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1. Introduction and Conclusions

One of the most succesful tests of the AdS/CFT correspondence of refs. [1,2] is pro-
vided by instanton physics. In supersymmetric theories, many aspects of instanton dynam-
ics (such as the moduli space and the measure) are of BPS-type, i.e. they are protected
and thus provide useful tests of the duality.

The AdS/CFT picture of Yang–Mills instantons is in terms of D(p − 4)-brane probes
in the background geometry (vacuum) of Dp-branes [3]. Concentrating in the case of
the N = 4 SYM theory, dual to type IIB string theory on AdS5 × S5, we can write the
background metric as

ds2

R2
=

1
ρ2

(
dρ2 + d~x 2

)
+ dΩ2

5, (1.1)

where the radius R is determined by the Regge slope and string coupling by R4 =
4π α′2 gs N = α′2 λ. We have also defined the ’t Hooft coupling λ = gs N = g2

YM N

controlling the large-N expansion of the gauge theory. The coordinates ~x parametrize the
R4 boundary giving space-time data for the gauge theory, while ρ represents the gauge-
theory length scale according to the UV/IR relation. For example, a D-instanton probe
sitting at (ρ, ~x) is interpreted as a Yang–Mills instanton of size parameter ρ located at
point ~x in R4.

The calculations of instanton-dominated BPS amplitudes using the AdS/CFT rules
match dramatically with the perturbative computations recently done at weak coupling
[4]. In this paper instead we are interested in studying non-BPS configurations containing
both instantons and anti-instantons (thus breaking all supersymmetries) still using semi-
classical physics2. Of course in this case we do not expect the perturbative results to match
the supergravity ones, which should describe the physics at strong coupling. The results
we obtain are then predictions which could help us in understanding the strong coupling
regime of large-N N = 4 SYM theory.

Since the dual description is gauge invariant, it is problematic to describe the collective
coordinates associated to relative gauge orientations in a multi-instanton configuration.
Presumably we should interpret the gravitational description as providing the result of
having integrated out the gauge collective coordinates. On the other hand, the D-instanton
geometrical moduli corresponding to the location in S5 do have gauge-theory interpretation
in terms of new collective coordinates parametrizing large N saddle-point approximations
of the instanton measure [4]. Therefore, as long as we have the hierarchy 1 � λ � N we
should be able to study instanton dynamics of the SYM theory via dilute D-instantons in
the supergravity approximation to IIB strings on AdS5 × S5.

2 See [5] for other aspects of non-supersymmetric instanton physics.
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Since the D-instantons are fully localized in ten dimensions, we expect to find phys-
ical quantities in the four-dimensional SYM theory revealing (at least for λ � 1) a ten-
dimensional scaling. The interaction of I/A pairs is a convenient probe of the localization
properties, in the sense that the interaction will show ten-dimensional features if the proper
distance between the I/A pair is much smaller than the curvature radius of AdS5 × S5.
For sufficiently large values of the ’t Hooft coupling, this condition is compatible with the
dilute character of the D-instanton gas in supergravity. In fact, we find that the dilute
D-instanton gas in supergravity corresponds to the dilute gas of SYM instantons only in
the limit where the I/A distances are much larger than the curvature radius, i.e. when no
ten-dimensional features are revealed. On the other hand, the fully localized regime men-
tioned above is to be interpreted as a transient phase of overlapping YM instantons, i.e.
the geometrical notions of “diluteness” are slightly different on both sides of the AdS/CFT
correspondence.

The occurence in four-dimensional gauge theories of regimes with ten-dimensional
features via the AdS/CFT duality is not new. For example, a similar phenomenon is found
in the study of the dependence of the entropy on the energy scales of the theory, i.e. there
are intermediate energy regimes, visible at large λ, which show ten-dimensional scaling of
the entropy [6]. One of these regimes is characterized by fully localized configurations in
AdS5 × S5 where the density of states is well approximated by that of ten-dimensional
Schwarzschild black holes. We could present our results as the euclidean, semiclassical
analog of these localized states. The analogy with the entropy estimates is rather close,
since we are also looking at non-BPS quantities and the large-λ results are to be interpreted
as predictions of AdS/CFT, rather than tests to be satisfied.

We shall furthermore compare the results with the case where we add a non-vanishing
Neveu–Schwarz (NS) B-field to the background configuration. Indeed, given the embedding
of Non-Commutative Yang–Mills theories (NCYM) in open string dynamics with non-
vanishing Neveu–Schwarz (NS) B-field [7,8,9], the possibility opens up of studying the large
N limit of these systems by means of generalizations of the AdS/CFT correspondence. In
the recent works [10] and [11] a gravitational dual of large N NCYM was proposed as
the near-horizon geometry of Dp-branes with non-trivial profiles of NS B-fields, under the
appropriate scaling of parameters that isolates the low energy regime with NCYM physics.

We will consider the interaction action of an instanton/anti-instanton pair as an inter-
mediate probe into the locality properties of the NCYM theory. Although the dependence
of such quantity on the pair’s spatial separation is providing some local information, one
can compute it using the AdS/CFT rules without explicitly defining local operators via
boundary behaviour, a rather problematic procedure in view of the results of [11]. In
particular, one can define this quantity in terms of the bulk D-instanton/anti-D-instanton
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interaction action in Type IIB superstring theory

We will thus be able to see how the non-locality properties of NCYM are reflected in a
different behaviour of the I/A interactions. We find evidence of an effective delocalization
of instantons of size smaller than the non-commutativity length scale.

2. The UV/IR relation and I/A interactions

In presence of a D-instanton half of the supersymmetries are broken, and there are six-
teen supersymmetric zero modes or, equivalentely, supersymmetric collective coordinates.
To have a non vanishing interaction between the D-instanton and anti-D-instanton, the
sixteen zero modes must be saturated. Integrating over the fermionic collective coordinates
is equivalent to summing over all components of the supersymmetric multiplet to which
the D-instanton belongs. We can give a fully fledged string treatment in the context of the
boundary state formalism, for the case of D-instanton interactions in flat space [12,13,14].
In the low-energy approximation, the D-instanton multiplet is replaced by a set of effective
operators with up to sixteen fermionic legs. By the usual supersymmetric power-counting,
a pair of fermions corresponds to one derivative. Therefore, to leading order in the low-
energy expansion, an effective operator with Nf fermions must have 8 − Nf/2 derivatives
to saturate the sixteen zero modes.

We should think of these effective operators as the result of having integrated out the
massive string modes. Therefore, for consistency, the instanton/anti-instanton gases that
we consider must be dilute in the sense of the superstring background, i.e. the proper
distance between topological defects should be much larger than the string scale. In this
way the short-distance stringy singularities of the I/A interaction are also avoided. The
restriction to dilute configurations is also technically required for the I/A pair to be well-
defined as an approximate non-perturbative configuration. This is important because the
I/A pairs are in the same topological sector as the perturbative excitations.

The full set of effective operators in type IIB string theory, contributing up to relative
order O(α′3) can be summarized in the (Rµνρσ)4 terms of the type IIB supergravity to-
gether with their superpartners. Such operators are explicitly constructed for all channels
in refs. [14]. Therefore, the supergravity approximation can be extended to the analysis of
I/A interactions in curved backgrounds, such as AdS5 × S5.

We can thus compute the D-instanton/anti-D-instanton interaction by evaluating the
vacuum amplitudes of these effective operators. Among them, the most characteristic is the
operator with sixteen dilatinos and no derivatives (this operator determines the instanton
measure), for which the I/A interaction is simply given by the single fermionic zero mode
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exchange. The corresponding effective operator reads (in the string frame):

Iλ16 =
1
α′

∫
d10x

√−g e−φ/2 f(16)(τ, τ̄) ε[16] (λα)16, (2.1)

where ε[16] denotes the completely antisymmetric tensor and f(τ, τ̄) is a modular function
of the type IIB complex coupling τ = ie−φ − χ. To leading order in the weak-coupling
expansion, the single-instanton contribution to f(16) is proportional to e−12φ e2πiτ , where
we recognize the typical instanton factor e−2π/gs = e−8π2/g2

YM .

In the rest of the paper we will concentrate mostly on this contribution to the I/A
interaction action, postponing for another publication a more detailed analysis of all chan-
nels. The corresponding vacuum diagrams take the form

WI/A = (V.F.)
∏

Fermi lines

〈
I | /D−1 |A〉 . (2.2)

with instantons or anti-instantons contributing sixteen oriented fermion lines each. The
term (V.F.) represents the contribution of vertex factors coming from (2.1), with the
instanton action e−2π/gs and the coupling constant dependence of the instanton measure,
both included in f(16), as well as a totally antisymmetric tensor contracting all spinor
indices at each vertex. Explicitly, in Poincaré coordinates:

(V.F.) =
∏

vertices

√
N R8·9 N−16 ε[16]

∫
dρ d~x

ρ5
dΩ5 f(16), (2.3)

where the power of R comes from the α′ and gs dependence in (2.1) and the rescaling
λα → N−1 R4λα to have canonically normalized dilatinos.

The chirality selection rules forbid Fermi exchange interaction between I/I or A/A
pairs, a fact that we shall see explicitly bellow. We will be primarily interested in the
spatial dependence of the interaction action. Therefore, we shall focus on the structure of
the Dirac propagator between an instanton located at ~x and an anti-instanton at ~y, “far
apart”, but with approximately the same scale size ρx ∼ ρy, and at the same point in the
five-sphere Ωx = Ωy. Our main observation is the existence of two dynamical regimes for
I/A interactions, that is two main regimes of interest for the evaluation of the propagator.

If the geodesic distance dxy is small compared to the AdS and sphere radius R ∼√
α′λ1/4, but still large compared to the string length scale: `s =

√
α′ � dxy � R, then

the propagation is locally equivalent to the ten-dimensional fermion propagation in flat
space, i.e. we have the following scaling of the propagator:

S(x, y) =
(

1
/D

)
xy

' − /∂
(

1
−∂2

)
xy

' − /∂
(

1
dxy

)8

, (2.4)
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up to corrections of order O(dxy/R). On the other hand, the geodesic distance in terms of
Poincaré coordinates for dxy � R is proportional to the so-called “cordal distance”:

(dxy)2AdS ' R2 |~x − ~y|2 + (ρx − ρy)2

ρxρy
(2.5)

so that, for instantons of the same scale size, and located at the same point in the S5 we
have, up to corrections again of order O(dxy/R)

S(x, y) ' − /∂
(

1
dxy

)8

∼ R−9

(
ρ

|~x − ~y|
)9

~Γ · ~uxy (2.6)

where ~uxy ≡ (~x − ~y)/|~x − ~y|. Finally, putting all pieces together, we find

(
WI/A

)overlapping = (V.F.)
∏

Fermi lines

(
ρ

|~x − ~y|
)9

Px
~Γ Py · ~uxy + . . . (2.7)

The dots standing for corrections proportional to ρx − ρy and Ωxy, in addition to higher
orders in the small dxy/R expansion. In particular, for a single I/A pair we have a total
power of sixteen in the previous expression. We have made explicit the chiral structure by
the insertion of the ten-dimensional chiral projectors Px,Py, since the instanton vertices
are chiral. A Fermi line must connect an I/A pair, rather than a I/I or A/A pair, in order
for the action to be non-vanishing, i.e. we have the selection rule: Px(1 − Py) = Px. We
have also suppressed the explicit power of R coming from eq. (2.6). In fact, it cancels
against the explicit R-dependence of the vertex factors in (2.3), since propagators and
vertices are in relation eight to one.

Notice that in this regime |~x − ~y| � ρ, which can be interpreted as the fact that the
size of the instantons is much larger than their distance, and thus they strongly overlap.
This is a situation which cannot be studied in perturbation theory, but it is consistent in
the supergravity approximation, because the D-instanton system is still dilute in AdS5×S5

for dxy � `s. The elementary transition amplitude in string units

`9
s S(x, y) ∼ λ−9/4

(
ρ

|~x − ~y|
)9

, (2.8)

is still small in the window |~x − ~y| � ρ � λ1/4 |~x − ~y|, which is wide for λ � 1. This
is entirely analogous to other situations in AdS/CFT for non-BPS quantities. Namely,
large renormalizations of physical scale by powers of λ are frequent. Examples include the
renormalization of the topological susceptibility in the models of [15], and the different
scales of finite size effects in thermal partition functions on the torus, studied in [16].
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In the other dynamical regime, the geodesic distance is much larger than the AdS and
sphere radius: dxy � R. In this case |~x− ~y| � ρ and we are in the more standard (in field
theory terms) dilute instanton regime. Now the scale of propagation is sensitive to the
curvature of the background. In practice, we have just to evaluate the fermionic propagator
in the bulk of AdS5. Indeed, since higher harmonics of S5 have a large Kaluza–Klein mass
of order MKK ∼ 1/R, their contribution is exponentially suppressed for propagation over
distances dxy � R. Moreover, the dilatini component along S5 is given by a Killing spinor,
and the net effect of the sphere is summarized in a dimensional factor of the volume:

S(x, y)10d ' R−5 S(x, y)AdS . (2.9)

Upon Kaluza–Klein reduction on the S5, the dilatini acquire an effective mass mf =
−3/(2R), c.f. [17]. The fermionic propagator in the bulk of AdS5 has been already
discussed in the literature [18,19], but it can be easily obtained as follows. In Poincaré
coordinates, it holds 3

(γµDµ)2 = ∇2 + 4 + ρ γ5 ~γ · ~∂,
[
γµDµ, γ5

]
= 2ρ~γ γ5 ~∂, (2.10)

where
γµDµ = ρ γ5∂ρ + ρ~γ · ~∂ − 2γ5. (2.11)

γµ are the five-dimensional Dirac matrices, γ5 refers to the ρ coordinate and ∇2 is the five-
dimensional scalar laplacian. From these equations one obtains that the Dirac propagator
for a fermion with mass mf satisfying (γµDµ − mf )S = δ(5) is given by

S(x, y) = −
√

ρx

ρy

[
γµDµ

y +
1
2
γ5 + mf

]〈
x

∣∣∣∣∣
(
∇2

y −
[(

1
2
γ5 + mf

)2

− 4

])−1 ∣∣∣∣∣y
〉

.

(2.12)
Thus the Dirac propagator for the component of a fermion, with well-defined eigenvalue
of γ5 and mass mf , is related to the propagator of a scalar with an effective mass

m2
eff =

(
1
2
γ5 + mf

)2

− 4 . (2.13)

The bulk bosonic propagator for a scalar is well known [20,18], and given by

GB
∆(u) =

Γ(∆)Γ(∆ − 3/2)
(4π)5/2Γ(2∆ − 3)

u∆ F (∆, ∆ − 3/2, 2∆− 3,−u), (2.14)

3 We rescale R out of all the following equations, setting also mf = −3/2.
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where u = 4ρx ρy/(|~x − ~y|2 + (ρx − ρy)2) and using eq. (2.13)

∆ = 2 +
∣∣∣∣12γ5 + mf

∣∣∣∣ . (2.15)

It is then easy to see that for instantons of the same scale size but large separation, i.e.
large |~x − ~y|, the fermionic propagator behaves as

P± S(x, y) ' c1P±

(
mf +

(
∆± − 3

2

)
γ5

)
·
(

ρ

|~y − ~x|
)2∆±

+c2P± ~γ ·~uxy

(
ρ

|~y − ~x|
)2∆±+1

(2.16)
where the matrices P± = 1

2 (1 ± γ5) project onto definite ±1 eigenvalues of γ5, which is
interpreted as the chirality eigenvalue in the four-dimensional boundary, i.e. the gauge-
theory space-time. ∆± is given by ∆ in eq. (2.15) above with γ5 = ±1. In our case
mf = −3/2 and the terms with ∆+ = 3 dominate over those with ∆− = 4 in the limit of
large |~y − ~x|/ρ. Of these, the naively leading one is proportional to c1P+P− = 0 and thus
vanishes. The actual leading term is chiral in four-dimensional terms and leads to a net
I/A interaction of the form

(
WI/A

)dilute = (V.F.)
∏

Fermi lines

(
ρ

|~y − ~x|
)7

P+ ~γ · ~uxy + . . . (2.17)

with the dots representing higher corrections in powers of ρx − ρy and integer powers of u.
Thus, we can distinguish the dilute and overlapping regimes in this channel by the overall
power of the physical separation in the gauge theory |~y− ~x|, provided λ is large enough to
justify the various approximations. Notice that for a A/I pair the four-dimensional chirality
of the amplitude turns out to be opposite, i.e. P− appears in WA/I, as one expects from
the action of a CP transformation.

3. The Non-Commutative case

In the recent works [10] and [11] a gravitational dual of large N NCYM was proposed
as the near-horizon geometry of Dp-branes [21,22,23] with non-trival profiles of NS B-
fields, under the appropriate scaling of parameters that isolates the low energy regime
with NCYM physics. Let us consider the particular case of an euclidean D3-brane system
endowed with a constant B-field background of rank two with skew-eigenvalues Bz, Bw in
the respective planes z = x1 + ix2, w = x3 + ix4. We have the string-frame geometry:

ds2

R2
=

1
ρ2

(
f̂z(ρ) |dz|2 + f̂w(ρ) |dw|2

)
+

dρ2

ρ2
+ dΩ2

5 (3.1)
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in terms of the functions

f̂z(ρ) =
ρ4

ρ4 + ρ4
z

, f̂w(ρ) =
ρ4

ρ4 + ρ4
w

. (3.2)

The relevant length scales introduced in the radial profile by the noncommutativity
properties are related to the perturbative non-commutative length squared [z, z̄] =
−2i θz, [w, w̄] = −2i θw by the formulas

ρz = (λ θ2
z)

1/4, ρw = (λ θ2
w)1/4 . (3.3)

In these expressions, λ = g2
YM N is the ’t Hooft coupling of the Yang–Mills theories nor-

malized in the large-ρ region — that is in terms of the ordinary commutative theory that
appears in the infrared. The dilaton and NS B-field have the profiles

e2φ =
λ2

16π2N2
f̂z(ρ) f̂w(ρ) , Bz =

sz

θz

ρ4
z

ρ4 + ρ4
z

, Bw =
sw

θw

ρ4
w

ρ4 + ρ4
w

. (3.4)

Here, sz and sw are sign factors controlling the sign SPf = sz sw of the pfaffian Pf(B) =
BzBw (we can choose, without loss of generality θi ≥ 0).

Ramond–Ramond (RR) fields coupling to any non-trivial product B ∧B ∧ · · · ∧B on
the Dp-brane world-volume are also excited. For the case of interest here, the type IIB
two- and zero-form RR field strengths are excited. In particular, the axion profile is given
by [11]

χ = −θYM

2π
+ i

4πN

λ
SPf

ρ2
zρ

2
w

ρ4
, (3.5)

where θYM is the Yang–Mills vacuum angle, also normalized in the infrared.

Since f̂(ρ → 0) → 0, there is a significative distortion of the metric and various
field profiles (3.1), (3.4) in the ultraviolet regime. This fact has consequences for the
interpretation of holography in these dual large N descriptions of the NCYM theory.
For example, there are problems in defining correlators of local operators [11] related to
ambiguities in the ultraviolet renormalization.

A case that exposes these difficulties in a dramatic way is that of euclidean D3-branes
with a (anti-) self-dual antisymmetric tensor B+ = 0 (B− = 0) or θz = θw = θ, ρz = ρw =
ρθ in the previous formulas. The Einstein frame metric, appropriate to the discussion of
massless field propagation, is given by

ds2
E =

(rθ

R

)2 1√
1 + (rθ/r)4

d~x 2 +
(

R

rθ

)2 √
1 + (rθ/r)4

(
dr2 + r2 dΩ2

5

)
. (3.6)

With the identifications r = R2/ρ, rθ = R2/ρθ and certain rescalings of the coordinates,
this is simply the full D3-brane metric asymptotic to flat space as r → ∞ (the other fields
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do not correspond however to this solution). Since the resulting manifold is asymptotic to
flat R10 it is not obvious in what way this description can be holographic. The crossover
from the “throat” to the flat region is at ρ = ρθ, i.e. at the onset of non-commutative
effects in the gauge theory.

Despite these problems in making sense of local operators in the geometric picture,
one can easily compute certain observables, such as the thermodynamic quantities, that
can be written as integrals over spacetime of local operators [23,24].

Non-commutative instantons provide an interesting probe into the locality properties
of NCYM theories [25,9]. It is natural to try to draw some lesson from the AdS/CFT
picture of these in terms of D-instantons in the geometry (3.6). Some general properties
expected for instantons can be obtained from the Dirac–Born–Infeld action of a D-instanton
probe:

SDBI = 2π
(
e−φ − iχ

)
, (3.7)

with anti-D-instantons coupling instead to the conjugate combination of type IIB dilaton
and axion: e−φ + iχ. Upon substitution of the previous formulas we find

SDBI =
8π2

g2
YM

[√(
1 +

ρ4
z

ρ4

)(
1 +

ρ4
w

ρ4

)
+ SPf

ρ2
zρ

2
w

ρ4

]
+ i θYM . (3.8)

We see that, for very large instantons ρ � ρz, ρw compared to the non-commutativity
scales, the action reduces to the usual i θYM +8π2/g2

YM. On the other hand, for ρ ∼ ρz, ρw

and ρ � ρz, ρw there are significative modifications. In fact, the radial coordinate ρ is
not an exact moduli for D-instantons in the generic case. In other words, the D-instanton
probe is to be considered an approximate or constrained instanton. For SPf = 1 the large
action for small “sizes” could be interpreted as the absence of a small instanton sigularity
in instanton moduli space. In particular, for B− = 0 we have SPf = 1 and

SB−=0 =
8π2

g2
YM

+ iθYM +
16π2

g2
YM

(
ρθ

ρ

)4

, (3.9)

giving a strong suppression of the “small” instanton regime. On the other hand, for B+ = 0
one has SPf = −1 and

SB+=0 =
8π2

g2
YM

+ i θYM (3.10)

exactly as in YM theory. Namely, non-commutative instantons in a self-dual B-field (con-
versely anti-instantons in an anti-self-dual B-field) have a standard commutative moduli
space. In particular there is an apparent small instanton singularity. It is very satisfying
to see these results emerge in such an elementary way from the AdS/CFT picture in terms
of D-instanton probes.
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On the other hand, even if the moduli space of instantons only depends on the self-dual
part of the non-commutative deformation parameter, in general one expects the precise
form of the instanton solutions to depend also on B−. Therefore, it is not clear to what
extent the region ρ � ρθ really represents small non-commutative instantons, in a physical
sense.

A preliminary test of the locality properties of such ρ � ρθ or “small” instantons
can be extracted from our previous analysis of the I/A interaction. This is a particularly
interesting quantity in the case at hand, since it does not involve directly the specification
of boundary behaviour at ρ = 0, and thus it should be free of renormalization ambiguities.

The D-instanton probe description of non-commutative instantons is generically off-
shell for ρ � ρθ. For example, let B+ = 0 and place a Dirichlet-(I/A) pair at large ρ.
From eq. (3.10) it follows that we can “drag” the D-instanton to ρ � ρθ with no cost in
action, but from eq. (3.9) it follows that it is not possible, without a large cost in action,
to drag the corresponding anti-D-instanton to ρ � ρθ.

If we insist in mantaining the off-shell Dirichlet-(I/A) pair at “small” size (i.e. ρ � ρθ),
as an approximate or “constrained” configuration, then the fermionic exchange interaction
over distances dxy � ρθ must be evaluated in the geometry (3.6), which is asymptotic to
flat R10 in the region of interest (ρ � ρθ) for both “instantons”. Therefore, the appropriate
fermion propagator shows ten-dimensional scaling

S(x, y) =
(

1
/D

)
xy

' − /∂
(

1
dxy

)8

∼ R−9

(
ρθ

|~y − ~x|
)9

~Γ · ~uxy, (3.11)

where we have used the geodesic distance computed in the metric (3.6). We find an effective
interaction of the overlapping type, see eq. (2.6), with a characteristic scale independent
of the size ρ and fixed at the non-commutative length ρθ � ρ.

A possible interpretation of this result is that, as the instantons decrease in size to the
scale where non-commutative effects start to be relevant, they actually “delocalize”, behav-
ing again as if they were large, but with an effective size dictated by the non-commutative
geometry.

Finally, when considering the interaction of a D-instanton and an anti-D-instanton of
large size (i.e. ρ � ρθ), the results of the previous section apply since the metric (3.6) in
this region is asymptotically given by AdS5 × S5.
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