linear in δφm. The
graphs left are the sunsets (HQQ), (HUU), as well as the 1-loop graphs (H), (U), (Q),
where the blobs are now the bilinears obtained from the coupling constant counterterms
after the shift of H 4.

After an expansion in δφm, we obtain

(H) + (U) + (Q) =
φ2

2

1

(4π)2

1

ε

[

9(h4
1 + h4

2)In 6=0(mH) + 6h4
1In 6=0(mU)

+12h4
2I(mQ)

]

+ O(δφm)3, (4.1)

(HQQ) = −3h4
2φ

2H(mQ, mQ, 0) + O(δφm)3, (4.2)

(HUU) = −3

2
h4

1φ
2H(mφ

Heff, m
φ
Ueff, m

φ
Ueff). (4.3)

The numerical expression of H(mQ, mQ, 0) is discussed in appendix C. As to the graph
(HUU), on the other hand, we recall that it arises completely from the zero Matsubara
modes (H = H3d + O(m/T )), and is thus a purely IR quantity [21].

Adding all terms together from Eqs. (3.18), (4.1), (4.2) and using Eqs. (A.11), (B.5),
(B.10), (C.20), we obtain the 2-loop ultraviolet contribution to the 3d mass parameter,

δUV
2-loopm

2
Heff=h4

2

[

−6Hvac(mQ, mQ, 0) + 12
1

(4π)2ε
Ivac(mQ)

]

+
T 2

(4π)2

{

h4
1

[

3

4

1

ε
− 5

4
ln

µ̄2

µ̄2
T

− 3
(

ln
3T

µ̄
+ c

)]

−h4
2

[

3

4
ln

µ̄2

m2
Q

+ 6I1

(mQ

T

)

(

ln
µ̄2

m2
Q

+ 2
)

+
1

4
D
(mQ

T

)

+ 6H
(mQ

T

)

]}

. (4.4)

Here the first line is a 2-loop vacuum renormalization correction of order g4m2
Q,

µ̄T = 4πe−γET ≈ 7.0555T, c =
1

2

[

ln
8π

9
+

ζ ′(2)

ζ(2)
− 2γE] ≈ −0.34872274, (4.5)

and I1, D, H are functions defined in Eqs. (A.7), (B.8), (C.21). The IR sensitive part
of the effective potential is, from Eqs. (3.17), (4.3),

δIR
2-loopV = 6(h2

1 − h2
3|Â|2)I3d(m

φ
Heff)I3d(m

φ
Ueff) −

3

2
h4

1φ
2H3d(m

φ
Heff, m

φ
Ueff, m

φ
Ueff). (4.6)

4Mass counterterms do not contribute at the present order; terms proportional to m2

Q in them

would, had we included self-interactions of the type ∼ (H†H)2, (U∗
αUα)2 in Eq. (2.1).
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The divergence in H3d (Eq. (C.2)) cancels against that from Eq. (4.4), m2
Heff φ2/2.

Including also the 1-loop terms in Eq. (3.5), we can now write down the complete
mass parameter m2

Heff with accuracy g4m2
Q, g4T 2. In order to do so, let us first note

that 1-loop radiative corrections generate couplings other than those in Eq. (2.1), viz.

δL = h2
4H

†HQ†
αQα + λ(H†H)2 + ..., (4.7)

which we have to include in the discussion for a moment. The corresponding contribu-
tion in Eq. (3.5) is δrm

2
H = 6h2

4I(mQ) + 6λIn 6=0(m
2
H). Furthermore, in order to cancel

spurious µ̄-dependences, we should express the MS parameters in terms of physical ob-
servables as in [12]. In this paper we will not consider actual physical pole masses etc,
but simply some finite physical scale independent parameters ()phys which, dropping
all terms beyond the accuracy of Eq. (2.4), we define through the following relations:

m2
H(µ̄) = m2

Hphys +
3

(4π)2

[

h2
1m

2
U + (h2

2phys + h2
3|Â|2)m2

Q

]

(

ln
µ̄2

m2
Q

+ 1
)

+h4
2

[

6Hvac(mQ, mQ, 0) − 12Dvac(mQ)Ivac(mQ)
]

finite part
, (4.8)

h2
1(µ̄) = h2

1phys + h4
1

2

(4π)2
ln

µ̄2

m2
Q

, h2
2(µ̄) = h2

2phys + h4
2

2

(4π)2
ln

µ̄2

m2
Q

, (4.9)

h2
4(µ̄) = h2

4phys + h4
2

1

(4π)2
ln

µ̄2

m2
Q

, λ(µ̄) = λphys +
3

2
(h4

1 + h4
2)

1

(4π)2
ln

µ̄2

m2
Q

. (4.10)

Moreover, let us now declare h2
4phys, λphys ∼ 0. We then obtain the final expression for

the effective (bare) mass parameter m2
Heff in the theory of Eq. (2.1):

m2
Heff = m2

Hphys −
3

(4π)2
h2

1m
2
U

(

ln
m2

Q

µ̄2
T

− 1
)

+ T 2
{

1

4
(h2

1phys − h2
3|Â|2) +

3

2
(h2

2phys + h2
3|Â|2)I1

(mQ

T

)

+
1

(4π)2

[

h4
1

(

5

4
ln

µ̄2
T

m2
Q

+
3

4

1

ε
− 3

(

ln
3T

µ̄
+ c

)

)

−h4
2

(

12I1

(mQ

T

)

+
1

4
D
(mQ

T

)

+ 6H
(mQ

T

)

)]}

. (4.11)

5 High-T and low-T expansions

We now wish to employ Eq. (4.11) to estimate in a non-trivial physical context the
accuracy of the high and low temperature expansions in mQ/T . We can do this by
inspecting the critical temperature Tc of the phase transition. Let us recall that the
leading (and next-to-leading in a gauge theory) terms in Tc are perturbative [18],
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0.0 2.0 4.0 6.0

mQ/T

0.0

1.0

coeff. of T
2

high−T/coeff. of T
2

low−T/coeff. of T
2

Figure 2: The coefficient of T 2 from Eq. (4.11), compared with the high-T and low-T
limits. The parameters have been chosen as explained in Sec. 5.

thus ultraviolet dominated and particularly sensitive to mQ/T . Most of the physical
characteristics of the phase transition, on the contrary, are infrared dominated and less
sensitive to mQ/T . We may also remind that in the MSSM the determination of Tc is
physically more important than in the Standard Model, since one has to address the
question of whether other phase transitions could take place before the electroweak
one, in particular a transition to the dangerous U -direction [1]–[6].

The transition will take place when m2
Heff(µ̄ = g2T ) = #g4T 2, where # is some non-

perturbative coefficient, to be determined with lattice simulations. We shall keep the
physical parameters ()phys fixed and vary mQ/T . It is then clear that the perturbative
contribution to Tc can equivalently be inspected by considering the finite part of the
coefficient of T 2 in Eq. (4.11). We choose for simplicity h1phys, h2phys ∼ 1, h2

3|Â|2 ∼ 0.
The high and low temperature limits of I1,D,H are given in Eqs. (A.9), (B.9), (C.22).
To be in accordance with the limiting procedures usually applied in the literature, we
keep in the high temperature expansions terms up to logarithmic order, whereas in the
low temperature expansions we simply replace the exponentially small corrections in
Eqs. (A.9), (B.9), (C.22) with zero.

The numerically evaluated full expression for the coefficient of T 2, as well as a com-
parison of the high and low temperature expanded versions thereof with the full result,
are plotted in Fig. 2. We observe that the high temperature expansion gives typi-
cally too large a coefficient of the T 2-term, leading to too small a Tc

5. With the

5Numerically the relative effect is larger here than in the realistic MSSM, since in that case there are
other terms in the coefficient of T 2 (such as gauge bosons) for which the high temperature expansion
should work perfectly.
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low-temperature expansion, on the other hand, Tc is slightly too large. Furthermore,
we observe that while naively one might have expected the crossover between the high
and low temperature regimes to be close to the first non-zero Matsubara frequency
at mQ ∼ 2πT , the low temperature expansion is in fact perfectly sufficient already at
mQ >∼ 3T , which is the case for realistic values mQ >∼ 300 GeV. The fact that the high
temperature expansion converges relatively poorly as early as at mQ/T ∼ 2 is due
particularly to the 2-loop function H, whose behaviour is shown in Fig. 4.

6 Conclusions

In this paper, we have pointed out that standard thermal resummations should be
extended in two different ways, when one goes from the Standard Model to a general
MSSM. First of all, the left-handed stop mQ is typically of the order of magnitude
∼ 2πT . Then it cannot, a priori, be treated either in the high or in the low temperature
expansion, but a more general function appears. Second, the presence of dimensionful
trilinear couplings leads to the emergence of new “linear” terms coming from the scalar
sunset diagrams. The results for the scalar thermal counterterms including both of
these effects in the model of Eq. (2.1) are shown in Eqs. (3.5), (3.6), while the scalar
contributions to the Debye masses are shown in Eqs. (3.7), (3.8). In an effective theory
approach such as the one followed in [19] (in [19] it was assumed that mQ � 2πT , but
the procedure can be extended to mQ ∼ 2πT in a straightforward way), all these effects
of course arise automatically, whereas in a direct computation of the 2-loop effective
potential they should be explicitly taken into account.

In the framework of effective field theories, we have also extended the resummation
for the Higgs mass parameter to the next order beyond the effects described above. The
mass parameter thus determined, including corrections of order ∼ g4T 2, could be used
for a precise estimation of the critical temperature of the corresponding electroweak
phase transition using 3d lattice Monte Carlo simulations. Let us stress that the
only change with respect to previous effective 3d theories is in the expressions for the
effective parameters, not in the functional form of the theory.

Using these results, we have estimated the accuracy of the high and low temperature
expansions used previously in the literature. Inspection of the critical temperature
suggests that the low temperature expansion, whereby all finite temperature contribu-
tions from heavy particles are simply left out, works well already at m >∼ 3T for bosonic
particles. Thus it should be completely clear that for the values mQ ∼ 1 TeV of interest
for obtaining a strong phase transition with experimentally allowed Higgs masses in
the MSSM, the Q-field can simply be left out in all finite temperature contributions.

The present results could clearly be extended in many directions. First of all, the
restricted model we have employed here can be extended to the full MSSM with gauge
fields and fermions in a straightforward way. Second, we have shown that the evaluation

9



of the integrals appearing in the perturbative 2-loop effective potential is numerically
feasible without any further temperature expansions — thus the complete 2-loop po-
tential of the MSSM could in principle be computed, extending thus the results of [1, 2],
[4]–[6], [20]. Third, we have here considered explicitly only the effects of a heavy mQ,
while in the MSSM many other mass parameters could be heavy as well. In particular,
M2, µ related to the gaugino and Higgsino mass matrices and also relevant for provid-
ing sources of CP violation can have values for which neither high nor low temperature
expansions are applicable. In the effective theory approach M2, µ can be easily in-
cluded at 1-loop level without any temperature expansions [19], but this could now be
extended to the 2-loop level. The accuracy of previous approximations with respect
to the contributions from the second Higgs doublet with mA >∼ 100 GeV could also be
explicitly checked. Finally, we assumed that the trilinear couplings are not exceedingly
large, |Â|2 <∼ g2, an assumption which could be relaxed.

We believe that as long as the existence of a Higgs particle with MSSM type cou-
plings lighter than about 110 GeV is not experimentally excluded, these are worthwhile
questions to consider.
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A The tadpole

For completeness, let us review here some properties of the tadpole integral,

I(m) = T
∑

n

∫

d3−2εp

(2π)3−2ε

1

p2
0 + p2 + m2

, (A.1)

where p0 = pb ≡ 2πnT for bosons, p0 = pf ≡ πT (2n + 1) for fermions. We will need
two types of subdivisions of I(m). In the first case, relevant for all fermions and heavy
bosons, we write I(m) = Ivac(m) + IT (m), where IT vanishes at T = 0. In the second
case, relevant for light bosons (m2 ∼ (gT )2), we separate the contribution from the
Matsubara zero mode into I3d(m), writing I(m) = I3d(m) + In 6=0(m). We denote

nb(ω) =
1

eβω − 1
, nf(ω) =

1

eβω + 1
, (A.2)

ωp,i = (p2 + m2
i )

1/2, ω̂p = (p2 + (m/T )2)1/2, (A.3)

IT ,b(f)(mi) =
∫

d3−2εp

(2π)3−2ε

nb(f)(ωp,i)

ωp,i

. (A.4)
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When the superscript ()b,f is left out from I, we assume the bosonic case.

A heavy mass in the loop. Writing Ib(m) = Ivac(m) + IT (m), we get

Ivac(m) = −µ−2ε m2

(4π)2

(

1

ε
+ ln

µ̄2

m2
+ 1

)

, (A.5)

IT (m) =
1

2
µ−2εT 2

{

[

1 + ε
(

2 − 2 ln 2 + ln
µ̄2

T 2

)]

I1

(m

T

)

− εI2

(m

T

)

}

, (A.6)

I1

(m

T

)

=
1

π2

∫ ∞

0
dp p2nb(ω̂p)

ω̂p
, (A.7)

I2

(m

T

)

=
1

π2

∫ ∞

0
dp p2 ln p2nb(ω̂p)

ω̂p

. (A.8)

The limiting values are

I1(y)
y�1
=

1

6
− y

2π
+

y2

8π2

(

1 + 2 ln
4π

y
− 2γE

)

,
y�1
=

√

y

2π

e−y

π
, (A.9)

I2(y)
y�1
=

1

3

[

1 − γE +
ζ ′(2)

ζ(2)

]

− y

π
ln y,

y�1
=

√

y

2π

e−y

π

(

ln y + 2 − γE − ln 2
)

, (A.10)

where γE = 0.57721566, ζ ′(2)/ζ(2) = −0.56996099.

A light mass in the loop. Writing I(m) = In 6=0(m) + I3d(m), we obtain

In 6=0(m) = µ−2ε T
2

12
(1 + εıε) − µ−2ε m2

(4π)2

(

1

ε
+ ln

µ̄2

µ̄2
T

)

+ O(ε2, εm2, m4), (A.11)

I3d(m) = −µ−2ε mT

4π

[

1 + ε
(

ln
µ̄2

m2
+ 2 − 2 ln 2

)

]

+ O(ε2). (A.12)

Here µ̄T is from Eq. (4.5) and [11]

ıε = ln
µ̄2

T 2
+ 2γE − 2 ln 2 − 2

ζ ′(2)

ζ(2)
. (A.13)

The fermionic tadpole. Using the standard trick, the fermionic tadpole can be
expressed in terms of the bosonic tadpole:

If(m) = Ivac(m) + IT,f(m), (A.14)

IT,f(m) = 2IT/2,b(m) − IT,b(m) = 2−1+2εIT,b(2m) − IT,b(m). (A.15)

Defining I1,f , I2,f as in Eqs. (A.7), (A.8) but with nf instead of nb, we obtain

IT,f(m) =
1

2
µ−2εT 2

{

−
[

1 + ε
(

2 − 2 ln 2 + ln
µ̄2

T 2

)]

I1,f

(m

T

)

+ εI2,f

(m

T

)

}

. (A.16)
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The high and low temperature expansions of I1,f , I2,f can be obtained from those of
I1, I2 by noting that

I1,f

(m

T

)

= I1

(m

T

)

− 1

2
I1

(2m

T

)

, (A.17)

I2,f

(m

T

)

= I2

(m

T

)

− 1

2
I2

(2m

T

)

+ ln 2 I1

(2m

T

)

. (A.18)

B The bubble

Let us then consider the 1-loop “bubble” diagram with two propagators,

Db(f)(m1, m2) =
∑

∫

Pb(f)

1

P 2 + m2
1

1

P 2 + m2
2

=
1

m2
1 − m2

2

[

Ib(f)(m2) − Ib(f)(m1)
]

, (B.1)

where Pb(f) = (pb(f),p) and we have taken the external momentum to zero. We can
again write

Db(f)(m1, m2) = Dvac(m1, m2) + DT ,b(f)(m1, m2), (B.2)

Dvac(m1, m2) =
µ−2ε

(4π2)

(

1

ε
+ ln

µ̄2

m1m2
+ 1 − m2

1 + m2
2

m2
1 − m2

2

ln
m1

m2

)

, (B.3)

DT ,b(f)(m1, m2) = +
(−)

µ−2ε T
2

2

1

m2
1 − m2

2

[

I1,b(f)

(m2

T

)

− I1,b(f)

(m1

T

)]

+ O(ε).(B.4)

The special case m1 = m2 gives the derivative of I(m) with respect to m2:

D(m) ≡ −dI(m)

dm2
= Dvac(m) + DT (m), (B.5)

Dvac(m) =
µ−2ε

(4π)2

(

1

ε
+ ln

µ̄2

m2

)

, (B.6)

DT (m) =
µ−2ε

(4π)2
D
(m

T

)

+ O(ε), (B.7)

D
(m

T

)

= 4
∫ ∞

0
dp

nb(ω̂p)

ω̂p
, (B.8)

with

D(y)
y�1
=

2π

y
+ 2 ln

y

4π
+ 2γE,

y�1
= 2

√

2π

y
e−y. (B.9)

We also need the derivative of In 6=0(m) with respect to m2:

Dn 6=0(m) ≡ −dIn 6=0(m)

dm2
=

µ−2ε

(4π)2

(

1

ε
+ ln

µ̄2

µ̄2
T

)

+ O(ε, m2). (B.10)
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C The sunset

Let us then consider the bosonic and fermionic 2-loop sunset diagrams

Hb(f)(m1, m2, m3) =
∑

∫

Pb(f)

∑

∫

Qb(f)

1

P 2 + m2
1

1

Q2 + m2
2

1

(P + Q)2 + m2
3

. (C.1)

In the limit mi/T � 1, it is known that [11, 21]

Hb(m1, m2, m3) = µ−4ε T 2

(4π)2

(

1

4ε
+ ln

µ̄

m1 + m2 + m3
+

1

2

)

+ O(miT ), (C.2)

Hf (m1, m2, m3) = O(miT ). (C.3)

Our objective here is to compute these diagrams in the case of general mi. We are
aware of previous results in this direction in [22, 23].

General case. The method we employ for evaluating Hb, Hf follows the standard
procedure (see, e.g., [22, 23, 24]). The twofold sum over the Matsubara modes is first
written as a threefold sum with a Kronecker delta, and the delta is then written as
δ(p0) = T

∫ β
0 dx exp(ip0x). The sums can now be performed,

T
∑

pb(f)

eipb(f)x

p2
b(f) + ω2

i

=
nb(f)(ωi)

2ωi

[

e(β−x)ωi +
(−)

exωi

]

. (C.4)

The integral over x is then very simple. The outcome can be organized in a transparent
form, when different types of contributions are identified with known expressions; the
same result could also have been obtained from the rules of the real time formalism, as
noted for the 3-loop bosonic basketball diagram in [25]. In the remaining integral over
the spatial vectors p,q, we can perform at least the integration over z = p ·q/(|p||q|),
leaving for numerics at most a rapidly convergent 2d integral over p ≡ |p|, q ≡ |q|.

Let us denote

Π(Q2; m2
1, m

2
2) =

∫ d4−2εP

(2π)4−2ε

1

[P 2 + m2
1][(P + Q)2 + m2

2]
, (C.5)

fp,q(m1, m2; m3) = ln

∣

∣

∣

∣

∣

4(p2 + m2
1)(q

2 + m2
2) − (m2

1 + m2
2 − m2

3 − 2pq)2

4(p2 + m2
1)(q

2 + m2
2) − (m2

1 + m2
2 − m2

3 + 2pq)2

∣

∣

∣

∣

∣

. (C.6)

The explicit expression for Π(Q2; m2
1, m

2
2), often denoted by B0, is well known:

Π(Q2; m2
1, m

2
2) =

µ−2ε

(4π)2

[

1

ε
+ ln

µ̄2

m1m2
+ 1 − m2

1 + m2
2

m2
1 − m2

2

ln
m1

m2
+ FE(Q2; m2

1, m
2
2)
]

, (C.7)

FE(Q2; m2
1, m

2
2) = 1 +

m2
1 + m2

2

m2
1 − m2

2

ln
m1

m2
+

m2
1 − m2

2

Q2
ln

m1

m2

+
1

Q2

√

(m1 + m2)2+Q2
√

(m1 − m2)2+Q2 ln
1 −

√

(m1−m2)2+Q2

(m1+m2)2+Q2

1 +
√

(m1−m2)2+Q2

(m1+m2)2+Q2

. (C.8)

13



The absolute value inside the logarithm in fp,q in Eq. (C.6) means that we take the
real part of the expression; the imaginary part would anyway cancel against Im Π.

With this notation, we obtain

Hb(m1, m2, m3) = Hvac(m1, m2, m3)

+
∑

i6=j 6=k

IT,b(mi)Re Π(−m2
i ; m

2
j , m

2
k)

+
∑

i6=j 6=k

µ−4ε

32π4

∫ ∞

0
dp p

∫ ∞

0
dq q

nb(ωp,i)

ωp,i

nb(ωq,j)

ωq,j
fp,q(mi, mj ; mk), (C.9)

Hf(m1, m2, m3) = Hvac(m1, m2, m3)

+IT,b(m3)Re Π(−m2
3; m

2
1, m

2
2) −

∑

i6=j

IT,f(mi)Re Π(−m2
i ; m

2
j , m

2
3)

+
µ−4ε

32π4

∫ ∞

0
dp p

∫ ∞

0
dq q

nf(ωp,1)

ωp,1

nf (ωq,2)

ωq,2

fp,q(m1, m2; m3)

−
∑

i6=j

µ−4ε

32π4

∫ ∞

0
dp p

∫ ∞

0
dq q

nb(ωp,3)

ωp,3

nf(ωq,i)

ωq,i
fp,q(m3, mi; mj), (C.10)

where
∑

i6=j 6=k ≡ ∑

(i,j,k)=(1,2,3),(2,3,1),(3,1,2),
∑

i6=j ≡
∑

(i,j)=(1,2),(2,1), and the zero tempera-
ture contribution is

Hvac(m1, m2, m3) =
∫

d4−2εP

(2π)4−2ε

∫

d4−2εQ

(2π)4−2ε

1

P 2 + m2
1

1

Q2 + m2
2

1

(P + Q)2 + m2
3

. (C.11)

The only ultraviolet divergences are in Hvac(m1, m2, m3), which has 1/ε2, 1/ε poles, and
in the Π’s, which have the pole µ−2ε/(16π2ε), cf. Eq. (C.7).

Let us also mention a few words about the numerical evaluation of the 2d integrals
involving fp,q(m1, m2; m3), left to be carried out in Eqs. (C.9), (C.10). These integrals
are of course well-defined and finite. However, if m3 < |m1 − m2| or m3 > m1 + m2,
they involve integration over logarithmic singularities. In our numerics, we found that
the integration is more effective if we factorise out the singularities explicitly. Suppose
we, for instance, first perform the integral over q. If m1 6= 0, we write

a =
p

2m2
1

(m2
3 − m2

1 − m2
2), (C.12)

b =
1

2m2
1

(p2 + m2
1)

1/2
(

m4
3 − 2m2

3(m
2
1 + m2

2) + (m2
1 − m2

2)
2
)1/2

, (C.13)

fp,q(m1, m2; m3) = ln

∣

∣

∣

∣

∣

(q − a − b)(q + b − a)

(q + a + b)(q + a − b)

∣

∣

∣

∣

∣

, (C.14)

and there are then singularities at q = |a + b|, |a − b|. If m1 = 0, we write

q0 =
4m2

2p
2 − (m2

3 − m2
2)

2

4p(m2
3 − m2

2)
, fp,q(0, m2; m3) = ln

∣

∣

∣

∣

∣

q − q0

q + q0

∣

∣

∣

∣

∣

, (C.15)
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Figure 3: The finite part of Hb(mH , mQ, 0) − Hb(0, mQ, 0) (the zero temperature con-
tribution has been subtracted) with solid lines, compared with the “linear term” in
Eq. (C.17) with dashed lines. The results have been divided by T 2/(4π)2.

and there is a singularity at q = |q0|. If m2 = m3, fp,q(0, m; m) = 0.

One heavy, one light mass. Let us now consider in more detail some special cases of
Hb(m1, m2, m3) needed in the main part of this paper. For the consideration in Sec. 3,
we need to know how Hb(mH , mU , mQ) behaves for small mH , mU . We claim that
there is a linear term ∝ mH , mU (modulo logarithms). Since the result is symmetric
in mH , mU , it is enough to consider mH � mQ.

Non-analytic terms can only arise from a zero Matsubara mode. Thus,

Hb
mH�mQ∼

∫

d3−2εp

(2π)3−2ε

1

p2 + m2
H

∑

∫

Q

1

q2
0 + (p + q)2 + m2

U

1

q2
0 + q2 + m2

Q

. (C.16)

Let us denote the latter integral by Π(p). It is then obvious that the leading behaviour
must be

Hb
mH�mQ∼

∫

d3−2εp

(2π)3−2ε

1

p2 + m2
H

Π(0) = I3d(mH)
1

m2
Q − m2

U

[

I(mU ) − I(mQ)
]

=
1

m2
Q

I3d(mH)
[

−I(mQ) + I3d(mU) + In 6=0(0)
]

(

1 + O
(m2

U

m2
Q

,
m2

U

T 2

)

)

. (C.17)

Indeed, the remainder,

∼
∫

d3−2εp

(2π)3−2ε

1

p2 + m2
H

[

Π(p) − Π(0)
]

, (C.18)
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behaves at small p as
∫

dp p4/(p2 + m2
H). This is IR finite even after expanding in m2

H ,
therefore there cannot be any further linear contributions.

In order to verify this behaviour explicitly, we set mU = 0 and compare the finite
part of Eq. (C.17) with a numerical evaluation of the finite part of Hb(mH , mQ, 0) in
Eq. (C.9). We fix µ̄ = T , and choose mQ/T = 1.0, 2.0, 4.0. The result is shown in
Fig. 3. Note that in Eq. (C.17), one must include a contribution ∼ mH lnmH , arising
when the O(ε) part of I3d(mH) (cf. Eq. (A.12)) combines with the 1/ε pole in I(mQ).
From the perfect agreement at small mH/T in Fig. 3, we conclude that for mH/T � 1
the behaviour is indeed according to Eq. (C.17).

Two equal heavy masses. Finally, let us consider the special case needed in Sec. 4,
Hb(m, m, 0) (cf. Eq. (4.2)). The T = 0 part in Eq. (C.11), related to 2-loop vacuum
renormalization of m2

H(µ̄), is

Hvac(m, m, 0) = −µ−4ε m2

(4π)4

(

µ̄2

m2

)2ε (
1

ε2
+

3

ε
+ 7 +

π2

6
+ O(ε)

)

. (C.19)

Using Eq. (A.6) as well as the simple expressions for Π(0; m2, m2), Π(−m2; m2, 0) ob-
tained from Eqs. (C.7), (C.8), we then get from Eq. (C.9)

Hb(m, m, 0) = Hvac(m, m, 0) + µ−4ε T 2

(4π)2

[(

1

12
+ I1

(m

T

)

)(

1

ε
+ ln

µ̄2

T 2
+ ln

µ̄2

m2

)

+(4 − 2 ln 2)I1

(m

T

)

− I2

(m

T

)

+
1

6

(

γE − ln 2 − ζ ′(2)

ζ(2)

)

+ H
(m

T

)

]

, (C.20)

where I1, I2 are from Eq. (A.8), and

H
(m

T

)

=
2

π2

∫ ∞

0
dp p

∫ p

0
dq q

nb(ω̂p)

ω̂p

nb(ω̂q)

ω̂q

ln
p + q

p − q
. (C.21)

The function H(m/T ), numerically very easily evaluated, is plotted in Fig. 4, together
with a comparison with the limiting values

H
(m

T

)

m�T
= −1

2

(

ln
2m

T
− 1

3
+ γE − ζ ′(2)

ζ(2)

)

,
m�T
=

1

2π
e−2m/T . (C.22)
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