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Abstract: We derive massless and massive representations of all SU(2,2/N) superalgebras by using

superfields defined in “harmonic superspace”. This method allows one to easily construct “short

superfields” which are relevant in the analysis of the AdS/CFT correspondence.

1. Introduction

The study of superconformal algebras has recently

attracted renewed interest for their dual role in

the AdSd+1/CFTd correspondence [1, 2, 3], con-

nected to the near-horizon geometry of d − 1-
branes.

A special role is played by 3-branes since they

are related to superconformal invariant quantum

Yang-Mills theories. These theories are the only

ones exhibiting conformal symmetry both at weak

and strong coupling and, in any case, admitting,

unlike other types of branes, Yang-Mills fields in

the conformal regime.

The bulk and boundary operators in this cor-

respondence are classified by highest weight UIR’s

of SU(2, 2/N) algebras [4, 5] where N = 1, 2 and

4 in the known examples, since supergravity or

superstring theory can admit at most 32 (8N) su-

persymmetries. Nevertheless, in the study of su-

perconformal algebras and their representations

different values of N are of interest because they

help one to exhibit some general features of short

representations, corresponding to conformal op-

erators with protected dimension, but more im-

portantly, because these algebras may be relevant

for some generalizations of the known schemes in

which more than 32 supersymmetries may be re-

quired [6].

Recently [7] it has been shown that a known

generalization of ordinary superspace, called “har-

monic superspace” [8]-[10], is particularly suit-

able to build up, in a rather simple and general

manner, all possible composite operators of su-

perconformal invariant gauge theories with N >

1 extended supersymmetry.

Other approaches, like ordinary superspace

[11, 12] or the oscillator construction [13]-[15] of

highest weight representations, although in prin-

ciple possible, are much more complicated to deal

with and the complete analysis of all possible

shortenings would be unnecessarily difficult.

In fact, the structure of harmonic superspace

is powerful enough to allow us to extend the anal-

ysis of Ref. [7] to all SU(2, 2/N) superalgebras

with arbitrary N ,1 although no dynamical the-

ory is known for N > 4. This report contains

results obtained in Ref. [16].

From a mathematical point of view harmonic

superspace is an enlarged space where superfields

are defined on “flag manifolds” [17, 18]

M = SU(N)

S (U(n1)× . . .× U(np)) ,
(
p∑
k=1

nk = N

)
.

(1.1)

To study the general case of multiplets it is im-

portant [7] to use the choice nk = 1 (k = 1 . . .N),

i.e. where we quotient the group SU(N) by its

maximal torus. Then the above manifold is the

largest flag manifold with complex dimension

N(N − 1)/2.

1For a thorough treatment of the action of supercon-

formal groups on harmonic superspaces see Refs. [17].
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The ultrashort UIR’s of SU(2, 2/N) super-

algebras described by analytic harmonic super-

fields depend only on half of the odd coordinates

(Grassmann or G-analyticity):

W 12...k =W 12...k(θk+1, θk+2, . . . , θN , θ̄
1, θ̄2, . . . , θ̄k) .

(1.2)

In addition, they are annihilated by all the “step-

up” generators Ea in the Cartan decomposition

of the Lie algebra of SU(N). In other words,

these superfields correspond to highest weight

states of SU(N):

Ea|HW〉 = 0 . (1.3)

In harmonic superspace this irreducibility condi-

tion corresponds to harmonic (or H-) analyticity.

The crucial point is that the SU(2, 2/N) algebra

acting on such states defines a “quasi-primary”

superconformal field denoted by

D(`, J1, J2; r; a1, . . . , aN−1) (1.4)

where `, J1, J2 are the conformal dimension and

spin of the state, r is the U(1) R charge and

a1, . . . , aN−1 are the SU(N) Dynkin labels. We
assign the R charge rθ =

1
2 (1− 4

N
) to the Grass-

mann coordinates in order to be consistent with

the convention that chiral superfields Φ(θ) have

l = −r for any N . This is also the charge which
naturally appears in the definition of the

SU(2, 2/N) superalgebra [19]. 2

The G- and H-analytic superfields (1.2) have

their lowest (scalar) component belonging to the

rank k antisymmetric representation of SU(N)

(k = 1 . . . [N2 ]), have R charge rk =
2k
N − 1 and

will be shown to describe “ultrashort” represen-

tations of the SU(2, 2/N) superalgebra. If the al-

gebra is interpreted as acting on AdS5, these are

the “supersingleton” representations [22]. For

k = 0 the superfield is actually “chiral” and in

this case the highest weight state may carry a

spin label (JL, 0) with ` = 1 + JL. The chi-

ral superfield is the supersingleton representation

when the top spin is JL =
N
2 . For all other an-

alytic superfields (k > 1) the supersingleton will

have top spin JL =
N
2 − k2 .

2Note that for N = 4, rθ = 0 and the r quantum

number becomes a “central charge” [20, 21]. In this case

the analysis of section 2 refers to the PSU(2, 2/4) algebra

for r = 0 and to the PU(2, 2/4) algebra for r 6= 0.

It should be pointed out that the same mass-

less multiplets can be described in terms of or-

dinary but constrained superfields [11, 12]. The

reason why we prefer the harmonic superspace

version is the fact that the superfields (1.2) are

unconstrained analytic objects. Analyticity is a

property which is preserved by multiplication.

This will allow us to tensor the above massless

UIR’s in a very simple way and thus obtain series

of short multiplets of SU(2, 2/N). We observe

that from the AdS5 point of view, tensoring more

than two supersingleton reps produces “massive

bulk” reps, while tensoring only two of them pro-

duces “massless bulk” reps [22, 15]. The lat-

ter are the “supercurrent” multiplets discussed

in Ref. [12].

2. Unitarity bounds and shortening

of UIR’s of SU(2, 2/N)

The unitarity bounds of highest weight UIR’s of

SU(2, 2/N) have been derived in Refs. [23, 20,

21, 24]. They correspond to some bounds on

the highest weight state (1.4). Let us define the

quantities

m1 =

N−1∑
k=1

ak , m =

N−1∑
k=1

(N − k)ak (2.1)

and

X(J, r,
2m

N
) = 2 + 2J − r + 2m

N
,

Y (r,
2m

N
) = −r + 2m

N
. (2.2)

Then we have (J1 = JL, J2 = JR):

A) ` ≥ X(J2, r, 2m
N
) ≥ X(J1,−r, 2m1− 2m

N
)

(2.3)

(or J1 → J2, r → −r, 2mN → 2m1 − 2mN );

B) ` = Y (r,
2m

N
) ≥ X(J1,−r, 2m1 − 2m

N
)

(2.4)

(or J1 → J2, r → −r, 2mN → 2m1 − 2mN );

C) ` = m1 , r =
2m

N
−m1 , J1 = J2 = 0 .

(2.5)

The massless UIR’s correspond to B) for ak =

0, ` = −r = 1 + JL and to C) for ` = m1 = 1,

2
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rk =
2k
N − 1, 1 ≤ k ≤ [N2 ]. Note that the two

series overlap for JL = 0 in B) and k = 0 in C).

The short multiplets that we shall build in

section 4 by tensoring massless multiplets from

the C) series in the case of N = 2n for k = n

(r = 0) will belong to the shortenings in B) and

C) obtained for J1 = 0 and r = 0:

B) ` =
2m

N
,
2m

N
−m1 ≥ 1

C) ` = m1 ,
2m

N
= m1 (2.6)

3. Massless superconformal multiplets

3.1 Grassmann analytic superfields

We consider superfields

W i1...ik(xαα̇, θ
α
i , θ̄

α̇i)

with k = 1, . . . , n (where n = [N2 ]) totally an-

tisymmetrized indices in the fundamental repre-

sentation of SU(N). These superfields satisfy the

following constraints:

D(jαW
i1)i2...ik = 0 , (3.1)

D̄α̇{jW i1}i2...ik = 0 (3.2)

where () means symmetrization and {}means the
traceless part. The spinor derivatives algebra is

{Diα, D̄α̇j} = iδij∂αα̇ (3.3)

with ∂αα̇ = σ
µ
αα̇∂µ. In the cases N = 2, 3, 4 these

constraints define the on-shell N = 2 matter

(hyper)multiplet [25] and the N = 3, 4 on-shell

super-Yang-Mills multiplets [26]. Their general-

ization to arbitrary N has been given in Refs.

[11, 12] where it has also been shown that they

describe on-shell massless multiplets.

Our aim in this section is to rewrite the con-

straints (3.1), (3.2) in harmonic superspace where

they will take the simple form of analyticity con-

ditions. Using this fact we will then be able to

construct tensor products of the corresponding

multiplets in a very straightforward and easy way

(section 4).

The main purpose of introducing harmon-

ics is to be able to covariantly project all the

SU(N) indices in (3.1), (3.2) onto a set of U(1)

charges. To this end we choose the harmonic

coset SU(N)/(U(1))N−1 described in terms of
harmonic variables uIi and their conjugates u

i
I =

(uIi )
∗. 3 They form an SU(N) matrix where i

is an index in the fundamental representation of

SU(N) and I = 1, . . . , N is a collection of the

N − 1 U(1) charges corresponding to the projec-
tions of the second index (the harmonic uiI carries

charges opposite to those of uIi ). They satisfy the

following SU(N) defining conditions:

uIiu
i
J = δ

I
J , (3.4)

u ∈ SU(N) : uIiu
j
I = δ

j
i , (3.5)

εi1...iNu1i1 . . . u
N
iN
= 1 .(3.6)

Now, let us use these harmonic variables to

split all the SU(N) indices in the constraints

(3.1), (3.2) into independent (U(1))N−1 projec-
tions. For example, the projection

W 12...k =W i1i2...iku1i1u
2
i2
. . . ukik (3.7)

satisfies the constraints

D1αW
12...k = D2αW

12...k = . . . =

DkαW
12...k = 0 ,

(3.8)

D̄α̇ k+1W
12...k = D̄α̇ k+2W

12...k = . . . =

D̄α̇ NW
12...k = 0 (3.9)

where DIα = D
i
αu
I
i and D̄α̇ I = D̄α̇ iu

i
I . The first

of them, eq. (3.8), is a corollary of the com-

muting nature of the harmonics variables, and

the second one, eq. (??), of the unitarity con-

dition (3.4). The main achievement in rewriting

the constraints (3.1), (3.2) in this new form is

that they can be explicitly solved by going to an

appropriate G-analytic basis in superspace:

xαα̇A = x
αα̇ + i(θα1 θ̄

1α̇ + . . .+ θαk θ̄
kα̇

−θαk+1θ̄k+1α̇ − . . .− θαN θ̄Nα̇) ,
θαI = θ

α
i u
i
I , θ̄α̇I = θ̄α̇iuIi . (3.10)

In this basis W 12...k becomes an unconstrained

function of k θ̄’s and N − k θ’s:
W 12...k =W 12...k(xA, θk+1, . . . , θN , θ̄

1, . . . , θ̄k, u) .

(3.11)
3The harmonic notation used here differs from the

original one of Refs. [8, 9]. It is similar to the one in-

troduced in Ref. [10] for the case N = 3 and in Refs. [17]

for general N .

3
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Altogether it depends on half the number of the

odd variables of N -extended superspace and for

this reason we call it Grassmann (or G-) analytic.

We recall that the notion of Grassmann analyt-

icity was first introduced in Ref. [27], still in the

context of ordinary superspace. In N = 2 har-

monic superspace [8] this notion became SU(2)

covariant. The generalization toN = 3 was given

in Ref. [9] and later on to general N in Refs. [17]

(under the name of “(N, p, q) superspace”).

The massless conformal multiplets describe

the ordinarymassless UIR’s of the super Poincaré

group obtained earlier by the Wigner method of

induced representations (see, for instance, Ref.

[28]). The self-conjugate N = 8 multiplet was

obtained by the oscillator method in Ref. [29].

3.2 Harmonic analyticity as SU(N)

irreducibility

It is important to realize that a G-analytic super-

field is an SU(N) covariant object only because

it depends on the harmonic variables. In or-

der to recover the original harmonic-independent

but constrained superfieldW i1i2...ik(x, θ, θ̄) (3.1),

(3.2) we need to impose differential conditions

involving the harmonic variables. The harmonic

derivatives are made out of the operators

∂ IJ = u
I
i

∂

∂uJi
− uiJ

∂

∂uiI
(3.12)

which respect the defining relations (3.4), (3.5).

These derivatives act on the harmonics as fol-

lows:

∂IJu
K
i = δ

K
J u
I
i , ∂IJu

i
K = −δIKuiJ . (3.13)

The diagonal ones ∂ II count the U(1) charges,

∂ II u
I
i = u

I
i , ∂ II u

i
I = −uiI . (3.14)

The relation (3.6) implies that the charge opera-

tors ∂ II are not independent,

N∑
I=1

∂ II = 0 (3.15)

(this reflects the fact that we are considering

SU(N) and not U(N)).

A basic assumption in our approach to the

harmonic coset SU(N)/U(1)N−1 is that any har-
monic function is homogeneous under the action

of U(1)N−1, i.e., it is an eigenfunction of the
charge operators ∂ II ,

∂ II f
K1...Kq
L1...Lr

(u) = (δK1I + . . .+ δ
Kq
I − δIL1 − . . .

−δILr)f
K1...Kq
L1...Lr

(u) (3.16)

(note that the chargesK1 . . .Kq;L1 . . . Lr are not

necessarily all different). Thus it effectively de-

pends on the (N2−1)− (N −1) = N(N−1) real
coordinates of the coset SU(N)/U(1)N−1. Then
the actual harmonic derivatives on the coset are

the N(N − 1)/2 complex derivatives ∂ IJ , I < J

(or their conjugates ∂ IJ , I > J).

The set of N2−1 derivatives ∂ IJ (taking into
account the linear dependence (3.15)) form the

algebra of SU(N):

[∂ IJ , ∂
K
L ] = δ

K
J ∂

I
L − δIL∂KJ . (3.17)

The Cartan decomposition of this algebra L+ +

L0 + L− is given by the sets

L+ = {∂ IJ , I < J} , L0 = {∂ II ,
N∑
I=1

∂ II = 0} ,

L− = {∂ IJ , I > J} . (3.18)

It becomes clear that imposing the harmonic con-

ditions

∂ IJ f
K1...Kq
L1...Lr

(u) = 0 , I < J (3.19)

on a harmonic function with a given set of charges

K1 . . .Kq;L1 . . . Lr defines the highest weight of

an SU(N) irrep. In other words, the harmonic

expansion of such a function contains only one

irrep which is determined by the combination of

charges K1 . . .Kq;L1 . . . Lr. In fact, not all of

the derivatives ∂ IJ , I < J are independent, as

follows from the algebra (3.17). The independent

set consists of the N − 1 derivatives

∂ 12 , ∂
2
3 , . . . , ∂

N−1
N (3.20)

corresponding to the simple roots of SU(N). Then

the SU(N) defining constraint (3.19) is equiva-

lent to

(∂ 12 , ∂
2
3 , . . . , ∂

N−1
N )f

K1...Kq
L1...Lr

(u) = 0 . (3.21)

The coset SU(N)/U(1)N−1 can be parametrized
by N(N−1)/2 complex coordinates. In this case

4
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the constraints (3.19) take the form of covariant

(in the sense of Cartan) Cauchy-Riemann analyt-

icity conditions. For this reason we call the set

of constraints (3.19) (or the equivalent set (3.21))

harmonic (H-)analyticity conditions. The above

argument shows that H-analyticity is equivalent

to defining a highest weight of SU(N), i.e. it is

the SU(N) irreducibility condition on the har-

monic functions.

As an example, take N = 2 and the function

f1(u) subject to the constraint

∂ 12 f
1(u) = 0 ⇒ f1(u) = f iu1i . (3.22)

So, the harmonic function is reduced to a dou-

blet of SU(2). Similarly, for N = 4 the func-

tion f12(u) is reduced to the 6 of SU(4). Indeed,

the constraints ∂ 23 f
12(u) = ∂ 34 f

12(u) = 0 en-

sure that f12(u) depends on u1, u2 only, f12(u) =

f iju1iu
2
j . Then the constraint ∂

1
2 f
12(u) = f iju1iu

1
j

= 0 implies f ij = −f ji.
In the G-analytic basis (3.10) the harmonic

derivatives become covariant D IJ . In particular,

the derivatives

D IJ = ∂ IJ − iθαJ θ̄I α̇∂αα̇ − θJ∂I + θ̄I ∂̄J ,
I = 1, . . . , k, J = k + 1, . . . , N (3.23)

acquire space-time derivative terms. The SU(N)

commutation relations among the D IJ are not af-

fected by the change of basis. The same is true

for the commutation relations of theD IJ with the

spinor derivatives:

[D IJ , D
K
α ] = δ

K
J D

I
α , [D IJ , D̄α̇ K ] = −δIKD̄α̇ J .

(3.24)

Using these relations one can see that the H-

analyticity conditions

D IJW
12...k = 0 , I < J (3.25)

or the equivalent set

(D 12 , D
2
3 , . . . , D

N−1
N )W 12...k = 0 (3.26)

are compatible with the G-analyticity ones (??).

3.3 Analyticity and massless multiplets:

“Singletons”

The constraints of H-analyticity (3.25) combined

with those of G-analyticity (??) have important

implications for the components of the superfield.

First of all, they make each component an irrep of

SU(N). Take, for example, the first component

φ12...k(x, u) =W 12...k|0 (3.27)

where |0 means θ = θ̄ = 0. The constraints

∂ II+1φ
12...k(x, u) = 0, I = k, . . . , N imply that

φ12...k(x, u) takes the form

φ12...k(x, u) = φi1i2...ik(x)u1i1u
2
i2
. . . ukik .

This is a rank k tensor without any symmetry, i.e.

a reducible representation of SU(N). Further,

the constraint, e.g.,

∂12φ
123...k(x, u) = φ113...k(x, u) =

φi1i2i3...iku1i1u
1
i2u
3
i3 . . . u

n
ik
= 0

removes the symmetric part in the first two in-

dices. Similarly, the remaining constraints (3.25)

remove all the symmetrizations and we find the

totally antisymmetric rank k irrep of SU(N).

Another example are the spinor components

χ12...k k+1α (x, u) = Dk+1α W 12...k|0 ,
ψ̄23...kα̇ (x, u) = D̄1α̇W

12...k|0 . (3.28)

The same harmonic argument shows that these

are harmonic projections of the totally antisym-

metric components χ
[i1i2...ik+1]
α (x) and ψ̄

[i2i3...ik]
α̇ (x).

Further important constraints occur at the

level of 2 or more θ’s:

DIαDJαW
12...k = 0, I, J = k + 1, . . . , N,

(3.29)

D̄Iα̇D̄
α̇
JW

12...k = 0, I, J = 1, . . . , k. (3.30)

The easiest way to see this is to hit the defining

constraint (3.1) with Dkα and then project with

harmonics.

The constraints (3.29), (3.30) imply that the

components of the type

χ1...k+p(α1...αp)
= Dk+1α1

. . . Dk+pαp
W 12...k|0 , p ≤ N − k

(3.31)

ψ̄p+1...k(α̇1...α̇p)
= D̄1α̇1 . . . D̄pα̇pW

12...k|0 , p ≤ k
(3.32)

5
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are totally symmetric in their spinor indices, i.e.

they carry spin (p/2, 0) or (0, p/2), correspond-

ingly. Among them one finds the

top spin (N2 − k2 , 0): χ(α1...αN−k) =

Dk+1α1
. . . DNαN−kW

12...k|0 (3.33)

which is also an SU(N) singlet. Note that in

the case N = 2n, k = n the top spin occurs

both as (n/2, 0) and (0, n/2) (we call this a “self-

conjugate” multiplet). Moreover, if N = 4n and

k = 2n one can impose a reality condition on the

superfield W 12...2n which implies, in particular,

that

χ(α1...α2n) = (ψ(α̇1...α̇2n))
∗ . (3.34)

Next, one can show that all the components

of the type (3.31), (3.32) satisfy massless field

equations. Indeed, from the constraint (3.29)

and from G-analyticity it follows that

0 = D̄k+1 β̇D
k+1 α1Dk+1α1

. . . Dk+pαp
W 12...k

= 2i∂α1
β̇
Dk+1α1

. . . Dk+pαp
W 12...k

⇒ ∂α1
β̇
χ1...k+p(α1...αp)

= 0 (3.35)

and similarly for ψ̄p+1...k(α̇1...α̇p)
. The leading scalar

component (3.27) satisfies the d’Alembert equa-

tion:

0 = (D1)2(D̄1)
2W 12...k = 4�W 12...k

⇒ �φ12...k = 0. (3.36)

Finally, all the components of mixed type,

fp+1...k+qα̇1...α̇pα1...αq

= D̄1α̇1 . . . D̄pα̇pD
k+1
α1

. . . Dk+qαq
W 12...k|0 ,

p ≤ k , q ≤ N − k (3.37)

are expressed in terms of the space-time deriva-

tives of lower components. Indeed,

D1k+qf
p+1...k+q
α̇1...α̇pα1...αq

= −D̄k+qα̇1D̄2α̇2 . . . Dk+qαq W 12...k|0
= (−1)p+q−1i∂α̇1αq D̄2α̇2 . . . Dk+q−1αq−1 W 12...k|0
⇒ fp+1...k+q−1 1α̇1...α̇pα1...αq

= (−1)p+q−1i∂α̇1αqg1 p+1...k+q−1α̇2...α̇pα1...αq−1 (3.38)

To summarize, the superfieldW 12...k subject

to the constraints of G- and H-analyticity has

the following component content (the derivative

terms are not shown):

W 12...k = φ12...k

+θ̄1α̇ψ̄
α̇ 23...k + . . .+ θ̄kα̇ψ̄

α̇ 12...k−1

+θαk+1χ
1...k k+1
α + . . .+ θαNχ

1...k N
α

+θ̄1α̇θ̄
2
β̇
ψ̄(α̇β̇) 3...k + . . .+ θ̄k−1α̇ θ̄k

β̇
ψ̄(α̇β̇) 1...k−2

+θαk+1θ
β
k+2χ

1...k k+1 k+2
(αβ) +

. . .+ θαN−1θ
β
Nχ
1...k N−1 N
(αβ) . . .

+θ̄1α̇1 . . . θ̄
k
α̇k
ψ̄(α̇1...α̇k)

+θα1k+1 . . . θ
αN−k
N χ(α1...αN−k) (3.39)

where all the fields belong to totally antisymmet-

ric irreps of SU(N) and satisfy the massless field

equations

�φ[i1...ik] = 0 ,
∂βα̇1ψ̄

[i1...ik−p]
(α̇1...α̇p)

= 0 , 1 ≤ p ≤ k (3.40)

∂α1β̇χ
[i1...ip]

(α1...αp)
= 0 , 1 ≤ p ≤ N − k

This is the content of an N -extended supercon-

formal multiplet of the C) series of section 2.

It is characterized by the SU(N) irrep of the

first component (described by the Young tableau

m1 = . . . = mk = 1, mk+1 = . . . = mN−1 = 0),
by its R charge

rk =
2k

N
− 1 (3.41)

and conformal dimension ` = 1 and by the top

spin Jtop = (
N
2 − k2 , 0).

3.4 Chiral superfields

The G-analytic superfields considered above con-

tain at least one θ̄. The case of “extreme” G-

analyticity will be the absence of any θ̄’s. These

are the well-known chiral superfields [30] satisfy-

ing the constraint

D̄i α̇W = 0 ⇒ W =W (xαα̇L , θαi ) (3.42)

where

xαα̇L = x
αα̇ − iθαi θ̄i α̇ . (3.43)

Note that in this case we do not need harmonic

variables, since G-analyticity involves a subset of

odd coordinates forming an entire irrep of SU(N),

and not a set of U(1) projections. Consequently,
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in order to put such a superfield on shell, we can-

not use H-analyticity but need to impose a new

type of constraint:

Dα iDjαW = 0 . (3.44)

The resulting components are multispinors of the

same chirality (cf. eq. (3.39)):

W = φ+ θαi χ
i
α

+ . . .+ θα1i1 . . . θ
αn
in
χ
[i1...in]
(α1...αn)

+ . . .+ (θ)2Nχ

(3.45)

satisfying massless field equations. The tops spin

is (N2 , 0).

The chiral superfields above are scalar, but

there exist conformally covariant chiral super-

fields with an arbitrary (JL, 0) index of the high-

est weight: Wα1...α2JL . In this case the massless-

ness condition is [12] Dα1iWα1...α2JL = 0.

4. Short superconformal multiplets:

bulk “ massless” and “massive”

states

In this section we shall concentrate on the case

N = 2n for reasons of simplicity. The analytic

superfield W 12...n(θn+1, . . . , θ2n, θ̄
1, . . . , θ̄n) des-

cribes a superconformal multiplet characterized

by the Young tableau m1 = . . . = mn = 1,

mn+1 = . . . = m2n−1 = 0 of its first component
(a Lorentz scalar), by its dimension ` = 1 and

R charge r = 0 (see (3.41)). Now we shall use

this multiplet as a building block for constructing

other “short” superconformal multiplets.

The building block W 12...n can be equiva-

lently rewritten by choosing different harmonic

projections of its SU(N) indices and, consequently,

different sets of G-analyticity constraints. This

amounts to superfields of the type

W I1I2...In(θJ1 , . . . , θJn , θ̄
I1 , . . . , θ̄In) (4.1)

where I1, . . . , In and J1, . . . , Jn are two comple-

mentary sets of n indices. Each of these super-

fields depends on 2N = 4n Grassmann variables,

i.e. half of the total number of 4N = 8n. This is

the minimal size of a G-analytic superspace, so

we can say that the W ’s are the “shortest” su-

perfields (superconformal multiplets). Another

characteristic of these W ’s is the absence of R

charges.

The idea now is to start multiplying differ-

ent species of the W ’s of the type (4.1) in order

to obtain composite objects depending on vari-

ous numbers of odd variables. The sets I1, . . . , In
can be chosen in (2n)!/(n!)2 different ways. How-

ever, we do not need consider all of them. The

following choice of W ’s and of the order of mul-

tiplication covers all possible intermediate types

of G-analyticity:

A(p1, p2, . . . , p2n−1) =

[W 1...n(θn+1...2nθ̄
1...n)]p1+...+p2n−1

×[W 1...n−1 n+1(θn n+2...2n
× θ̄1...n−1 n+1)]p2+...+p2n−1

×[W 1...n−1 n+2(θn n+1 n+3...2n
× θ̄1...n−1 n+2)]p3+...+p2n−1

· · ·
×[W 1...n−1 2n−1(θn...2n−2 2n
× θ̄1...n−1 2n−1)]pn+...+p2n−1

×[W 1...n−2 n n+1(θn−1 n+2...2n
× θ̄1...n−2 n n+1)]pn+1+...+p2n−1

×[W 1...n−3 n−1 n n+1(θn−2 n+2...2n
× θ̄1...n−3 n−1 n n+1)]pn+2+...+p2n−1

· · ·
×[W 13...n+1(θ2 n+2...2nθ̄

13...n+1)]p2n−2+p2n−1

×[W 23...n+1(θ1 n+2...2nθ̄
23...n+1)]p2n−1 . (4.2)

The power
∑2n−1
r=k pr of the k-thW is chosen

in such a way that each new pr corresponds to

bringing in a new type ofW . As a result, at each

step a new θ or θ̄ appears (they are underlined in

(4.2)), thus adding new odd dimensions to the G-

analytic superspace. The only exception of this

rule is the second step at which both a new θ and

a new θ̄ appear. So, the series (4.2) covers all pos-

sible subspaces with 4n, 4n+4, 4n+6, . . . , 8n−2
odd coordinates (notice once again the missing

subspace with 4n + 2 odd coordinates). In this

sense we can say that the G-analytic superfield

A(p1, p2, . . . , p2n−1) realizes a “short” supercon-
formal multiplet.

The superfield A(p1, p2, . . . , p2n−1) should be
submitted to the same H-analyticity constraints

7
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as one would impose on W 1...n alone,

D II+1A(p1, p2, . . . , p2n−1) = 0 ,

I = 1, 2, . . . , 2n− 1 . (4.3)

This is clearly compatible with G-analyticity since

the conditions on a generic A(p1, p2, . . . , p2n−1)
form a subset of these on W 1...n. As before, H-

analyticity makesA(p1, p2, . . . , p2n−1) irreducible
under SU(N). Here is the structure of Young

tableau which corresponds to the first (scalar)

component of this superfield (and characterizes

the supermultiplet as a whole):

1 · · · 1 m1

2 · · · 2 m2

· · ·
k · · · k mk

· · ·
2n-1 · · · 2n-1 m2n−1

The top row is filled with indices projected with

u1i (hence the symmetrization among them), the

second row - with u2i , etc. The harmonic condi-

tions (4.3) remove all the symmetrizations among

indices belonging to different projections (rows).

By counting the number of occurrences of the

projection 1 in (4.2), we easily find the relation

m1 = `− p2n−1 (4.4)

where ` is the total number of W ’s (equal to the

dimension of the superfield A, since `W = 1).

Another simple counting shows the relation

2n−1∑
k=1

mk = n` =
N

2
` . (4.5)

If the last W in (4.3) is not present there is an

additional relation among the Young tableau la-

bels:

p2n−1 = 0 ⇒ m1 =
2

N

2n−1∑
k=1

mk . (4.6)

Finally, introducing the Dynkin labels [a1, . . . ,

a2n−1] where a1 = m2n−1 and ak = m2n−k+1 −
m2n−k for k ≥ 2, we find

a1 =

2n−1∑
k=n

pk ,

a2 = pn−1 , . . . , an−2 = p3 ,

an−1 = p2 +
2n−1∑
k=n+1

(k − n)pk ,

an = p1 , (4.7)

an+1 = (n− 2)
2n−1∑
k=n+1

pk +

n∑
k=2

(k − 1)pk ,
an+2 = pn+1 , . . . , a2n−1 = p2n−2 .

5. Conclusion

In this paper we studied representations of four-

dimensional superconformal algebras with an ar-

bitrary number of supersymmetries.

This analysis also provides the classification

of short multiplets of superalgebras on AdS5 and

in particular “massless” and “massive” fields in

anti-de Sitter geometries, in terms of boundary

“composite” operatprs
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