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1. INTRODUCTION

Last year, finite dimensional algebras of one parameter (or more) defined by generators and
relations that involve the braid relations has been studied rather intensely (e.g. the Hecke al-
gebra, the Temperley-Lieb algebra, the Birman-Wenzl-Murakami algebra, among others). A
motivation for this is to take matricial representations for the braid group, polynomial invari-
ants for knots (via Markov trace over the algebra), as applications in 2D lattice in statistical
mechanics.

Now, to define such an algebra is not a trivial matter. Usually, these algebras arise as quotients
of the groups algebras of the braid group, as centraliser algebras of the tensor powers of the
quantised enveloping algebras of classical Lie algebras, or they are defined by generators and
relations motived by reasons arising from Physics.

In this note, we introduce and begin to do a systematic study of an algebra of one parameter,
whose generators satisfy certain braid relations. On the contrary to the classical definitions, our
algebra arises from the Yokonuma-Hecke algebra[6]; that is, from the algebra of endomorphisms
of the permutation representation of the group G L, (F, ), relative to its maximal upper unipotent
subgroup. More precisely, the definition of our algebra is by generators and relations, which are
motived from the non-standard generators of the Yokonuma-Hecke algebra introduced by the
author in [4].

Here is the outline of the note: In section 2 our algebra is defined, and the word “another”in
the title is explained (see subsection 2.1). In section 3 we construct a good system of generators
for our algebra (theorem 20). The reason for to be good is that we have experimental reason
for to conjecture that is, in fact, a basis for our algebra. In section 4 our algebra is realized
as a subalgebra of Yokonuma-Hecke algebra (see theorem 23). In section 5, we prove that the
algebra can be Yang-Baxterized. Finally, in section 6 some technical lemmas are proved.

Notations. In this work P(n) denote the power-set of {1,... ,n — 1}. We denote by S,, the
symmetric group on {1,... ,n}, and by s; the transposition (i,7 + 1) of S,,.
C(u) denotes the field of rational functions in an indeterminate u, over the complex number

C.

2. THE ALGEBRA &, (u)

Definition 1. Let n be a natural number and u an indeterminate over C. Let E,(u) be the
associative algebra over C(u), with generators:

laTla s aTn—laEla s aEn—l
subject to the following relations:

E? = E; E,E; = E;E;, Vi,j

2
ET; =T E;

[T'Z',Tj] = [E,E]] =0 if |Z —]| > 1.

4 TP =1+ (u-DETL(1-T)
5) ET(1-T)=—u'E(1-T)
And when |i — j| = 1, we impose:

(6) TIT; = T,

(7) T.1;E; = E;TiT;

(8) E,E;T; = E{I;E; = T;E;E;

(9) LET; - TET; = (1 - u ') (E/LE; - ET;E;).



Notice that relation (5) and (9) are superfluous?.

It is easy to check that the map T; — (i,7 + 1), E; — 0 define a homomorphism of &, (u)
onto the group algebra of the symmetric group. Also we have a morphism of &,(u) onto the
Iwahori-Hecke algebra H,(u) via the map

T, = (1—ul)—ulL
E;, — 1,
where Lq,...,L, 1 are the standard generators of H,(u), that is, the L;’s satisfies the braid

relations and the quadratic relation L? = u + (u — 1)L;.
Now, from (4) we deduce that T; is invertible,

(10) T =T - (u—1)E(1-T).
And we get the following notable relation, cf. section 5,

11 ~1 11 —1
(11) T, T +udT T =T, TT, + oI T

Set P; =u/(u+ 1)E;(1 —T;). It is not difficult to prove the following useful relations:

(12) (u+1)>(PiP;P; — PiP,P)) = u’ B;E;(T; — Ty).
(13) (u + 1)P;P;P; + uT; P;P; = uP; P;,

(14) E;P; = PE; = (u — 1)P;

(15) EZP] = PjEi, VZ,j

(16) P? = P;

(17) T,P, = PT; = —u 'P;

(W) TP =1-uw (-T7)=1+@w?2-1)P =1+ (' -1)E(1-T)
(19) T} +u "I} =T —u ' = (T +u )T+ 1)(T; = 1) = 0

(20) PT;T; = T;T; Py, if |i — j| = 1 (from (6) and (18))

2.1. The algebra J,(u). In [5] we have defined an algebra 7, (u). We know that this algebra
is finite dimensional up to n = 5. Now, a standard method to know if an algebra, defined
by generators and relations that involved braid relations, is finite dimensional is to solve the
so-called problem of the words, that is, to write any word (in its defining generators) as a
linear combination of words having only at most one element in certain pre-fixed subfamily of
generators. We cann’t solve this problem for the algebra 7, (u).

On the other side, motived by the realization of J,(u) as a subalgebra of Yokonuma-Hecke
algebra, it was natural to consider a certain linear decomposition of a part of the generators
of Jn(u). Thus obtaining another algebra &,(u), in which the problem of the words is solved
(see proposition 4). Hence in some sense, the algebra &, (u) is a certain linear decomposition for
the algebra 7, (u), in the sense that a part of the generators of 7, (u) is linearly decomposed in
En(u), see proposition 2.

Recall that the algebra J,(u) is the associative algebra over C(u) defined by the generators

1,7,... ,Tn_l,Tfl, - ,77;_11,7(1, R
and the defining relations:
TiTZ-_l = TZ-_ITZ' =1
T — Ti_l = (u— u_l)m
T = T;T; = —u_lﬂ'z-

[TZ', Tj]:[ﬂ'i, Wj]:[Ti, 7'(']']:0 if |i—j|>1.
And when |i —j| =1,
TiTjTi = TjTiTj

2F. Aircardi pointed out that relation (9) is superfluous.



-1 -1 -1 —1_ -1 P
 TT,  TUTT, T =T, T, HuUTT T

(u+ V) mymjm; + urymjm = umym.

i

Proposition 2. The map 7; — T;, m; — P; defines a morphism from the algebra J,(u) to the
algebra &y (u).

Proof. The proof follows from the defining relations for &,(u), and relations (11), (13), (17)
and (18). 1

3. THE LINEAR PART

In order to prove that &,(u) is finite dimensional we need, in addition to the above relations,
the following lemma.

Lemma 3. For all i,j such that |i — j| = 1, we have:

(3.1) (u = V)(GPT; - TiPT)) = —(u—u ')*(PP;P; — PjPP))

(3.2) (u— )(PT;P; — PiT;Pj) = u(u —u™") (PP P; — PjP;P))

(33) (u— 1)(PPT; — TiPP)) = —(u —u™")(PPP, — PiPP)).
Proof. 1t is a consequence of proposition 2 and lemma 2.10[5]. 1

Proposition 4. In the algebra E,(u) any word in 1,T1,... ,Th—1, E1,... ,Ey_1 is a linear
combination of words in T;’s, E;’s having at most one Ry,_1, where Ry,_1 € {Ty,—1, Ep—1, Ph—1}.
Thus E,(u) is finite dimensional.

Proof. We use the same argument of induction used in lemma 3.1[1]. For n = 2 the claim is
obvious. Now suppose the lemma for n — 1. Thus, we must prove that all words below can be
written as linear combination of words having at most one R,, € {T},, E,, P,,} (we will say the
word have a reduction):

(i) TpRn 17T,

(i) ThRn 1 Pa
(iii) TR 1En
(iv) PaRp 1T,
(V) P,R, 1P,
(vi
(
(

where R,,_1 € {I,Tn_l, P,_1, En—l}-

Let us see the case whenever R,_; = 1: The reduction of (i) is from (18). The reduction of
(ii), (iv) is from (17). The reduction of (v) is from (16). The reduction of (vi) and (viii) is from
(14). The reduction of (ix) is from (1). For (iii) and (vii) recall

T,E, =E,T,=E, - (14+u ')P,.
Now, let us consider the following three cases:

Case Ry_1 =T,_1. The reduction of (ii) and (iv) is from (20). The reduction of (v) is from
lemma 3 and (12). The reduction of (iii) and (vii) is from (7). The reduction of (ix) is from (8).
For (vi) we have

P,T, E, = P,E,T,_1E, (from (14))
= PnEnEnflTnfl (from (8))
= P,E,_1Th1 (from (14)).

In the same way we get a reduction for (viii).



Case Ry_1 = P,_1. The reduction of (vi) and (viii) is from (15) and (14). The reduction of
(ix) is from (15) and (1). The reduction of (i), (ii), (iv) and (v) is from (12) and lemma 3. For
(iii) we have

T.,P,_1E, = T,E,P,_1 (from (15))
= (Bn—(1+u "YP)Py
= E,P, - (1+u YHP,P, ;.

In the same way we get a reduction for (vii).

Case R,_1 = E,_1. The reduction of (i) is from (9) and (8). The reduction of (ii) and (iv)
is from (15) and (17). The reduction of (v) is from (15) and (16). The reduction of (vi) and
(viii) is from (15) and (14). The reduction of (ix) is from (1).

For (iii) we have

T,Epn \E, = TpoEnEn, (from (1))
= (Bn—(+u YP)E,
= E,E, - (1+uYP,E, 1.
In the same way we get a reduction for (vii).
For n = 2 the algebra is dimension 4. Now, &,(u) = Y En_1(u)RpEp—_1(u), where the sum

is over R, € {1,T,,,E,,P,}. Thus, we deduce by induction that the algebra &, (u) is finite
dimensional. 1

Remark. From the definition of the P;’s it is obvious that the preceding proposition holds
if Ry € {1,T-1,Ep—1,En—1T—1}. And from (10) the proposition also holds if R,_; €
{laTn—laEn—laTn__ll}-

We are going to construct a good system of generators for &,(u). First, we prove that the
algebra is linearly generated by certain “standard words” (see proposition 12), and then we will
take from them the good system of generators (theorem 20).

As usual, we denote by ¢ the length function on S, relative to {si,... ,Sp—1}.

Also, we use the fact that all elements w in S),, admit a writing reduced of the form

(21) w = (Silsil—l .. ')(SiQSiQ—l .. ) .. (simsim—l .. .)’

where 11 <9 < -+ < iy
Let us consider the following elements, in form reduced, in Sy1:

O, := SpSra1- " Sn (r <n).
Lemma 5. For all w € Sy, we have in Sp11:
(5.1) £(6,w) = £(6;) + L(w)
(5.2) (Smt15m)(Smt28m+1) * (SnSn—1)8n = (SmSm+1 " Sn—15n)(SmSm+1 " Sn—1)-
Proof. Trivial. 1

In virtue of the braid relation (6) and a well-known theorem of H. Matsumoto, we have that
ifw=s; -5, €95y is an expression reduced for w, then the element

Ty:=T;, T,

tm)
is well-defined.
Proposition 6. Let w € S, and set s = s;. We have
T,T; = Ty if l(ws;) =L(w)+1
T,T; = Tys+ (u 't —1)Ej(Tps —Tw)  if L(ws;)=L(w)—1.



Proof. The proof is by the same procedure used for to prove the analogous in the case of
Iwahori-Hecke algebra; that is, using induction over length of w and (18). 1

We will denote by L; the element T;FE;.
Lemma 7. For all i,j such that |i — j| = 1, we have:
(7.1) BT, = TLET; + (u™' — )WL EE; + TE Ej)
(7.2) LTy = TTLiT; + (u™ — WL LiEj + T, LiEy).
Proof. From (7) we get
(LTE)T; = E;jTT;
= BT+ (' =1)(EB - ET)  (from (18))
= ET;+ (u ' - 1)(T,EE; - T,T;E;E;)  (from (8)).
Thus the assertion (7.1) follows.
Multiplying (7.1) on the left by T}, and after using (6) we take (7.2). 1

Now, as in the Iwahori-Hecke algebra we can take a system of linear generates for &, (u) (which
in our case will be redundant) in the following way: we define Uy = {1,T1, E1, L1}, and U; is
defined by

Ui ={1}UT,U;—1 UE;U;—1 UL;U;_4 (2<i<n).
Using induction and proposition 4 we deduce that &, (u) is generated linearly by all the products
of the form wjug - - - u,_1, where u; € U;. From where we deduce

(22) gn-l—l(u) = Z YiYipr--- Yngn(u) + &y (u),
1<i<n
where Y} S {Tj,Ej,Lj}.
In order to take a best system of linear generators (let us say in terms of standard words) we
will need the following three technical lemmas, whose proofs will be done in section 6.

Lemma 8. Let m > i. The word E;Ti1 - Ty 1Ty € Emy1(u), is a linear combination the
words of the type:

(8.1) (Ti1 T3) (Tig2Tig) - - - (TnTi—1) Emax
(8.2) Ti+1Ti+2 Tt TmEmﬁ
(8.3) Tip1Tivo T AT Ty - - T 1 By (i+1<j<m—1)

where «, 3, v; € Em(u).

Lemma 9. Let m > i. The word LiT;y1-+ Tp1Tp, € Ems1(u), is a linear combination the
words of the type:

(9.1) (Ti1T3) (Ti2Ti1) - - (T Tn—1) L
(9.2) TiTi1Tive - Tn—1 Lin B
(9.3) T jTm—jy1 T TiTi1 - - Trne1 Lin v 0<j<m-—-2)

where a, 3, v; € Em(u).

Lemma 10. Let Y; € {1}, E;, Li}, and m > i. The word Y;Yii1 - Yi-1Yy € Emt1(u), can be
written as a linear combination of words of the form

(10-1) EiEi-H e Em—lEma TiTi-H T Ty,

(10.2) T, Tps1 -+ Ty Linor



(103) T‘iT‘iJrl o Trfl(Tr+1Tr)(Tr+2Tr+1) ot (Tmefl)Fmﬁ Fm - Ema Lm
(104) TTryq - TmfleTjT}'+1 T TmflEm'Yj (T <j<m-— ]-)
(10.5) T Tm—j+1 - T Li iy - - - Tin—1Lindj, (0<j<m-2)
where i <r <m, a, (3, vj, 0; € Ep(u).

Definition 11. (11.1) For I := {i1,... ,ipm} € P(n), we define E; as the product E;, --- E;
If I is the empty set, we assume that Er is equal to 1.

m *

(112) We deﬁne W1 = {1}, W2 = {1,E2T1}, W3 == {1,E3T2,E3T2T1}, S0 on.

Proposition 12. The algebra E,(u) is generated linearly by the words of the form
TwX, 1 X9 X 1 Ey, (standard word)
where w € Sy, X; € Wi and I € P(n).

Proof. The proof is by induction over n. For n = 2 the proposition is true, because & (u) is
linearly generated by the elements 1,77, E1,T1 E;. Set n > 2. According to (22), it is sufficient
to prove that any product of the form Y;Y;11---Y,Z (Z € &,(u)) is a linear combination of
standard words in &,11(u).

Now, from lemma 10 we deduce that Y;Y;,1---Y,Z is a linear combination of elements of the
form

(A1) EiEi1 - By 1EyZy, TiTip1---ThaThZ1

(A2) T Ty Ty Ty En Za,

(A3) TiTiw1 T (Lo T) (T2 Tr1) - - - (T T—1) Fr Zs, Fn,=Ey, Ly,
(A4) > LT Ty Ty 1Ty - Ty EnZy - (r<j<n—1)

(A5) Ton—jTn—jy1- Ty TiTiy1 - - Tyo1 Ln Z5, 0<j<n—-2)

where Zo, ..., Zs, Z} € En(u).
Consequently, it is enough to prove that the elements in A1 to A5 are a linear combination
of standard words in &,1(u). This will be done in the cases Al to A5.
First notice that by the hypothesis of induction the elements Zj,... , Zy, Z]’- are linear com-
binations of standard words in &, (u). Thus, we can put
Tan—l"'X2EKa (’LU € SnaK € P(n))

to the place of Z; in Ai (i = 0,4), and to the place of Z} in A5.
Furthermore, we will use the expression reduced (21) for w.
Case A1. (i) From (5.1) and proposition 6, it is clear that

T TpZy = (T; - TaTw) Xn—1 - - - XoFk,

is a standard word in &,41(u).
(ii) On the other hand,

EiEip1 - En_1EyZy = Ep(EiEiy1 -+ En_12).

Using induction on the elements between parenthesis, we have that E;E; 1 --- E, 1E,Zy is a
linear combination of elements A; of the form

Al =E,T,Xn-1- - XoFk (U) €S, K e P(n))
In the case that w does not contain s,_1, we have that A; is the standard word

TwXn—1 - XoE,Ex.



If w contains s,_1, we put w = w'(s, 18,2+ ), where w’ € S,,. Then A; is the standard word
A =Ty X, Xy 1 - XoFEg (X =BT 1 Tha---).
Case A2. If in (21) w does not contain s,_1. Then A2 becomes
Ty T Ty Xn—1 - - XoEp B,

which is a standard word in &, 11(u), because according to (5.1) and proposition 6 the element
T, Ty - - TR Ty is of the form Ty.
Suppose that w contains s,_1. Put w = w's,_15,_2---, where w’ € S,_;. We get
TrTr+1 toe TnflEnTanfl T XZEK = (TrTr+1 T TnTw’)Xanfl T XZEK

where X,, = E,T,, 1T, _2---. Using (5.1) and proposition 6 on the word between parenthesis,
we have that the element in A2 becomes a standard word in &,41(u).
Case A3. First let us note that

(23) { (Trn1Tm) T2 Tongr) - (TnT—1) = (D1 -+ T) (T - - Tr—1)
(Tm+1Tm)(Tm+2Tm+1) T (TnTnfl)Tn = (Tm T Tn)(Tm T Tnfl)

Set Ty = TiTjy1---Tp—1, where { = s;8;41---s,_1. Now, we distinguish between the cases:
F,=FE,or F,=1L,.
Case F,, = E, in A3. In this case the element in A3 case take the form
A3 = T{(Tr-l—lTr)(Tr—l—?Tr—l—l) T (TnTn—l)EnTan—l - XoFg
= T T, T,E,T,X, 1 XoEk (from (23))
= TuTgTvEnTan—l -+ XoFg,
= T Te0E TyXn 1+ - XoEK (from (5.1) and proposition 6)

(m < n).

where v = Sp41Sp49 -+ Sp_98p, and v = $pSp41 - Sp_1-
We are going to distinguish the cases: w contains or not s,_;.
T If w does not contain s, 1, then we can write A3 as

Az = Tu(TgvaXn—l T X2EK)En-

Using the hypothesis of induction over the element between parenthesis we obtain that A can
be re-written as

A3 = TuTanfl T XZEKa

where w € Sy, K € P(n +1).

Now from (5.1) the product T,,T), is of the form Ty, with 8 € S, 1. So, A3 is a standard word
in (‘:TH-I (U)

T In the case that w contains s,_1, we put w = w's,,_1Sp_2- -, where w' € S,,_1. Thus A3 is

A3 = TquvEnTanfl - XoFg
= Tquva’Xanfl - XoFg (Xn =E, T, 1T, 2--- )

Using proposition 6 and (5.1) over T¢, Ty, and after on T),(T¢,T,y), we deduce that A3 is a
standard word in &,11(u).

Case F, = L, in A3. In this case according to (23) we have that the element in A3 takes the
form

Az = TgTuTvEnTan—l -+ XoFk,
where © = $;8p41* Sp—15n, and U = SpSpy1 - Sp—1-
According to (5.1) and proposition 6, T¢T,, = T¢,. Then
Az = T{uTvEnTan—l - XoFg.

Again we distinguish the cases: w contains or not s, 1.
T If w does not contain s, 1, then the word in A3 take the form

As = Teo (T, Ty Xy 1 -+ XoExc) By



Using the hypothesis of induction over the elements between parenthesis, A3 can be re-written
as
A3 =T Ty Xp—1--- XoFk,
where w € Sy, and K € P(n +1).
Applying (5.1) and proposition 6 over T¢, T, we deduce that Aj is a standard word in &, 41 (u).
T In the case that w contains s,, 1, we put w = w's, 18, 2---, where w’ € S, ;. Then we
get that As is the following standard word in &,41(u),

(TguTva’)Xan—l -+ XoFk, Xpn=E 1 1Ty 2
(notice that T¢, T, T, is of the form Ty, 6 € Sy41).
Case A4. From (5.1) and proposition 6 we have
Ty - Tn—lTnTjTj-H Ty =TTy
where v = s,5,41+* Sp_15p, and v = 8841 Sp_1.
T In the case that w does not contain s,_;, we have that in A4 one write
A4 = Tu(Tvaanan72 T X2EK)En

Now, applying the hypothesis of induction on the elements between parenthesis, we obtain that
Ay is re-written as
Ay =T, TyXp1Xp_2--- XoFk.
where now w € S, and K € P(n + 1).
Using (5.1) and proposition 6 on T, T, we deduce that A4 is a standard word in &,41(u).
T In the case that w contains s,_1, we put w = w's,_15,_2---. And then Ay is

A4 = TuTva’Xan—l Tt XQEKa (Xn = EnTn—l Tt )

where K € P(n).

The fact that A4 is a standard word follows applying first (5.1) and proposition 6 on T3, T,
and after on T, (T, T,).

Case A5. First we note that

Tn—j o TnTiTi-H o Tn—lTn = Tz o Tn—j—?(Tn—an—j—l) e (Tn—lTn—2)(TnTn—1)Tn
- T‘i"'Tnfj72(Tnfj71"'Tn)(Tnfjfl"'Tnfl)
= TuTva

where u = s;-+- 5, j 25, j 18, V=155 j 1 " 5 1.
Thus, the element in A5 takes the form

As =T, TyEyTwXn 1 Ex  (w€ Sp, K € P(n)).

Again we distinguish between the cases: w contains or not s,_i.
T In the case w does not contain s,_1, we have A5 = T, T, T, X,—1 -+ Ex E,. Applying (5.1)
and proposition 6 on T,T,, and after on T,(T,T,) we obtain that As is a standard word in

5n+1(U).
T In the case that w contains s,_1, one can write w = w'(8,_18,_2---). Then

As = Ty Ty Xn X1+ Xo B, (Xn =BT 1Th 2 )

from where Aj is a standard word in &,11(u), because in virtue of (5.1) and proposition 6,
T, Ty Ty is of the form T¢, with § € Sp1. |

Lemma 13. Any E € {E;,E;_1--- Ej,E; (1 E; - - - Ej} commute with:
(13.) TiT, -1,
(13.2) the elements of W, for all r <.

Proof. (i) Set E = E;--- Ej. We can write

LT - T, E =TT, \ET;, oF; \T; 3---T;11E; 5TjE; 1 Ej.



Using repetitively the relation (8) from the right to left, we deduce the claim. In the same way
we obtain the proof for the case £ = E; 1 E; --- Ej.
(ii) Let E be E;E;_; --- Ej, and put X, = E,T,_1--- E, € W;,, with r <i. We have
X, B = EJ(ET‘TT—IET—ITT‘—3 T TsEs—l)a
where {i,i —1,... 5} =JU{r,r—1,... s}
The result follows, using repetitively the relation (8) from the right to left in the expression
between parenthesis. In similar way we take (13.2) for E; 1 E;--- Ej. 1

Corollary 14. If I contains {i,... ,j}, then Er commutes with T;T;_y ---T}, and with all the
elements of W, (r <i). In particular, we have that Ey;  ,y is in the center of &y (u).

Definition 15. Set X = T,,, X;--- XoFr and Y = T3,,Y; --- Yo Ej with Y; # 1, two standard
words in Ep(u). We say X reduces to'Y if the product Y X, is a linear combination of standard
words of the form

TwZy- - ZoEK (1<),
where w € Sy, Z; € W;, K € P(n).

Lemma 16. We have that E;_1T;_9 reduce to E;T;_4.
Proof. This follows directly from (8):
(BT B )T o =T, BB 1Ty o =T 1 (B Ti0)E;.

Lemma 17. E reduces to E;T;_1---T; € Wy, for all E € {E;, E;_y --- Ej}.
Proof. (i) We have
(BT T))E = (BT aE)Ti 2T
= T’i—lEi—lEiT’i—Z s Tj (from (8))
= Ti (BT n---Tj)E;.
The words between parenthesis belong to W;_1, thus the lemma holds for £ = E;.

(ii) In the case E = E;_--- E;, we use lemma 13:

(BiTi—1---Tj)E = B, ET, \T;—2---Tj = T;_1\T;—o--- T; B, E. 1

Remark. It is obvious that any E; reduces to E;T;_y---T; € W;, if I contains {i} or {i —
1,....5%

Proposition 18. Let X; € W;, (2 <i < m), let us put X,,, = ETy—1---Tj, and let E be in
{Em,Em—1---E;j}. We have that X, Xy,—1--- XoF is a linear combination of standard words
of the form

TwViViy--VaEk € Eppa(u) (I <m),
where w € Sy, V; € Wi, K € P(m +1).
Proof. (i) Suppose E = E,,. In the case X,, = 1 the assertion is trivial. Set X,, =
EpTn1Tm—2---Tj; we have
X X1 XoF = XpEXp 10 X0
(EmTim-1ETp—2 - Tj) X1 -+ Xo
= Tm1Bm 1 BTy 9 Tj Xy 1 Xo
{(T-1Eppi T2 -+ - Tj) Xy - - X} E.

Using proposition 12 on the word between curly brackets, the assertion follows.



(ii) Set £ = E,,_1---E;. In the same way as in the proof of lemma 13 part (ii) and using
(13.2), we get

XpnXpm1-XoF = XpEXpo1---Xo
= EnETy_1-TjXpy_1-- Xo
= Tn1TEnEXy 1+ Xo
= (Ty-1---TjEXyy_1 - Xo)Ep.

As the expression in the parenthesis belongs to &, (u), we deduce the claim from proposition
12. 1

Corollary 19. The above proposition holds for E = Eg, for all K that contains to {i} or
{i—1,...,5}

Set Xp, j,, .= Ep/Ty—1 -+ Tin—j,, € Wi, where 1 < j,, <m — 1. And we set X, o = 1. With
these notations, the above corollary, lemma 13 and proposition 12, we deduce the following
theorem

Theorem 20. The algebra &, (u) is generated linearly by the standard words of the form
Tan,Ljn_an,Q,jn_z oo X2’j2EK, (w eSS, Ke P(n))

where if jy, # 0, then K does not contain {m} nor {m —1,... ,jm—1}; and if j,, = 1, then
jmfl 7& L.

We conjecture that the family described in the above theorem is a basis for &,(u). This
conjecture is supported by the case n = 2,3 and 4. For instance, the family of generators
{1,T1,E1,TE; } is a basis for £3(u). And we take from the theorem a system of generators for
Es(u) formed by

TwEr, TywEST, (w €83, 1€ P(?)))

In the next section we will prove that this family is a basis for the algebra &5(u) realized as a
subagebra of the Yokonuma-Hecke algebra.

4. OUR ALGEBRA AS SUBALGEBRA OF THE YOKONUMA-HECKE ALGEBRA

In the following we denote by & the finite field with ¢ elements .

Let G = GL, (k). Let B be the upper triangular subgroup of G, and let U be the unitriangular
subgroup of B. Let us recall that B has a decomposition as a semidirect product B = D x U,
where D denotes the diagonal subgroup of G. We denote by M the normalizer of D in G,
which consists of all monomial matrices in G. Let us recall that the Weyl group M/D of G is
isomorphic to the symmetric group S,,. Thus we can think the transposition s; = (7,7 + 1) as
the elementary matrix

1 0

O =

t+1

We have M ~D x S, ~ k*1.5,.
Set r € k*, and 1 < i <n — 1, we define the element h;(r), as the diagonal matrix with r in
the position (i,7), 7~! in the position (i + 1,i + 1), and 1 without. We have that the product



hi j(r) := sjhi(r)s; is the matrix

1 0

hi,j(r) = 1 ) (|7* _]| = 1)

0 1
where 7 is in the position (j,7) if j < 7, and is in the position (i,4) if 7 > i. We have
sihi(r)sz- = hi(Tfl).

Let us consider the algebra of endomorphims ), (¢q) of the permutation representation of
G with respect to U; which we shall call the Yokonuma-Hecke algebra. From the Bruhat
decomposition for G we have that the standard basis of Y, (q) is parametrized by the elements
of M. Hence the dimension of Y, (q) is (¢ — 1)"n!.

We shall call the operator of homothety to the elements Hy in ), (¢q) corresponding to ¢ € D.

Set H;(r) the homothety in )}, (q) corresponding to h;(r). And set H; ;j(r) the homothethy
corresponding to h; j(r). We define f; and F; ; as

1 L
Figi= =7 2 Hig)  (i=il=1D).

Now, let us consider the operators J ... ,J,_1 in V,(q) defined in [4]. These operators joined
with the operators of homotheties give a full description for ), (¢); namely

Theorem 21 (see [4]). The algebra Y,(q) is generated by Jy ..., Jo—1, and Hy, (t € D). And
these generators with the below relations give a presentation for V,(q).
JPo= 14 (g P =Dl - )
JilJ; = JjlJ; if li—jl>1
JidjJi = Jididy o if i jl=1
JiH, = HyplJ; where t' = sits;
H,H, = H,, (r,s € D).

Corollary 22. For all i,j, such that |i — j| = 1. We have:
(22.1) Fij = Fji

(22.2) FijFi=FiFij=FiF

(22.3) JiF j = FijJi, and FJ; = JiF ;.

Now, from the braid relations between .J; ... ,.J,_1, and the theorem of H. Matsumoto, we
can define J,, := J;, -+ J;, , where w € S), take a reduced expression of the form w = s;, ---s;,,.
Proposition 23 (see [4]). A basis for Y, (q) is {JyH;; w € Sy, t € D}.

Theorem 24. The operators J;’s and F; of the Yokonuma-Hecke algebra satisfy the relations
(1) to (9), when we put J; in the place of T;, F; in the place of Ej;, and q in the place of u.



Proof. One deduces the relations (1), (2), (3), (4) and (6) immediately from theorem 16.
The other relations follows with little effort using corollary 22; for example, we shall check the
relation (9):

JiF jJi — JiFJ; = FijJi —FjiJ;  (from 22.3)
(7' = VFi;(Fi(l = J)) — F (1= J3))
= (1- q_l)(Fi,jJi —FijJj) (from 22.2)
= (L—q )ik j—FidiFq). 1

Proposition 25. The family of generators in theorem 20 is a basis for E3(q).

Proof. We must prove that if
Z aw,lTwFI+ Z BuwdwkF 2J1 =0,

weS3 weS3
I1€P(3)

then a1 = By =0, for all w € S5, I € P(3).
Now, from (22.3) we have Jy,FoJi = JyJiF3, where F3 := F12. Using (4) on J;, and
corollary 21, we get
JihhFs = F3+AF = ALF
JoJ1JiFs = JoF 3+ AJoF — AJo i F
JiJe v Fs = JidoF s+ A JoF — ANy Jo i F,

where [ :=F1F3=Fof3 and A=¢g~ ! — 1.
Thus the equation in question can be written as

Z aw,IJwFI + Z ﬁwaF?) + Z(aw’ + Aﬁw’sl)Jw’F + Z(aw” - Aﬁw”)Jw”F = 07
we Sy wESs w' w'
{1,2}#I€P(3)

where w' € {1, 59, 152}, w” € {s1, 5251, 515251 }.
The assertion follows using proposition 23, and the elementary argument of the linear algebra
on substitution in a basis. 1

5. YANG-BAXTERIZATION

Our algebra has no BW-structure, but admits the procedure of the Yang-Baxterization of [2].
Proposition 26. The algebra &,(u) can be Yang-Baxterized.

Proof. We will use the notations of §3.[2]. First, from (19) the element T; is a solution of the
cubic equation 23 + u~'z? — 2z —u~!' =0. Let us put A\; = —u~', Ay = —1 and A3 = 1. We get

1 _ 1 _
f?j_:_aa f3:_§a f2: 1+:f1 =0.

According to theorem §3.[2], the algebra can be Yang-Baxterized if the following equation holds
fi 05 + f5 05 + fab2 + f7 07 + f{ 07 = 0. Now, this equation takes the form

ufy + 05 =0,

where 0 = T/T, \T; — T4 T, 'Tipq and 05 = T; 'T T, " — T, T, . The proposition

follows from (11). &

6. PROOF OF LEMMAS 8,9 AND 10

In this section m is a natural number greater than .



6.1. Proof of lemma 8. The proof is by induction over m. For m = ¢ + 1 the lemma is the
part 7.1 of lemma 7. Suppose the lemma is true for any natural number less than m. Let us
take the word V' = (E;Tj+1 -+ Tp—1)Tm € Em+1(u). Using the hypothesis of induction on the
word between parenthesis we have that V' is a linear combination of elements of the type:

X = (Tz—l—sz) e (Tm—le—2)Em—1TmA

Y = TinTive Ty 1 Em 1\ ThnB

Z = TiTiyo Ty T T 2By, 11,0, (i+1<j<m-2)
where A, B, Cj € Ep_1(u).

Now from lemma 7, we get

(8A) En 1Ty =TnTyn_1Enx + TmnEpy (z,y € Em(u)).

Using this relation we will prove that X, Y and Z are linear combinations of elements of type
(8.1), (8.2) and (8.3).
e From 8A we have that X is a linear combination of elements of the type:

Xy = (Tz-l—sz) T (Tm—le—Q)Tme—lEmwAa
Xo = (TiniTi) - (Tm—1Tin—2)Tm EmyA.
Now, for Xo we have
XZ = (E«klﬂ) T (Tm72Tm73)(Tmfl)TmEmenyA
XZ - (1—173+1 T TmEm)(T‘zT‘H»l Tt Tmf?)TmeyA)-

(notice that the elements in the parenthesis belong to &y, (u)). We have that X is of the form
(8.1), and X» is of the form (8.2). Therefore X is a linear combination of the desired elements .
e From 8A, Y is a linear combination of elements of the type

Yi = T Tiqo- - T 1T 1 EnzB,
Yo = TipTiyo- Ty T EnyB.
Thus Y] is the form (8.3), and Y5 is the form (8.2). Consequently Y is a linear combination of

the desired elements.
e From 8A, 7 is a linear combination of elements of the type

Zy = Tl Ty AT Ty 2Ty Tin 1 B Cy,
Zy = TiaTiyo- Ty 1T Ty 2T EnyC.
In Zy moving T}, to the left, we get
Zy =T Tivo - Tin AT Ty -+ - Ty 2T 1 EyzCy,
which is an element of the form (8.3).
In Z5 we can move T, Ep, to the left, then we get
Zy =Ti1Tyso - Tt T B (T - - Ty C}).
As the element in the parenthesis is in &, (u), we obtain that Zs is of the form (8.2). 1

6.2. Proof of lemma 9. Again the proof is by induction over m. For m = i + 1 the lemma
is the part 7.2 of lemma 7. Suppose the lemma is true for any natural number less than m.
Let V.= (LiTiy1- Tm—1)Tm € Em+1(u). By hypothesis of induction on the word between
parenthesis we have that V' is a linear combination of elements of the type:

X = (Tz-l—sz) e (Tm—le—Q)Lm—leA
Y = TTinTive Ty 2Llm 1ThnB
Z = Tyl Ty aTiTiy1 - TnoLin 1T Cy, (0<j<m-—3)

where A, B, Cj € Ep_1(u).



From part 7.2 of lemma 7, we get
(9A) Ly 1Ty, =TT 1Lnx+ Ty 1Ly (r,y € Em(u)).

We are going to prove that X, Y and Z are linear combinations of word of the type (9.1),
(9.2) and (9.3).
e From 9A, X is a linear combination of

Xy = (Ti—l—lT') T (Tm 1Tim— 2)Tme—1meAa
Xy = ( z+1T) ( m—1Lm— 2)Tm71LmyA-
It is obvious that X is the form (9.1). In X5 we have
Xy = {( z+1T) (Tm 2Tm73)(Tmfle72)Tm71}LmyA
= (T;-- T+ Typ—2)LiyyA  (from (23))

= T;--- m—le(Ti T m—Q?JA)-
As the element in parenthesis is in &y, (u), we have that X5 is of the form (9.2).
e From 9A, Y is a linear combination of:
Yi = T Tive - T2l Tim—1 Lz B,
Yo = TiTiaTive - Tin—oTi—1LinyB.
In Y7 moving T}, to the left, we get Y1 = T, T;T;11Tiv2 - - - Ty 2T 1 Linx A, which is of the
form (9.3).
It is obvious that Y5 is of the form (9.2).
e Using 9A in Z, we get that Z is a linear combination of elements Z; and Zy:
Z; = Tmflijmfj RN PRV Y RS Tmf2Tme71meCj
Zy = Tymo1—jTymj T aTiTit1 - T2l 1 LinyCj. >
Moving T}, to the left in Z;, we get

Zy =Tim1—iTm—j T A T Ti i1 -+ - Ty 2T 1 LipwCj,
which is the form (9.3).
In Z5 moving T;,,—1 to the right and using the braid relation on 1;,_17;,—21,,—1, we have
Zo = Ty jTm Ty o2TiTigr T 3T 1T 2Tm 1 LnyCj
= Tm1-jTm—jTnoliTit1 Ty 3T 2T 1 T2 LinyCj
= Ty T Ty oTiTipr - Ty 3T 2T 1 LTy, 2yC

Zy = TiTip Ty oTm 1 Ly(Tnoj- - Tr2yCy).
As the element in parenthesis is in &, (u), we have that Z, is of the form (9.2). 1§

6.3. Proof of lemma 10. The lemma is obvious, if the product ¥; :=Y;--- Y, € Enpi1(u) is a
product that contains only T"s, or only E’s. In the case when T; contains only one F; € {E}, L;},
the lemma follows from lemmas 8 and 9.

Suppose that Y; contains d (d > 1) elements F’s. Let r be the first position, from left to
right, where appear one F' in Y;. We are going to see that in Y; the number of F’s “can be
reduced”. More precisely, we will see that Y; is a linear combination of elements of the form

(10A) Tra and Yia,

where k > r, a € &y, (u), and the first F in Y appears in the position I, [ > r.
Then the lemma, will follow by an inductive argument.
We have

Y, =TTy T 1YYy € Enn (’LL) (Z < T)



Now, we distinguish between two cases: the successive F' is in the position r + 1 (case 1) or not
(case 2).
Case 1. Here Y, =T; T - T 1 Fr Fr1Yrgo - Y1 Ym.
(i) If F, = E,, we have
Y, = TiTiy1-Tr B Frp1 Yrgo-- Yy
TiTiv1 - Tr1Fr1 By Yego - Yy (from (8))
= FgYeo Yol T, 1 E,).
So T; is of the form (10A).
(ii) Set F, = L, = E,T,. In the case F,;1 = E,;1, we have
Y = TiTiy-Tr Ly By Yoo Yy
TiTiv1 - TrEr 1 EvYrgo - Yo (from (8))
= LTy ThEr1Yrqo - - Yy B
Thus Y; is of the form 10A.
If F,11 = Ly41, using (8) we get L,L,11 =T.L,1E,. Then,
Y =TTip1- - Tr L1 Yei2 - Y By,
which is of the form (10A).
Case 2. In this case T; one write

(10B) Y, =TTiv1 T BTy - TiF 1 Y0 Yy (I >r).

We will prove that (10B) is a linear combination of elements of the form (10A). For this we
distinguish four possibilities, according to F, € {E,, L, }, and Fj11 € {Ej11,Lj41}-
Case F, = E, and Fj41 = Ej4+1. In this case T; becomes
Y; = TiTi1 - Toos (BrTor -+ T) B Yigo - Yon.

Using lemma 8 on the word in parenthesis, we have that (10B) is a linear combination of the
following words:

Xy = TiTy - T (T Tr) - (T B B Yigo - - Y A

Xo = TiTiy T (G Trge - TIE)E 1 Y149 - Y, B

X = TiTiy1- T A(Toi T2 - - Ti Ty - - T B By 1 Yigo - - - Y G

where A, B and Cj € &y, (u).
Moving T;_1 E; to the right, we get
Xy = TiTiy - T (G 1) - (D Ti—2) Ti By Yigo - - Y i A
TiTivr- Tr1(Togr - T 1) (Tr - Ti ) T1 B 1 Yigo - Y I 1 B A

= Gy T)TTi T (T - Ti—2) T B 1 Yo - - - Y T B A
= (L1 T )TiE 1 Yiy2 - Yo (TiTi - T Ty - - Ty 2) Ty 1 B A.

Then X is of the form (10A).
In X5, we have

Xo = TiTiy T (G Trgo - T Er 1 Yigo - Y BB
= TriTry2 - TiE Yo Y (TiTip1 - T 21) B B,

which is an element of the form (10A).
In X3, we have

X3 = TiTiy1 - T A(Toi T2 - - Ti ATy - - - Ty 1) By Yo - - Yoo G
= TiTip1 T (GpaTrgo T ) T1E 1 Yo - Y Ty - - - T 1 B C
= LTy -TiTiE (Yo Y (LT - T 1T - - T E) CY,
which is of the form (10A).



Thus as X1, X9 and X3 are of the form (10A) it follows that in this case (10B) is a linear
combination of the elements of the form (10A).
Case F, = E, and Fj41 = L;y;. In this case for T; we have

Yi=TiTiyr- - Tr (B Trga - T) Lia Yigo -+ Vi,
As for the preceding case, we have that Y;, is a linear combination of words of the type

Yi = Tl T (T Ty) - - (T -1 ) Ey) Lip Yigo - - Y A
Yo = TiTipr Tt (Tr1Trg2- - TiE) Lij1 Yo - - Y B
Y3 = TiTip1--Tr 1 (Lo Trg2 - T DTy - - - Ty By Ly Yigo - - Y G,

where A, B and C; € &y, (u).
From case 1(i) we have

Vi = TTr - Tra((Trd ) -+ (11T 1)) Lig1 Yigo - Y A
TiTivr-Tr A (Trgr - T)(Tr -+ Ti1) Ly Yigo - - Yin B

= (g1 T Tigr - Tro) (L Tia) i1 Yigo - - Y B A

= (Gyr--- )L Yo Yo (TiTipr - T 1) (T - - T ) B A

which is of the form (10A).

Yo = TiTip1 Tt (Tr1Trg2 - T)) Ly Yigo - - Y U B
= T Trge - TiLi\Yigo - Yo (TiTiyy - - - T 1 B4 B),

then Y5 is of the form (10A).

Y3 = TTipr-Troo(Trg1 Trgo - T D)) (T - - Ti—1) Ly Yigo - - - Vi B4 C
= TiTiy - T (TG Do T ) Ly Yigo - - - Y (T - - - 11 ) 5 C
= TriTry2 T ATl Yo Yoo (TiTig 1 - T 1 ) (T - - - i 1) B4 O,
which is of the form (10A).

Therefore, in this case, (10B) is a linear combination of the elements of the type (10A).
Case F, = L, and Fj11 = Lj4q. In this case

Tz' = T‘z'T‘H»l T Trfl(LrTr+1 o E)El+1}/z+2 < Yo
Using lemma 9, we have that Y; is a linear combination of the following elements
Zy = TiTipr - Tra((Trd Tr) - (TiT1 1) L) By Yigo - Vi A
Zy = TTip T (LT Ty Ti L) By Yo - Y0, B
Zy = TiTipr- T (- T 1 - T DT Trgr - - T L) By Yigo - - Y €,

where A, B and C; € &, (u).
Using case 1, we get for Z;, Z>, and Zs:

Zy = TiTip- T (T D) - (ML) T By Yo - Y Bl A

(T - Tr ) (T T)(Tr -+ T 1) EYYigr - Y A (from (23))
= (LT Tr )T - T)EY 11 - Yoo (T - - - T ) BA

= Tl TE Y YT T 1 B A).

Zy =TiTipr - T A (LT Ty - T\ D) By Yigo - Yo B B.



Z3

T T (D= Ti— 1 - - T T Trgy - - T Th) By Yigo - - Y G
TiTivr - Tra(Th T jr - Ti AT Ty - - TiT T Ep1 Yige -+ - Y I G
LT T (G Ti— 1 - - T T gy - - Ti T ) B Yo - - - Y 4 C
LT T (G Ti— 1 - T T gy - - Ti ) By Yigo - - - Y 11 B C

TiTiv1 T AT B 1Yo Yo Iy j 1T - Ti 1 B C.

Thus Z1, Z,, and Z3 are of the form (10A). Then in this case (10B) is a linear combination of
elements of the type (10A).
Case F, = L, and Fjy; = L;yy. In this case T; takes the form

Tz' = EE+1 T Trfl(LrTr+1 o E)Ll-l—l}/l—l—Q < Y.

From lemma 9, we get

i
Va
V3

= Tl
= TiTiy - T (T Ti—jr - - T TG Ty - - - T L) Ly Yig2 - - - Y0 O,

Tl Ta(Trpd 1) - - (D111 L) Liga Vi - - YA

T,
Tr—l(TrTr+1Tr+2 cee ﬂflLl)Ll+1YPl+2 .Y, B

where A, B and Cj € &, (u).
To finish this proof, it is enough to see that V;, V5, and V3 are of the form (10A). We do this

below.
Vi = TTipr-- T A (TriTy) - - (L1 )T) Ly Yigo - - Y Ej A
= TiTiy1- T (T T)(Tr - T 1) Ly Yigo - Y GA (from (23))
= TiTipr- T (T T L1y 1 Yigo - - Yoo (Th - - - Ti—1 ) A
= TiTiy1- LYo Yo (T - Ti 1 B A).
Vo = Ty T (T Ty - Ti L) Ly Yo - - Yo B
= TiTi - T (G Trg2 - - Ti1 1)) Lig1 Yo - - Yo B
Vi = TTipr- - Troa(T— T 1 - - T T Trgr - T 1) L1 Yigo - - - Vi B4 C
= TiTipr T (T Ty i1 Ty AT T - TiT 1 Ty) Ly Yigo - - - Yin B Cj
= TiTi - T (T—jT—jr - - Ti A Ty - Ty Ty ) L1 Yigo - - - Y G
= TiTip1 T (T Ty i1 Ti ATl - Ti 1T Ly Yigo - - Yo Ty 1 B Cj
= Tl T ATiLip1 Yy Y Il j 1 - T 1 B Cy. B
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