CORE

DESIGN CONSIDERATIONS FOR A SUPERCONDUCTING LINAC AS AN OPTION FOR THE ESS

W.F. Bräutigam, S.A. Martin, G. Schug, E.N. Zaplatine, FZJ Juelich; P.F. Meads, Oakland; Y.V. Senichev,University Aarhus

Abstract

An approach for a superconducting high-current proton linac for the ESS has been discussed as an option in the "Proposal for a Next Generation Neutron Source for Europe- the European Spallation Source (ESS)"[1,2]. The following work studies the technical and economic conditions for a superconducting linac at the high-energy end of the proposed accelerator system. The use of superconducting elliptical cavities for the acceleration of high-energetic particles $\beta=v / c \approx 1$ is certainly state of the art. This is documented by many activities (TJNAF, TESLA, LEP, LHC, and KEK). A design study for the cavities is described in another paper on this conference[5]. For low energy particles ($\beta \ll 1$) quarter wave type cavities and spoke-type cavities have been discussed. The main motivation for this study is the expectation of significant cost reduction in terms of operational and possibly investment cost.

1 BASIC PARAMETERS

The basic parameters of the system are given in tables 1,2,3.

Table 1: Basic data of the superconducting ESS linac

Maximum energy	1334 MeV
maximum $\beta=\mathrm{v} / \mathrm{c}$	0.91
injection energy	70 MeV
injection β	0.4 M
average current	3.75 mA
peak current pulse average	63 mA
repetition rate	50 Hz
pulse length	1.2 ms
duty factor	6%

The high energy linac will transport the beam from 70 MeV up to 1334 MeV . A current of 3.75 mA is necessary for the 5 MW beam power. The pulse length of 1.2 ms is required by the filling mechanism for the 2 accumulator rings. The macro time structure of the beam is 1.2 ms out of 20 ms , result in a duty factor of 6%. The micro time structure inside the pulse is 360 ns beam-on and 240 ns beam-off. The accumulator uses the beam-off-time for maintaining a beam free section in the
circulating beam. The $2^{*} 10^{9}$ particles per bunch are not too critical for the high energy linac. The total number of particles per pulse is $4.7 * 10^{14}$.

Table 2: Pulse micro structure

revolution frequency accumulator	1.67 MHz	
revolution time accumulator	$0.6 \mathrm{\mu s}$	
chopping beam-on time	360 ns	
chopping beam-off time	240 ns	
intensity		
particles per pulse	4.710^{14}	
particles per RF bunch	210^{9}	

2 ENERGY GAIN PER CAVITY

The energy gain in cavity is usually given by $\Delta W=e E_{0} T \cdot l \cdot \cos (\phi)$. Here, T is the transit timefactor and 1 the length of the cavity. $E_{0} T=E_{a c c}$ is the accelerating field and ϕ is the phase distance of the synchronous particle to the crest at the centre of the cavity. The matched length of one cavity cell is given by $\Lambda=\beta_{\Lambda} \cdot \lambda / 2$ where $\beta_{\Lambda}=\beta=v / c$ the velocity factor of the synchronous particle. The cell transit-time factor is given by
$T_{\Lambda}=\left\{\begin{array}{l}\frac{\pi}{2 \cdot\left(1+\frac{2 \Lambda}{\beta \cdot \lambda}\right)} \text { for } \beta \approx \beta_{\Lambda}(\leq 3 \%) \\ \cos \left(\pi \cdot \frac{\Lambda}{\beta \cdot \lambda}\right) \cdot \frac{1}{1-\left(\frac{2 \Lambda}{\beta \cdot \lambda}\right)^{2}} \beta \neq \beta_{\Lambda}\end{array}\right\}$

These expressions neglect the changes of beam velocities within a cell. Therefore, the lower formula is in accordance with the theory of Wangler [3].We have set up an approximate relation in order to give the validity range of the phase ϕ. The relative T_{Λ} error holds less than

$$
0.5 \%(1.5 \%) \text { for }|\phi|<76^{\circ}\left(85^{\circ}\right)
$$

This relation is valid up to the maximally occurring values of velocity mismatch (0.05) and the difference of the beam velocity factors within a cell (0.02).
The energy gain of an N-cell cavity results as addition of gains of N single cells. Thereby, particular synchronous phases of each cell have successively been calculated. This numerical method makes the base of future longitudinal particle tracking of the high-energy part of the linac.

Table 3: Radiofrequency system

frequency	700 MHz	
RF wave length	0.428 m	
data for a $\beta=0.75$ cavity:	0.182 m	
length of a cell Λ	0.91 m	
length of a 5-cell cavity	$25 \mathrm{MV} / \mathrm{m}$	
maximum surface electric field $\mathrm{E}_{\text {peak }}$	10	$\mathrm{MeV} / \mathrm{m}$
accelerating field $\mathrm{E}_{\text {acc }}$	0.79	
transit time factor per cell T_{Λ}	2 MV	
maximum tension amplitude per cell	-20	degree

The β-dependence of the energy gain of an N -cell cavity can be manifested using Wangler's formalism [3]. Here, the beam velocity along the N cells is set to be constant. The cavity transit-time factor T can then be factorised: $\boldsymbol{I}=\boldsymbol{I}_{\Lambda} \cdot \boldsymbol{I}_{S}$. Where the synchronism factor is given by

$$
T_{S}\left(N, \frac{\beta}{\beta_{\Lambda}}\right)=\left\{\begin{array}{c}
(-1)^{\frac{N-1}{2}} \cdot \frac{\cos \left(\frac{N \pi \beta_{\Lambda}}{2 \beta}\right)}{N \cdot \cos \left(\frac{\pi \beta_{\Lambda}}{2 \beta}\right)}, \mathrm{N}-\text { odd } \\
(-1)^{\frac{N}{2}+1} \cdot \frac{\sin \left(\frac{N \pi \beta_{\Lambda}}{2 \beta}\right)}{N \cdot \cos \left(\frac{\pi \beta_{\Lambda}}{2 \beta}\right)}, \mathrm{N}-\text { even }
\end{array}\right\}
$$

where β is the centre velocity factor being constant over N cells and β_{Λ} is the cavity geometric velocity

Figure 1: Transit-time factor for a 5-cell cavity vs. the velocity ratio β / β_{Λ} including β change from cell to cell
factor. The number of cells per cavity has been chosen to be $\mathrm{N}=5$. The transit-time factor for such a 5-cell cavity is shown in the figure 1 .

The maximum value occurs at the design velocity factor β_{D}, which is a little larger than the geometric velocity β_{Λ}.

3β-GROUPING

The cell number $\mathrm{N}=5$ have been chosen for ESS because of the smaller influence of the end cells compared to $\mathrm{N}=4$. We have slightly rearranged the high energy linac part by fixing the maximal surface electric field to $25 \mathrm{MV} / \mathrm{m}$. The ratio Epeak/Eacc has been calculated in [4].

Figure 2: Ratio $\mathrm{E}_{\text {peak }} / \mathrm{E}_{\text {acc }}$ as it is calculated by the MAFIA program.

Figure 3: Energy gain per cell $\beta_{\Lambda}=0.75$ (crp. 480 MeV). The maximum phase ϕ of the centre cell is set to -20°.

The number of groups of identical cavities to be built should be as small as possible for an economic manufacturing. On the other hand, a criterion has been used to tolerate a maximum decrease of the transit-time factor of 5% at the ends of the groups of identical cavities. Hence, 5 different groups of identical cavities will be necessary to accelerate the beam in the linac from 70 MeV up to 1334 MeV . The geometric velocities for the 5 groups are $\beta_{\Lambda}=0.353,0.431,0.526,0.641$, and 0.782 . In a next step the energy gain throughout the
whole family has been optimised by varying the centre velocity factor β_{Λ}. The result of this optimisation is shown in figure 4.

Figure 4: The centre velocity factor β_{Λ} and the β range for the cavities of the 6 families. The numbers are given for the centre velocity factor β_{Λ}

We will create two additional cavity groups at the upper end because most of the energy will be gained at $\beta>0.75$ (480 MeV). Figure 3 shows as an example The energy gain per cell for a group of identical cavities. The single-cell tracking method will be completed to include also power coupler and transverse beam dynamics aspects.

4 TRANSVERSE BEAM DYNAMICS

For the arrangement of the quadrupoles FODO-, doublet-, and triplet-focusing has been studied. The most simple focusing structure the FODO structure. We group 4 cavities between the focusing quadrupole F and the defocusing quadrupole D. The strength of the quadrupoles is constant all along the linac from 70 MeV up to 1333 MeV . The relative focusing force decreases with the increasing energy. The β-functions β_{x}, β_{y} increase, the increasing beam diameter is compensated by the adiabatic shrinking of the beam proportional to $1 /(\beta \gamma)$. β-functions are shown in figure 5 and the beam radius is seen in Fig. 6.

Figure 5: β-functions β_{x}, β_{y} for the FODO-focusing in the linac. The quadrupoles are 20 cm long with a gradient of $1.8 \mathrm{~T} / \mathrm{m}$ at a bore radius of 5 cm .

Figure 6: Beam radius for the FODO structure using quadrupoles with identical strength.

5 REQUIREMENTS FOR THE COUPLING COEFFICIENTS

The field flatness in the cells depends on β and the cell-to-cell coupling K_{f}, it is given in the formula.

$$
\frac{\Delta E}{E_{a c c}}=e^{\frac{t_{i n j}}{\tau}} \sqrt{P \frac{4 \beta^{2}}{(\beta+1)^{2}} \frac{R_{s h}}{Q} Q_{L}} \cdot \frac{\pi}{K_{f}\left[1-\cos \frac{\pi}{N}\right] \cdot Q_{L} E_{a c c}}
$$

For a 1% field flatness the K_{f} is shown in figure 7

Figure 7: Cell-to-cell coupling factor vs. β. A field flatness of $\Delta \mathrm{E} / \mathrm{E}_{\text {aac }}=1 \%$ has been taken for the $\mathrm{N}=5$ cell cavity.

6 REFERENCES

[1] J.Kjems, A.D.Taylor, J.L.Finney, H.Lengeler, U.Steigenberger (ed.), "ESS - A Next Generation Neutron Source for Europe", Vol III, "The ESS Technical Study", Copyright: ESS Council, March 1997
[2] B.Aminov, A.Gamp, E.Haebel, H.Heinrichs, H.Piel, J.Pouryamout, Th.Schilcher, D.L.Schrage, G.Schulz, S.Simrock, C.H.Rhode, and R.Röth, "Conceptual design of the Superconducting High Energy Linear H-Accelerator for the Future European Spallation Source (ESS)", ESS 96-60-L, December 1996
[3] T.P. Wangler, "Principles of RF Linear Accelerators", Wiley series in beam physics and accelerator technology, 1998
[4] W. Braeutigam, S. Martin, E.Zaplatine, "Design Study for SC Proton Linac Accelerating Cavities", this conference.
[5] W.Diete, B.Griep, M. Peiniger, H. Vogel, P.Vom Stein, W. Braeutigam, "Superconducting Accelerating Test Modulee for the ESS", this conference.

