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1. Introduction

Last year, �nite dimensional algebras of one parameter (or more) de�ned by generators and
relations that involve the braid relations has been studied rather intensely (e.g. the Hecke al-
gebra, the Temperley-Lieb algebra, the Birman-Wenzl-Murakami algebra, among others). A
motivation for this is to take matricial representations for the braid group, polynomial invari-
ants for knots (via Markov trace over the algebra), as applications in 2D lattice in statistical
mechanics.

Now, to de�ne such an algebra is not a trivial matter. Usually, these algebras arise as quotients
of the groups algebras of the braid group, as centraliser algebras of the tensor powers of the
quantised enveloping algebras of classical Lie algebras, or they are de�ned by generators and
relations motived by reasons arising from Physics.

In this note, we introduce and begin to do a systematic study of an algebra of one parameter,
whose generators satisfy certain braid relations. On the contrary to the classical de�nitions, our
algebra arises from the Yokonuma-Hecke algebra[6]; that is, from the algebra of endomorphisms
of the permutation representation of the group GLn(Fq ), relative to its maximal upper unipotent
subgroup. More precisely, the de�nition of our algebra is by generators and relations, which are
motived from the non-standard generators of the Yokonuma-Hecke algebra introduced by the
author in [4].

Here is the outline of the note: In section 2 our algebra is de�ned, and the word \another"in
the title is explained (see subsection 2.1). In section 3 we construct a good system of generators
for our algebra (theorem 20). The reason for to be good is that we have experimental reason
for to conjecture that is, in fact, a basis for our algebra. In section 4 our algebra is realized
as a subalgebra of Yokonuma-Hecke algebra (see theorem 23). In section 5, we prove that the
algebra can be Yang-Baxterized. Finally, in section 6 some technical lemmas are proved.

Notations. In this work P(n) denote the power-set of f1; : : : ; n � 1g. We denote by Sn the
symmetric group on f1; : : : ; ng, and by si the transposition (i; i+ 1) of Sn.
C (u) denotes the �eld of rational functions in an indeterminate u, over the complex number

C .

2. The algebra En(u)

De�nition 1. Let n be a natural number and u an indeterminate over C . Let En(u) be the
associative algebra over C (u), with generators:

1; T1; : : : ; Tn�1; E1; : : : ; En�1

subject to the following relations:

(1) E2
i = Ei EiEj = EjEi; 8i; j

(2) EiTi = TiEi

(3) [Ti; Tj ] = [Ti; Ej ] = 0 if ji� jj > 1:

(4) T 2
i = 1 + (u� 1)EiTi(1� Ti)

(5) EiTi(1� Ti) = �u�1Ei(1� Ti)

And when ji� jj = 1, we impose:

(6) TiTjTi = TjTiTj

(7) TiTjEi = EjTiTj

(8) EiEjTj = EiTjEi = TjEiEj

(9) TiEjTi � TjEiTj = (1� u�1)(EjTiEj �EiTjEi):



Notice that relation (5) and (9) are superuous2.
It is easy to check that the map Ti 7! (i; i + 1), Ei 7! 0 de�ne a homomorphism of En(u)

onto the group algebra of the symmetric group. Also we have a morphism of En(u) onto the
Iwahori-Hecke algebra Hn(u) via the map

Ti 7! (1� u�1)� u�1Li

Ei 7! 1;

where L1; : : : ; Ln�1 are the standard generators of Hn(u), that is, the Li's satis�es the braid
relations and the quadratic relation L2

i = u+ (u� 1)Li:
Now, from (4) we deduce that Ti is invertible,

(10) T�1i = Ti � (u� 1)Ei(1� Ti):

And we get the following notable relation, cf. section 5,

(11) T�1i TjT
�1
i + uTjT

�1
i Tj = T�1j TiT

�1
j + uTiT

�1
j Ti:

Set Pi = u=(u+ 1)Ei(1� Ti). It is not di�cult to prove the following useful relations:

(12) (u+ 1)3(PiPjPi � PjPiPj) = u2EiEj(Tj � Ti):

(13) (u+ 1)PiPjPi + uTiPjPi = uPjPi;

(14) EiPi = PiEi = (u� 1)Pi

(15) EiPj = PjEi; 8i; j
(16) P 2

i = Pi

(17) TiPi = PiTi = �u�1Pi

(18) T 2
i = 1� u�1(Ti � T�1i ) = 1 + (u�2 � 1)Pi = 1 + (u�1 � 1)Ei(1� Ti)

(19) T 3
i + u�1T 2

i � Ti � u�1 = (Ti + u�1)(Ti + 1)(Ti � 1) = 0
(20) PiTjTi = TjTiPj , if ji� jj = 1 (from (6) and (18)).

2.1. The algebra Jn(u). In [5] we have de�ned an algebra Jn(u). We know that this algebra
is �nite dimensional up to n = 5. Now, a standard method to know if an algebra, de�ned
by generators and relations that involved braid relations, is �nite dimensional is to solve the
so-called problem of the words, that is, to write any word (in its de�ning generators) as a
linear combination of words having only at most one element in certain pre-�xed subfamily of
generators. We cann't solve this problem for the algebra Jn(u).

On the other side, motived by the realization of Jn(u) as a subalgebra of Yokonuma-Hecke
algebra, it was natural to consider a certain linear decomposition of a part of the generators
of Jn(u). Thus obtaining another algebra En(u), in which the problem of the words is solved
(see proposition 4). Hence in some sense, the algebra En(u) is a certain linear decomposition for
the algebra Jn(u), in the sense that a part of the generators of Jn(u) is linearly decomposed in
En(u), see proposition 2.

Recall that the algebra Jn(u) is the associative algebra over C (u) de�ned by the generators

1; �1; : : : ; �n�1; �
�1
1 ; : : : ; ��1n�1; �1; : : : ; �n�1;

and the de�ning relations:
�i�

�1
i = ��1i �i = 1

�i � ��1i = (u� u�1)�i

�i�i = �i�i = �u�1�i

[�i; �j] = [�i; �j ] = [�i; �j] = 0 if ji� jj > 1:

And when ji� jj = 1,
�i�j�i = �j�i�j

2F. Aircardi pointed out that relation (9) is superuous.



��1i �j�
�1
i + u�j�

�1
i �j = ��1j �i�

�1
j + u�i�

�1
j �i

(u+ 1)�i�j�i + u�i�j�i = u�j�i:

Proposition 2. The map �i 7! Ti, �i 7! Pi de�nes a morphism from the algebra Jn(u) to the
algebra En(u).

Proof. The proof follows from the de�ning relations for En(u), and relations (11), (13), (17)
and (18).

3. The linear part

In order to prove that En(u) is �nite dimensional we need, in addition to the above relations,
the following lemma.

Lemma 3. For all i; j such that ji� jj = 1, we have:

(3.1) (u� 1)(TiPjTi � TjPiTj) = �(u� u�1)2(PiPjPi � PjPiPj)

(3.2) (u� 1)(PiTjPi � PjTiPj) = u(u� u�1)(PiPjPi � PjPiPj)

(3.3) (u� 1)(PiPjTi � TjPiPj) = �(u� u�1)(PiPjPi � PjPiPj).

Proof. It is a consequence of proposition 2 and lemma 2.10[5].

Proposition 4. In the algebra En(u) any word in 1; T1; : : : ; Tn�1; E1; : : : ; En�1 is a linear
combination of words in Ti's, Ei's having at most one Rn�1, where Rn�1 2 fTn�1; En�1; Pn�1g.
Thus En(u) is �nite dimensional.

Proof. We use the same argument of induction used in lemma 3.1[1]. For n = 2 the claim is
obvious. Now suppose the lemma for n� 1. Thus, we must prove that all words below can be
written as linear combination of words having at most one Rn 2 fTn; En; Png (we will say the
word have a reduction):

(i) TnRn�1Tn
(ii) TnRn�1Pn

(iii) TnRn�1En

(iv) PnRn�1Tn
(v) PnRn�1Pn

(vi) PnRn�1En

(vii) EnRn�1Tn
(viii) EnRn�1Pn

(ix) EnRn�1En,
where Rn�1 2 f1; Tn�1; Pn�1; En�1g.

Let us see the case whenever Rn�1 = 1: The reduction of (i) is from (18). The reduction of
(ii), (iv) is from (17). The reduction of (v) is from (16). The reduction of (vi) and (viii) is from
(14). The reduction of (ix) is from (1). For (iii) and (vii) recall

TnEn = EnTn = En � (1 + u�1)Pn:

Now, let us consider the following three cases:
Case Rn�1 = Tn�1. The reduction of (ii) and (iv) is from (20). The reduction of (v) is from

lemma 3 and (12). The reduction of (iii) and (vii) is from (7). The reduction of (ix) is from (8).
For (vi) we have

PnTn�1En = PnEnTn�1En (from (14))

= PnEnEn�1Tn�1 (from (8))

= PnEn�1Tn�1 (from (14)).

In the same way we get a reduction for (viii).



Case Rn�1 = Pn�1. The reduction of (vi) and (viii) is from (15) and (14). The reduction of
(ix) is from (15) and (1). The reduction of (i), (ii), (iv) and (v) is from (12) and lemma 3. For
(iii) we have

TnPn�1En = TnEnPn�1 (from (15))

= (En � (1 + u�1)Pn)Pn�1

= EnPn�1 � (1 + u�1)PnPn�1:

In the same way we get a reduction for (vii).
Case Rn�1 = En�1. The reduction of (i) is from (9) and (8). The reduction of (ii) and (iv)

is from (15) and (17). The reduction of (v) is from (15) and (16). The reduction of (vi) and
(viii) is from (15) and (14). The reduction of (ix) is from (1).

For (iii) we have

TnEn�1En = TnEnEn�1 (from (1))

= (En � (1 + u�1)Pn)En�1

= EnEn�1 � (1 + u�1)PnEn�1:

In the same way we get a reduction for (vii).
For n = 2 the algebra is dimension 4. Now, En(u) =

P
En�1(u)RnEn�1(u), where the sum

is over Rn 2 f1; Tn; En; Png. Thus, we deduce by induction that the algebra En(u) is �nite
dimensional.

Remark. From the de�nition of the Pi's it is obvious that the preceding proposition holds
if Rn�1 2 f1; Tn�1; En�1; En�1Tn�1g. And from (10) the proposition also holds if Rn�1 2
f1; Tn�1; En�1; T

�1
n�1g.

We are going to construct a good system of generators for En(u). First, we prove that the
algebra is linearly generated by certain \standard words"(see proposition 12), and then we will
take from them the good system of generators (theorem 20).

As usual, we denote by ` the length function on Sn relative to fs1; : : : ; sn�1g.
Also, we use the fact that all elements w in Sn admit a writing reduced of the form

(21) w = (si1si1�1 � � � )(si2si2�1 � � � ) � � � (simsim�1 � � � );

where i1 < i2 < � � � < im.
Let us consider the following elements, in form reduced, in Sn+1:

�r := srsr+1 � � � sn (r � n):

Lemma 5. For all w 2 Sn, we have in Sn+1:

(5.1) `(�rw) = `(�r) + `(w)

(5.2) (sm+1sm)(sm+2sm+1) � � � (snsn�1)sn = (smsm+1 � � � sn�1sn)(smsm+1 � � � sn�1).

Proof. Trivial.

In virtue of the braid relation (6) and a well-known theorem of H. Matsumoto, we have that
if w = si1 � � � sim 2 Sn is an expression reduced for w, then the element

Tw := Ti1 � � � Tim ;

is well-de�ned.

Proposition 6. Let w 2 Sn, and set s = si. We have

TwTi = Tws if `(wsi) = `(w) + 1

TwTi = Tws + (u�1 � 1)Ei(Tws � Tw) if `(wsi) = `(w)� 1:



Proof. The proof is by the same procedure used for to prove the analogous in the case of
Iwahori-Hecke algebra; that is, using induction over length of w and (18).

We will denote by Li the element TiEi.

Lemma 7. For all i; j such that ji� jj = 1, we have:

(7.1) EjTi = TiTjEiTj + (u�1 � 1)(TiTjEiEj + TiEiEj)

(7.2) LjTi = TiTjLiTj + (u�1 � 1)(TiTjLiEj + TjLiEj).

Proof. From (7) we get

(TiTjEi)Tj = EjTiT
2
j

= EjTi(1 + (u�1 � 1)(Ej �EjTj)) (from (18))

= EjTi + (u�1 � 1)(TiEiEj � TiTjEiEj) (from (8)):

Thus the assertion (7.1) follows.
Multiplying (7.1) on the left by Tj , and after using (6) we take (7.2).

Now, as in the Iwahori-Hecke algebra we can take a system of linear generates for En(u) (which
in our case will be redundant) in the following way: we de�ne U1 = f1; T1; E1; L1g, and Ui is
de�ned by

Ui := f1g [ TiUi�1 [EiUi�1 [ LiUi�1 (2 � i � n):

Using induction and proposition 4 we deduce that En(u) is generated linearly by all the products
of the form u1u2 � � � un�1, where ui 2 Ui. From where we deduce

(22) En+1(u) =
X

1�i�n

YiYi+1 � � � YnEn(u) + En(u);

where Yj 2 fTj ; Ej ; Ljg.
In order to take a best system of linear generators (let us say in terms of standard words) we

will need the following three technical lemmas, whose proofs will be done in section 6.

Lemma 8. Let m > i. The word EiTi+1 � � � Tm�1Tm 2 Em+1(u), is a linear combination the
words of the type:

(8:1) (Ti+1Ti)(Ti+2Ti+1) � � � (TmTm�1)Em�

(8:2) Ti+1Ti+2 � � � TmEm�

(8:3) Ti+1Ti+2 � � � Tm�1TmTjTj+1 � � � Tm�1Emj ; (i+ 1 � j �m� 1)

where �, �, j 2 Em(u).

Lemma 9. Let m > i. The word LiTi+1 � � � Tm�1Tm 2 Em+1(u), is a linear combination the
words of the type:

(9:1) (Ti+1Ti)(Ti+2Ti+1) � � � (TmTm�1)Lm�

(9:2) TiTi+1Ti+2 � � � Tm�1Lm�

(9:3) Tm�jTm�j+1 � � � TmTiTi+1 � � � Tm�1Lmj ; (0 � j � m� 2)

where �, �, j 2 Em(u).

Lemma 10. Let Yl 2 fTl; El; Llg, and m > i. The word YiYi+1 � � � Ym�1Ym 2 Em+1(u), can be
written as a linear combination of words of the form

(10:1) EiEi+1 � � �Em�1Em; TiTi+1 � � � Tm�1Tm

(10:2) TrTr+1 � � � Tm�1Lm�



(10:3) TiTi+1 � � � Tr�1(Tr+1Tr)(Tr+2Tr+1) � � � (TmTm�1)Fm� Fm = Em; Lm

(10:4) TrTr+1 � � � Tm�1TmTjTj+1 � � � Tm�1Emj (r � j � m� 1)

(10:5) Tm�jTm�j+1 � � � TmTiTi+1 � � � Tm�1Lm�j ; (0 � j � m� 2)

where i � r � m, �, �, j, �j 2 Em(u).

De�nition 11. (11.1) For I := fi1; : : : ; img 2 P(n), we de�ne EI as the product Ei1 � � �Eim .
If I is the empty set, we assume that EI is equal to 1.

(11.2) We de�ne W1 := f1g, W2 := f1; E2T1g, W3 = f1; E3T2; E3T2T1g, so on.

Proposition 12. The algebra En(u) is generated linearly by the words of the form

TwXn�1 � � �X2X1EI ; (standard word)

where w 2 Sn, Xi 2Wi and I 2 P(n).

Proof. The proof is by induction over n. For n = 2 the proposition is true, because E2(u) is
linearly generated by the elements 1; T1; E1; T1E1. Set n > 2. According to (22), it is su�cient
to prove that any product of the form YiYi+1 � � � YnZ (Z 2 En(u)) is a linear combination of
standard words in En+1(u).

Now, from lemma 10 we deduce that YiYi+1 � � � YnZ is a linear combination of elements of the
form

(A1) EiEi+1 � � �En�1EnZ0; TiTi+1 � � � Tn�1TnZ1

(A2) TrTr+1 � � � Tn�1TnEnZ2;

(A3) TiTi+1 � � � Tr�1(Tr+1Tr)(Tr+2Tr+1) � � � (TnTn�1)FnZ3; Fn = En; Ln

(A4) > TrTr+1 � � � Tn�1TnTjTj+1 � � � Tn�1EnZ4 (r � j � n� 1)

(A5) Tn�jTn�j+1 � � � TnTiTi+1 � � � Tn�1LnZ
0
j; (0 � j � n� 2)

where Z0; : : : ; Z4, Z
0
j 2 En(u).

Consequently, it is enough to prove that the elements in A1 to A5 are a linear combination
of standard words in En+1(u). This will be done in the cases A1 to A5.

First notice that by the hypothesis of induction the elements Z0; : : : ; Z4, Z
0
j are linear com-

binations of standard words in En(u). Thus, we can put

TwXn�1 � � �X2EK ; (w 2 Sn;K 2 P(n))

to the place of Zi in Ai (i = 0; 4), and to the place of Z 0
j in A5.

Furthermore, we will use the expression reduced (21) for w.
Case A1. (i) From (5.1) and proposition 6, it is clear that

Ti � � � TnZ1 = (Ti � � � TnTw)Xn�1 � � �X2EK ;

is a standard word in En+1(u).
(ii) On the other hand,

EiEi+1 � � �En�1EnZ0 = En(EiEi+1 � � �En�1Z0):

Using induction on the elements between parenthesis, we have that EiEi+1 � � �En�1EnZ0 is a
linear combination of elements A1 of the form

A1 = EnTwXn�1 � � �X2EK (w 2 Sn;K 2 P(n)):

In the case that w does not contain sn�1, we have that A1 is the standard word

TwXn�1 � � �X2EnEK :



If w contains sn�1, we put w = w0(sn�1sn�2 � � � ), where w
0 2 Sn. Then A1 is the standard word

A1 = Tw0XnXn�1 � � �X2EK (Xn = EnTn�1Tn�2 � � � ):

Case A2. If in (21) w does not contain sn�1. Then A2 becomes

TrTr+1 � � � TnTwXn�1 � � �X2EnEK ;

which is a standard word in En+1(u), because according to (5.1) and proposition 6 the element
TrTr+1 � � � TnTw is of the form Tw0 .

Suppose that w contains sn�1. Put w = w0sn�1sn�2 � � � , where w
0 2 Sn�1. We get

TrTr+1 � � � Tn�1EnTwXn�1 � � �X2EK = (TrTr+1 � � � TnTw0)XnXn�1 � � �X2EK :

where Xn = EnTn�1Tn�2 � � � . Using (5.1) and proposition 6 on the word between parenthesis,
we have that the element in A2 becomes a standard word in En+1(u).

Case A3. First let us note that

(23)

�
(Tm+1Tm)(Tm+2Tm+1) � � � (TnTn�1) = (Tm+1 � � � Tn)(Tm � � � Tn�1)
(Tm+1Tm)(Tm+2Tm+1) � � � (TnTn�1)Tn = (Tm � � � Tn)(Tm � � � Tn�1)

(m < n):

Set T� = TiTi+1 � � � Tr�1, where � = sisi+1 � � � sr�1. Now, we distinguish between the cases:
Fn = En or Fn = Ln.

Case Fn = En in A3. In this case the element in A3 case take the form

A3 = T�(Tr+1Tr)(Tr+2Tr+1) � � � (TnTn�1)EnTwXn�1 � � �X2EK

= T�TuTvEnTwXn�1 � � �X2EK (from (23))

= TuT�TvEnTwXn�1 � � �X2EK ;

= TuT�vEnTwXn�1 � � �X2EK (from (5.1) and proposition 6)

where u = sr+1sr+2 � � � sn�2sn, and v = srsr+1 � � � sn�1.
We are going to distinguish the cases: w contains or not sn�1.
y If w does not contain sn�1, then we can write A3 as

A3 = Tu(T�vTwXn�1 � � �X2EK)En:

Using the hypothesis of induction over the element between parenthesis we obtain that A3 can
be re-written as

A3 = TuTwXn�1 � � �X2EK ;

where w 2 Sn, K 2 P(n+ 1).
Now from (5.1) the product TuTw is of the form T�, with � 2 Sn+1. So, A3 is a standard word

in En+1(u).
y In the case that w contains sn�1, we put w = w0sn�1sn�2 � � � , where w

0 2 Sn�1. Thus A3 is

A3 = TuT�vEnTwXn�1 � � �X2EK

= TuT�vTw0XnXn�1 � � �X2EK (Xn = EnTn�1Tn�2 � � � ):

Using proposition 6 and (5.1) over T�vTw0 , and after on Tu(T�vTw0), we deduce that A3 is a
standard word in En+1(u).

Case Fn = Ln in A3. In this case according to (23) we have that the element in A3 takes the
form

A3 = T�TuTvEnTwXn�1 � � �X2EK ;

where u = srsr+1 � � � sn�1sn, and v = srsr+1 � � � sn�1.
According to (5.1) and proposition 6, T�Tu = T�u. Then

A3 = T�uTvEnTwXn�1 � � �X2EK :

Again we distinguish the cases: w contains or not sn�1.
y If w does not contain sn�1, then the word in A3 take the form

A3 = T�u(TvTwXn�1 � � �X2EK)En:



Using the hypothesis of induction over the elements between parenthesis, A3 can be re-written
as

A3 = T�uTwXn�1 � � �X2EK ;

where w 2 Sn, and K 2 P(n+ 1):
Applying (5.1) and proposition 6 over T�uTw, we deduce that A3 is a standard word in En+1(u).
y In the case that w contains sn�1, we put w = w0sn�1sn�2 � � � , where w

0 2 Sn�1. Then we
get that A3 is the following standard word in En+1(u),

(T�uTvTw0)XnXn�1 � � �X2EK ; Xn = EnTn�1Tn�2 � � �

(notice that T�uTvTw0 is of the form T�, � 2 Sn+1).
Case A4. From (5.1) and proposition 6 we have

TrTr+1 � � � Tn�1TnTjTj+1 � � � Tn�1 = TuTv

where u = srsr+1 � � � sn�1sn, and v = sjsj+1 � � � sn�1.
y In the case that w does not contain sn�1, we have that in A4 one write

A4 = Tu(TvTwXn�1Xn�2 � � �X2EK)En:

Now, applying the hypothesis of induction on the elements between parenthesis, we obtain that
A4 is re-written as

A4 = TuTwXn�1Xn�2 � � �X2EK :

where now w 2 Sn and K 2 P(n+ 1).
Using (5.1) and proposition 6 on TuTw, we deduce that A4 is a standard word in En+1(u).
y In the case that w contains sn�1, we put w = w0sn�1sn�2 � � � . And then A4 is

A4 = TuTvTw0XnXn�1 � � �X2EK ; (Xn = EnTn�1 � � � )

where K 2 P(n).
The fact that A4 is a standard word follows applying �rst (5.1) and proposition 6 on TvTw0

and after on Tu(TvTw0).
Case A5. First we note that

Tn�j � � � TnTiTi+1 � � � Tn�1Tn = Ti � � � Tn�j�2(Tn�jTn�j�1) � � � (Tn�1Tn�2)(TnTn�1)Tn

= Ti � � � Tn�j�2(Tn�j�1 � � � Tn)(Tn�j�1 � � � Tn�1)

= TuTv;

where u = si � � � sn�j�2sn�j�1 � � � sn, v = sn�j�1 � � � sn�1:
Thus, the element in A5 takes the form

A5 = TuTvEnTwXn�1 � � �EK (w 2 Sn;K 2 P(n)):

Again we distinguish between the cases: w contains or not sn�1.
y In the case w does not contain sn�1, we have A5 = TuTvTwXn�1 � � �EKEn. Applying (5.1)

and proposition 6 on TvTw and after on Tu(TvTw) we obtain that A5 is a standard word in
En+1(u).
y In the case that w contains sn�1, one can write w = w0(sn�1sn�2 � � � ). Then

A5 = TuTvTw0XnXn�1 � � �X2EK ; (Xn = EnTn�1Tn�2 � � � )

from where A5 is a standard word in En+1(u), because in virtue of (5.1) and proposition 6,
TuTvTw0 is of the form T�, with � 2 Sn+1.

Lemma 13. Any E 2 fEi; Ei�1 � � �Ej ; Ei+1Ei � � �Ejg commute with:
(13.1) TiTi�1 � � � Tj
(13.2) the elements of Wr, for all r � i.

Proof. (i) Set E = Ei � � �Ej . We can write

TiTi�1 � � � TjE = TiTi�1EiTi�2Ei�1Ti�3 � � � Tj+1Ej+2TjEj+1Ej :



Using repetitively the relation (8) from the right to left, we deduce the claim. In the same way
we obtain the proof for the case E = Ei+1Ei � � �Ej .

(ii) Let E be EiEi�1 � � �Ej , and put Xr = ErTr�1 � � �Es 2Wr, with r � i. We have

XrE = EJ(ErTr�1Er�1Tr�3 � � � TsEs�1);

where fi; i � 1; : : : ; jg = J [ fr; r � 1; : : : ; sg.
The result follows, using repetitively the relation (8) from the right to left in the expression

between parenthesis. In similar way we take (13.2) for Ei+1Ei � � �Ej.

Corollary 14. If I contains fi; : : : ; jg, then EI commutes with TiTi�1 � � � Tj, and with all the
elements of Wr (r � i). In particular, we have that Ef1;::: ;ng is in the center of En(u).

De�nition 15. Set X = Tw1Xi � � �X2EI and Y = Tw2Yj � � � Y2EJ with Yj 6= 1, two standard
words in En(u). We say X reduces to Y if the product Y X, is a linear combination of standard
words of the form

TwZl � � �Z2EK (l < j);

where w 2 Sn, Zi 2Wi, K 2 P(n).

Lemma 16. We have that Ei�1Ti�2 reduce to EiTi�1.

Proof. This follows directly from (8):

(EiTi�1Ei�1)Ti�2 = Ti�1EiEi�1Ti�2 = Ti�1(Ei�1Ti�2)Ei:

Lemma 17. E reduces to EiTi�1 � � � Tj 2Wi, for all E 2 fEi; Ei�1 � � �Ejg.

Proof. (i) We have

(EiTi�1 � � � Tj)Ei = (EiTi�1Ei)Ti�2 � � � Tj

= Ti�1Ei�1EiTi�2 � � � Tj (from (8))

= Ti�1(Ei�1Ti�2 � � � Tj)Ei:

The words between parenthesis belong to Wi�1, thus the lemma holds for E = Ei.
(ii) In the case E = Ei�1 � � �Ej, we use lemma 13:

(EiTi�1 � � � Tj)E = EiETi�1Ti�2 � � � Tj = Ti�1Ti�2 � � � TjEiE:

Remark. It is obvious that any EI reduces to EiTi�1 � � � Tj 2 Wi, if I contains fig or fi �
1; : : : ; jg.

Proposition 18. Let Xi 2 Wi, (2 � i � m), let us put Xm = EmTm�1 � � � Tj, and let E be in
fEm; Em�1 � � �Ejg. We have that XmXm�1 � � �X2E is a linear combination of standard words
of the form

TwVlVl�1 � � � V2EK 2 Em+1(u) (l < m);

where w 2 Sm, Vi 2Wi, K 2 P(m+ 1).

Proof. (i) Suppose E = Em. In the case Xm = 1 the assertion is trivial. Set Xm =
EmTm�1Tm�2 � � � Tj ; we have

XmXm�1 � � �X2E = XmEXm�1 � � �X2

= (EmTm�1ETm�2 � � � Tj)Xm�1 � � �X2

= Tm�1Em�1ETm�2 � � � TjXm�1 � � �X2

= f(Tm�1Em�1Tm�2 � � � Tj)Xm�1 � � �X2gE:

Using proposition 12 on the word between curly brackets, the assertion follows.



(ii) Set E = Em�1 � � �Ej . In the same way as in the proof of lemma 13 part (ii) and using
(13.2), we get

XmXm�1 � � �X2E = XmEXm�1 � � �X2

= EmETm�1 � � � TjXm�1 � � �X2

= Tm�1 � � � TjEmEXm�1 � � �X2

= (Tm�1 � � � TjEXm�1 � � �X2)Em:

As the expression in the parenthesis belongs to Em(u), we deduce the claim from proposition
12.

Corollary 19. The above proposition holds for E = EK , for all K that contains to fig or
fi� 1; : : : ; jg.

Set Xm;jm := EmTm�1 � � � Tm�jm 2Wm, where 1 � jm � m� 1. And we set Xm;0 = 1. With
these notations, the above corollary, lemma 13 and proposition 12, we deduce the following
theorem

Theorem 20. The algebra En(u) is generated linearly by the standard words of the form

TwXn�1;jn�1Xn�2;jn�2 � � �X2;j2EK ; (w 2 Sn;K 2 P(n))

where if jm 6= 0, then K does not contain fmg nor fm � 1; : : : ; jm�1g; and if jm = 1, then
jm�1 6= 1.

We conjecture that the family described in the above theorem is a basis for En(u). This
conjecture is supported by the case n = 2; 3 and 4. For instance, the family of generators
f 1; T1; E1; T1E1 g is a basis for E2(u). And we take from the theorem a system of generators for
E3(u) formed by

TwEI ; TwE2T1 (w 2 S3; I 2 P(3)):

In the next section we will prove that this family is a basis for the algebra E3(u) realized as a
subagebra of the Yokonuma-Hecke algebra.

4. Our algebra as subalgebra of the Yokonuma-Hecke algebra

In the following we denote by k the �nite �eld with q elements Fq .
Let G = GLn(k). Let B be the upper triangular subgroup of G, and let U be the unitriangular

subgroup of B. Let us recall that B has a decomposition as a semidirect product B = D o U ,
where D denotes the diagonal subgroup of G. We denote by M the normalizer of D in G,
which consists of all monomial matrices in G. Let us recall that the Weyl group M=D of G is
isomorphic to the symmetric group Sn. Thus we can think the transposition si = (i; i + 1) as
the elementary matrix

i
i+ 1

0
BBBBBBB@

1 � � � 0
. . .

...
0 1
1 0

...

. . .

0 � � � 1

1
CCCCCCCA
:

We have M ' D o Sn ' k� o Sn.
Set r 2 k�, and 1 � i � n� 1, we de�ne the element hi(r), as the diagonal matrix with r in

the position (i; i), r�1 in the position (i + 1; i + 1), and 1 without. We have that the product



hi;j(r) := sjhi(r)sj is the matrix

hi;j(r) =

0
BBBBBBBBB@

1 � � � 0
. . .

...
r

1
r�1

...

. . .

0 � � � 1

1
CCCCCCCCCA
; (ji� jj = 1)

where r is in the position (j; j) if j < i, and is in the position (i; i) if j > i. We have

sihi(r)si = hi(r
�1):

Let us consider the algebra of endomorphims Yn(q) of the permutation representation of
G with respect to U ; which we shall call the Yokonuma-Hecke algebra. From the Bruhat
decomposition for G we have that the standard basis of Yn(q) is parametrized by the elements
of M . Hence the dimension of Yn(q) is (q � 1)nn!.

We shall call the operator of homothety to the elements Ht in Yn(q) corresponding to t 2 D.
Set Hi(r) the homothety in Yn(q) corresponding to hi(r). And set Hi;j(r) the homothethy

corresponding to hi;j(r). We de�ne zi and zi;j as

zi :=
1

q � 1

X
r2k�

Hi(r);

zi;j :=
1

q � 1

X
r2k�

Hi;j(r) (ji� jj = 1):

Now, let us consider the operators J1 : : : ; Jn�1 in Yn(q) de�ned in [4]. These operators joined
with the operators of homotheties give a full description for Yn(q); namely

Theorem 21 (see [4]). The algebra Yn(q) is generated by J1 : : : ; Jn�1, and Ht, (t 2 D). And
these generators with the below relations give a presentation for Yn(q).

J2i = 1 + (q�1 � 1)zi(1� Ji)

JiJj = JjJi if ji� jj > 1

JiJjJi = JjJiJj if ji� jj = 1

JiHt = Ht0Ji where t0 = sitsi

HrHs = Hrs (r; s 2 D):

Corollary 22. For all i; j, such that ji� jj = 1. We have:

(22.1) zi;j = zj;i

(22.2) zi;jzi = zizi;j = zizj

(22.3) Jizj = zi;jJi, and zjJi = Jizi;j:

Now, from the braid relations between J1 : : : ; Jn�1, and the theorem of H. Matsumoto, we
can de�ne Jw := Ji1 � � � Jim , where w 2 Sn take a reduced expression of the form w = si1 � � � sim .

Proposition 23 (see [4]). A basis for Yn(q) is fJwHt ; w 2 Sn; t 2 Dg.

Theorem 24. The operators Ji's and zi of the Yokonuma-Hecke algebra satisfy the relations
(1) to (9), when we put Ji in the place of Ti, zi in the place of Ei, and q in the place of u.



Proof. One deduces the relations (1), (2), (3), (4) and (6) immediately from theorem 16.
The other relations follows with little e�ort using corollary 22; for example, we shall check the
relation (9):

JizjJi � JjziJj = zi;jJ
2
i �zj;iJ

2
j (from 22.3)

= (q�1 � 1)zi;j(zi(1� Ji)�zj(1� Jj))

= (1� q�1)(zi;jJi �zi;jJj) (from 22.2)

= (1� q�1)(zjJizj �ziJjzi):

Proposition 25. The family of generators in theorem 20 is a basis for E3(q).

Proof. We must prove that ifX
w2S3
I2P(3)

�w;ITwzI +
X
w2S3

�wJwz2J1 = 0;

then �w;I = �w = 0, for all w 2 S3, I 2 P(3).
Now, from (22.3) we have Jwz2J1 = JwJ1z3, where z3 := z1;2. Using (4) on J1, and

corollary 21, we get

J1J1z3 = z3 + �z� �J1z

J2J1J1z3 = J2z3 + �J2z� �J2J1z

J1J2J1J1z3 = J1J2z3 + �J1J2z� �J1J2J1z;

where z := z1z3 = z2z3, and � = q�1 � 1.
Thus the equation in question can be written asX

w2S3
f1;2g6=I2P(3)

�w;IJwzI +
X
w2S3

�wJwz3 +
X
w0

(�w0 + ��w0s1)Jw0z+
X
w00

(�w00 � ��w00)Jw00z = 0;

where w0 2 f1; s2; s1s2g, w
00 2 fs1; s2s1; s1s2s1g.

The assertion follows using proposition 23, and the elementary argument of the linear algebra
on substitution in a basis.

5. Yang-Baxterization

Our algebra has no BW-structure, but admits the procedure of the Yang-Baxterization of [2].

Proposition 26. The algebra En(u) can be Yang-Baxterized.

Proof. We will use the notations of x3.[2]. First, from (19) the element Ti is a solution of the
cubic equation x3 + u�1x2 � x� u�1 = 0. Let us put �1 = �u�1, �2 = �1 and �3 = 1. We get

f+
3 = �

1

u
; f�3 = �

1

u2
; f2 = f+1 = f�1 = 0:

According to theorem x3.[2], the algebra can be Yang-Baxterized if the following equation holds
f+3 �

+
3 + f�3 �

�
3 + f2�2 + f+1 �

+
1 + f�1 �

�
1 = 0. Now, this equation takes the form

u�+
3 + ��3 = 0;

where �+3 = TiT
�1
i+1Ti � Ti+1T

�1
i Ti+1 and ��3 = T�1i Ti+1T

�1
i � T�1i+1TiT

�1
i+1. The proposition

follows from (11).

6. Proof of lemmas 8,9 and 10

In this section m is a natural number greater than i.



6.1. Proof of lemma 8. The proof is by induction over m. For m = i + 1 the lemma is the
part 7.1 of lemma 7. Suppose the lemma is true for any natural number less than m. Let us
take the word V = (EiTi+1 � � � Tm�1)Tm 2 Em+1(u). Using the hypothesis of induction on the
word between parenthesis we have that V is a linear combination of elements of the type:

X = (Ti+1Ti) � � � (Tm�1Tm�2)Em�1TmA

Y = Ti+1Ti+2 � � � Tm�1Em�1TmB

Z = Ti+1Ti+2 � � � Tm�1Tj � � � Tm�2Em�1TmCj ; (i+ 1 � j � m� 2)

where A, B, Cj 2 Em�1(u).
Now from lemma 7, we get

(8A) Em�1Tm = TmTm�1Emx+ TmEmy (x; y 2 Em(u)):

Using this relation we will prove that X, Y and Z are linear combinations of elements of type
(8.1), (8.2) and (8.3).
� From 8A we have that X is a linear combination of elements of the type:

X1 = (Ti+1Ti) � � � (Tm�1Tm�2)TmTm�1EmxA;

X2 = (Ti+1Ti) � � � (Tm�1Tm�2)TmEmyA:

Now, for X2 we have

X2 = (Ti+1Ti) � � � (Tm�2Tm�3)(Tm�1)TmEmTm�2yA

...

X2 = (Ti+1 � � � TmEm)(TiTi+1 � � � Tm�3Tm�2yA):

(notice that the elements in the parenthesis belong to Em(u)). We have that X1 is of the form
(8.1), and X2 is of the form (8.2). Therefore X is a linear combination of the desired elements .
� From 8A, Y is a linear combination of elements of the type

Y1 = Ti+1Ti+2 � � � Tm�1TmTm�1EmxB;

Y2 = Ti+1Ti+2 � � � Tm�1TmEmyB:

Thus Y1 is the form (8.3), and Y2 is the form (8.2). Consequently Y is a linear combination of
the desired elements.
� From 8A, Z is a linear combination of elements of the type

Z1 = Ti+1Ti+2 � � � Tm�1Tj � � � Tm�2TmTm�1EmxCj ;

Z2 = Ti+1Ti+2 � � � Tm�1Tj � � � Tm�2TmEmyCj:

In Z1 moving Tm to the left, we get

Z1 = Ti+1Ti+2 � � � Tm�1TmTj � � � Tm�2Tm�1EmxCj ;

which is an element of the form (8.3).
In Z2 we can move TmEm to the left, then we get

Z2 = Ti+1Ti+2 � � � Tm�1TmEm(Tj � � � Tm�2yCj):

As the element in the parenthesis is in Em(u), we obtain that Z2 is of the form (8.2).

6.2. Proof of lemma 9. Again the proof is by induction over m. For m = i + 1 the lemma
is the part 7.2 of lemma 7. Suppose the lemma is true for any natural number less than m.
Let V = (LiTi+1 � � � Tm�1)Tm 2 Em+1(u). By hypothesis of induction on the word between
parenthesis we have that V is a linear combination of elements of the type:

X = (Ti+1Ti) � � � (Tm�1Tm�2)Lm�1TmA

Y = TiTi+1Ti+2 � � � Tm�2Lm�1TmB

Z = Tm�1�jTm�j � � � Tm�1TiTi+1 � � � Tm�2Lm�1TmCj; (0 � j �m� 3)

where A, B, Cj 2 Em�1(u).



From part 7.2 of lemma 7, we get

(9A) Lm�1Tm = TmTm�1Lmx+ Tm�1Lmy (x; y 2 Em(u)):

We are going to prove that X, Y and Z are linear combinations of word of the type (9.1),
(9.2) and (9.3).
� From 9A, X is a linear combination of

X1 = (Ti+1Ti) � � � (Tm�1Tm�2)TmTm�1LmxA;

X2 = (Ti+1Ti) � � � (Tm�1Tm�2)Tm�1LmyA:

It is obvious that X1 is the form (9.1). In X2 we have

X2 = f(Ti+1Ti) � � � (Tm�2Tm�3)(Tm�1Tm�2)Tm�1gLmyA

= (Ti � � � Tm�1)(Ti � � � Tm�2)LmyA (from (23))

= Ti � � � Tm�1Lm(Ti � � � Tm�2yA):

As the element in parenthesis is in Em(u), we have that X2 is of the form (9.2).
� From 9A, Y is a linear combination of:

Y1 = TiTi+1Ti+2 � � � Tm�2TmTm�1LmxB;

Y2 = TiTi+1Ti+2 � � � Tm�2Tm�1LmyB:

In Y1 moving Tm to the left, we get Y1 = TmTiTi+1Ti+2 � � � Tm�2Tm�1LmxA, which is of the
form (9.3).

It is obvious that Y2 is of the form (9.2).
� Using 9A in Z, we get that Z is a linear combination of elements Z1 and Z2:

Z1 = Tm�1�jTm�j � � � Tm�1TiTi+1 � � � Tm�2TmTm�1LmxCj

Z2 = Tm�1�jTm�j � � � Tm�1TiTi+1 � � � Tm�2Tm�1LmyCj: >

Moving Tm to the left in Z1, we get

Z1 = Tm�1�jTm�j � � � Tm�1TmTiTi+1 � � � Tm�2Tm�1LmxCj ;

which is the form (9.3).
In Z2 moving Tm�1 to the right and using the braid relation on Tm�1Tm�2Tm�1, we have

Z2 = Tm�1�jTm�j � � � Tm�2TiTi+1 � � � Tm�3Tm�1Tm�2Tm�1LmyCj

= Tm�1�jTm�j � � � Tm�2TiTi+1 � � � Tm�3Tm�2Tm�1Tm�2LmyCj

= Tm�1�jTm�j � � � Tm�2TiTi+1 � � � Tm�3Tm�2Tm�1LmTm�2yCj

...

Z2 = TiTi+1 � � � Tm�2Tm�1Lm(Tm�2�j � � � Tm�2yCj):

As the element in parenthesis is in Em(u), we have that Z2 is of the form (9.2).

6.3. Proof of lemma 10. The lemma is obvious, if the product �i := Yi � � � Ym 2 Em+1(u) is a
product that contains only T 0s, or only E's. In the case when �i contains only one Fl 2 fEl; Llg,
the lemma follows from lemmas 8 and 9.

Suppose that �l contains d (d > 1) elements F 's. Let r be the �rst position, from left to
right, where appear one F in �i. We are going to see that in �i the number of F 's \can be
reduced". More precisely, we will see that �i is a linear combination of elements of the form

(10A) �k� and �0
i�;

where k > r, � 2 Em(u), and the �rst F in �0
i appears in the position l, l > r.

Then the lemma will follow by an inductive argument.
We have

�i = TiTi+1 � � � Tr�1FrYr+1 � � � Ym 2 Em+1(u): (i � r)



Now, we distinguish between two cases: the successive F is in the position r+1 (case 1) or not
(case 2).

Case 1. Here �i = TiTi+1 � � � Tr�1FrFr+1Yr+2 � � � Ym�1Ym:
(i) If Fr = Er, we have

�i = TiTi+1 � � � Tr�1ErFr+1Yr+2 � � � Ym

= TiTi+1 � � � Tr�1Fr+1ErYr+2 � � � Ym (from (8))

= Fr+1Yr+2 � � � Ym(TiTi+1 � � � Tr�1Er):

So �i is of the form (10A).
(ii) Set Fr = Lr = ErTr. In the case Fr+1 = Er+1, we have

�i = TiTi+1 � � � Tr�1LrEr+1Yr+2 � � � Ym

= TiTi+1 � � � TrEr+1ErYr+2 � � � Ym (from (8))

= TiTi+1 � � � TrEr+1Yr+2 � � � YmEr:

Thus �i is of the form 10A.
If Fr+1 = Lr+1, using (8) we get LrLr+1 = TrLr+1Er. Then,

�i = TiTi+1 � � � TrLr+1Yr+2 � � � YmEr;

which is of the form (10A).
Case 2. In this case �i one write

(10B) �i = TiTi+1 � � � Tr�1FrTr+1 � � � TlFl+1Yl+2 � � � Ym (l > r):

We will prove that (10B) is a linear combination of elements of the form (10A). For this we
distinguish four possibilities, according to Fr 2 fEr; Lrg, and Fl+1 2 fEl+1; Ll+1g.

Case Fr = Er and Fl+1 = El+1. In this case �i becomes

�i = TiTi+1 � � � Tr�1(ErTr+1 � � � Tl)El+1Yl+2 � � � Ym:

Using lemma 8 on the word in parenthesis, we have that (10B) is a linear combination of the
following words:

X1 = TiTi+1 � � � Tr�1((Tr+1Tr) � � � (TlTl�1)El)El+1Yl+2 � � � YmA

X2 = TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � TlEl)El+1Yl+2 � � � YmB

X3 = TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � Tl�1TlTj � � � Tl�1El)El+1Yl+2 � � � YmCj;

where A, B and Cj 2 Em(u).
Moving Tl�1El to the right, we get

X1 = TiTi+1 � � � Tr�1(Tr+1Tr) � � � (Tl�1Tl�2)TlEl+1Yl+2 � � � YmTl�1ElA

= TiTi+1 � � � Tr�1(Tr+1 � � � Tl�1)(Tr � � � Tl�2)TlEl+1Yl+2 � � � YmTl�1ElA

= (Tr+1 � � � Tl�1)TiTi+1 � � � Tr�1(Tr � � � Tl�2)TlEl+1Yl+2 � � � YmTl�1ElA

= (Tr+1 � � � Tl�1)TlEl+1Yl+2 � � � Ym(TiTi+1 � � � Tr�1Tr � � � Tl�2)Tl�1ElA:

Then X1 is of the form (10A).
In X2, we have

X2 = TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � Tl)El+1Yl+2 � � � YmElB

= Tr+1Tr+2 � � � TlEl+1Yl+2 � � � Ym(TiTi+1 � � � Tr�1)ElB;

which is an element of the form (10A).
In X3, we have

X3 = TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � Tl�1TlTj � � � Tl�1)El+1Yl+2 � � � YmElCj

= TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � Tl�1)TlEl+1Yl+2 � � � YmTj � � � Tl�1ElCj

= Tr+1Tr+2 � � � Tl�1TlEl+1Yl+2 � � � Ym(TiTi+1 � � � Tr�1Tj � � � Tl�1El)Cj;

which is of the form (10A).



Thus as X1, X2 and X3 are of the form (10A) it follows that in this case (10B) is a linear
combination of the elements of the form (10A).

Case Fr = Er and Fl+1 = Ll+1. In this case for �i we have

�i = TiTi+1 � � � Tr�1(ErTr+1 � � � Tl)Ll+1Yl+2 � � � Ym:

As for the preceding case, we have that �i, is a linear combination of words of the type

Y1 = TiTi+1 � � � Tr�1((Tr+1Tr) � � � (TlTl�1)El)Ll+1Yl+2 � � � YmA

Y2 = TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � TlEl)Ll+1Yl+2 � � � YmB

Y3 = TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � Tl�1TlTj � � � Tl�1El)Ll+1Yl+2 � � � YmCj;

where A, B and Cj 2 Em(u).
From case 1(i) we have

Y1 = TiTi+1 � � � Tr�1((Tr+1Tr) � � � (TlTl�1))Ll+1Yl+2 � � � YmElA

= TiTi+1 � � � Tr�1(Tr+1 � � � Tl)(Tr � � � Tl�1)Ll+1Yl+2 � � � YmEl

= (Tr+1 � � � Tl)(TiTi+1 � � � Tr�1)(Tr � � � Tl�1)Ll+1Yl+2 � � � YmElA

= (Tr+1 � � � Tl)Ll+1Yl+2 � � � Ym(TiTi+1 � � � Tr�1)(Tr � � � Tl�1)ElA

which is of the form (10A).

Y2 = TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � Tl)Ll+1Yl+2 � � � YmElB

= Tr+1Tr+2 � � � TlLl+1Yl+2 � � � Ym(TiTi+1 � � � Tr�1ElB);

then Y2 is of the form (10A).

Y3 = TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � Tl�1Tl)(Tj � � � Tl�1)Ll+1Yl+2 � � � YmElCj

= TiTi+1 � � � Tr�1(Tr+1Tr+2 � � � Tl�1Tl)Ll+1Yl+2 � � � Ym(Tj � � � Tl�1)ElCj

= Tr+1Tr+2 � � � Tl�1TlLl+1Yl+2 � � � Ym(TiTi+1 � � � Tr�1)(Tj � � � Tl�1)ElCj;

which is of the form (10A).
Therefore, in this case, (10B) is a linear combination of the elements of the type (10A).
Case Fr = Lr and Fl+1 = Ll+1. In this case

�i = TiTi+1 � � � Tr�1(LrTr+1 � � � Tl)El+1Yl+2 � � � Ym:

Using lemma 9, we have that �i is a linear combination of the following elements

Z1 = TiTi+1 � � � Tr�1((Tr+1Tr) � � � (TlTl�1)Ll)El+1Yl+2 � � � YmA

Z2 = TiTi+1 � � � Tr�1(TrTr+1Tr+2 � � � Tl�1Ll)El+1Yl+2 � � � YmB

Z3 = TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TlTrTr+1 � � � Tl�1Ll)El+1Yl+2 � � � YmCj;

where A, B and Cj 2 Em(u).
Using case 1, we get for Z1, Z2, and Z3:

Z1 = TiTi+1 � � � Tr�1f(Tr+1Tr) � � � (TlTl�1)TlgEl+1Yl+2 � � � YmElA

= (TiTi+1 � � � Tr�1)(Tr � � � Tl)(Tr � � � Tl�1)ElYl+1 � � � YmElA (from (23))

= (TiTi+1 � � � Tr�1)(Tr � � � Tl)ElYl+1 � � � Ym(Tr � � � Tl�1)ElA

= TiTi+1 � � � TlEl+1Yl+2 � � � Ym(Tr � � � Tl�1ElA):

Z2 = TiTi+1 � � � Tr�1(TrTr+1Tr+2 � � � Tl�1Tl)El+1Yl+2 � � � YmElB:



Z3 = TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TlTrTr+1 � � � Tl�1Tl)El+1Yl+2 � � � YmElCj

= TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TrTr+1 � � � TlTl�1Tl)El+1Yl+2 � � � YmElCj

= TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TrTr+1 � � � Tl�1TlTl�1)El+1Yl+2 � � � YmElCj

= TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TrTr+1 � � � Tl�1Tl)El+1Yl+2 � � � YmTl�1ElCj

...

= TiTi+1 � � � Tl�1TlEl+1Yl+2 � � � YmTl�j�1Tl�j � � � Tl�1ElCj :

Thus Z1, Z2, and Z3 are of the form (10A). Then in this case (10B) is a linear combination of
elements of the type (10A).

Case Fr = Lr and Fl+1 = Ll+1. In this case �i takes the form

�i = TiTi+1 � � � Tr�1(LrTr+1 � � � Tl)Ll+1Yl+2 � � � Ym:

From lemma 9, we get

V1 = TiTi+1 � � � Tr�1((Tr+1Tr) � � � (TlTl�1)Ll)Ll+1Yl+2 � � � YmA

V2 = TiTi+1 � � � Tr�1(TrTr+1Tr+2 � � � Tl�1Ll)Ll+1Yl+2 � � � YmB

V3 = TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TlTrTr+1 � � � Tl�1Ll)Ll+1Yl+2 � � � YmCj ;

where A, B and Cj 2 Em(u).
To �nish this proof, it is enough to see that V1, V2, and V3 are of the form (10A). We do this

below.

V1 = TiTi+1 � � � Tr�1((Tr+1Tr) � � � (TlTl�1)Tl)Ll+1Yl+2 � � � YmElA

= TiTi+1 � � � Tr�1(Tr � � � Tl)(Tr � � � Tl�1)Ll+1Yl+2 � � � YmElA (from (23))

= TiTi+1 � � � Tr�1(Tr � � � Tl)Ll+1Yl+2 � � � Ym(Tr � � � Tl�1)ElA

= TiTi+1 � � � TlLl+1Yl+2 � � � Ym(Tr � � � Tl�1ElA):

V2 = TiTi+1 � � � Tr�1(TrTr+1Tr+2 � � � Tl�1Ll)Ll+1Yl+2 � � � YmB

= TiTi+1 � � � Tr�1(TrTr+1Tr+2 � � � Tl�1Tl)Ll+1Yl+2 � � � YmElB:

V3 = TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TlTrTr+1 � � � Tl�1Tl)Ll+1Yl+2 � � � YmElCj

= TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TrTr+1 � � � TlTl�1Tl)Ll+1Yl+2 � � � YmElCj

= TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TrTr+1 � � � Tl�1TlTl�1)Ll+1Yl+2 � � � YmElCj

= TiTi+1 � � � Tr�1(Tl�jTl�j+1 � � � Tl�1TrTr+1 � � � Tl�1Tl)Ll+1Yl+2 � � � YmTl�1ElCj

...

= TiTi+1 � � � Tl�1TlLl+1Yl+2 � � � YmTl�j�1 � � � Tl�1ElCj:
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