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Abstract

The status of two on-going studies concerning important aspects of the phenomenology of gauge-

mediated supersymmetry breaking (GMSB) models at TeV colliders is reported.

The first study deals with the characteristics of the light Higgs boson spectrum allowed by the

(minimal and non-minimal) GMSB framework. Today’s most accurate GMSB model generation

and two-loop Feynman-diagrammatic calculation of mh have been combined. The Higgs masses

are shown in dependence of various model parameters at the messenger and electroweak scales.

In the minimal model, an upper limit on mh of about 124 GeV is found for mt = 175 GeV.

The second study is focused on the measurement of the fundamental SUSY breaking scale
√

F at

the LHC in the GMSB scenario where a stau is the next-to-lightest SUSY particle (NLSP) and

decays into a gravitino with cτNLSP in the range 0.5 m to 1 km. This implies the measurement

of mass and lifetime of long lived sleptons. The identification is performed by determining the

time of flight in the ATLAS muon chambers. Accessible range and precision on
√

F achievable

with a counting method are assessed.
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1 Introduction to Gauge-Mediated SUSY Breaking

Since no superpartners have been detected at collider experiments so far, supersymmetry
(SUSY) cannot be an exact symmetry of Nature. The requirement of “soft” supersymme-
try breaking [1] alone is not sufficient to reduce the free parameters to a number suitable
for predictive phenomenological studies. Hence, motivated theoretical hypotheses on the
nature of SUSY breaking and the mechanism through which it is transmitted to the vis-
ible sector of the theory [here assumed to be the one predicted by the minimal SUSY
extension of the standard model (MSSM)] are highly desirable. If SUSY is broken at en-
ergies of the order of the Planck mass and the SUSY breaking sector communicates with
the MSSM sector through gravitational interactions only, one falls in the supergravity-
inspired (SUGRA) scheme. The most recognised alternative to SUGRA is based instead
on the hypothesis that SUSY breaking occurs at relatively low energy scales and it is
mediated mainly by gauge interactions (GMSB) [2–4]. A good theoretical reason to con-
sider such a possibility is that it provides a natural, automatic suppression of the SUSY
contributions to flavour-changing neutral current and CP-violating processes. A pleasant
consequence is that, at least in the simplest versions of GMSB, the MSSM spectrum and
other observables depend on just a handful of parameters, typically

Mmess, Nmess, Λ, tanβ, sign(µ), (1)

where Mmess is the overall messenger scale; Nmess is the so-called messenger index, pa-
rameterising the structure of the messenger sector; Λ is the universal soft SUSY breaking
scale felt by the low-energy sector; tanβ is the ratio of the vacuum expectation values
of the two Higgs doublets; sign(µ) is the ambiguity left for the SUSY higgsino mass af-
ter conditions for correct electroweak symmetry breaking (EWSB) are imposed (see e.g.
Refs. [5–8]).

The phenomenology of GMSB (and more in general of any theory with low-energy
SUSY breaking) is characterised by the presence of a very light gravitino G̃ [9],

m3/2 ≡ mG̃ =
F√
3M ′

P

≃
(

√
F

100 TeV

)2

2.37 eV, (2)

where
√

F is the fundamental scale of SUSY breaking, 100 TeV is a typical value for it,
and M ′

P = 2.44 × 1018 GeV is the reduced Planck mass. Hence, the G̃ is always the
lightest SUSY particle (LSP) in these theories. If R-parity is assumed to be conserved,
any produced MSSM particle will finally decay into the gravitino. Depending on

√
F , the

interactions of the gravitino, although much weaker than gauge and Yukawa interactions,
can still be strong enough to be of relevance for collider physics. As a result, in most
cases the last step of any SUSY decay chain is the decay of the next-to-lightest SUSY
particle (NLSP), which can occur outside or inside a typical detector or even close to the
interaction point. The pattern of the resulting spectacular signatures is determined by
the identity of the NLSP and its lifetime before decaying into the G̃,

cτNLSP ≃ 1

100B

(
√

F

100 TeV

)4
(

mNLSP

100 GeV

)

−5

, (3)

where B is a number of order unity depending on the nature of the NLSP.
The identity of the NLSP [or, to be more precise, the identity of the sparticle(s) having

a large branching ratio (BR) for decaying into the gravitino and the relevant SM partner]
determines four main scenarios giving rise to qualitatively different phenomenology:
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Neutralino NLSP scenario: Occurs whenever mÑ1
< (mτ̃1 − mτ ). Here typically a

decay of the Ñ1 to G̃γ is the final step of decay chains following any SUSY production
process. As a consequence, the main inclusive signature at colliders is prompt or
displaced photon pairs + X + missing energy. Ñ1 decays to G̃Z0 and other minor
channels may also be relevant at TeV colliders.

Stau NLSP scenario: Defined by mτ̃1 < Min[mÑ1
, mℓ̃R

]−mτ , features τ̃1 → G̃τ decays,
producing τ pairs or charged semi-stable τ̃1 tracks or decay kinks + X + missing
energy. Here and in the following, ℓ stands for e or µ.

Slepton co-NLSP scenario: When mℓ̃R
< Min[mÑ1

, mτ̃1 + mτ ], ℓ̃R → G̃ℓ decays are
also open with large BR. In addition to the signatures of the stau NLSP scenario,
one also gets ℓ+ℓ− pairs or ℓ̃R tracks or decay kinks.

Neutralino-stau co-NLSP scenario: If |mτ̃1 − mÑ1
| < mτ and mÑ1

< mℓ̃R
, both

signatures of the neutralino NLSP and stau NLSP scenario are present at the same
time, since Ñ1 ↔ τ̃1 decays are not allowed by phase space.

Note that in the GMSB parameter space the relation mℓ̃R
> mτ̃1 always holds. Also,

one should keep in mind that the classification above is only valid as an indicative scheme
in the limit me, mµ → 0, neglecting also those cases where a fine-tuned choice of

√
F and

the sparticle masses may give rise to competition between phase-space suppressed decay
channels from one ordinary sparticle to another and sparticle decays to the gravitino [10].

In this report, we treat two important aspects of the GMSB phenomenology at TeV
colliders:

(A) The consequences of the GMSB hypotheses on the light Higgs spectrum using the
most accurate tools available today for model generation and mh calculation;

(B) Studies and possible measurements at the LHC with the ATLAS detector in the stau
NLSP or slepton co-NLSP scenarios, with focus on determining the fundamental
SUSY breaking scale

√
F .

For this purpose, we generated about 30000 GMSB models under well defined hy-
potheses, using the program SUSYFIRE [11], as described in the following section.

2 GMSB Models

In the GMSB framework, the pattern of the MSSM spectrum is simple, as all sparticle
masses are generated in the same way and scale approximately with a single parameter Λ,
which sets the amount of soft SUSY breaking felt by the visible sector. As a consequence,
scalar and gaugino masses are related to each other at a high energy scale, which is not
the case in other SUSY frameworks, e.g. SUGRA. Also, it is possible to impose other
conditions at a lower scale to achieve EWSB and further reduce the dimension of the
parameter space.

To build our GMSB models, we adopt the usual phenomenological approach, in par-
ticular following Ref. [8], where problems relevant for GMSB physics at TeV colliders were
also approached. We do not specify the origin of the SUSY higgsino mass µ, nor do we
assume that the analogous soft SUSY breaking parameter Bµ vanishes at the messenger
scale. Instead, we impose correct EWSB to trade µ and Bµ for MZ and tanβ, leaving the
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sign of µ undetermined. However, we are aware that to build a satisfactory GMSB model
one should also solve the latter problem in a more fundamental way, perhaps by providing
a dynamical mechanism to generate µ and Bµ, possibly with values of the same order
of magnitude. This might be accomplished radiatively through some new interactions.
However, in this case the other soft terms in the Higgs potential, namely m2

H1,2
, will be

also affected and this will in turn change the values of |µ| and Bµ coming from EWSB
conditions [4–6]. Within the study (A), we are currently considering some “non-minimal”
possibilities for GMSB models that to some extent take this problem into account, and
we are trying to assess the impact on the light Higgs mass. We do not treat this topic
here, but refer to [12] for further details.

To determine the MSSM spectrum and low-energy parameters, we solve the renormal-
isation group equation (RGE) evolution with the following boundary conditions at the
Mmess scale,

Ma = NmessΛg
(

Λ

Mmess

)

αa

4π
, (a = 1, 2, 3)

m̃2 = 2NmessΛ
2f
(

Λ

Mmess

)

∑

a

(

αa

4π

)2

Ca, (4)

respectively for the gaugino and the scalar masses. In Eq. (4), g and f are the one-loop
and two-loop functions whose exact expressions can be found e.g. in Ref. [7], and Ca

are the quadratic Casimir invariants for the scalar fields. As usual, the scalar trilinear
couplings Af are assumed to vanish at the messenger scale, as suggested by the fact that
they (and not their squares) are generated via gauge interactions with the messenger fields
at the two loop-level only.

To single out the interesting region of the GMSB parameter space, we proceed as
follows. Barring the case where a neutralino is the NLSP and decays outside the detector
(large

√
F ), the GMSB signatures are very spectacular and are generally free from SM

background. Keeping this in mind and being interested in GMSB phenomenology at
future TeV colliders, we consider only models where the NLSP mass is larger than 100
GeV, assuming that searches at LEP and Tevatron, if unsuccessful, will in the end exclude
a softer spectrum in most cases. We require that Mmess > 1.01Λ, to prevent an excess of
fine-tuning of the messenger masses, and that the mass of the lightest messenger scalar be
at least 10 TeV. We also impose Mmess > MGUT exp(−125/Nmess), to ensure perturbativity
of gauge interactions up to the GUT scale. Further, we do not consider models with
Mmess

>∼ 105Λ. As a result of this and other constraints, the messenger index Nmess,
which we assume to be an integer independent of the gauge group, cannot be larger
than 8. To prevent the top Yukawa coupling from blowing up below the GUT scale, we
require tanβ > 1.2 (and in some cases > 1.5). This is also motivated by the current
bounds from SUSY Higgs searches at LEP II [13]. Models with tanβ >∼ 55 (with a mild
dependence on Λ) are forbidden by the EWSB requirement and typically fail in giving
m2

A > 0.

To calculate the NLSP lifetime relevant to our study (B), one needs to specify the
value of the fundamental SUSY breaking scale

√
F on a model-by-model basis. Using per-

turbativity arguments, for each given set of GMSB parameters, it is possible to determine
a lower bound according to Ref. [7],

√
F ≥

√

Fmess ≡
√

ΛMmess > Λ. (5)
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On the contrary, no solid arguments can be used to set an upper limit on
√

F of
relevance for collider physics, although some semi-qualitative cosmological arguments are
sometimes evoked.

To generate our model samples using SUSYFIRE, we used logarithmic steps for Λ (be-
tween about 45 TeV/Nmess and about 220 TeV/

√
Nmess, which corresponds to excluding

models with sparticle masses above ∼ 4 TeV), Mmess/Λ (between 1.01 and 105) and tan β
(between 1.2 and about 60), subject to the constraints described above. SUSYFIRE starts
from the values of SM particle masses and gauge couplings at the weak scale and then
evolves up to the messenger scale through RGE’s. At the messenger scale, it imposes
the boundary conditions (4) for the soft sparticle masses and then evolves the full set of
RGE’s back to the weak scale. The decoupling of each sparticle at the proper threshold
is taken into account. Two-loop RGE’s are used for gauge couplings, third generation
Yukawa couplings and gaugino soft masses. The other RGE’s are taken at the one-loop
level. At the scale

√
mt̃1mt̃2 , EWSB conditions are imposed by means of the one-loop

effective potential approach, including corrections from stops, sbottoms and staus. The
program then evolves up again to Mmess and so on. Three or four iterations are usually
enough to get a good approximation for the MSSM spectrum.

(A) The Light Higgs Boson Spectrum
in GMSB Models

Contribution by:
S. Ambrosanio, S. Heinemeyer, G. Weiglein

A.1 Introduction

Within the MSSM, the masses of the CP-even neutral Higgs bosons are calculable in
terms of the other low-energy parameters. The mass of the lightest Higgs boson, mh,
has been of particular interest, as it is bounded to be smaller than the Z0 boson mass
at the tree level. The one-loop results [14–17] for mh have been supplemented in the
last years with the leading two-loop corrections, performed in the renormalisation group
(RG) approach [18, 19], in the effective potential approach [20] and most recently in the
Feynman-diagrammatic (FD) approach [21–23]. The two-loop corrections have turned
out to be sizeable. They can lower the one-loop results by up to 20%. These calculations
predict an upper bound on mh of about mh ≤ 130 GeV for an unconstrained MSSM with
mt = 175 GeV and a common SUSY mass scale MSUSY ≤ 1 TeV.

As discussed in Sec. 1, the GMSB scenario provides a relatively simple set of constraints
and thus constitutes a very predictive and readily testable realization of the MSSM. The
main goal of the present analysis is to study the spectrum of the lightest neutral CP-
even Higgs boson, mh, within the GMSB framework. Particular emphasis is given to the
maximal value of mh achievable in GMSB after an exhaustive scanning of the parameter
space. Our results are discussed in terms of the GMSB constraints on the low-energy
parameters and compared to the cases of a SUGRA-inspired or an unconstrained MSSM.
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A.2 Calculation of mh

To evaluate mh, we employ the currently most accurate calculation based on the FD
approach [21–23]. The most important radiative corrections to mh arise from the top and
scalar top sector of the MSSM, with the input parameters mt, the masses of the scalar top
quarks, mt̃1 , mt̃2 , and the t̃-mixing angle, θt̃. Here we adopt the conventions introduced
in Ref. [22]. The complete diagrammatic one-loop result [16] has been combined with the
dominant two-loop corrections of O(ααs) [21, 22] and with the subdominant corrections
of O(G2

F m6
t ) [18,19]. GMSB models are generated with the program SUSYFIRE, according

to the discussion of Sec. 2. For this study, we consider only models with tan β > 1.5 [13]
and mA > 80 GeV [24]. In addition, we always use mt = 175 GeV. A change of 1 GeV
in mt translates roughly into a shift of 1 GeV (with the same sign) in mh as well. Thus,
changing mt affects our results on mh in an easily predictable way.

The results of the mh calculation have been implemented in the program FeynHiggs

[25]. This Fortran code has been combined with SUSYFIRE, which has been used to
calculate the low energy parameters mt̃1 , mt̃2 , θt̃, µ, M1, M2, mg̃, . . . for each of the
∼30000 GMSB models generated. These have then been passed to FeynHiggs for the mh

evaluation in a coherent way. Indeed, we transform the MS parameters in the SUSYFIRE

output into on-shell parameters before feeding them into FeynHiggs. Compact expressions
for the relevant transition formulas can be found in Refs. [26, 27].

Compared to an existing analysis in the GMSB framework [28], we use a more complete
evaluation of mh. This leads in particular to smaller values of mh for a given set of
input parameters in our analysis. Also, in Ref. [28] although some GMSB scenarios with
generalised messenger sectors were considered, the parameter space for the “minimal” case
with a unique, integer messenger index Nmess = N1 = N2 = N3 was not fully explored.
Indeed, Λ was in most cases limited to values smaller than 100 TeV and Mmess was fixed
to 105 TeV. Furthermore, partly as a consequence of the above assumptions, the authors
did not consider models with Nmess > 4, i.e. their requirements for perturbativity of the
MSSM gauge couplings up to the GUT scale were stronger than ours. We will see in the
following section that maximal mh values in our analysis are instead obtained for larger
values of the messenger scale and the messenger index.

A.3 The Light Higgs Spectrum in GMSB

In the following, we give some results in the form of scatter plots showing the pattern in
GMSB for mh, mA as well as other low-energy parameters of relevance for the light Higgs
spectrum.

In Fig. 1(a), we show the dependence of mh on tanβ, where only models with tanβ >
1.5, mA > 80 GeV and mNLSP > 100 GeV are considered, while mt is fixed to 175 GeV.
The dependence is strong for small tanβ <∼ 10, while for larger tanβ the increase of the
lightest Higgs mass is rather mild. The maximum values for mh ≃ 124 GeV are achieved
for tanβ > 50. It should be noted that for very large tanβ >∼ 52, we also find a few
models with relatively small mh <∼ 100 GeV. This is due to the fact that in this case
EWSB conditions tend to drive mA toward very small values (cfr. Sec. 2). This is made
visible by the scatter plot in Fig. 1(b), where the pseudoscalar Higgs mass is shown as a
function of tan β. For such small values of mA and for large tanβ, the relation mh ≈ mA

holds. Thus small mh values are quite natural in this region of the parameter space. On
the other hand, one can see that extremely large values of mA >∼ 2 TeV can only be
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Light Higgs Mass in GMSB

m
h
 [G

eV
]

tanβ

(a)

Pseudoscalar Higgs Mass in GMSB

m
A
 [T

eV
]

tanβ

(b)

Figure 1: Scatter plots for the light scalar (a) and pseudoscalar (b) Higgs masses as
functions of tan β. Only GMSB models with tanβ > 1.5, mA > 80 GeV and mNLSP > 100
GeV are considered.

obtained for small or moderate tanβ <∼ 10 GeV. A comparison between Fig 1(a) and (b)
reveals that the largest mh values >∼ 123 GeV correspond in GMSB to mA values in the
300–800 GeV range. Indeed, it has been checked that such large mh values are in general
obtained in the FD calculation for 300 <∼ mA <∼ 1000 GeV, see Ref. [22].

In Fig. 2, we show the dependence of the lightest Higgs boson mass on the stop mixing
parameter xtop defined by

xtop ≡ Atop − µ/ tanβ

mS
, where mS =

√

(m2
t̃1

+ m2
t̃2
)/2. (6)

For equal soft SUSY breaking parameters in the stop sector with the D-terms ne-
glected, xtop corresponds to the ratio Xt/MS of the off-diagonal and diagonal entries in
the stop mixing matrix, see e.g. Ref. [27].

Maximal mh values are obtained for xtop ≈ ±2, a minimum is reached around xtop ≈ 0.
Thus, for large mh values a large numerator in Eq. (6) is required. From Fig. 3(a), one
can see that in GMSB only negative values of Atop are allowed at the electroweak scale,
as a consequence of the fact that the trilinear couplings are negligible at the messenger
scale. Due to the logarithmic dependence of mh on the stop masses, relatively large values
of |Atop| are needed for large mh. In addition, large tanβ is also required. From Fig. 3(b)
one can check that this leads to values of xtop ≈ −0.95, which can only be achieved for
positive µ. Fig. 4(a) shows the dependence of Atop on µ. Large values of |Atop| are only
reached for large |µ| values. Therefore maximal h masses are obtained for relatively large
and positive µ, as can be seen in Fig. 4(b).1

1In general, for large values of |µ| and tanβ the effects of the corrections from the b–b̃ sector can
become important, leading to a decrease in mh. For the GMSB models under consideration, however,
this is not the case as a consequence of the relatively large b̃ masses.



Aspects of GMSB Phenomenology at TeV Colliders 7

−3 −2 −1 0 1 2 3

xtop

50

60

70

80

90

100

110

120

130

140

m
h [G

eV
]

tanβ = 3

tanβ = 50

mq ~ = 1000 GeV, mA = 1000 GeV
mtop = 175 GeV, mg ~ = 800 GeV

Figure 2: The light CP-even Higgs boson mass is given as a function of xtop for tan β =
3, 50, mA = 1000 GeV, a common soft SUSY breaking scale for the squarks, mq̃ = 1000
GeV, and a gluino mass mg̃ = 800 GeV.

All these arguments about the combination of low energy parameters needed for large
mh in GMSB are summarised in Tab. 1, where we report the 10 models in our sample that
give rise to the highest mh values. Together with mh, Tab. 1 shows the corresponding
input GMSB parameters [cfr. Eq. (1)] as well as the values of the low energy parameters
mentioned above.

It is interesting to note that all the models shown in Tab. 1 feature a large messenger
index and values of the messenger scale not far from the maximum we allowed while
generating GMSB models. We could not construct a single model with mh >∼ 122.5
GeV having Nmess < 6 or Mmess < 105 TeV, for mt = 175 GeV. It is hence worth
mentioning here that our choice of imposing Mmess/Λ < 105 ⇒ Mmess

<∼ 2 × 1010 GeV
does not correspond to any solid theoretical prejudice. On the other hand it is true
that Mmess

>∼ 3 × 108 GeV always corresponds to gravitino masses larger than ∼ 1 keV,
due to Eqs. (2) and (5). The latter circumstance might be disfavoured by cosmological
arguments [29]. A curious consequence is that the GMSB models with the highest mh

belong always to the stau NLSP or slepton co-NLSP scenarios.
Note also that restricting ourselves to GMSB models with Λ < 100 TeV, Mmess < 105

TeV and Nmess ≤ 4, we find a maximal mh value of 122.2 GeV, for mt = 175 GeV and
tan β ∼ 52. This is to be compared with the one-loop result of Ref. [28], mh(max) =
131.7, for tanβ around 30 (the assumed value of mt is not quoted).

Values for mh slightly larger than those we found here may also arise from non-minimal
contributions to the Higgs potential, in connection with a dynamical generation of µ and
Bµ (cfr. Sec. 2). A treatment of this problem can be found in Ref. [12].
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Stop Mass Scales in GMSB
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 [T
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µ > 0 µ < 0

(b)

Figure 3: Scatter plots of Atop vs. mS , the mass scale appearing in the denominator of
Eq. (6) (a) and tan β vs. xtop (b).

One should also keep in mind that our analysis still suffers from uncertainties due to
unknown higher order corrections both in the RGE’s for GMSB model generation and in
the evaluation of mh from low energy parameters. A rough estimate of these effects leads
to shifts in mh not larger than 3 to 5 GeV.

A.4 Conclusions

We conclude that in the minimal GMSB framework described above, values of mh >∼ 124.2
GeV are not allowed for mt = 175 GeV. This is almost 6 GeV smaller than the maximum
value for mh one can achieve in the MSSM without any constraints or assumptions about
the structure of the theory at high energy scales [22, 30, 31]. On the other hand, the
alternative mSUGRA framework allows values of mh that are ∼ 3 GeV larger than in
GMSB [13]. This makes the GMSB scenario slightly easier to explore via Higgs boson
search. This result was expected in the light of the rather strong GMSB requirements, such
as the presence of a unique soft SUSY breaking scale, the relative heaviness of the squarks
and the gluino compared to non-strongly interacting sparticles, and the fact that the soft
SUSY breaking trilinear couplings Af get nonzero values at the electroweak scale only by
RGE evolution. Nevertheless, once the whole parameter space is explored, it is not true
that mGMSB gives rise to mh values that are considerably smaller than in mSUGRA. Even
smaller differences in the maximal mh might be present when considering non-minimal,
complex messenger sectors [28] or additional contributions to the Higgs potential [5, 12].
In any case, as for mSUGRA, current LEP II or Tevatron data on Higgs boson searches
are far from excluding mGMSB, and the upgraded Tevatron and the LHC will certainly
be needed to deeply test any realistic SUSY model.
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Stop Trilinear Coupling in GMSB
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Figure 4: Scatter plots for Atop (a) and the light scalar Higgs mass (b) vs. the SUSY
higgsino mass µ evaluated at the electroweak scale.

ID mh Nmess Mmess Λ µ tan β mA mt̃1 mt̃2 Atop xtop

GeV 106 TeV TeV GeV GeV GeV GeV GeV

A1 124.2 7 1.00 72.7 1470 53.4 367 2320 2510 -2150 -0.90
A2 124.2 8 4.48 66.7 1570 53.1 436 2400 2600 -2310 -0.94
A3 123.7 6 2.07 87.0 1580 52.8 485 2420 2630 -2240 -0.90
A4 123.7 8 4.67 52.4 1270 52.9 373 1930 2100 -1850 -0.93
A5 123.5 8 4.89 51.1 1250 52.7 388 1880 2050 -1810 -0.93
A6 123.5 6 2.54 67.1 1260 53.0 349 1910 2080 -1760 -0.89
A7 123.4 8 4.62 61.6 1470 51.9 549 2230 2430 -2160 -0.94
A8 123.4 6 4.15 88.1 1630 51.9 609 2450 2670 -2300 -0.91
A9 123.3 7 3.77 70.3 1490 51.8 567 2260 2460 -2150 -0.92

A10 123.3 8 3.74 72.1 1677 50.7 756 2580 2800 -2500 -0.94

Table 1: The 10 GMSB models giving rise to the highest mh values in our sample. For
each model, together with the light Higgs mass, we show the values of the GMSB input
parameters and other low energy parameters of interest for calculating mh.

Acknowledgements

S. A. and S. H. thank the organisers of the Workshop “Physics at TeV Colliders”, for the
hospitality and the pleasant and productive atmosphere in Les Houches.



10 Aspects of GMSB Phenomenology at TeV Colliders

(B) Measuring the SUSY Breaking Scale at the LHC
in the Slepton NLSP Scenario of GMSB Models

Contribution by:
S. Ambrosanio, B. Mele, S. Petrarca, G. Polesello, A. Rimoldi

B.1 Introduction

The fundamental scale of SUSY breaking
√

F is perhaps the most important quantity
to determine from phenomenology in a SUSY theory. In the mSUGRA framework, the
gravitino mass sets the scale of the soft SUSY breaking masses in the MSSM (∼ 0.1 − 1
TeV), so that

√
F is typically large ∼ 1010−11 GeV [cfr. Eq. (2)]. As a consequence,

the interactions of the G̃ with the other MSSM particles ∼ F−1 are too weak for the
gravitino to be of relevance in collider physics and there is no direct way to access

√
F

experimentally. In GMSB theories, the situation is completely different. The soft SUSY
breaking scale of the MSSM and the sparticle masses are set by gauge interactions between
the messenger and low energy sectors to be ∼ αSMΛ [cfr. Eq. (4)], so that typical Λ values
are ∼ 10−100 TeV. On the other hand,

√
F is subject to the lower bound (5) only, which

tells us that values well below 1010 GeV and even as low as several tens of TeV are
perfectly reasonable. The G̃ is in this case the LSP and its interactions are strong enough
to allow NLSP decays to the G̃ inside a typical detector size. The latter circumstance
gives us a chance for extracting

√
F experimentally through a measurement of the NLSP

mass and lifetime [cfr. Eq. (3)].

Furthermore, the possibility of determining
√

F with good precision opens a window
on the physics of the SUSY breaking (the so-called “secluded”) sector and the way this
SUSY breaking is transmitted to the messenger sector. Indeed, the characteristic scale
of SUSY breaking felt by the messengers (and hence the MSSM sector) given by

√
Fmess

in Eq. (5) can be also determined once the MSSM spectrum is known. By comparing
the measured values of

√
F and

√
Fmess it might well be possible to get information on

the way the secluded and messenger sector communicate to each other. For instance, if
it turns out that

√
Fmess ≪

√
F , then it is very likely that the communication occurs

radiatively and the ratio
√

Fmess/F is given by some loop factor. On the contrary, if the
communication occurs via a direct interaction, this ratio is just given by a Yukawa-type
coupling constant, with values <∼ 1, see Refs. [4, 7].

An experimental method to determine
√

F at a TeV scale e+e− collider through the
measurement of the NLSP mass and lifetime was presented in Ref. [8], in the neutralino
NLSP scenario. Here, we are concerned about the same problem, but at a hadron collider,
the LHC, and in the stau NLSP or slepton co-NLSP scenarios. These scenarios provide a
great opportunity at the LHC, since the characteristic signatures with semi-stable charged
tracks are muon-like, but come from massive sleptons with a β significantly smaller than
1. In particular, we perform our simulations in the ATLAS muon detector, whose large
size and excellent time resolution [32] allow a precision measurement of the slepton time
of flight from the production vertex out to the muon chambers and hence of the slepton
velocity. Moreover, in the stau NLSP or slepton co-NLSP scenarios, the knowledge of the
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ID Mmess (TeV) Nmess Λ (TeV) tan β sign(µ)

B1 1.79×104 3 26.6 7.22 –
B2 5.28×104 3 26.0 2.28 –
B3 4.36×102 5 41.9 53.7 +
B4 1.51×102 4 28.3 1.27 –
B5 3.88×104 6 58.6 41.9 +
B6 2.31×105 3 65.2 1.83 –
B7 7.57×105 3 104 8.54 –
B8 4.79×102 5 71.9 3.27 –

Table 2: Input parameters of the sample GMSB models chosen for our study.

NLSP mass and lifetime is sufficient to determine
√

F , since the factor B in Eq. (3) is
exactly equal to 1. This is not the case in the neutralino NLSP scenario, where B depends
at least on the neutralino physical composition, and more information and measurements
are needed for extracting a precise value of

√
F .

B.2 Choice of the Sample Models

and Event Simulation

The two main parameters affecting the experimental measurement at the LHC of the
slepton NLSP properties are the slepton mass and momentum distribution. Indeed, at a
hadron collider most of the NLSP’s come from squark and gluino production, followed by
cascade decays. Thus, the momentum distribution is in general a function of the whole
MSSM spectrum. However, one can approximately assume that most of the information
on the NLSP momentum distribution is provided by the squark mass scale mq̃ only (in the
stau NLSP scenario or slepton co-NLSP scenarios of GMSB, one generally finds mg̃ >∼ mq̃).
To perform detailed simulations, we select a representative set of GMSB models generated
by SUSYFIRE. We limit ourselves to models with mNLSP > 100 GeV, motivated by the
discussion in Sec. 2, and mq̃ < 2 TeV, in order to yield an adequate event statistics after
a three-year low-luminosity run (corresponding to 30 fb−1) at the LHC. Within these
ranges, we choose eight extreme points (four in the stau NLSP scenario and four in the
slepton co-NLSP scenario) allowed by GMSB in the (mNLSP, mq̃) plane, in order to cover
the various possibilities.

In Tab. 2, we list the input GMSB parameters we used to generate these eight points,
while in Tab. 3 we report the corresponding values of the stau mass, the squark mass
scale and the gluino mass. The “NLSP” column indicates whether the model belongs to
the stau NLSP or slepton co-NLSP scenario. The last column gives the total cross section
in pb for producing any pairs of SUSY particles at the LHC.

For each model, the events were generated with the ISAJET Monte Carlo [33] that
incorporates the calculation of the SUSY mass spectrum and branching fraction using the
GMSB parameters as input. We have checked that for the eight model points considered
the sparticle masses calculated with ISAJET are in good agreement with the output of
SUSYFIRE.

The generated events were then passed through ATLFAST [34], a fast particle-level
simulation of the ATLAS detector. The ATLFAST package, however, was only used to
evaluate the efficiency of the calorimetric trigger that selects the GMSB events. The
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ID mτ̃1 (GeV) “NLSP” mq̃ (GeV) mg̃ (GeV) σ (pb)

B1 100.1 τ̃ 577 631 42

B2 100.4 ℓ̃ 563 617 50
B3 101.0 τ̃ 1190 1480 0.59

B4 103.4 ℓ̃ 721 859 10
B5 251.2 τ̃ 1910 2370 0.023

B6 245.3 ℓ̃ 1290 1410 0.36
B7 399.2 τ̃ 2000 2170 0.017

B8 302.9 ℓ̃ 1960 2430 0.022

Table 3: Features of the sample GMSB model points studied.

detailed response of the detector to the slepton NLSP has been parametrised for this
work using the results of a full simulation study, as described in the next section.

B.3 Slepton detection

The experimental signatures of heavy long-lived charged particles at a hadron collider
have already been studied both in the framework of GMSB and in more general scenarios
[35–38]. The two main observables one can use to separate these particles from muons
are the high specific ionisation and the time of flight in the detector.

We concentrate here on the measurement of the time of flight, made possible by the
timing precision ( <∼ 1 ns) and the size of the ATLAS muon spectrometer.

It was demonstrated with a full simulation of the ATLAS muon detector [39] that the
β of a particle can be measured with a resolution that can be approximately parameterised
as σ(β)/β2 = 0.028. The resolution on the transverse momentum measurement for heavy
particles is found to be comparable to the one expected for muons. We have therefore
simulated the detector response to NLSP sleptons by smearing the slepton momentum
and β according to the parameterisations in Ref. [39].

An important issue is the online selection of the SUSY events. We have not made any
attempt to evaluate whether the heavy sleptons can be selected using the muon trigger.
For the event selection, we rely on the calorimetric Emiss

T trigger, consisting in the require-
ment of at least a hadronic jet with pT > 50 GeV, and a transverse momentum imbalance
calculated only from the energy deposition in the calorimeter larger than 50 GeV. We
checked that this trigger has an efficiency in excess of 80% for all the considered models.

A detailed discussion of the experimental assumptions underlying the results presented
here is given in Ref. [40].

B.4 Event Selection and Slepton Mass Measurement

In order to select a clean sample of sleptons, we apply the following requirements:

• at least a hadronic jet with PT > 50 GeV and a calorimetric
Emiss

T > 50 GeV (trigger requirement);

• at least one candidate slepton satisfying the following cuts:
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– |η| <2.4 to ensure that the particle is in the acceptance of the muon trigger
chamber, and therefore both coordinates can be measured;

– βmeas < 0.91, where βmeas is the β of the particle measured with the time of
flight in the precision chambers;

– The PT of the slepton candidate, after the energy loss in the calorimeters
has been taken into account, must be larger than 10 GeV, to ensure that the
particle traverse all of the muon stations.

Considering an integrated luminosity of 30 fb−1, a number of events ranging from a
few hundred for the models with 2 TeV squark mass scale to a few hundred thousand
for a 500 GeV mass scale survive these cuts and can be used for measuring the NLSP
properties.

From the measurements of the slepton momentum and of particle β, the mass can be

determined using the standard relation m = p

√
1−β2

β
. For each value of β and momentum,

the measurement error is known and it is given by the parametrisations in Ref. [39].
Therefore, the most straightforward way of measuring the mass is just to use the weighted
average of all the masses calculated with the above formula.

In order to perform this calculation, the particle momentum is needed, which implies
measuring the η coordinate. In fact, with the precision chambers only one can only
measure the momentum components transverse to the beam axis.

The measurement of the second coordinate must be provided by the trigger chambers,
for which only a limited time window around the beam crossing is read out, therefore
restricting the β range where this measurement is available. Hence, we have evaluated
the achieved measurement precision for two different β intervals: 0.6 < β < 0.91 and
0.8 < β < 0.91 for the eight sample points. We found a statistical error well below the
0.1% level for those model points having mq̃ < 1300 GeV. Even for the three models (B5,
B7, B8) with lower statistics (mq̃ ≃ 2 TeV), the error stays below the 0.4% level.

Many more details, tables and figures about this part of our study can be found in
Ref. [40].

B.5 Slepton Lifetime Measurement

The measurement of the NLSP lifetime at a high energy e+e− collider was studied in
detail in Ref. [8] for the neutralino NLSP case. Similar to that study, the measurement
of the slepton NLSP lifetime we are interested in here can be performed by exploiting
the fact that two NLSP’s are produced in each event. One can therefore select N1 events
where a slepton is detected through the time-of-flight measurement described above, count
the number of times N2 when a second slepton is observed and use this information to
measure the lifetime. Although in principle very simple, in practice this method requires
an excellent control on all possible sources of inefficiency for detecting the second slepton.

We give here the basis of the method, without mentioning the experimental details.
We provide an estimate of the achievable statistical error for the models considered and a
parametrisation of the effect on the lifetime measurement of a generic systematic uncer-
tainty on the slepton efficiency. In case the sparticle spectrum and BR’s can be measured
from the SUSY events, as e.g. shown in Ref. [41], an accurate simulation of all the SUSY
production processes can be performed, and the results from this section are representative
of the measurement precision achievable in a real experiment.
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Figure 5: The ratio R = N2/N1 defined in the text as a function of the slepton lifetime
cτ . Only the curves corresponding to the model points B1, B5, B6, B8 are shown.

Another method based on the same principles, but assuming minimal knowledge of
the SUSY spectrum, is described in Ref. [40], where a detailed estimate of the achievable
systematic precision is given.

We define N1 starting from the event sample defined by the cuts discussed in Sec. 1,
with the additional requirement that, for a given value of the slepton lifetime, at least one
of the produced sleptons decays at at a distance from the interaction vertex > 10 m, and is
therefore reconstructed in the muon system. For the events thus selected, we define N2 as
the subsample where a second particle with a transverse momentum > 10 GeV is identified
in the muon system. The search for the second particle should be as inclusive as possible,
in order to minimise the corrections to the ratio. In particular, the cut βmeas < 0.91 is not
applied, but particles with a mass measured from β and momentum incompatible with the
measured slepton mass are rejected. This leaves a background of high momentum muons
in the sample that can be statistically subtracted using the momentum distribution of
electrons. The ratio

R =
N2

N1

(7)

is a function of the slepton lifetime. Its dependence on the NLSP lifetime cτ in metres in
shown in Fig. 5 for four among our eight sample models. The curves for the model points
not shown are either very similar to one of the curves we show or are mostly included
between the external curves corresponding to points B1 and B8, thus providing no essential
additional information. Note that the curve for model 6 starts from cτ = 2.5 m and not
from cτ = 50 cm, as for the other models. This is due to the large value of Mmess (cfr.
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Tab. 2), determining a minimum NLSP lifetime allowed by theory which is macroscopic
in this case [cfr. Eqs. (3) and (5)].
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Figure 6: Fractional error on the measurement of the slepton lifetime cτ , for model sample
points B1 to B4. We assume an integrated luminosity of 30 fb−1. The curves are shown
for three different assumptions on the fractional systematic error on the R measurement:
statistical error only (full line), 1% systematic error (dashed line), 5% systematic error
(dotted line).

The probability for a particle of mass m, momentum p and proper lifetime τ to travel
a distance L before decaying is given by the expression

P (L) = e−mL/pcτ . (8)

N2 is therefore a function of the momentum distribution of the slepton, which is
determined by the details of the SUSY spectrum. One needs therefore to be able to
simulate the full SUSY cascade decays in order to construct the cτ–R relationship.
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Figure 7: The same as in Fig. 7, but for the model sample points B5 to B8.

The statistical error on R can be evaluated as

σ(R) =

√

R(1 − R)

N1

. (9)

Relevant for the precision with which the SUSY breaking scale can be measured is
instead the error on the measured cτ . This can be extracted from the curves shown in
Fig. 5 and can be evaluated as

σ(cτ) = σ(R)/

[

∂R(cτ)

∂cτ

]

. (10)

The measurement precision calculated according to this formula is shown in Figs. 6 and
7 for the eight sample points, for an integrated luminosity of 30 fb−1. The full line in the
plots is the error on cτ considering the statistical error on R only. The available statistics
is a function of the strongly interacting sparticles’ mass scale. Even if a precise R–cτ
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relation can be built from the knowledge of the model details, there will be a systematic
uncertainty in the evaluation of the losses in N2, because of sleptons produced outside
the η acceptance, or absorbed in the calorimeters, or escaping the calorimeter with a
transverse momentum below the cuts. The full study of these uncertainties is in progress.
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Figure 8: Fractional error on the measurement of the SUSY breaking scale
√

F for model
sample points B1 to B4. We assume an integrated luminosity of 30 fb−1. The curves
are shown for the three different assumptions on the fractional systematic error used in
Figs. 6 and 7.

At this level, we just parameterise the systematic error as a term proportional to R,
added in quadrature to the statistical error. We choose two values, 1%R and 5%R, and
propagate the error to the cτ measurement. The results are represented by the dashed
and dotted lines in Figs. 6 and 7.

For the models with squark mass scales up to 1200 GeV, assuming a 1% systematic
error on the measured ratio, a precision better than 10% on the cτ measurement can be
obtained for lifetimes between 0.5–1 m and 50–80 m. If the systematic uncertainty grows
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Figure 9: The same as in Fig. 8, but for model sample points B5 to B8.

to 5%, the 10% precision can only be achieved in the range 1–10 m. If the mass scale
goes up to 2 TeV, even considering a pure statistical error only, a 10% precision is not
achievable. However a 20% precision is possible over cτ ranges between 5 and 100 m,
assuming a 1% systematic error.

Note that the curves corresponding to the model points B2, B6 and B7 do not start
from cτ = 50 cm, but from the theoretical lower limit on cτ of 1.8, 2.5 and 6.1 metres,
respectively.

B.6 Determining the SUSY Breaking Scale
√

F

Using the measured values of cτ and the NLSP mass, the SUSY breaking scale
√

F can
be calculated from Eq. (3), where B = 1 for the case where the NLSP is a slepton.
From simple error propagation, the fractional uncertainty on the

√
F measurement can

be obtained adding in quadrature one fourth of the fractional error in cτ and five fourths
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of the fractional error on the slepton mass.
In Figs. 8 and 9, we show the fractional error on the

√
F measurement as a function

of
√

F for our three different assumptions on the cτ error. The uncertainty is dominated
by cτ for the higher part of the

√
F range and grows quickly when approaching the lower

limit on
√

F . This is because very few sleptons survive and the statistical error on both
mℓ̃ and cτ gets very large. If we assume a 1% systematic error on the ratio R from
which cτ is measured (dashed lines in Figs. 8 and 9), the error on

√
F is better than 10%

for 1000 <∼
√

F <∼ 4000 TeV for model points B1–B4 with higher statistics. For points
B5–B8, in general one can explore a range of higher

√
F values with a small relative

error, essentially due to the heaviness of the decaying NLSP in these models. Note also
that the theoretical lower limit (5) on

√
F is equal to about 1200, 1500, 3900, 8900 TeV

respectively in model points B2, B5, B6, B7, while it stays well below 1000 TeV for the
other models.

B.7 Conclusions

We have discussed a simple method to measure at the LHC with the ATLAS detector
the fundamental SUSY breaking scale

√
F in the GMSB scenarios where a slepton is the

NLSP and decays to the gravitino with a lifetime in the range 0.5 m <∼ cτNLSP
<∼ 1 km.

This method requires the measurement of the time of flight of long lived sleptons and is
based on counting events with one or two identified NLSP’s. It relies on the assumptions
that a good knowledge of the MSSM sparticle spectrum and BR’s can be extracted from
the observation of the SUSY events and that the systematic error in evaluating the slepton
losses can be kept below the few percent level. We performed detailed, particle level sim-
ulations for eight representative GMSB models, some of them being particularly hard due
to low statistics. We found that a level of precision of a few 10’s % on the SUSY breaking
scale measurement can be achieved in significant parts of the 1000 <∼

√
F <∼ 30000 TeV

range, for all models considered. More details as well as a full study of the systematics
associated with this procedure and another less “model-dependent” method to measure√

F is presented in detail in Ref. [40].
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