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We derive the non-abelian generalization of the Furry ap-
proximation which describes the transverse dynamical evolu-
tion of a hard projectile parton inside a spatially extended
colour target field. This provides a unified starting point for
the target rest frame description of the nuclear dependence
of a large class of observables. For the case of the virtual
γ∗ → q q̄ photoabsorption cross section, we investigate then
in detail under which conditions the nuclear dependence en-
coded in the Furry wavefunctions can be parametrized by a q q̄
QCD dipole cross section. The important condition is colour
triviality, i.e., the property that for arbitrary N-fold rescat-
tering contributions the only non-vanishing colour trace is
Nc CN

F . We give proofs for the colour triviality of the inelastic,
diffractive and total photoabsorption cross section measured
inclusively or with one jet resolved in the final state. Also,
we list examples for which colour interference effects remain.
Colour triviality allows us to write the DIS nuclear structure
function F2 for small Bjorken xBj in terms of a path integral
which describes the transverse size evolution of the q q̄ pair in
the nuclear colour field. This expression reduces in an opacity
expansion to the N = 1 result of Nikolaev and Zakharov, and
in the eikonal approximation to the Glauber-type rescattering
formulas first derived by Mueller. In the harmonic oscillator
approximation of the path integral, we quantify deviations
from the eikonal limit. Their onset is characterized by the
scales L/lf and Etot

⊥ L which relate the longitudinal exten-
sion L of the nuclear target to the coherence length lf and
the total transverse energy Etot

⊥ accumulated by the q-q̄-pair.

I. INTRODUCTION

The partonic interpretation of physical processes and
their nuclear dependence is Lorentz frame dependent.
Drell-Yan, e.g., is a q-q̄ → γ∗-fusion in the infinite mo-
mentum frame, but it becomes a γ∗-bremsstrahlung ra-
diation off the projectile quark if viewed in the target
rest frame [1,2]. Similarly, nuclear shadowing is due to
the recombination of partons from different nucleons, if
viewed in the infinite momentum frame [3]. In the tar-
get frame, it arises from non-additive contributions of
the rescattering of the hadronic γ∗-Fock states in a spa-
tially extended medium [4-8]. The descriptions in dif-
ferent Lorentz frames are equivalent, of course. But de-
pending on the physical problem at hand, a well-chosen
Lorentz frame may provide a particularly simple par-
tonic interpretation. To study the nuclear dependence

of physical processes, the target rest frame provides ar-
guably the most intuitive picture. QCD factorization
theorems can be expected to hold for the nuclear de-
pendence of high-pt processes only [9-11], and thus a
large variety of other approaches to the nuclear depen-
dence of hard processes exists in the literature [1,5,12-
24]. These exploit that in the target rest frame, the
nuclear dependence of a physical process P with tran-
sition amplitude 〈Ψi| P |Ψf 〉 can be attributed often to
the multiple rescattering of the hard in- and outgoing
partons inside the soft spatially extended target colour
field. In the simplest cases, this rescattering effect can
be described by multiplying the free in- and outgoing
wavefunctions with straight eikonal Wilson lines which
account for the leading medium-induced colour rotation
of projectile quarks [1,25].

In the present work, we derive and study a more re-
fined approximation scheme for in- and outgoing wave-
functions Ψi and Ψf which includes the leading trans-
verse dynamical evolution of the projectile partons inside
the target. To this end, we derive in section II explicit
expressions for Ψi and Ψf which approximate to leading
order 1/E in the norm and next to leading order in the
phase the solution of the Dirac equation in the presence of
a spatially extended colour field. The 1/E-corrections in-
cluded in these solutions are known to provide the leading
contribution for observables which are essentially deter-
mined by the destructive interference between different
production amplitudes as, e.g., the non-abelian Landau-
Pomeranchuk-Migdal (LPM) effect [12-21] or the nuclear
dependence of Drell-Yan pair production [2,20]. Indeed,
our derivation of Ψi and Ψf draws on exactly the same
approximation schemes which were used in recent stud-
ies [12,26] of the nuclear dependence of these observables.
In section II, however, we discuss this rescattering effect
without reference to a particular observable. In this way,
we obtain a compact expression which turns out to be the
non-abelian generalization of the abelian Furry approxi-
mation [20,21] and which may serve as building block in
the calculation of very different nuclear dependencies.

The main technical complication in working with non-
abelian Furry wavefunctions is that they involve a path-
integral over a path-ordered non-abelian Wilson line. In
section III and IV, we show for the example of the
γ∗ → q q̄ photodissociation process how explicit and ex-
act calculations can be done despite this complication.
The key step is a diagrammatic technique first used by
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Mueller and collaborators [4,15-18,27] which allows to
establish the colour triviality of certain cross sections in-
volving N -fold rescattering processes. Here, colour trivi-
ality means that the contribution to a medium-dependent
observable to N -th order in the opacity involves only
colour traces which reduce to the N -th power of the
Casimir. This renders the problem essentially abelian.
In section IV C, we derive the corresponding diagram-
matic identities for our configuration space formulation
of partonic rescattering. We then use these identities in
explicit proofs of the colour triviality of the inelastic and
diffractive part of the inclusive and one-fold differential
(i.e. one jet resolved) photoabsorption cross section. At
least for the γ∗ → q q̄ photodissociation cross section, all
colour trivial observables turn out to be given in terms
of the transverse dynamical evolution of a QCD dipole
which is described by a simple path integral K. We dis-
cuss the eikonal limit in which the transverse dynamical
evolution is neglected, and we quantify the leading cor-
rections to this limiting case.

We choose for all explicit calculations the photodisso-
ciation process γ∗ → q q̄ mainly since it is the simplest
example which allows to illustrate all technical difficulties
associated with the non-abelian Furry approximation and
colour interference effects. One may ask to what extent
the same approach can be applied to other or more exclu-
sive observables or to other models of the medium. Two
aspects of this very general question are addressed here:
Firstly, we give in section IVB and IVE examples of
(more exclusive) photoabsorption processes which are not
colour trivial, thus indicating the limitations of the ap-
proach advocated here. Secondly, we argue in section V
that the specific model ansatz for in-medium rescattering
is not instrumental for our results. We do believe that
the compact configuration-space notation used through-
out this work will prove an important tool in establishing
and exploiting the colour triviality of various other ob-
servables which show interesting nuclear dependencies.
This, however, lies outside the scope of the present work.
In the Conclusions, we summarize our main results and
we shortly comment an these further perspectives.

II. ASYMPTOTIC WAVEFUNCTIONS FOR
RESCATTERING PARTICLES

We want to calculate the nuclear dependence of some
physical process P with transition amplitude 〈Ψi| P |Ψf〉
by describing how the medium affects the propagation
of the in- and outgoing wavefunctions Ψi, Ψf . For the
case of the photodissociation process γ∗ → qq̄ depicted
in Fig. 1a this means that we write the corresponding
transition amplitude in the form

〈Ψi| P |Ψf〉 = ie

∫
d4xΨu

†(x, p1) γ0

× εµ γ
µ ei k·x Ψv(x, p2) . (2.1)

Here, the physical process P is determined by the photon-
quark vertex ieε ·γ eikx. In this section, we derive explicit
expressions for the medium-dependence of these asymp-
totic wavefunctions irrespective of a particular process.
Section II A explains the solution of the corresponding
abelian problem, section II B establishes the non-abelian
extension. In the remaining sections of this paper, we
shall discuss then for the example of the photodissocia-
tion (2.1) how explicit calculations can be done.

k

p
1

p
2

1
2

1
2

N

N-1

M-1
M

....

....

1 2 3 N-1 N

N=0 . . . .

p ,ap ,a
1 1 p ,a

N N
p ,a

2 2
p ,a p ,a

3 3 4 4

(a)

(b)

FIG. 1. (a) Contribution to the photodissociation process
γ∗ → q q̄ with N- and M -fold final state rescattering for the
outgoing quark and antiquark. (b) Sum over rescattering dia-
grams for an outgoing antiquark which leaves the production
vertex with momentum p1 and colour a1. To leading order
in opacity, this resums all rescattering effects and defines the
non-abelian Furry wavefunction (2.12).

A. Abelian Furry approximation

We consider a relativistic positron with momentum
(E2,p2) (E2 � m). Prior to its detection, this positron
undergoes multiple small-angle scattering in a spatially
extended medium, described e.g. by a collection U(x) of
single scattering potentials ϕi(x) = ϕ(x − x̌i) localized
at spatial positions x̌i,

U(x) =
∞∑

i=1

ϕ(x − x̌i) . (2.2)

The asymptotic electron wavefunction Ψ is a solution to
the Dirac equation in this spatially extended field:[

i
∂

∂t
− U(x) −mγ0 + iα · ∇

]
Ψ(x, p2) = 0 . (2.3)
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Which approximation for Ψ(x, p2) keeps the leading
medium-dependence ? An expansion of Ψ in powers of
the coupling constant does not since it amounts to an
expansion in powers of the single scattering potential
ϕ rather than containing the leading order effect of U .
In QED, the leading U -dependence is kept in the Furry
approximation [20,21] which is a high energy expansion
of the solution of the Dirac equation. For the outgoing
positron wavefunction, it reads

ΨF (x, p2) = eiE2t−ip2z D̂2 F (x,p2) v(p2) . (2.4)

which is exact to order O(U/E) and O(1/E2). Here, D̂i

denotes a differential operator

D̂i = 1 − i
α · ∇
2Ei

− α · (pi − n pi)
2Ei

,

α = γ0 γ ; z = n · x ; pi = |pi| , (2.5)

and the unit vector n specifies the longitudinal direction.
The differential operator acts on the transverse wavefunc-
tions F . For very late times, i.e., for far forward longitu-
dinal distances xL, this wavefunction satisfies plane wave
boundary conditions

F (x⊥, xL,p2) = exp

{
−ip⊥

2 · x⊥ + i
p⊥

2
2

2 p2
xL

}
, (2.6)

F (y⊥, yL,p2) =
∫
dx⊥G(x⊥, xL;y⊥, yL|p2)

×F (x⊥, xL,p2) . (2.7)

Its evolution to finite longitudinal distances is determined
by the retarded Green’s function G whose path integral
representation reads

G(z′, r′; z, r | p) =∫
Dr(ξ) exp


z′∫

z

dξ
[
ip

2
ṙ2(ξ) − i U

(
r(ξ), ξ

)] . (2.8)

Here, ṙ = dr/dξ and G satisfies the boundary conditions
r(z) = r, r(z′) = r′, with G(z′ = z, r′; z, r|p) = δ(r′ − r),
and G(z′, r′; z, r | p) = 0 for z > z′. The Green’s func-
tion (2.8) describes the Brownian motion of the projec-
tile particle in the plane transverse to the beam. This
is the leading medium effect on the propagation of the
projectile. Starting from the abelian Furry wavefunction
(2.4), the KST-formalism [20,21] then allows to describe
e.g. the medium dependence of the LPM-bremsstrahlung
spectrum [20,21]. One of the main motivations for what
follows is the question to what extent the application of
the same approach to non-abelian problems is justified.

B. Non-abelian Furry approximation

To find the non-abelian generalization of the Furry
approximation, we consider a spatially extended static
colour potential of the form

Aµ(x) = δ0µ

∞∑
i=1

ϕa
i (x)T a , (2.9)

ϕa
i (x) = ϕ(x − x̌i) δa ai , (2.10)

where T a, (a = 1, . . . , N2
c − 1), denote the generators of

the SU(Nc) colour representation of the projectile par-
ton. The i-th scattering center is located at x̌i and ex-
changes a specific colour charge a = ai.

For the spatial support of the potentials ϕa
i we take

the rapid fall-off of a Yukawa potential with some Debye
screening mass M . We assume that the mean free path
of the projectile parton in the medium is taken to be
much larger than 1/M . This ansatz for (2.10) is known
as Gyulassy-Wang model [12,13] and was originally in-
troduced to mimic rescattering effects of hard partons in
the colour-deconfined matter created in the early phase
of a relativistic heavy ion collisions.

To leading order O(1/E), the Feynman diagram in
Fig. 1b is the only αN

s rescattering term. Rescattering
contributions involving 3- or 4-gluon vertices are known
to come with spatial suppression factors in the Gyulassy-
Wang model [12,16]. The N -fold rescattering of a hard
parton in the colour field (2.9) is thus determined by

I(N)(y) = e−ip1·y P
(

N∏
i=1

∫
d3pi

(2π)3
d3xi

i (6 pi +m) γ0

p2
i −m2 + i ε

× [−i A0(xi)] e−i xi·(pi+1−pi)
)
v(r)(p) . (2.11)

Here, the quark leaves some production vertex with mo-
mentum p1 and colour a1. It undergoes N gluon ex-
changes with the spatially extended colour potential Aµ,
emerging in the “final state” with momentum p and
colour a. I(N)(y) is a matrix in the colour representa-
tion of the projectile. The path-ordering P implies that
A0(xi+1) stands to the right of A0(xi). The diagram
in Fig. 1 denotes the component I(N)

a1 a of this matrix.
The momentum transfers to the quark line are written
as Fourier transforms of the static scattering potential
with respect to the relative momenta pi+1 − pi. Finally,
instead of an explicit production vertex, we have intro-
duced in (2.11) the incoming plane wave exp [−ip1 · y].
This factor allows to glue the above Feynman diagram
via y-integration onto another subprocesses P without
specifying P at the present stage.

In appendix A, we approximate the norm of I(N) to
leading order O(1/E) and the phase to next to leading
order. Summing then over contributions for arbitrarily
many N rescatterings in the medium, we find the non-
abelian Furry wavefunction

Ψv(y0,y, p) = ei E y0
∞∑

N=0

I(N)(y)

= ei E y0−i p yL D̂ F (y,p) v(r)(p) . (2.12)
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This expression compares directly to the abelian Furry
approximation (2.4). In (2.12), D̂ is the operator (2.5)
with pi = p, and F is the outgoing transverse wavefunc-
tion evolved from its asymptotic plane wave form to y
with the Green’s function Ḡ,

F (y,p) =
∫
dx⊥ Ḡ(y⊥, yL;x⊥, xL|p)

×F (x⊥, xL,p) . (2.13)

The Green’s function Ḡ is the non-abelian generalization
of the Green’s function (2.8). It can be defined explicitly
by its expansion in powers of the scattering potential A0:

Ḡ(r, z; r′, z′|p) ≡ Ḡ0(r, z; r′, z′|p) − i

z′∫
z

dξ

×
∫
dρ Ḡ0(r, z; ρ, ξ|p)A0(ρ, ξ) Ḡ0(ρ, ξ; r′, z′|p)

+P
xL∫

zL

dξ1

xL∫
ξ1

dξ2

∫
dρ1 dρ2 Ḡ0(r, z; ρ1, ξ1|p)

×i A0(ρ1, ξ1) Ḡ0(ρ1, ξ1; ρ2, ξ2|p)
×i A0(ρ2, ξ2) Ḡ(ρ2, ξ2; r

′, z′|p) . (2.14)

Here, Ḡ0 is the free non-interacting Green’s function

Ḡ0(r, z; r′, z′|p) ≡ p

2πi(z′ − z)
exp

{
ip (r − r′)2

2(z′ − z)

}
,

(2.15)

and the path ordering P in (2.14) ensures that the po-
tential A0(ρ2, ξ2) stands to the right of the potential
A0(ρ1, ξ1). In contrast to the retarded Green’s function
(2.8) which is only non-vanishing for z′ > z, we shall use
the Green’s function Ḡ in (2.14) for z′ > z and z > z′ by
defining

Ḡ(r′, z′; r, z|p) ≡ Ḡ†(r, z; r′, z′|p) , for z′ > z . (2.16)

Note that for a hermitian scattering potential, this lat-
ter definition (2.16) is indeed compatible with the rep-
resentation (2.14). Hermitian conjugation automatically
inverts the path-ordering. A very compact notation for
the expansion (2.14) can be given in terms of a path-
ordered Wilson line W

(
[r]; z, z′

)
which follows the non-

abelian potential A0 from initial position (r(z), z) to final
position (r(z′), z′) along the path r(ξ)

Ḡ(r, z; r′, z′|p) =

=
∫

Dr(ξ) exp

 ip

2

z′∫
z

dξ ṙ2(ξ)

 W
(
[r]; z, z′

)
, (2.17)

W
(
[r]; z, z′

)
= P exp

−i
z′∫

z

dξ A0(r(ξ), ξ)

 . (2.18)

Again, operators at larger longitudinal distances (z′ > z)
stand to the right. Expanding the Wilson line to fixed or-
der O(An

0 ) coincides with the representation (2.14). The
non-abelian Furry approximation thus differs from the
abelian one essentially by path-ordering in the Green’s
function Ḡ which describes the dynamical evolution of
the transverse wavefunction.

To obtain the result (2.12), it is crucial that we approx-
imate first the N -fold rescattering diagram I(N), keeping
the phase factor to order O(1/E) and then resum contri-
butions for arbitrary N . If one parallels the derivation
of the abelian case by directly starting from the solu-
tion of the non-abelian Dirac equation in the presence of
a spatially extended colour field, one arrives at the re-
cursive solution of Buchmüller and Hebecker [28]. The
starting point for their recursion formula is a straight
eikonal Wilson line, and the recursion includes correc-
tions to fixed order in energy. An explicit n-fold iterated
expression is thus correct to fixed order O(1/En), but it
does not contain the O(1/E)-corrections to the phase of
the wavefunction, which is characteristic for the Furry ap-
proximation. Our diagrammatic approach allows to keep
this phase. For large but finite incident energy, our solu-
tion is thus characteristically different from that given in
Ref. [28]. [We have checked, e.g., that the abelian version
of [28] does not lead to the correct medium dependence
of the QED bremsstrahlung spectrum while the abelian
version of (2.12) does. This difference of both solutions
is expected since the bremsstrahlung spectrum is sensi-
tive to interference effects which stem from the O(1/E)-
contributions to the phase of the wavefunctions [21].]

In the infinite energy limit, the solution (2.12) reduces
to the straight eikonal Wilson line

lim
ν→∞ Ḡ(r, z;x⊥, xL|ν) = W ([rs]; z, xL) , (2.19)

rs(ξ) = x⊥
ξ − z

xL − z
+ r

xL − ξ

xL − z
, (2.20)

which is the leading order input for the recursion formula
of Ref. [28]. This expression is often used to describe the
leading colour rotation of the hard parton in a soft colour
field [1,25].

The Furry wavefunction (2.12) derived here allows for
the description of the nuclear dependence of a large class
of physical observables. Before illustrating this for a
specific example, let us comment shortly on the limita-
tion of a description of nuclear dependencies in terms
of 〈Ψi|P |Ψf〉. Strictly speaking, of course, QCD fac-
torization theorems for observables including rescatter-
ing effects have been established (and can be expected to
hold) only for processes for which kinematical constraints
ensure extremely high transverse momentum transfers
(� ΛQCD), [9-11]. In this sense, the description of the
soft nuclear rescattering of hard partons always depends
on additional assumptions and different approaches may
be taken [1,12,15]. In particular, we assume (as all other
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treatments do) that the leading nuclear dependence can
be obtained using the idealization of “asymptotic” par-
ton wavefunctions, i.e., without considering parton frag-
mentation. Since parton fragmentation and soft parton
rescattering involve transverse momenta of the same or-
der, this is a requirement on the spatial separation of
the two phenomena and amounts to an energy-dependent
limit on the longitudinal extension L of the nuclear tar-
get up to which this description can be expected to apply.
Moreover, the ad hoc separation of the transition ampli-
tude into a production P and a final state wavefunction
including rescattering effects may be oversimplified for
specific processes. We think, e.g., of the production and
rescattering of a heavy quarkonium state with specific
quantum numbers. Taking P to be the production of the
heavy q-q̄-pair, it is not clear a priori to what extent final
state rescattering modifies the quantum numbers of this
state. First studies indicate [29] that the discussion of
this problem requires a classification of the hardness of
medium-induced momentum transfers which lies outside
the scope of the present calculation. To sum up: the dis-
cussion of the nuclear dependence of hard observables in
terms of 〈Ψi|P |Ψf 〉 seems justified if no other soft scale
(introduced e.g. by parton fragmentation or by the bind-
ing energy of the final state) interfers significantly with
the final state rescattering effect described by the Furry
wavefunctions. The non-abelian LPM-effect [12,13,15-
18], the nuclear dependence of Drell-Yan yields [2,20] and
nuclear shadowing [5,6] are prominent examples for which
a description in terms of 〈Ψi|P |Ψf 〉 seems suitable.

III. PHOTODISSOCIATION

In this section, we give a closed expression for the
γ∗ → q q̄ photodissociation cross section σγ∗→qq̄ in terms
of the non-abelian Green’s function Ḡ and the squared in-
going wavefunction Φ of a freely evolving q-q̄-pair. This
photodissociation cross section contributes to the total
virtual photoabsorption cross section σγ∗

total which is re-
lated to the deep inelastic structure function F2, [30]

F2(x,Q2) =
Q2

4π2 αem
σγ∗

total(x,Q
2) . (3.1)

In the target rest frame, one can show that photodissoci-
ation as depicted in Fig. 2b dominates for small Bjorken
x over the γ∗-q fusion process shown in Fig. 2a [6].
The leading corrections to σγ∗→qq̄

total come from initial state
gluon radiation [6,32] which we neglect in what follows.

We consider a virtual photon of four momentum
k = (ν,0⊥,

√
ν2 +Q2) which dissociates into a quark-

antiquark pair in the time interval −T/2 < t < T/2.
The dissociation cross section is

σγ∗→qq̄
total =

1
2 |kL|T

∫
dX |Sfi|2 , (3.2)

where the phase space element is written in terms of the
on-shell momenta of the outgoing quarks,

dX =
d3p1

(2π)3 2 |E1|
d3p2

(2π)3 2 |E2| . (3.3)

The rescattering of these quarks in the spatially extended
colour field is described by the Furry wavefunctions in the
dissociation amplitude

Sfi ≡ Sµ
fi εµ , (3.4)

Sµ
fi = ie

∫
d4xΨu

†(x, p1) γ0 γµ

×e−ε |z| ei k·x Ψv(x, p2) . (3.5)

To discuss the case of different photon polarizations, we
write this disscociation amplitude as a contraction of Sµ

fi

with the polarization vector εµ. To shorten our notation,
we do not keep track of the fractional charge eq of the
quark and of the number of flavours. To do this, all our
final results have to be supplemented by a sum over the
available flavour channels weighted by e2q.

target

photon

time

(b)

(a)

target

photon

FIG. 2. Two possible time orderings for the interaction of
a virtual photon with a nuclear target. At small Bjorken x,
the γ∗ → qq̄ photodissociation process (b) dominates over the
γ∗-q-fusion, see Ref. [6].

Inserting the Furry wavefunctions for quark and an-
tiquark, see (2.12), we can separate in (3.5) an energy
conserving δ-function, Sµ

fi = ie (2π) δ(E2 − E1 − ν)Mµ
fi.

We introduce the fraction α of the initial energy carried
by one quark, E2 = αν, E1 = −(1−α) ν. Here, E1 is neg-
ative, since the corresponding 4-momentum p1 flows into
the quark-photon vertex, see Fig. 1a. After coordinate
transformation (pL

1 , p
L
2 ) → (α, kL), the photodissociation

cross section reads

σγ∗→qq̄
total = αem

∫
dα

4 ν2 α (1 − α)
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×
∫

dp⊥
1

(2π)2
dp⊥

2

(2π)2
〈|Mfi|2〉 . (3.6)

Here, we have used Fermi’s golden rule and the kL-
integration to eliminate the two energy-conserving δ-
functions. The brackets 〈. . .〉 denote an in-medium aver-
age over the colour field Aµ which will be specified below.
The probability |Mfi|2 can be written in terms of the full
interacting Green’s functions (2.17) as

|Mfi|2 =
∫

d3y d3ȳ ei q (yL−ȳL) e−ε(|yL|+|ȳL|)
∫

dx⊥

×dx′⊥ d x̄⊥ d x̄′
⊥ e

i p⊥
1 ·(x′⊥−x̄′

⊥) e−i p⊥
2 ·(x⊥−x̄⊥)

×Ḡ(x;y|p2) εµΓ̂µ Ḡ(y;x′|p1)

×Ḡ(x̄′; ȳ|p1) ενΓ̂∗ν
Ḡ(ȳ; x̄|p2) . (3.7)

In general, all spatial coordinates can be different for
Mfi and M †

fi. We characterize those for M †
fi by a bar.

The spinor structure of the Furry wavefunctions (2.12) is
contained in (3.7) in the vertex function

Γ̂µ = u(r′)†(−p1) D̂∗
1 γ

0 γµ D̂2 v
(r)(p2) . (3.8)

In appendix B, we discuss how these vertex functions
combine with free Green’s functions Ḡ0 to the incoming
q-q̄ Fock state. In terms of the square Φ(∆z; ∆z̄;α) of
this Fock state, the differential photodissociation cross
section (3.6) takes the form

σγ∗→qq̄
total

dα dp⊥
1 dp

⊥
2

=
αem

(2π)4

∫
db1 db2 d b̄1 d b̄2 Φ(∆b; ∆b̄;α)

×
∫

dx⊥ dx′⊥ d x̄⊥ d x̄′
⊥ e

ip⊥
1 ·(x′⊥−x̄′

⊥) e−ip⊥
2 ·(x⊥−x̄⊥)

×
〈
Ḡ(b̄2; x̄|p2)Ḡ(x;b2|p2)

×Ḡ(b1;x′|p1) Ḡ(x̄′; b̄1|p1)
〉
, (3.9)

where ∆b = b1 − b2 and ∆b̄ = b̄1 − b̄2. The explicit
form of the squared incoming wavefunction Φ is derived
in appendix B.

In equation (3.9), we assume that the nuclear target
has nonvanishing density only for some longitudinal po-
sitions zL > 0. The integration variables bi, b̄i denote
the transverse boundary values of the Green’s functions
at the front end zL = 0 of the nuclear target. Fig. 3
gives a graphical representation for (3.9) which we shall
heavily use in what follows. According to Fig. 3, the
virtual photon wavefunction starts interacting with the
nuclear medium at zL = 0 in both the amplitude and
complex conjugate amplitude after dissociating at longi-
tudinal positions yL, ȳL with yL, ȳL < 0. We emphasize,
however, that despite appearance, equation (3.9) as well
as its graphical representation in Fig. 3 also include the

case that the photon vertex dissociates inside the target
at yL > 0. Technical details of how this is handled are
given in appendix B.

1z

1p
1p

p2

p2

CUTy z yz

z

z

x

x

x’
x’

1

2
2 z

 y
y

L L LL

FIG. 3. Representation of the γ∗ → q q̄ photodissociation
cross section (3.6), (3.7). In the amplitude Mfi, the photon
dissociates at position (y, yL) into a quark and an antiquark.
These propagate with free non-interacting Green’s functions
(dotted lines) up to the front end of the target at longitudinal
position zL. From zL onwards, the quark and antiquark are
propagated inside the colour field with interacting Green’s
functions (full lines) up to their asympotic on-shell states
(“cut”). For the complex conjugate amplitude, the analo-
gous evolution of the hadronic qq̄ Fock state is depicted on
the other side of the cut.

IV. OPACITY EXPANSION AND COLOUR
TRIVIALITY

In this section, we analyze the photoabsorption cross
section (3.9) by expanding the interacting Green’s func-
tions Ḡ in powers of the scattering potential A0(x). In
a first step, we focus on the total photoabsorption cross
section

σγ∗→q q̄
total = αem

∫
dα

∫
db1 db2 d b̄1 d b̄2 Φ(∆b; ∆b̄;α)

×
〈∫

dx⊥ Ḡ(b̄2;x|p2) Ḡ(x;b2|p2)

×
∫

dx′⊥ Ḡ(b1;x′|p1) Ḡ(x′; b̄1|p1)
〉
. (4.1)

To make sense of an expansion in powers of A0, we have
to specify the in medium average 〈. . .〉 in terms of A0.
To this end, we specify for the colour potential (2.9) the
contribution of a single scattering potential, centered at
(ři, ži),

ϕa
i (x⊥, ξ) = δa ai

∫
d3κ

(2π)3

×a0(κ⊥) e−i(x⊥−ři)· ⊥e−i(ξ−ži)κ
L

. (4.2)

Here, we have approximated the argument of the single
scattering potential a0(κ) ≈ a0(κ⊥). This implies that
the momentum transfer occurs at a fixed longitudinal
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position ξ = ži. It is the standard approximation in the
high energy limit where the dominant momentum trans-
fer from the medium is transverse, and it motivates the
use of time-ordered perturbation theory to rescattering
problems [12,15].

Starting from (4.2), we define the medium average 〈. . .〉
as an average over the transverse and longitudinal posi-
tions (ři, ži) of the scattering potentials and the colour
factors ai,

〈f〉 ≡ 1
A⊥

(
N∏

i=1

∑
ai

∫
dři dži

)
×f(ř1, . . . , řN ; ž1, . . . , žN ; a1, . . . , aN ) . (4.3)

Here, A⊥ is a total transverse area which we divide out
to regain the cross section per unit transverse area. N is
the number of different single scattering potentials up to
which the function f is expanded.

To simplify notation, we replace in what follows the
discrete sum over ži in (2.10) by an integral over the
density n of scattering centers

A0(x⊥, ξ) =
∫
dži n(ži)ϕa

i (x⊥, ξ)T a . (4.4)

Since the effective momentum transfer from the single
potential ϕa

i (x⊥, ξ) occurs at ξ = ži, we shall often work
with ξ as integration variable. The expansion of the
photoabsorption cross section to N -th order in A0 is an
expansion in the N -th order of the opacity parameter
α2

s

∫
dξ n(ξ). In what follows, we study the perturbative

expansion in this parameter.

A. N=1 result of Nikolaev and Zakharov

As a first illustration of the above formalism, we ex-
pand the integrand of the total photoabsorption cross
section (4.1) to first order in the opacity parameter
α2

s

∫
dξ n(ξ), thereby reproducing the well-known nuclear

shadowing result of Nikolaev and Zakharov. For N = 1,
we have to expand all Green’s functions in (4.1) and then
to collect all contributions to order O(A2

0).
The zeroth and first order contributions O(A0

0) and
O(A1

0) to σγ∗→q q̄
total vanishes due to energy-momentum con-

servation: without momentum transfer to the medium,
the q-q̄-pair cannot appear on-shell. To second order
O(A2

0), there are four different terms which we depict
diagrammatically in Fig. 4a: for each term, the full lines
correspond to the full lines shown in Fig. 3 and describe
the full Green’s functions in the total photoabsorption
cross section (4.1). To simplify the representation, we
have dropped in comparison to Fig. 3 the photon lines
and incoming q-q̄ wavefunctions. For the total photoab-
sorption cross section, the transverse positions at the cut

are equal for the amplitude and the complex conjugate
amplitude.

k

(b)

(a)

1

z L z Lz* z*

k

x

x

=
x xx x

def x

x

x
+

x

+x x+

=

def

FIG. 4. (a) Diagrammatic representation of the N = 1
contribution to the total photoabsorption cross section (4.1).
For each term, the upper (lower) line denotes the Green’s
function with energy p1 (p2) and the cusps denote the position
of the cut. (b) Definition of the diagrammatic shorthand used
in (a) and calculated in (4.5). Crosses stand for one power
of the scattering potential A0. The medium average ensures
that the momentum flow k through the cut is conserved and
that the potential A0 is linked to the q-q̄-system in Mfi and
M†

fi at the same longitudinal position.

Let us consider the first term on the r.h.s. of Fig. 4.
Here, the Green’s functions of argument p2 are free while
both Green’s functions with argument p1 are expanded
to first order. Averaging over the position (ř1 , ž1) of the
center of the scattering potential, we find〈∫

dř1 dž1 dx⊥ Ḡ0(b̄2;x|p2) Ḡ0(x;b2|p2)

×
∫

dx′⊥ Ḡ(1)(b1;x′|p1) Ḡ(1)(x′; b̄1|p1)
〉

=
1
A⊥

∫
dξ1 n(ξ1)

∫
dκ⊥
(2π)2

|a0(κ⊥)|2 Ta1 Ta1

×δ(2)(b̄2 − b2) δ(2)(b̄1 − b1) . (4.5)

This term does not depend on the separation between
the q-q̄ pair since the potential touches only one of the
quark lines. In contrast, the second term on the r.h.s. of
Fig. 4a depends on this separation and takes the explicit
form

−
∫
dξ1 n(ξ1)

∫
dκ⊥
(2π)2

|a0(κ⊥)|2 Ta1 Ta1 e
−i ⊥·(r1−r2)

×e−i
�
2
⊥

2να(1−α) (ξ1−zL) δ(2)
(
b̄2 − b2 − κ⊥

p2
(ξ1 − zL)

)
×δ(2)

(
b̄1 − b1 − κ⊥

p1
(ξ1 − zL)

)
1
A⊥

. (4.6)

This shows explicitly that the transverse Brownian mo-
tion induced by rescattering is taken into account in our
formulation: the q-q̄ dipole does not propagate at fixed
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transverse separation b̄1 − b1 but changes its size in re-
sponse to an interaction at the longitudinal position ξ1 by
terms of the form ⊥

p1
(ξ1 − zL). For N = 1, the first and

only interaction takes place by definition at the position
zL = ξ1 and these terms vanish. For N > 1, however,
they do not vanish and lead to a nontrivial dynamical
evolution of the transverse dipole size, see below.

Adding up the four real contributions in Fig. 4a, and
doing the colour trace, we find

σγ∗→q q̄
total (N = 1) = Nc αem

∫
dξ n(ξ)

∫
dα

×
∫

dbΦ(b;b;α) σ(b) , (4.7)

σ(b) = 2CF

∫
dκ⊥
(2π)2

|a0(κ⊥)|2 (1 − e−i ⊥·b) . (4.8)

This is the result of Nikolaev and Zakharov [5]. The total
cross section (4.1) is the product of the Born probability
Φ(b;b;α) for the incoming hadronic Fock state times a
dipole cross section σ(b), integrated over the transverse
size b of the dipole and the energy distribution α between
the quark and antiquark.

B. N = 2 tagged: non-trivial colour interference
effects

As a second application of the opacity expansion, we
consider the case of two tagged scattering centers. By
this, we mean that (i) two scattering centers are involved
in the process (4.1) and that (ii) two real momentum
transfers occur in the medium. The 16 contributions to
this σγ∗→q q̄

tagged (N = 2) are listed in Fig. 5. Summing them
up, we find

σγ∗→q q̄
tagged (N = 2)

= αem

∫
dξ1 n(ξ1)

∫
ξ1

dξ2 n(ξ2)
∫
dα

∫
db

×
∫
dκ1,⊥
(2π)2

dκ2,⊥
(2π)2

|a0(κ1,⊥)|2 |a0(κ2,⊥)|2

×
(
Tr[a a b b ]A(1) + Tr[a b a b ]A(2)

)
, (4.9)

where we have introduced the notational shorthands

A(1) = 4 Φ(b,b;α)
(
1 − e−i 1,⊥·b) , (4.10)

A(2) = 4 Φ
(
b − κ2,⊥(ξ2 − ξ1)

2 ν α (1 − α)
,b +

κ2,⊥(ξ2 − ξ1)
2 ν α (1 − α)

;α
)

×
(
e−i 1,⊥·be−i

�1,⊥·�2,⊥
2να(1−α) (1−2α) (ξ2−ξ1)

−e−i 1,⊥· 2,⊥
(ξ2−ξ1)

να

)
e−i 2,⊥·b . (4.11)

Here, the term A(2) contains information about the non-
trivial dynamical evolution of the q-q̄-separation which

is determined by the “relative transverse mass” µ =(
1
p1

− 1
p2

)−1

= να(1−α). The momentum transfer κ2,⊥
determines this change of the q-q̄-size via a classical equa-
tion of motion: ∝ 2,⊥

µ (ξ2 − ξ1). In the high energy limit
ν → ∞, this transverse motion can be neglected and the
q-q̄-pair propagates at fixed separation. We find

lim
ν→∞ σγ∗→q q̄

tagged (N = 2)

= αem

∫
dξ1 n(ξ1)

∫
ξ1

dξ2 n(ξ2)
∫
dα

∫
db

×
∫
dκ1,⊥
(2π)2

dκ2,⊥
(2π)2

|a0(κ1,⊥)|2 |a0(κ2,⊥)|2

×Φ(b,b;α) 4
(
1 − e−i 1,⊥·b)

× (Tr[a a b b ]− Tr[a b a b ] e−i 2,⊥·b) . (4.12)

Even in this limiting case, the colour algebra does not fac-
torize from the momentum dependence. This is a con-
sequence of the non-trivial colour interference between
different photodissociation amplitudes. The photoab-
sorption cross section cannot be written as a function
of the dipole cross section σ(b). We note that this com-
plication stems entirely from the non-abelianess of the
problem. If we replace both colour traces in (4.12) by
the same constant, the two κi,⊥-integrations combine to
the square of the dipole cross section (4.8). To sum up:
in the tagged case, non-trivial colour interference effects
prevent us from representing the photoabsorption cross
section as a function of the dipole cross section.
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FIG. 5. The 16 contributions to the N = 2 photoabsorp-
tion cross section (4.9). In this “tagged” case, exactly two
real momentum transfers occur on the amplitude level. The
tagging gives rise to non-trivial colour interference effects.

C. Contact terms

In the calculation of the N = 1 cross section (4.7), we
did not include all terms of the Taylor expansion of (4.1)
to order O(A2

0). A second order contribution which was
not included is e.g.〈∫

dř1 dž1 dx⊥ Ḡ0(b̄2;x|p2) Ḡ0(x;b2|p2)
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×
∫

dx′⊥ Ḡ0(b1;x′|p1) Ḡ(2)(x′; b̄1|p1)
〉

= −1
2

∫
dξ1 n(ξ1)

∫
dκ⊥
(2π)2

|a0(κ⊥)|2 Ta1 Ta1

×δ(2)(b̄2 − b2) δ(2)(b̄1 − b1) . (4.13)

Here, the potential A0 is linked two times to the com-
plex conjugate amplitude and zero times to the ampli-
tude. The medium average 〈. . .〉 results in two impor-
tant constraints: (i) both powers of A0 couple to the
q-q̄-pair at the same longitudinal position ξ1, and (ii) no
net momentum is transferred to the q-q̄- system. Scatter-
ing contributions with these properties were called virtual
by Mueller and collaborators [4,26]. We refer to them as
contact terms, all other interactions are refered to as real.
Diagrammatically, the six contact terms for the N = 1
case are given in Fig. 6a, and equation (4.13) is repre-
sented by the first diagram on the r.h.s.

kk
1

*z LzLz

(a)

(b)

=

+

+ x

xodef

o
x

x+ +

+

o

=
defx x

o

x x

xxo = 

FIG. 6. (a) The six contact terms for the N = 1 scattering
cross section. (b) Definition of the diagrammatic shorthand
used in (a). The medium average ensures that (i) the momen-
tum flow k is conserved and no net momentum is transferred
to the q-q̄-system, and that (ii) both powers of the scattering
potential act at the same longitudinal position z∗.

For theN = 1 photoabsorption cross section (4.7), con-
tact terms do not contribute since at least one interaction
with the q-q̄-system is needed in both the amplitude and
complex conjugate amplitude in order to get the final
state on shell. For N > 2, the same argument about
energy-momentum conservation does not imply the ab-
sence of contact terms. We have to distinguish the fol-
lowing cases:

1. σγ∗→qq̄
inel. inelastic: the cross section involves at least

one real interaction.

2. σγ∗→qq̄
diff. diffractive (or elastic): the medium inter-

acts with the q-q̄-pair only via contact terms.

3. σγ∗→qq̄
total total: the cross section involves at least one

(real or contact) interaction in both Mfi and M †
fi.

The notion ”inelastic” is justified since any real inter-
action changes the colour of the target and thus affects

the hadronic activity between projectile and target rapid-
ity (in this sense, the target ”breaks up”). The notion
“diffractive” or “elastic” involves an additional assump-
tion: by construction, contact terms transfer exactly zero
net transverse momentum to the q-q̄-pair. Also, we re-
gard in all calculations and for arbitrary scatterings the
longitudinal momentum transfer as sufficiently small to
justify the approximation a0(κ) ≈ a0(κ⊥). Our assump-
tion in the above definitions of the diffractive and total
photoabsorption cross sections is that despite neglecting
the longitudinal momentum transfer in all explicit cal-
culations, it is sufficient to put the (extremely weakly
off-shell) partonic contributions of γ∗ on-shell. This is
usually assumed in the calculation of the total [4] and
diffractive [8] cross sections.

For N > 1, contact terms obviously play an important
role in the calculation of the inelastic, diffractive and
total photoabsorption cross section. In the remainder of
this subsection, we summarize some of their important
properties and shorthands, which will be heavily used in
the following subsections:

(a)

(b)

defr’1r
r2 r’

1

2
(c)

��
��
��
��
��
��

��
��
��
��
��
��

(d)
defr’1r

r2 r’
1

2
 ...

x x

-2
1

-2
1 o

o=   -

=   -

x =   - x

= + +o
o

x
x

= + + + 

FIG. 7. At the cut, there are simple identities between real
interaction terms and contact terms (a), and amongst real
interaction terms (b). (c) A combination of the three possi-
ble contact terms at the same longitudinal position ξ leads to
a dipole cross section σ(r1(ξ) − r2(ξ)) whose transverse size
is evolved further with free Greens functions, see (4.14) (d)
Iterating the combination of contact terms (c) leads to a dy-
namical evolution of the dipole size between initial transverse
size r1 − r2 and final size r′1 − r′2. This evolution is described
by the path-integral (4.15).

1. Identities involving contact terms

First we observe that in (4.13), the Green’s func-
tions of momentum p2 result in the transverse δ-function
δ(2)(b̄2 − b2). Dropping them on both sides of (4.13),
and observing that (4.13) and (4.5) differ by a factor −1

2 ,
we have checked the identity in Fig. 7a. By a similar
calculation, one also checks the identity Fig. 7b.

9



2. A path integral from iterating contact terms

We now consider the case in Fig. 7c, where the q-q̄-
state is evolved with exactly one contact term between
longitudinal positions z and z′ from a transverse separa-
tion r1 − r2 to a transverse separation r′1 − r′2. The sum
over the three possible contact terms at longitudinal po-
sition ξ, represented on the r.h.s. of Fig. 7c, takes the
explicit form

−Ta · · ·Ta

2Cf

∫
dξ n(ξ)

∫
dr1(ξ) dr2(ξ)σ (r1(ξ) − r2(ξ))

× Ḡ0(r2, z; r2(ξ), ξ|p2) Ḡ0(r2(ξ), ξ; r′2, z
′|p2)

× Ḡ0(r′1, z
′; r1(ξ), ξ|p1) Ḡ0(r1(ξ), ξ; r2, z|p1) . (4.14)

Since Fig. 7c is only part of a more complicated Feynman
diagram, we can say nothing about the positioning of the
colour factors Ta. The corresponding expression Ta · · ·Ta

in (4.14) is purely formal. However, for the following, we
anticipate an argument explained in the next subsection:
for our purposes, the colour factors reduce to a Casimir
factor CF , i.e., we can substitute in (4.14) Ta ···Ta

Cf
→ 1.

Then, equation (4.14) is seen to correspond to the first
order n(ξ) density expansion of the double path integral
(for z′ > z)

M(r1, r2, z; r′1, r
′
2, z

′|α|ν)

=

r1(z′)=r′1∫
r1(z)=r1

Dr1

r2(z′)=r′2∫
r2(z)=r2

Dr2

× exp
{
i

∫ z′

z

dξ̄
ν

2
(
α ṙ2

2 + (1 − α) ṙ2
1

)
+i

1
2
n(ξ)σ (r1(ξ) − r2(ξ))

}
. (4.15)

Moreover, the expansion of (4.15) to m-th order in the
density n(ξ) corresponds exactly to the m-th term on the
r.h.s. of Fig. 7d. This shows that the iteration Fig. 7d of
the one contact term interaction Fig. 7d is described by
the path-integral (4.15). Since this path integral plays
an important role in what follows, we simplify it further.
Using the coordinate transformation

ra(ξ) = (1 − α) r1(ξ) + α r2(ξ) , (4.16)
rb(ξ) = r1(ξ) − r2(ξ) , (4.17)

we can write

M(r1, r2, z; r′1, r
′
2, z

′|α|ν)
= K0

(
ra(z′), z′; ra(z), z|ν)

×K(rb(z′), z′; rb(z), z|να(1 − α)
)
. (4.18)

The path-integral on the r.h.s. of this expression is given
by (for z′ > z)

K(r(z′), z′; r(z), z|µ)
=
∫

Dr exp

i
z′∫

z

dξ

[
µ

2
ṙ2 + i

1
2
n(ξ)σ (r)

] . (4.19)

Its opacity expansion reads

K(r′, z′; r, z) = K0(r′, z′; r, z) =

−
z′∫

z

dξ
∫

dρK0(r′, z′; r, ξ)Σ
(
ρ, ξ
)K0(ρ, ξ; r, z)

+

z′∫
z

dξ1

z′∫
ξ1

dξ2
∫

dρ1 dρ2 K0(r′, z′; ρ2, ξ2)Σ
(
ρ2, ξ2

)
×K(ρ2, ξ2; ρ1, ξ1)Σ

(
ρ1, ξ1

)K0(ρ1, ξ1; r, z) , (4.20)

where Σ
(
ρ, ξ
)

= 1
2 n(ξ)σ

(
ρ
)
. Here, we have suppressed

the explicit µ-dependence in K. The corresponding free
Green’s function K0 reads

K0(r′, z′; r, z) =
µ

2π i (z′ − z)
exp

{
iµ (r′ − r)2

2 (z′ − z)

}
.

(4.21)

In analogy to our definition of the Green’s func-
tion Ḡ in (2.16), we define K(r(z), z; r(z′), z′|µ) ≡
K†(r(z′), z′; r(z), z|µ) for z′ > z.

A path integral K of the form derived here was first
used by Zakharov in the abelian problem of calculat-
ing the passage of ultrarelativistic positronium through
matter [31]. More recently, the same path integral
was shown to appear in the final expression of the
medium-dependence of the LPM-bremsstrahlung spec-
trum [14,21].

D. N = arbitrary, untagged: contact terms remove
colour interference effects

What happens if contact terms are included in the
N = 2 calculation of the elastic, inelastic and total pho-
toabsorption cross section ? In Fig. 8, we have classified
into four subsets all terms of order O(n(ξ)2) which have
to be considered for the N = 2 photoabsorption cross
sections. There are in Fig. 8a the 4 × 4 = 16 terms for
which both interactions are real, in Fig. 8b the 4×6 = 24
terms for which only the second interaction is contact, in
Fig. 8c the 3× 4× 2 terms for which only the first inter-
action is contact, and in Fig. 8d the 2×3×6 = 36 which
involve two contact interactions. All together, these are
100 terms. For the total and the inelastic cross section,
the terms in Fig. 8a and Fig. 8b both contribute, but they
cancel each other exactly. More precisely, the first dia-
gram in Fig. 8a cancels the first diagram in Fig. 8b, the
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second diagram in Fig. 8a cancels the second diagram
in Fig. 8b, etc. This is a consequence of the identities
Fig. 7a and 7b which we apply to the last interaction
before the cut.

 -  -

 -inelastic = (c) =  - 

total = (c) + (d) =  -  -

(a)

(b)

(c)

=(d)

(e)

diffractive = (d) =  

x x x

x x

x

x x
+ + +

x x
+ + +x x x

x x

x

+ +

+

+

FIG. 8. The contributions to the N = 2 photoabsorption
cross section: (a) the 16 real contributions which are present
in the “tagged” case. (b) Contributions for which the first
interaction is real and the second a contact term. (c) Contri-
butions for which the first interaction is a contact term and
the second interaction transfers momentum. (d) Terms which
contain two contact interactions. Here, energy-momentum
conservation ensures that the two contact terms do not stand
on the same side of the cut. (e) Inelastic, diffractive and
total photoabsorption cross section are determined by differ-
ent combinations of the contributions (c) and (d). Rewriting
the real interaction in (c) as the sum of two negative con-
tact term contributions, a particularly simple representation
is obtained.

The same argument cannot be made for the cancel-
lation of the diagrams in Fig. 8c and Fig. 8d: energy
momentum conservation restricts the occurence of dou-
ble contact terms, since at least one interaction is needed
on the amplitude level to get the final state on-shell. De-
pending on whether we calculate the diffractive, inelastic
or total photoabsorption cross section, different combina-
tions of these two sets of diagrams contribute. The real
interaction Fig. 4a at the cut is determined by minus
the combination Fig. 6a of contact terms. This allows
us to express all three contributions to the photoabsorp-
tion cross section in terms of contact terms, as shown in

Fig. 8. Most importantly, all contributions to these pho-
toabsorption cross sections have the colour trace Tr[aabb]:
for the untagged case for which contact terms are in-
cluded, colour interference terms vanish in the diffractive,
inelastic and total N = 2 photoabsorption cross section.

The above argument can be generalized easily to ar-
bitrary N . As shown in Fig. 9a, whenever at least one
of the (N − 1) first interactions is real, the sum of all
real and virtual terms for the N -th interaction cancels.
Inelastic, diffractive and total photoabsorption cross sec-
tion can thus again be described in terms of (N − 1)
contact terms and a characteristic N -th contribution at
the cut. As an immediate consequence, the colour trace
of all these contributions reads

Tr[Ta1 Ta2 . . . TaN TaN TaN−1 . . . Ta1 ] = NcC
N
F . (4.22)

In contrast to the tagged photoabsorption cross section,
the colour structure factorizes from the momentum de-
pendence: Inclusion of the contact terms results in colour
triviality for the N -fold diffractive, inelastic and total
photoabsorption cross section. This justifies the assump-
tion made in deriving the path integral (4.15) in the last
subsection.
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(d) total = (b) + (c) =  -  -
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(b) inelastic = 

(c)

(a)

diffractive = 

I I I I+ =    0

FIG. 9. (a) Cancellation of real and contact terms for any
combination of interactions [I] which contains at least one real
or contact interaction. (b)-(d) The identity (a) allows for the
generalization to arbitrary N of the N = 2 photoabsorption
cross section of Fig. 8.

According to Fig. 9(b)-(d), the inelastic, diffractive and
total photabsorption cross section can be written in terms
of the path-integral K of (4.19) which describes the iter-
ation of contact terms. For the inelastic photoabsorption
cross section, this leads to the expression

σγ∗→q q̄
inel. = Nc αem

∫
dα

∫
db d b̄

×Φ
(
b; b̄;α

) ∫ L

ξnl

dξ n(ξ)
∫

dr(ξ)
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×K(b̄, 0; r(ξ), ξ|να(1 − α)
)
σ (r(ξ))

×K(r(ξ), ξ;b, 0|να(1 − α)
)
. (4.23)

Here, the Green’s functions K describe the propagation of
the q-q̄-dipole from the front end of the target at z = 0
up to the position ξ of the last interaction. The lower
boundary ξnl of the integration over ξ is defined by the
position of the next to last (“nl”) interaction. This is an
awkward property, since we have to expand the K’s in the
number N of interactions to determine ξnl order for order
in N . This makes it important to find for (4.23) with
the help of the opacity expansion (4.20) the equivalent
representation

σγ∗→q q̄
inel. = Nc αem

∫
dα

∫
db d b̄Φ

(
b; b̄;α

)
×
[
δ(2)

(
b − b̄

)
−
∫
dre K

(
b̄, 0; re, L|µ

)K(re, L;b, 0|µ)] . (4.24)

For the diffractive contribution, one finds

σγ∗→q q̄
diff. = Nc αem

∫
dα

∫
db d b̄Φ

(
b; b̄;α

) ∫
dre

×
[
δ(2)

(
b̄− re

)−K(b̄, 0; re, L|µ
)]

×
[
δ(2) (re − b) −K(re, L;b, 0|µ)] . (4.25)

The total photoabsorption cross section is the sum of
both

σγ∗→q q̄
total = Nc αem

∫
dα

∫
db d b̄Φ

(
b; b̄;α

)
×
[
2 δ(2)

(
b̄− b

)−K(b̄, 0;b, L|µ)
−K(b̄, L;b, 0|µ)] . (4.26)

Before turning in the next subsection to the discussion
of these expressions, we remark shortly on a phase con-
vention implicitly used in the above results:

The first (N − 1) interactions in the above photoab-
sorption cross sections are contact terms. Contact terms
stand either to the right or to the left of the cut. The first
interaction thus occurs for each non-vanishing contribu-
tion to (4.24) at different longitudinal positions za, zb in
the amplitude and complex conjugate amplitude. As a
consequence, the free incoming wavefunction has to be
evolved to these different positions in Mfi and M †

fi. We
explain in Appendix B following (B8) that the expression
Φ for the squared incoming wavefunction is only correct
as long as za = zb. If one insists on using Φ for za 6= zb,
one is forced to adopt the phase convention:∫

d b̄Φ
(
b; b̄;α

) K0

(
b̄, za; r̄, zb|να(1 − α)

)
= Φ (b; r̄;α) e−i q (zb−za) . (4.27)

Strictly speaking, using Φ one has done the yL- and ȳL-
integrations in the photodissociation probability (3.7) be-
fore specifying the true endpoints of these integrations
which are given by the positions za, zb of the first in-
teractions in Mfi and M †

fi. The phase convention (4.27)
corrects for the part of the yL integral which one misses
in assuming za = zb. Here, we shortly illustrate the con-
sequences of (4.27):

With the help of (4.27), one checks immediately that
the N = 1 contribution to (4.24) agrees with the result
(4.7) of Nikolaev and Zakharov. There is no additional
phase factor in this case since za = zb. However, there
is an additional phase factor for all contributions N > 1.
In the notationally simplest case, N = 2, we find

σγ∗→q q̄
inel. (N = 2)

= −Nc αem Re
∫
dα

∫
dξ′ n(ξ′)

∫
ξ′

dξn(ξ)

×
∫

dr d r̄Φ (r; r̄;α) eiq(ξ−ξ′)

× σ (r̄) K0

(
r̄, ξ′; r, ξ|µ)σ (r) . (4.28)

The phase factor exp{iq (ξ − ξ′)} is sensitive to the differ-
ence between the longitudinal position of the first scat-
tering center in Mfi and M †

fi. The scale is set by the
inverse coherence length

q =
Q2

2ν
− m2

2να(1 − α)
=

1
lf
. (4.29)

It can be neglected in the high energy limit ν → ∞ where
the longitudinal extension of the target becomes small
compared to 1/q.

E. Colour triviality of the one-fold differential
photoabsorption cross section

Colour triviality of the inelastic, diffractive and total
photoabsorption cross section (4.24)-(4.26) is the result
of a complete diagrammatic cancellation which arises due
to the identities in Fig. 7 (a) and (b). These identities are
stronger than implied by the optical theorem since they
are based only on the transverse momentum integration
of one of the two quarks in the final state. This makes it
possible to use them in the simplification of more differen-
tial observables. Here, we study the one-fold differential
photoabsorption cross section

dσγ∗→qq̄

dα dp⊥
1

=
αem

(2π)2

∫
db1 db2 d b̄1 d b̄2 Φ(∆b; ∆b̄;α)

×
∫

dx⊥ dx′⊥ d x̄′
⊥ e

i p⊥
1 ·(x′⊥−x̄′

⊥)

×
〈
Ḡ(b̄2;x|p2)Ḡ(x;b2|p2)

×Ḡ(b1;x′|p1) Ḡ(x̄′; b̄1|p1)
〉
. (4.30)
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We shall derive for the inelastic part of (4.30) an expres-
sion in terms of

σ̄(b) = 2CF

∫
dκ⊥
(2π)2

|a0(κ⊥)|2 e−i ⊥·b , (4.31)

which is closely related to the dipole cross section,

σ(r1 − r̄1) = σ̄(0) − σ̄ (r1 − r̄1) . (4.32)

The term σ̄(0) corresponds to a contact term for which
both vertices are linked to the same quark of the q-q̄-
system. In intermediate steps of our calculation, σ̄ is a
useful bookkeeping device to evaluate the diagrams in
Fig. 10a. Our final result, however, will depend only on
the dipole cross section.

1. Inelastic one-fold differential cross section

The diagrammatic book-keeping of the inelastic con-
tributions to the one-fold differential cross section (4.30)
are involved. In appendix C, we classify all contributing
diagrams and we use the identities Fig. 7a and b to show
that many of these diagrams cancel each other. As a
result of this analysis, the remaining non-vanishing con-
tributions can be represented by the diagrams in Fig. 10a.
The colour trace for the N -th order terms of all these di-
agrams is NcC

N
F : the inelastic part of the cross section

(4.30) is thus free of colour interference terms, it is colour
trivial.

(1)
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(3)

(2)

=def
arbitrary  number  of  real  or  contact  interactions 

+ +  ...o o+ o=def

+

+

=N=1
  

x x o

o

xx

+
x

x x

x

(b)

(c)

(a)

FIG. 10. (a) The non-vanishing contributions to the in-
elastic part of the one-fold differential photoabsorption cross
section (4.30) as classified in appendix C. (b) Definition of
diagrammatic shorthands used in (a). (c) Order N = 1 con-
tribution to (a1).

We start with the N = 1 contribution to the diagram
Fig. 10a1.

eip⊥
1 ·(x′−x̄′)

∫ L

0

dξ
n(ξ)

2
[σ̄ (r1 − r̄1) − σ̄(0)]

∣∣∣
r1−r̄1=x′−x̄′

.

(4.33)

This contribution is shown explicitly in Fig. 10c. The
relative transverse separation r1 − r̄1 between the quark
in the amplitude and complex conjugated amplitude does
not change with longitudinal position ξ. This is a conse-
quence of evolving on both sides of the cut with Green’s
functions of same energy p1. It makes the iteration of the
N = 1 contribution to arbitrary high orders particularly
easy. The total contribution to Fig. 10a1 reads

eip⊥
1 ·(x′−x̄′)

(
e
−
∫

L

0
dξ

n(ξ)
2 σ(x′−x̄′) − e

−
∫

L

0
dξ

n(ξ)
2 σ̄(0)

)
.

(4.34)

The first term is just the exponentiation of the N =
1- contribution. The second term subtracts those N -th
order contributions which involve only contact terms and
thus do not add to the inelastic contribution.

To evaluate the three contributions in Fig. 10a2 and
a3, we assume that the real momentum transfer occurs
at an arbitrary but fixed longitudinal position ξ̌. The
evolution of the free incoming Fock state up to ξ̌ is then
described by the path-integral (4.18). The part of the
expression for ξ > ξ̌ is given by

eip⊥
1 ·(r1(ξ̌)−r̄1(ξ̌)) e

−
∫

L

ξ̌
dξ

n(ξ)
2 σ̄(0)

× [σ (r̄2(ξ̌) − r̄1(ξ̌)
)

+ σ
(
r2(ξ̌) − r1(ξ̌)

)− σ̄ (0)
]
. (4.35)

Here, the real interactions at ξ̌ combine to the second
line of (4.35) and the arbitrary number of contact terms
at ξ > ξ̌ leads to the exponential of σ̄(0). Adding up
all contributions of Fig. 10a, we find for the differential
photoabsorption cross section (4.30):

dσγ∗→qq̄
inel.

dα dp⊥
1

=
αemNc

(2π)2

∫
db d b̄Φ(b; b̄;α)

×
[
ei p⊥

1 ·(b−b̄)

(
e
−
∫

L

0
dξ

n(ξ)
2 σ(b−b̄)

−e−
∫ L

0
dξ

n(ξ)
2 σ̄(0)

)
+
∫ L

ξnl

dξ̌
n(ξ̌)

2

∫
dr dr̄K(b̄, 0; r̄, ξ̌|µ)

×{σ(r̄) + σ(r) − σ̄(0)}K(r, ξ̌;b, 0|µ)

× e
−
∫

L

ξ̌
dξ

n(ξ)
2 σ̄(0)

ei p⊥
1 ·(r−r̄)

]
. (4.36)
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The first term in the wide brackets stems from the con-
tribution Fig. 10a1) given in (4.34), the second term de-
notes the diagrams Fig. 10a2) and a3). Here, the Green’s
functions K describe the dynamical evolution of the q-q̄
dipoles up to the real interaction at ξ̌, from which point
onwards the dynamics is given by (4.35). In analogy to
(4.23), the lower boundary ξnl of the intergration over ξ̌ is
determined by the last interaction point before the real
interaction. To remove this indirectly defined variable
from our solution, we use again the opacity expansion
(4.20) to show that

dσγ∗→qq̄
inel.

dα dp⊥
1

=
αemNc

(2π)2

∫
db d b̄Φ(b; b̄;α)

×
[
ei p⊥

1 ·(b−b̄) e
−
∫ L

0
dξ

n(ξ)
2 σ(b−b̄) −

∫
dr dr̄

ei p⊥
1 ·(r−r̄) K(b̄, 0; r̄, L|µ)K(r, L;b, 0|µ)

]
. (4.37)

It is easy to check that the p⊥
1 -integration of this expres-

sion coincides with the incluse inelastic photoabsorption
cross section (4.24).

2. Diffractive and total photoabsorption cross section with
one jet resolved

The diffractive one-fold differential photoabsorption
cross section involves by definition only contact terms.
Due to energy momentum conservation, at least one con-
tact term is required on the amplitude level. An arbitrary
non-vanishing number of contact terms in the amplitude
translates into a factor δ−K, see the discussion of Fig. 7
(d). Hence, the diffractive contribution to the cross sec-
tion reads

dσγ∗→qq̄
diff.

dα dp⊥
1

=
αemNc

(2π)2

∫
db d b̄Φ(b; b̄;α)

∫
dr dr̄ ei p⊥

1 ·(r−r̄)

×
[
δ(2)(b̄− r̄) −K(b̄, 0; r̄, L|µ)

]
×
[
δ(2)(b− r) −K(r, L;b, 0|µ)

]
. (4.38)

The one-fold differential total cross section is given by
the sum of the contributions (4.37) and (4.38),

dσγ∗→qq̄
total

dα dp⊥
1

=
αemNc

(2π)2

∫
db d b̄Φ(b; b̄;α)

×
[
ei p⊥

1 ·(b−b̄)

(
e
−
∫

L

0
dξ

n(ξ)
2 σ(b−b̄) + 1

)
−
∫
dr eip⊥

1 ·(r−b̄) K(r, L;b, 0|µ)

−
∫
dr̄ eip⊥

1 ·(b−r̄) K(b̄, 0; r̄, L|µ)
]
. (4.39)

3. Non-trivial colour interference in one-fold and two-fold
differential photoabsorption cross sections

Colour triviality of differential cross sections cannot be
taken for granted. It has to be established by the dia-
grammatic techniques used in the above subsections. To
illustrate this point, we give in the following simple ex-
amples of untagged differential cross sections which show
colour interference effects. We calculate the inelastic part
of the N = 2 photoabsorption cross section (3.9) in the
ν → ∞ limit in which the q-q̄ state propagates along
straight lines through the nuclear target. For a target of
thickness L and homogeneous density n(ξ) = n0,

dσγ∗→qq̄
inel. (N = 2)
dα dp⊥

1 dp
⊥
2

=
αem

(2π)4

∫
db1 db2 d b̄1 d b̄2 Φ(b1 − b2; b̄1 − b̄2;α)

×eip⊥
1 ·(b1−b̄1) e−ip⊥

2 ·(b2−b̄2)
n2

0L
2

2C2
F

1
4

× [σ̄(b1 − b̄1) + σ̄(b2 − b̄2)

−σ̄(b1 − b̄2) − σ̄(b2 − b̄1)
]

×
[
Tr[aabb]B(1) + Tr[abab]B(2)

]
, (4.40)

where we have introduced the notational shorthands

B(1) = σ̄(b1 − b̄1) + σ̄(b2 − b̄2)
+σ̄(b̄1 − b̄2) + σ̄(b2 − b1) − 4 σ̄(0) , (4.41)

B(2) = σ̄(b̄1 − b̄2) + σ̄(b1 − b2)
−σ̄(b1 − b̄2) − σ̄(b2 − b1) . (4.42)

For the cross section (4.40), colour triviality is the con-
dition that B(2) vanishes. However, B(2) 6= 0, and colour
interference terms remain in (4.40). In contrast, the elas-
tic part of the N = 2 photoabsorption cross section is
colour trivial since it involves by construction only con-
tact terms. Colour triviality (non-triviality) of the inelas-
tic part of the photoabsorption cross section thus implies
automatically the colour triviality (non-triviality) of the
corresponding total cross section.

In general, the more inclusive the cross section, the
more likely it is colour trivial. In this sense, tagged
cross sections are very exclusive since they require de-
tailed knowledge of the final state of the medium. On
the other hand, calculating more inclusive observables
from (4.40), one recovers colour trivial examples. Espe-
cially, the p2⊥-integral (or p1⊥-integral) of (4.40) turns
out to be colour trivial. This is expected, of course, since
these integrated versions of (4.40) determine the N = 2
term of (4.37) in the ν → ∞-limit.

Based on these results, one may ask whether all one-
fold differential photoabsorption cross sections are colour
trivial. This is not the case as can be seen e.g. from the
inelastic parts of the one-fold differential cross sections
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dσγ∗→qq̄
inel.

dα d
(
p⊥

1 − p⊥
2

) , (4.43)

dσγ∗→qq̄
inel.

dα d
(
p⊥

1 + p⊥
2

) . (4.44)

For these cross sections, the arguments of σ̄ in the ex-
pression (4.42) for B(2) are constraint by b1 − b̄1 =
± (b2 − b̄2

)
. It is easy to check that B(2) 6= 0, i.e., both

results are not colour trivial for N = 2 and thus they
cannot be colour trivial for N = arbitrary. For a colour
trivial expression, it is crucial that (3.9) is not integrated
over some average or relative momentum but over the
transverse momentum of a final state particle. This is
necessary for using the identities of Fig. 7 (a) and (b).

F. Mueller’s dipole formulas as eikonal
approximation

Explicit calculations of the p⊥-integrated and one-fold
differential photoabsorption cross sections (4.24)-(4.26)
and (4.37)-(4.40) respectively require an explicit repre-
sentation of the path integral K. This necessarily involves
an approximation. In this section, we study the eikonal
approximation which substitutes the path integrals K by
their ultrarelativistic limit

lim
ν→∞K(L, r; 0,b|µ) = δ(2) (b − r) S(b) . (4.45)

We consider a homogeneous density distribution n(ξ) =
n0 for a target of longitudinal extension L and we write
for the Glauber-type suppression factor

S(b) = e−
1
2 n L σ(b) . (4.46)

Also, we neglect the phase factors exp{iq (ξ − ξ′)} in this
ν → ∞-limit, see our discussion of (4.28), (4.29) above.
In the ultrarelativistic limit, all photoabsorption cross
sections reduce to standard Glauber-type expressions:

lim
ν→∞σγ∗→q q̄

inel. = Nc αem

∫
dα

∫
dbΦ (b;b;α)

× [1 − S2(b)
]
, (4.47)

lim
ν→∞σγ∗→q q̄

diff. = Nc αem

∫
dα

∫
dbΦ (b;b;α)

× [1 − S(b)]2 , (4.48)

lim
ν→∞σγ∗→q q̄

total = 2Nc αem

∫
dα

∫
dbΦ (b;b;α)

× [1 − S(b)] . (4.49)

This total photoabsorption cross section is Mueller’s
dipole formula first derived in Ref. [4]. Also, the elastic
cross section is known to describe the diffractive contri-
bution to the deep inelastic scattering structure function
F2 in the ultrarelativistic limit [8].

The one-fold differential cross sections read in the
eikonal limit

lim
ν→∞

dσγ∗→qq̄
inel.

dα dp⊥
1

=
αemNc

(2π)2

∫
db d b̄Φ(b; b̄;α)ei p⊥

1 ·(b−b̄)

× [S(b − b̄) − S(b̄)S(b)
]
, (4.50)

lim
ν→∞

dσγ∗→qq̄
diff.

dα dp⊥
1

=
αemNc

(2π)2

∫
db d b̄Φ(b; b̄;α)ei p⊥

1 ·(b−b̄)

× [1 − S(b̄)
]

[1 − S(b)] , (4.51)

lim
ν→∞

dσγ∗→qq̄
total

dα dp⊥
1

=
αemNc

(2π)2

∫
db d b̄Φ(b; b̄;α)ei p⊥

1 ·(b−b̄)

× [1 + S(b − b̄) − S(b̄) − S(b)
]
. (4.52)

The elastic contribution (4.51) has been obtained pre-
viously in calculations of the diffractive component of
DIS electron nucleon scattering with one resolved jet in
the final state [8]. Furthermore, the total cross section
(4.52) was previously obtained by Mueller (see eq. (27) of
Ref. [7]) from a one-loop calculation arguing then for its
general validity. In passing, we recall Mueller’s interpre-
tation of the four terms in (4.52): for the case p⊥1

2 � Q2,
the first two terms turn out to be of equal size while the
last two terms are negligible [7]. Looking at the diagram-
matic contributions one concludes that in this limit the
term proportional S(b − b̄) gives the probability that a
quark which gets many random kicks is found with rel-
atively small transverse momentum. The term propor-
tional to 1, on the other hand, corresponds to the case
of no scattering and can be viewed as the quantum me-
chanical shadow of the term proportional to S(b− b̄) [7].

G. Corrections to the eikonal approximation

To go beyond the eikonal limit, we discuss now the
Gaussian dipole approximation for the path-integrals K.
It is based on the observation that the main support in
the path integral (4.19) comes from small transverse dis-
tances r = |r|, where the cross section σ(r) in (4.8) has
a leading quadratic dependence:

σ(r) ≈ C(r) r2 . (4.53)

In explicit model calculations, one finds [14,21] that the
r-dependence of C(r) is a slow logarithmic one, and can
be neglected. For the dipole cross section in (4.8), an
expansion to order r2 confirms this feature. One finds

C =
CF

2

∫ κc d2κ⊥
(2π)2

κ2
⊥ |a0(κ⊥)|2 , (4.54)

where the κ⊥-integral depends logarithmically on the ul-
traviolet cut-off κc which one has to introduce in this
approximation. We note that C provides a measure
of the average transverse momentum transfer 〈κ2

⊥〉 in
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a single scattering. For sufficiently small r, when the
r-dependence of C can be neglected, the path integral
(4.19) reduces to that of a harmonic oscillator [14]

Kosz

(
r2, L; r1, 0|µ

)
=

A

π i
exp

{
iAB(r2

1 + r2
2)

−2 i A r1 · r2} , (4.55)

A =
µΩ

2 sin(ΩL)
, (4.56)

B = cos(ΩL) , (4.57)

with the oscillator frequency

Ω =
1 − i√

2

√
n0 C

µ
. (4.58)

For what follows, it is important that the µ → ∞-limit
of Kosz coincides with the eikonal limit (4.45) of the un-
approximated path-integral. To see this, we expand the
norm of Kosz to leading order in µ and the phase to next
to leading order,

Kosz

(
r2, L; r1, 0|µ

)
=
µ+O

(
µ0
)

2π i L
exp

{
iµ

2L
(re − r)2

−Ln0C

6
[
r2

e + r2 + re · r
]
+O

(
µ−1

)}
µ→∞−→ δ(2) (re − r) e−

1
2 n0 L C r2

, (4.59)

which coincides with (4.45) for the quadratic ansatz
σ (r) = C r2. The harmonic oscillator approximation
thus provides an explicit representation for the path-
integral K which preserves the correct high energy limit.
At least numerically, this allows for an explicit study of
the 1/µ-corrections to the eikonal limit of the cross sec-
tions (4.24)-(4.26) and (4.37)-(4.39). To explore some
qualitative features of these 1/µ-corrections analytically,
we take here recourse to a Gaussian approximation ΦG

of the incoming Born wavefunction:

ΦG(r, r̄;α) = ψ(r)ψ∗(r̄) , (4.60)
ψ(r) = 1

π R2 exp
(−r2/R2

)
, (4.61)

1
R2

= (1 − α)αQ2 +m2 , (4.62)

where the radius R is chosen to reproduce the character-
istic width of the fall-off of the exact Born probability Φ
given in (B8) and (B14).

The time-evolved final state wavefunction reads

Ψf (r̄) =
∫
drKosz(r̄, L; r, 0|µ)ψ(r)

=
1 +O(µ−1)

π R2
exp

[
− r̄2

R2
− 1

2
n0 LC r̄2 + i q L

i
r̄2

µ
c1 − r̄2

µ2
c2 +O(µ−3)

]
. (4.63)

Here, we have used the phase convention (4.27) to obtain
the term i q L in the exponent. The shorthands c1 and
c2 denote the leading real and imaginary 1/µ-corrections
to the final state wavefunction:

c1 =
L

6

[
n2

0L
2C2 + 6

n0LC

R2
+

12
R4

]
, (4.64)

c2 =
L2

15

[
n3

0L
3C3 + 10

n2
0L

2C2

R2
+ 40

n0LC

R4
+

60
R6

]
. (4.65)

Deviations from the eikonal limit can be calculated with
the help of (4.63). For example, we find for the total
photoabsorption cross section (4.26):

σγ∗→qq̄
total − lim

ν→∞σγ∗→qq̄
total

= Nc αem

∫
dα

∫
drΦG(r, r;α)S(r)

×2
[
1 − e−r2c2/µ2

cos
(

r2

µ
c1 + q L

)]
. (4.66)

In the ν → ∞-limit, this difference vanishes by construc-
tion. To understand which scales determine the devia-
tions from the eikonal limit, we recall that 1/(µR2) = q
has an interpretation as inverse coherence length 1/lf
and n0LC is the total transverse momentum squared ac-
cumulated during the rescattering over a distance L. The
eikonal approximation is thus justified if the phases de-
termined by the coherence length and the total transverse
energy Etot

⊥ are negligible:

q L� 1 , (4.67)

Etot
⊥ L =

n0LC

2µ
L� 1 . (4.68)

We conclude this section with two technical remarks:
1. The explicit form of the incoming q-q̄ wavefunctions

(B6), (B13) is given in terms of the Bessel function K0

which has an integral representation in terms of a Gaus-
sian in r,

K0(ε |r|) =
1
2

∫ 0

−∞

dyL

yL
e
−i ε2

4 yL
r2+i yL . (4.69)

The evolution of the Gaussian wavefunction ψ(r) in
(4.63) can thus be used for the exact calculation if 1/R2

is taken to be the width ε2

4 yL
of the integrand of (4.69)

and the yL-integration is done afterwards. However, to
order 1/µ, terms proportional to 1/R4 appear in (4.63)
and thus the yL-integration cannot be done analytically
if 1/µ-corrections are included. Only the µ → ∞-limit
can be accessed analytically in this way.

2. A surprising difficulty occurs in the calculation of
the photoabsorption cross section (4.24) from the har-
monic oscillator approximation (4.55) if one tries to do
the re-integration first:

16



Fosz(r̄, r) =
∫
dre Kosz

(
r̄, 0; re, L|µ

)Kosz

(
re, L; r, 0|µ) .

(4.70)

After a lengthy but straightforward calculation, we find
for the µ→ ∞-limit

lim
µ→∞Fosz(r̄, r) = δ(2) (r̄ − r) e−

1
4 n0 L C r2

, (4.71)

whose exponent differs from that of the eikonal dipole
formula (4.45) by a factor 1

4 . This mismatch is an arte-
fact stemming from a calculation which performs sim-
plifications on the cross section level before completing
the dynamical evolution on the amplitude level. Start-
ing from (4.63) for Ψf (re) and calculating Ψf (re)Ψ∗

f (re),
one obviously reproduces for (4.24) the eikonal expression
(4.47) in the µ→ ∞-limit.

V. PHOTODISSOCIATION VIA NON-ABELIAN
STOKES’S THEOREM

In this section, we argue that the dipole cross section
(4.8) parametrizes the transverse components of the chro-
moelectric field strength correlations 〈F F 〉 in the nuclear
medium. This suggests an interpretation of σ(r) which
holds model-independent, i.e., irrespective of whether we
have build up (4.8) from the model ansatz (2.10), or from
some other model parametrization of the colour target
field.

We first recall the non-abelian Stokes’s theorem. This
relates the integral of the non-abelian vector potential
Aµ along a closed contour C to the area integral of the
field strength tensor Fµν , [33-35]

TrP exp
(∮

C

dzµA
µ(z)

)
= TrParea exp

(∫
dσµν(y)UAy F

µν(y)UyA

)
. (5.1)

Here, the UAy are parallel transporters. They ensure
that the r.h.s. is gauge-invariant. Equation (5.1) does
not depend on the choice of the position A, since cyclic-
ity of the trace allows to change the reference point by
substituting UAy → UBA UAy. The area ordering Parea

is defined by disecting the area enclosed by C in many
(ultimately: infinitessimally small) areas in such an order
that the parallel transporters Ci along the infinitessimal
areas combine to C. As a consequence of the non-Abelian
Gauss theorem, (5.1) turns out to be independent of the
orientation of the surface dσµν(y) [35].

The total photoabsorption cross section (4.1) is closely
related to the Stokes’s theorem, as can be seen from the
representation

σγ∗→q q̄
total = αem

∫
dα

∫
db1 db2 d b̄1 d b̄2 Φ(∆b; ∆b̄;α)

×
∫

Dr1 Dr2 e
iν
2

∫
(αṙ2

2+(1−α)ṙ2
1)

×
∫

Dr̄1 Dr̄2 e
iν
2

∫
(−α ˙̄r2

2−(1−α) ˙̄r2
1)

×
〈
TrP exp

(∮
C(r1,r2,r̄1,r̄2)

dzµA
µ(z)

)〉
(5.2)

Here, C is defined by the transverse paths r1(ξ), r̄1(ξ),
r2(ξ), r̄2(ξ) which denote the positions of the rescattering
quark and anti-quark in the path integral representation
(2.17) of the corresponding Green’s functions. We can
consider C as a closed path since we work for a static
potential Aµ = δµ0A0 for which the Wilson line along
purely transverse directions dx⊥ A⊥(x) vanishes. The
photoabsorption cross section (5.2) is thus given by a
closed Wilson loop which sums up the gluon field strength
of the medium in the area determined by the paths of the
rescattering q- and q̄- quarks.

The connection between total hadronic cross sections
as (5.2) and closed Wilson loops has been studied exten-
sively, see e.g. [25,37]. Phenomenological applications
of the non-abelian Stokes’s theorem (5.1) were pioneered
by Dosch and coauthors [36,37]. In Dosch’s approach,
one takes recourse to an axial gauge in which the par-
allel transporters on the r.h.s. of (5.1) reduce to unit
operators. The remaining expression is then expanded in
powers of F . Our discussion of (5.2) borrows from this
strategy. Clearly, we cannot choose an axial gauge to re-
move the parallel transporters in (5.1), since our gauge
freedom is already exhausted by the definition (2.10).
However, we can invoke the proof of colour triviality of
(5.2) to discuss the equivalent abelian problem with a
rescaled vector potential Aµ → √

CF Aµ. We find〈
exp

(
−i g

√
CF

∮
C

dsAµ(ωs)
∂ωµ

s

∂s

)〉
=
〈

exp
(
i g
√
CF

∫
S

Fµν(ωs)
∂ωµ

s

∂s

∂ων
s

∂xα
ds dxα

)〉
=
〈

exp

(
−i g

√
CF

∫ z2

z1

dξ

∫ r2(ξ)

r1(ξ)

dxi
⊥E

⊥
i (x⊥, ξ)

)〉
= 1 −

∫ z2

z1

dξ n(ξ)
g2 CF

2

〈∫
dξ̄

∫ r2(ξ)

r1(ξ)

dxi
⊥ dx

′j
⊥

×E⊥
i (x⊥, ξ)E⊥

j (x′⊥, ξ + ξ̄)
〉

+O
(
n2(ξ)

)
. (5.3)

Here, ωµ
s denotes the path around the contour C, and

the notation is specified in Fig. 11.
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FIG. 11. The closed Wilson loop between longitudinal po-
sitions z1 and z2, as considered in (5.3).

We have used the particular form of a static colour po-
tential Aµ = δµ0A0 to rewrite the r.h.s. of (5.1) in terms
of transverse electric fields. The detailed arguments for
the shift of integration variables needed to arrive at the
last equation of (5.3) are given in appendix B of Ref. [21].
The same appendix contains the derivation of the dipole
cross section (4.8) from a closed abelian Wilson loop:〈

exp
(
−i g

√
CF

∮
C

dsAµ(ωs)
∂ωµ

s

∂s

)〉
=〈

exp
(
−i g

√
CF

∫ z2

z1

dξ [A0(r1(ξ), ξ) −A0(r2(ξ), ξ)]
)〉

= exp
(
−
∫ z2

z1

dξ n(ξ)σ (r1(ξ) − r2(ξ))
)
. (5.4)

Comparing (5.4) to (5.3), we can relate the dipole cross
section to the two-point correlation function of the trans-
verse electric field strength,

σ (r1(ξ) − r2(ξ)) =
〈∫

dξ̄

∫ r2(ξ)

r1(ξ)

dxi
⊥ dx

′j
⊥

×E⊥
i (x⊥, ξ)E⊥

j (x′⊥, ξ + ξ̄)
〉
. (5.5)

As long as we parametrize this dipole cross section by the
Gaussian approximation σ(r) = C r2, only the average of
the colour field strength enters our final results in form
of one single parameter C. The final result is model-
independent in the sense that it does not depend on the
model-specific way in which the colour field strength giv-
ing rise to C was modelled.

VI. CONCLUSION

Colour triviality provides a crucial simplification of an
otherwise untractable problem. In general, the N -fold
rescattering of a parton in a colour target field leads in
the cross section to colour traces over 2N generators. For
sufficiently exclusive processes, the huge number of colour
interference terms thus limits explicit calculations of the
soft nuclear dependence of hard partonic processes to the
case of very few rescatterings [23]. Colour triviality is

the consequence of a complete diagrammatic cancellation
between these different colour interference terms. For
colour trivial observables, all non-abelian complications
reduce to the rescaling of coupling constants by appropri-
ate powers of Casimirs. The multiple scattering problem
thus becomes an abelian one. The soft nuclear depen-
dence of hard colour-trivial observables can be described
in terms of a QCD dipole cross section which absorbs the
leading medium-dependence in a one-parameter estimate
C of the average target colour field strength. This makes
the identification of colour-trivial observables of particu-
lar interest for relativistic heavy ion collisions at RHIC
and LHC where very little is known about the medium
a priori but many “hard probes” are expected to receive
sizeable nuclear modifications due to rescattering effects.

In the present work, we have derived an explicit general
expression for the rescattering effects on a hard coloured
parton inside a spatially extended nuclear medium. We
have then studied in detail for the simple example of vir-
tual photodissociation under which conditions this gen-
eral rescattering formula results in colour-trivial observ-
ables which can be parametrized by a QCD dipole cross
section. In detail:

The non-abelian Furry wavefunction (2.12) derived in
section II is a high-energy approximation to the solu-
tion of the non-abelian Dirac equation in a spatially ex-
tended colour field. In contrast to other approximate
solutions [28], it is accurate up to order O(1/E2) in the
phase. This is known to be indespensable for calculating
the nuclear dependence of observables which are deter-
mined by the destructive interference between different
production amplitudes as e.g. the LPM-effect or the nu-
clear dependence of Drell-Yan yields. The Furry wave-
function (2.12) thus provides a unified starting point for
the description of the nuclear dependence of a large class
of observables.

Based on the Green’s function Ḡ which describes the
dynamical evolution of the non-abelian Furry wavefunc-
tion, we have derived in section IV a set of diagrammatic
identities which play the key role in proofs of colour triv-
iality. These identities exploit the integration over the
transverse momentum of a single final state particle only.
They are thus much stronger than diagrammatic cancel-
lations implied by the optical theorem. As a consequence,
they ensure for the example of the γ∗ → qq̄ process a
colour trivial result not only for the total, elastic and
inelastic inclusive photoabsorption cross section but also
for cases in which one jet is resolved in the final state. All
these observables can be described in terms of the same
one-parameter QCD dipole cross section.

Earlier applications of these diagrammatic techniques
as well as statements about the colour triviality of
the photoabsorption cross section exist [4,15-18,27,7,8].
Here, we have given relatively short and complete proofs
of these statements by exploiting the advantages of a new
and compact configuration-space notation implied by the
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Furry wavefunction. In contrast to previous discussions,
our formulation includes the transverse dynamical evolu-
tion of the partons. For the example of the photoabsorp-
tion cross section studied here, this allowed us to quan-
tify the leading deviations from the eikonal limit which
grow at fixed energy proportional to L2. Moreover, the
compactness of our notation made it possible to discuss
in detail technically rather involved processes as e.g. the
inelastic and total photoabsorption cross section with one
jet resolved in the final state. This points to the strength
of the present approach which we believe to be suited for
the explicit discussion of more complicated processes as,
e.g., further studies of the transverse momentum depen-
dence of the non-abelian LPM-effect [17,21] or photodis-
sociation including initial state gluon radiation [32].
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APPENDIX A: NON-ABELIAN FURRY
APPROXIMATION

In this appendix, we derive the non-abelian Furry
wavefunction (2.12) from the set of N -scattering Feyn-
man diagrams (2.11). For an N -fold rescattering dia-
gram, we use the notation pN+1 ≡ p for the final state
momentum. To simplify I(N)(y) in (2.11), we do the
longitudinal momentum integrals by contour integration∫

dpL
i

(2π)
i (6 pi +m) γ0

p2
i −m2 + i ε

ei pL
i (xL

i −xL
i−1)

=
(6 pi +m) γ0

2 pL
i

Θ(xL
i − xL

i−1) e
i pL

i (xL
i −xL

i−1) . (A1)

We note that, strictly speaking, the position variables xi

in this expression are integration variables and do not
coincide with the center of the i-th scattering potential.

A more detailed analysis of (2.11) involves for a particu-
lar model also the study of the pL

i -poles of the Fourier-
transformed single scattering potentials. For a Yukawa-
type potential 1/[(pi − pi−1)2 + M2], e.g., these poles
give additional contributions to the pL

i -integrals, which
are however exponentially suppressed due to the Debye-
screening mass M . These details are discussed explicitly
in Refs. [12,15] and for contact terms in Ref. [38]. In the
end, the only O(1/E)-contribution to the pL

i -integration
turns out to be given by (A1). On the r.h.s. of this equa-
tion, pL

i is determined by the pole value to order O(1/E),

pL
i = p − p⊥

i
2

2 p where p2 = E2 −m2. Using x0 ≡ y, we
can rewrite (2.11) as

I(N)(y) = e− i p yL P
(

N∏
i=1

∫
d2p⊥

i

(2π)2
d3xi Θ(xL

i − xL
i−1)

× (6 pi +m) γ0

2 pL
i

[−i A0(xi)] eip⊥
i ·(x⊥

i −x⊥
i−1)

×e−i
p⊥

i
2

2 p (xL
i −xL

i−1)

)
e−ip·xN+ip xL

N v(r)(p) . (A2)

We now consider the spinor structure of this expression.
To order O(1/E2), each quark propagator introduces a
numerator

(6 pi +m)γ0 ≈ E(γ0 − γ3)γ0 − γ⊥ · p⊥
i γ0 + γ3 γ0

p⊥
i

2

2 p .

(A3)

The normalization of I(N)(y) is needed to leading order
in energy only. This allows us to neglect the mass term in
(A3). For the same reason, it is sufficient to keep only the
leading term E(γ0 − γ3)γ0 for all numerators (A3) with
i ≥ 2. Further simplification of (A2) is then possible,
using

(E(γ0 − γ3)γ0)
n = 2n−1En (γ0 − γ3)γ0 . (A4)

The case i = 1 is different: depending on the explicit
form of the production vertex, the leading order contri-
bution of this numerator can cancel. We have to keep the
numerator (6 p1 +m)γ0 to order O(1/E). To this aim, we
substitute in (A2)

(6 p1 +m)γ0 −→ E(γ0 − γ3)γ0 − iγ · ∂
∂y

γ0 , (A5)

where the differential operator acts on the big bracket
in (A2). Equation (A5) is equivalent to (A3) with the
transverse components written in configuration space. In
a coordinate system with p ‖ n, the above equation takes
the form

6 p1γ0 = p(γ0 − γ3)γ0 + α⊥ · (p⊥
1 − p⊥)

−αL

(
p⊥

1
2

2 p
− p⊥2

2 p

)

−→ p (γ0 − γ3)γ0 + iα · ∂
∂y

− α · (p− pn) . (A6)

19



In the same coordinate system, 0.5 (1−γ3γ0) v(p) = v(p).
Acting with (A6) on v(p), we thus find to leading order
in E an expression proportional to D̂ v(p). With these
steps, the amplitude (A2) takes the form

I(N)(y) = e− i p yL D̂P
∫ ( N∏

i=1

d3xi Θ(xL
i − xL

i−1)

)

×
(

N∏
i=1

[−i A0(xi) ] Ḡ0(xi−1,xi|p)
) ∫

dx⊥

×Ḡ0(xN ,x|p)F (x⊥,xL,p) v(r)(p) . (A7)

Here, we have introduced two elements of the abelian
Furry approximation: the outgoing transverse plane wave
F and the free Green’s function Ḡ0 of (2.15) which we
have identified here with the Gaussian p⊥

i -integrals,

Ḡ0(x⊥
i−1, x

L
i−1;x

⊥
i , x

L
i |p)

=
∫

d2p⊥
i

(2π)2
ei p⊥

i ·(x⊥
i −x⊥

i−1) e−i
p⊥

i
2

2 p (xL
i −xL

i−1) . (A8)

For the path-ordered product in (A7) which involves
these Green’s functions, we introduce the shorthand

Ḡ(N)(y⊥, yL;x⊥, xL|p) =

P
(

N+1∏
i=1

∫
d3xi Θ(xL

i+1 − xL
i )

)
Ḡ0(y⊥, yL;x⊥

1 , x
L
1 |p)

×
(

N+1∏
i=1

[−i A0(xi)] Ḡ0(x⊥
i , x

L
i ;x⊥

i+1, x
L
i+1|p)

)
, (A9)

where xN+1 = x∞. Allowing for arbitrary many gluon
exchanges, we have to sum over N .

Ḡ(y⊥, yL;x⊥, xL|p) =
∞∑

N=0

Ḡ(N)(y⊥, yL;x⊥, xL|p) .

(A10)

From this one sees easily that G(N) corresponds exactly
to the N -th order O(AN

0 ) term in (2.14). The sum (2.12)
over N -fold scattering diagrams takes the form of a non-
abelian extension of the Furry approximation.

We emphasize that the approximations used in our
derivation and especially the different treatment of the
quark propagators at the production vertex and in the
final state rescattering part of the amplitude I(N) leads
to a consistent high energy expansion with a norm ac-
curate to leading order in O(1/E) and a phase factor
accurate up to order O(1/E2). The same approximation
were employed in recent calculations of rescattering am-
plitudes for which the production vertex P is a photon
or gluon emission vertex [12,26].

APPENDIX B: QQ̄ FOCK STATES

In this appendix, we give details of the derivation of
transverse and longitudinal components of the squared
incoming Fock state

Φ(∆b; ∆b̄;α) = Φ⊥(∆b; ∆b̄;α) + ΦL(∆b; ∆b̄;α) .

(B1)

We start with the longitudinal polarization εLµ , satisfying

εL · k = 0 and εL2 = 1,

εLµ =
1
Q

(√
ν2 +Q2,0⊥, ν

)
. (B2)

The corresponding vertex function reads to leading order
in energy

ΓL = εLµ Γ̂µ = Q
√

(1 − α)α r δr,r′ , (B3)

where r, r′ are the helicities of the quark and antiquark.
The square of this longitudinal vertex function, summed
over the spin of the final state particles, reads∑

r,r′
ΓL ΓL∗

= 2Q2 (1 − α)α . (B4)

This is a kinematical prefactor which factorizes in the in-
tegrand of (3.7). For the first interaction in the photodis-
sociation amplitude in (3.7), we take some longitudinal
position za. The y-integration in (3.7) can then be done
analytically. We find

IL(b2 − b1|yL, za)

=
∫

d2y⊥ Ḡ0(b2, za;y|p2) Ḡ0(y;b1, za|p1)

=
µ

2π i (za − yL)
exp

{ iµ (b2 − b1)
2

2 (za − yL)

}
, (B5)

where µ = (1−α)αν. The virtual photon has to dissoci-
ate at longitudinal position yL < za in order to make an
interaction at za possible. This limits the range of the
yL-integral:

IL(∆b|za) =

za∫
−∞

dyL IL(b2 − b1|yL, za)

=
(1 − α)α ν

2π i
ei q za 2K0(ε̄ |∆b|) , (B6)

ε̄ =
√

(1 − α)αQ2 +m2 . (B7)

If the first interaction occurs at za in both the amplitude
and complex conjugate amplitude, then the square of the
incoming longitudinal qq̄ Fock wavefunction is defined as
the combination of the squared emission vertex (B4) and
the free time evolution (B5),

20



ΦL(∆b; ∆b̄;α) =

∑
r,r′ ΓL ΓL∗

4ν2α(1 − α)
IL(∆b|za) I∗L(∆b̄|za)

=
Q2 α2 (1 − α)2

2 (2π)2
4K0(ε̄|∆b|)K0(ε̄|∆b̄|) . (B8)

This expression appears for longitudinal polarization in
the photodissociation cross section (3.9).

For our calculations in section IV, we have to consider
the more general case that the first interaction vertex
occurs at za in the complex conjugated amplitude M †

fi,
but at zb > za in the amplitude Mfi. This implies the
further free evolution of (B5) from za to zb,

IL(b2 − b1|yL, zb)

=
∫

d2b′
1 d2b′

2G0(b2, zb;b′
2, za|p2)

×IL(b′
2 − b′

1|yL, za)G0(b′
1, za;b1, zb|p1)

=
∫
drb(za)K0 (rb(zb), zb; rb(za), za|να(1 − α))

×IL(rb(za)|yL, za) . (B9)

Here, we have used the notation introduced in equations
(4.16) - (4.19) with rb(za) = b′

2 − b′
1 and rb(zb) = b2 −

b1. Equation (B9) allows us to circumvent a notational
problem which stems from the identity:

zb∫
−∞

dyL I(∆b|yL, zb)

= eiq(zb−za)

za∫
−∞

dyL I(∆b|yL, za) . (B10)

Equation (B10) shows that if the points of first in-
teraction differ in M †

fi and Mfi, then phase factors
exp (i q (zb − za)) arise in the squared free incoming wave-
function (B8). Hence, strictly speaking, we cannot do
the yL-integral before specifying the first points of in-
teraction. Previous discussions of the q-q̄-dipole do not
have this difficulty, since they neglect these phase fac-
tors - a praxis which is justified for nuclear targets
of size L � 1/q. If we want to keep the phases
exp (i q (zb − za)) and yet write the photoabsorption cross
section (3.9) in terms of ΦL, we can use (B9) for a
simple convention: whenever the free Green’s function
K0 (rb(zb), zb; rb(za), za|να(1 − α)) acts on the first ar-
gument ∆b of ΦL(∆b; ∆b̄;α), the result is a phase
exp (i q (zb − za)), whenever it acts on the second argu-
ment, the result is the complex conjugated phase. This
allows us to expand the cross section (4.23) in powers of
the opacity without neglecting phase factors and without
giving up the simple representation of σγ∗→qq̄ in terms
of Φ.

We now turn to the transverse polarizations

ε⊥µ (λ) =
1√
2

(0, 1, iλ, 0) . (B11)

ΓT
λ (y) = ε⊥µ (λ)Γµ

=
−1

2
√

(1 − α)α
[δr,r′i∇y · ε⊥(λ) (r′(1 − 2α) + λ)

+
m√
2
δ−r,r′ (1 + λr′)] . (B12)

In contrast to the longitudinal case, this vertex does
not factorize in the integrand of (3.7). However, the y-
integration can be done in analogy to (B6),

I⊥λ (∆b|za)

=

za∫
−∞

dyL

∫
d2y⊥ ei q yL−ε |yL|G0(b2;y|p2)

×ΓT
λ (y)G0(y;b1|p1)

=
(1 − α)αν

2π i
ei q za 2 ΓT

λ (∆b)K0(ε̄ |∆b|) . (B13)

The squared transverse wavefunction reads then

Φ⊥(∆b; ∆b̄;α) =
1
2

∑
λ,r,r′

4ν2α(1 − α)
I⊥λ (∆b|za) I⊥λ

∗
(∆b̄|za)

=
ε̄2

2 (2π)2
∆b · ∆b̄
|∆b| |∆b̄|K1(ε̄∆b)K1(ε̄∆b̄)

(
α2 + (1 − α)2

)
+

m2

2 (2π)2
K0(ε̄∆b)K0(ε̄∆b̄) . (B14)

For the case that the points of first interaction za and
zb are different in the amplitude and complex conjugated
amplitude, the convention explained below (B10) applies.

The arguments of the modified Bessel functionsK0 and
K1 in (B8) and (B14) specify the transverse separation
of the q-q̄ dipole pair. This separation is given approxi-
mately by 1/ε̄ = 1/

√
(1 − α)αQ2 +m2. The higher the

virtuality of the photon, the smaller the transverse size of
this dipole. In general, the approximation of the virtual
photon by the q-q̄ Fock state is reasonable at sufficiently
high virtuality, Q2 � 1 GeV2, above the vector meson
dominance region [6]. There, the q-q̄ separation is small
enough to render the effects from string tension negligible
and the quarks undergo independent scatterings. For a
recent attempt to model interactions between the quarks,
see Ref. [24].

APPENDIX C: CLASSIFICATION OF
DIAGRAMS FOR (4.30)

In this appendix, we use the identities Fig. 7a and b
to simplify the diagrammatic contributions to the inelas-
tic part of the differential photoabsorption cross section
(4.30). For each N -th order term in the opacity expan-
sion of (4.30), we use the notational shorthand

21



N∏
i=1

Ani,mi,o
i . (C1)

Here, the index i labels the scattering potentials linked
to the N -th order term, i = 1 being the first scattering
potential. The superscripts ni,mi, o denote how the i-th
scattering center is connected to the q-q̄-system. Each
scattering center is linked twice to the q-q̄-system, once
a momentum κ⊥ flows into the system, once it flows
out. ni ∈ [1, 2] specifies whether the inflowing momen-
tum is transfered to the upper quark line of momentum
p1 (ni = 1) or the lower quark line of momentum p2

(ni = 2). Analogously, mi ∈ [1, 2] specifies whether the
outflowing momentum comes from the upper (mi = 1)
or lower (mi = 2) quark line. The remaining superscript
o ∈ [r, v, w] specifies the position of the two vertices from
the i-th interaction w.r.t. the cut: either both vertices
stand to the right of the cut (o = v) or to the left of the
cut (o = w), or they are a real contribution (o = r) where
one vertex stands to the right and the other to the left
of the cut. We illustrate this notation with the examples
in Fig. 12.

A
11,r

1

 

2A   = A1

11,w 12,r

2

12,v

A   = x xx

x

o
x

x

FIG. 12. Example of our notation (C1) for diagrammatic
contributions to the photoabsorption cross section. For more
details, see the text following (C1).

All N -th order contributions to the differential pho-
toabsorption cross section (4.30) fall into exactly one of
the following three classes:

1. There is at least one factor A11,r
j in the diagram

(C1).

2. There is at least one factor A12,r
j or A21,r

j in the
diagram (C1), but no factor A11,r

k (arbritrary k)
and no factor A22,r

k with k < j.

3. (a) There is no factor A11,r
k (arbritrary k) but at

least one factor A12,r
j or A21,r

j in the diagram (C1),
and there is at least one factor A22,r

k with k < j.
or
(b) There are no factors A11,r

j , A12,r
j or A21,r

j in the
diagram (C1).

We now use the identities of Fig. 7a,b to show that many
of the diagrams in these three classes cancel each other.
In this way we determine the only remaining contribution
for each of the three classes:

Class 1: The only non-vanishing contributions are
those which contain no terms A22,o

l , A12,o
l or A21,o

l with
o ∈ [r, v, w]. They are shown in Fig. 10(a1).
Argument: Consider the subclass of diagrams containing
factors A22,o

l , A12,o
l or A21,o

l . In case that there is more
than one such factor in the diagram, consider the term
with the largest index l, l = k say. Leaving all terms
j 6= k unchanged, we find in this class of diagrams ex-
actly one diagram with A22,r

k , A22,v
k and A22,w

k on the k-th
position. These three diagrams cancel each other due to
the identity Fig. 7a. Also, for all terms j 6= k unchanged,
we find exactly one diagram with A21,r

k and A21,v
k , which

cancel due to the identity Fig. 7b. For the same reason,
the two diagrams with A12,r

k and A12,w
k cancel each other

(note that A12,w
k = A21,w

k specifies the same k-th term
in the same diagram). As a consequence, no contribu-
tion which contains terms A22,o

l , A12,o
l or A21,o

l gives a
non-vanishing contribution.

Class 2: The only non-vanishing contributions contain
exactly one real term A12,r

j or A21,r
j with no real term

A11,r
k or A22,r

k , k arbitrary, and with no contact terms
A12,v

k , A12,w
k , A22,v

k , or A22,w
k for k > j. They are shown

in Fig. 10(a2).
Argument: Choose in each diagram the term A12,r

j or
A21,r

j with the lowest index j. Consider diagrams which
contain terms A22,o

k , A12,o
k or A21,o

k , with k > j and o =
r, v, w. Taking k maximal and leaving all other terms
unchanged, these diagrams cancel due to the identities
Fig. 7a and b.

Class 3: The only non-vanishing contributions contain
exactly one real term A22,r

j but no real terms A11,r
j , A12,r

j ,
orA21,r

j and no contact termsA22,v
k , A22,w

k , A12,v
k orA12,w

k

with k > j. They are shown in Fig. 10(a3).
Argument: Consider in each diagram the term A22,r

j with
lowest index j. Look then at the largest index k > j
linking to the p2-line. Leaving all other terms unchanged,
the sum of the contributions with different configuration
at position k ensures cancellation: A22,r

k , A22,v
k and A22,w

k

cancel each other due to identity Fig. 7a. A21,r
k , A21,v

k and
A12,r

k , A21,w
k cancel each other due to identity Fig. 7b.

Thus only contributions with exactly one real term A22,r
j

survive cancellation.
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