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Abstract

It is shown that all the Frequentist methods are equivaent from a statistical
point of view, but the physical significance of the confidence intervals depends
on the method. The Bayesian Ordering method is presented and confronted
with the Unified Approach in the case of a Poisson process with background.
Some criticisms to both methods are answered. It is also argued that a general
Fregquentist method is not needed.

1. INTRODUCTION

In this report | will be concerned mainly with the Frequentist (classical) theory of statistical inference,
but I think that it isinteresting and useful that | express my opinion on the war between Frequentists and
Bayesians. To the question

“Are you Frequentist or Bayesian?’
| answer
“I like statistics”

| think that if one likes statistics, one can appreciate the beauty of both Frequentist and Bayesian theories
and the subtleties involved in their formulation and application. | think that both approaches are valid
from a statistical as well as physical point of view. Their difference arises from different definitions
of probability and their results answer different statistical questions. One can like more one of the two
theories, but | think that it is unreasonable to claim that only one of them is correct, as some partisans
of that theory claim. These partisans often produce examples in which the other approach is shown to
yield misleading or paradoxical results. | think that each theory should be appreciated and used in its
limited range of validity, in order to answer the appropriate questions. Finding some example in which
one approach fails does not disprove its correctness in many other cases that lie in itsrange of validity.

My impression is that the Bayesian theory (see, for example, [1]) has a wider range of validity
because it can be applied to cases in which the experiment can be done only once or a few times (for
example, our thoughts in everyday decisions and judgments seem to follow an approximate Bayesian
method). In these cases the Bayesian definition of probability as degree of belief seems to me the only
one that makes sense and is able to provide meaningful results.

Let me recall that since Galileo an accepted basis of scientific research is the repeatability of ex-
periments. This assumption justifies the Frequentist definition of probability as ratio of the number of
positive cases and total number of trials in alarge ensemble. The concept of coverage follows imme-
diately: a 100a% confidence interval for a physical quantity . is an interval that contains (covers) the
unknown true value of that quantity with a Frequentist probability «. In other words, a 100a% confi-
dence interval for u belongs to a set of confidence intervals that can be obtained with a large ensemble
of experiments, 100a% of which contain the true value of 1.
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2. THE STATISTICAL AND PHYSICAL SIGNIFICANCE OF CONFIDENCE INTERVALS

I think that in order to fully appreciate the meaning and usefulness of Frequentist confidence intervals
obtained with Neyman’s method [2, 3], it isimportant to understand that the experimentsin the ensemble
do not need to be identical, as often stated, or even similar, but can be real, different experiments [2, 4].
One can understand this property in asimple way [5] by considering, for example, two different exper-
iments that measure the same physical quantity p. The 100a% classical confidence interval obtained
from the results of each experiment belongs by construction to a set of confidence intervals which can be
obtained with an ensemble of identical experiments and contain the true value of ; with probability o.
It isclear that the sum of these two sets of confidence interval's, containing the two confidence intervals
obtained in the two different experiments, is still a set of confidence intervals that contain the true value
of u with probability «.

Moreover, for the same reasons it is clear that the results of different experiments can also be
analyzed with different Frequentist methods [6], i.e. methods with correct coverage but different pre-
scriptions for the construction of the confidence belt. This for me is amazing and beautiful: whatever
method you choose you get a result that can be compared meaningfully with the results obtained by
different experiments using different methods! It isimportant to realize, however, that the choice of the
Frequentist method must be done independently of the knowledge of the data (before looking at the data),
otherwise the property of coverageislost, asin the “flip-flop” examplein Ref. [7].

This property allow us to solve an apparent paradox that follows from the recent proliferation of
proposed Frequentist methods[7, 8, 9, 10, 11, 12]. This proliferation seemsto introduce alarge degree of
subjectivity in the Frequentist approach, supposed to be objective, due to the need to choose one specific
prescription for the construction of the confidence belt, among several available with similar properties.
From the property above, we seethat whatever Frequentist method one chooses, if implemented correctly,
the resulting confidence interval can be compared statistically with the confidence intervals of other
experiments obtained with other Frequentist methods. Therefore, the subjective choice of a specific
Frequentist method does not have any effect from a statistical point of view!

Then you should ask me:
Why are you proposing a specific Frequentist method?

The answer lies in physics, not statistics. It is well known that the statistical analysis of the same data
with different Frequentist methods produce different confidence intervals. This difference is sometimes
crucial for the physical interpretation of the result of the experiment (see, for example, [8, 10]). Hence,
the physical significance of the confidence intervals obtained with different Frequentist methodsis some-
timescrucially different. In other words, the Frequentist method suffers froma degree of subjectivity from
a physical, not statistical, point of view.

3. THE BEAUTY OF THE UNIFIED APPROACH AND ITSPITFALLS

The possibility to apply successfully Frequentist statistics to problematic cases in frontier research has
received afundamental contribution with the proposal of the Unified Approach by Feldman and Cousins
[7]. The Unified Approach consistsin aclever prescription for the construction of “aclassical confidence
belt which unifies the treatment of upper confidence limits for null results and two-sided confidence
intervals for non-null results’.

Inthefollowing | will consider the case of aPoisson processwith signal 1. and known background
b. The probability to observe n eventsis

(1 + b)re=tt)
n! '

P(nlu.b) =

1)
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The Unified Approach is based on the construction of the acceptance intervals [ny(u), no(u)]
ordering the n’s through their rank given by the relative magnitude of the likelihood ratio

P(n|up,b) < p+0b )” _
R b) = ? — Hbest —H 2
(n’ o ) P(n‘:ubesta b) Mbest 1 b € ’ ( )

where pinest 1S the maximum likelihood estimate of 1,

Ubest (1, b) = Max[0,n — b]. (3)

Asaresult of this construction the confidence intervals are two-sided (i.€. {1y, ftup] With piey, > 0) for
n > b, whereasfor n < b they are upper limits (i.e. pow = 0).

The fact that the confidence intervals are two-sided for n > b can be understood by considering
n > b, that gives unest = n — b. Inthis case the likelihood ratio (2) is given by

R(n > b,1,b) — (““’) ) — exn n 1+ In(u+ b) — Inn] — (u+ b)) "=F 0. (4)
n

This implies that the rank of high values of n is very low and they are excluded from the confidence
belt. Therefore, the acceptance intervals [n(u), na(u)] are always bounded, i.e. no(p) is finite, and
the confidence intervals are two-sided for n > b, asillustrated in Fig. 1, where the solid lines show the
borders of the confidence belt for a background b = 5 and a confidence level o = 0.90.
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Fig. 1. Confidence belt in the Unified Approach for back- Fig. 2: Confidence belt in the Unified Approach for back-
ground b = 5 and confidence level o = 0.90. ground b = 5 and confidence level & = 0.50.

The fact that the confidence intervals are upper limitsfor n < b can be understood by considering
n < b, for which we have u.t = 0 and the likelihood ratio that determines the ordering of the n’sin
the acceptance intervalsis given by

R(n<b, u,b) = (1 + %)n eH (5)

Considering now the acceptance interval for u = 0, we have R(n < b,u = 0,b) = 1. Therefore, al
n < b for p = 0 have highest rank and are guaranteed to lie in the confidence belt. Thisis illustrated
in Fig. 1, where the thick solid segment showsthe n < b part of the acceptance interval for p = 0, that
must lie in the confidence belt. Since p is a continuous parameter, also for small values of u then < b
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have rank close to the highest one and lie in the confidence belt. Indeed, for p» > 0, the likelihood ratio
(2) increases for n going from zero to the largest integer smaller or equal to b and decreases for larger
values of n. Hence, the largest integer ny,, such that ny,, < b has highest rank. If  is sufficiently small
al n < b have rank close to maximum and are included in the confidence belt if the confidence level is
large enough, o > 0.60. For example, R(n = 0, 11, b) > R(nye + 1, 1, b) for pp < (1 + b)e= /(140 —p,
Therefore, the left edge of the confidence belt must changeits lopefor n < b and intercept the p-axis at
apositive value of p, asillustrated in Fig. 1. The value of 1 at which the left edge of the confidence belt
intercepts the p-axis, that corresponds to 1., (n = 0), depends on the value of the background b and on
the value of the confidence level a.

However®, for small values of « the Unified Approach gives zero-width confidence intervals for
n < b, asillustrated in Fig. 2, where | have chosen b = 5 and o = 0.50. One can see that the segment
n < bisenclosed in the confidence belt for . = 0, but for any value of 1 > 0 the sum of the probabilities
of then’scloseto i + b is enough to reach the confidence level and low values of n are not included in
the confidence belt. Hence, in this case the Unified Approach gives zero-width confidence intervals for
n < 2.

The unification of the treatments of upper confidence limits for null results and two-sided con-
fidence intervals for non-null results obtained with the Unified Approach is wonderful, but it has been
noticed that the upper limits obtained with the Unified Approach for n < b are too stringent (meaning-
less) from a physical point of view [8, 13]. In other words, although these limits are statistically correct
from a Frequentist point of view, they cannot be taken as reliable upper bounds to be used in physical
applications.

This problem isillustrated in Fig. 3A, where | plotted the 90% CL upper limit 1, as afunction
of bforn = 0,...,5. The solid part of each line shows where b > n. One can see that for a given n,
tup decreases rather steeply when b is increased, until a minimum value close to one is reached. The
curves have jumps because n is an integer and generally the desired confidence level cannot be obtained
exactly, but with some unavoidable overcoverage.

10 e e T e e e e

(A) Unified Approach (B) Bayesian Ordering (C) Bayesian Theory

(90% CL)

Hup

Fig. 3: 90% CL upper limit 1., asafunction of the background b for n = 0 (lower lines), ..., n = 5 (upper lines). The solid
part of each line showswhereb > n.

L et me emphasi ze that the problem of obtaining too stringent upper limitsfor n < b isvery serious
for ascientist that wantsto obtain reliable information from experiment and use thisinformation for other
purposes (asinput for atheory or another experiment). In the past, researchers bearing the same physical
point of view refrained to report empty confidence intervals or very stringent upper limitswhen n < b

! et me emphasize that | discuss this case only for the sake of curiosity. It is pretty obvious that alow value of « is devoid
of any practical interest.
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was measured. These confidence intervals are correct from a statistical point of view, but useless from a
physical point of view. Furthermore, the same reasoning lead to prefer the Unified Approach to central
confidence intervals or upper limits, because the non-empty confidence interval obtained whenn < bis
measured is certainly more significant, from a physical point of view, than an empty one, athough they
are statistically equivalent, as shown in Section 2..

4. A BRUTAL MODIFICATION OF THE UNIFIED APPROACH

In the Unified Approach e iS positive and equal to zero for n < b. If upes 1S forced to be aways
bigger than zero, the n’ssmaller than b have rank higher than in the Unified Approach. Asaconsequence,
the decrease of the upper limit 4., asb increasesisweakened. Thisisillustrated by a“ Brutally Modified
Unified Approach” (BMUA) in which we take

Hbest = Max[#glelsr,lta - b] s (6)

where (288 js a positive real number.

InFig. 41 plotted the confidence belts for piti2 = 0 (solid lines), that corresponds to the Unified
Approach, pg}j;lt = 1 (dashed lines) and umm = 2 (dotted lines), for b = 10. One can see that in the
BMUA the upper limits of the confidenceintervals are considerably higher than in the Unified Approach.
The behavior of 1, as afunction of b for n = 0 is shown in Fig. 5, from which it is clear that the
decrease of 1., when b increases is much weaker in the BMUA (dashed and dotted lines) than in the
Unified Approach (solid line) and it is almost absent for it > 2.
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Fig. 4: 90% confidence beltsfor b = 10 in the Unified Ap-
proach (uin = 0, solid lines) and in the Brutally Modified
Unified Approach (BMUA) for ;™% = 1 (dashed lines)
and ppin = 2 (dotted lines).

L et me emphasize that

b

Fig. 5: 90% CL upper limit 1., as afunction of the back-
ground b for n = 0 in the Unified Approach (4% = 0,
solid ling) and in the BMUA for pi% = 1 (dashed line)
and ppin = 2 (dotted line).

1. The BMUA isastatistically correct Frequentist method and coverageis satisfied.
2. Inthe BMUA one obtains upper limits for n < b and central confidence intervalsfor n > b, asin

the Unified Approach?.
2Forn < b+ 122 we have jiness = 22 and the likelihood ratio (2) becomes
min w + b " Mmin —u
R(n < b+ ptpest, 4, b) = eHbest .
( Hbesty 1y b) = (ug‘;;er) (7)
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3. The BMUA method is not general (although it can be extended in an obvious way at least to the
case of agaussian variable with a physical boundary).

4. | am not proposing the BMUA! (But those that think that the upper limit for n = 0 should not
depend on b may consider the possibility of using the BMUA with it = 2 instead of resorting
to more complicated methods that may even jeopardize the property of coverage®.)

As shown in Fig. 4, the right edge of the confidence belt in the BMUA is not very different from
the onein the Unified Approach. Thisisdueto the fact that adding small values of n with low probability
to the acceptance intervals has little effect. Moreover, it is clear that the acceptance interval for = 0
isequal for al Frequentist methods with correct coverage that unify the treatment of upper confidence
limits and two-sided confidence intervals.

5. BAYESIAN ORDERING

An elegant, natural and general way to obtain automatically 4% > ( is given by the Bayesian Ordering
method [8], in which uye: 1S replaced by the Bayesian expectation value for i, ug.

Choosing a natura flat prior, the Bayesian expectation value for p in a Poisson process with
background is given by

n k n k -1 n—1 1k n k -1
uB(n,b)—n—Fl(Z%) (Z%) —n+lb<z%> (Z%) : ®)

k=0 k=0 k=0 k=0

The obvious inequality S-7_, kb*/k! < n > %_,b"/k! impliesthat ug > 1. Therefore, the reference
valuefor u in the likelihood ratio
P(n|u, b) ( ptb )” -
R(n,u,b) = = elBTH 9

(2, 4,) P(n|us,b) pB+b ®
that determines the construction of the acceptance intervals as in the Unified Approach, is bigger or
equal than one. As a consequence, the decrease of the upper confidence limit ..., for agiven n when the
expected background b increases is significantly weaker than in the Unified Approach, as illustrated in
Fig. 3B.

Figure 3C shows 1, as a function of b in the Bayesian Theory with a flat prior and shortest
credibility intervals*. One can see that the behavior of 1., obtained with the Bayesian Ordering method

For pn < piin  wehave (1 +b) /(25 4+ b) < Tand R(n < b+ 2 | 1, b) decreaseswith increasing n. Let us consider now
n > b+ pmn, for which pmest = n — b and the likelihood ratio (2) is given by the expression in Eq. (4). This expression has
amaximum for n equal to one of the two integers closest to p + b. For i < ppit, thisinteger isthe first one in the considered
range (n > b+ pumi%). Therefore, for sufficiently low values of y, o < ™%, the likelihood ratio (2) decreases monotonically
asn increases. Inthis case, low values of n have highest ranks and are guaranteed to lie in the confidence belt and the left edge
of the confidence belt must changeits slopefor n. < ™% + b and intercept the p-axis at a positive value of i, asillustrated in
Fig. 4.

3By the way, | think that coverage is the most important property of the Frequentist theory. If coverage is not satisfied the
results are statistically uselessin the contest of Frequentist theory.

“In this case the posterior p.d.f. for x is

n k -1
Puln,8) = (b+ )" e <n! > Z) , (10)
k=0

and the probability (degree of belief) that the true value of . liesin the range [1, p2] is given by

n n

k k noo\ !
P(p € [p1, p2]|n, b) = (e‘” Z % —e M Z (b +l€/!L2) ) ( %) . (11)

k=0 k=0 k=0

The shortest 100a% credibility intervals [piow, pup] ae obtained by choosing piow a@nd pup such that P(p €
[tow, Hup] |7, b) = a @nd P(piow |1, b) = P(piup|n, b) if possible (with piiow > 0), OF piiow = 0.
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is intermediate between those in the Unified Approach and in the Bayesian Theory. Although one must
always remember that the statistical meaning of 1., is different in the two Frequentist methods (Unified
Approach and Bayesian Ordering) and in the Bayesian Theory, for scientists using these upper limits it
is often irrelevant how they have been obtained. Hence, | think that an approximate agreement between
Frequentist and Bayesian resultsis desirable.
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Fig. 6: Confidence belt obtained with the Bayesian Order- Fig. 7: Confidence belt obtained with the Bayesian Order-
ing for background b = 5 and confidence level a = 0.90. ing for background b = 5 and confidence level « = 0.50.
From Eq. (8) one can see that
n>b = ugn,b)~n+1-b~n, (12)
n<b, b>1 - pup(n,b) ~1. (13)

Therefore, for n > b the confidence belt obtained with the Bayesian Ordering method is similar to that
obtained with the Unified Approach. The difference between the two methods show up only for n < b.
Thisisillustrated in Figs. 6 and 7, that must be confronted with the corresponding Figures 1 and 2 in
the Unified Approach. Notice that, as shown in Fig. 7, contrary to the Unified Approach, the Bayesian
Ordering method gives physically significant (non-zero-width) confidence intervals even for low values
of the confidence level «.

6. ANSWERSTO SOME CRITICISMS

Criticism: Bayesian Ordering is a mixture of Freguentism and Bayesianism. The uncompromising Fre-
quentist cannot accept it.

No! It isaFregquentist method.

Bayesian theory is only used for the choice of ordering in the construction of the acceptance
intervals, that in any case is subjective and beyond Frequentism (as, for example, the central interval
prescription or the Unified Approach method). The Bayesian method for such a subjective choice is
quite natural.

If you belong to the Frequentist Orthodoxy (sort of religion!) and the word “Bayesian” gives you
the creeps, you can change the name “ Bayesian Ordering” into whatever you like and use its prescription
for the construction of the acceptance intervals as a successful recipe.

Criticism: In the Unified Approach (and maybe Bayesian Ordering?) the upper limit on p goesto zero
for every n as b goes to infinity, so that a low fluctuation of the background entitles to claim a very
stringent limit on the signal.
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Thisis not true!

One can seeit® doing a calculation of the upper limit for 1 as afunction of b for large values of b.
The result of such a calculation in the Unified Approach is shown in Fig. 8A, where the 90% CL upper
limit 1., is plotted as afunction of b intheinterval 0 < b < 200 for n = 0 (solid line), n = 5 (dashed
line) and n = 10 (dotted line). One can see that initially ..., decreases with increasing b, but it stabilizes
to about 0.8 for b > n, with fluctuations due to the discreteness of n. Figure 8B shows the same plot
obtained with the Bayesian Ordering. One can see that initially p.,,, decreases with increasing b, but less
steeply than in the Unified Approach, and it stabilizesto about 1.8. For comparison, in Fig. 8C | plotted
tup asafunction of b in the Bayesian Theory with aflat prior and shortest credibility intervals. One can
see that the behavior of p,, in the three methods considered in Fig. 8 israther similar.
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Fig. 8: 90% CL upper limit u,p asafunction of the background b for n = 0 (solid lines), n = 5 (dashed lines) and n = 10
(dotted lines).

Criticism: For n = 0 the upper limit 4., should be independent of the background b.

But for n > 0 the upper limit 1, always decreases with increasing b! It is true that for n = 0
one is sure that no background event as well as no signal has been observed. But thisis just the effect
of alow fluctuation of the background that is present! Should we built a specia theory for n = 07? |
think that thisis not interesting in the Frequentist framework, because | guess that it leads necessarily to
aviolation of coverage (that could be tolerated, but not welcomed, only if it is overcoverage).

| think that if one is so interested in having an upper limit .., independent of the background b
for n = 0, one better embrace the Bayesian theory (see Fig. 3C, Fig. 8C and Ref. [14]), which, by the
way, may present many other attractive qualities (see, for example, [1]).

Criticism: A (worse) experiment with larger background b should not give a smaller upper limit /4, for
the same number n of observed events.

But, as shown in Fig. 3, thisalways happens! Notice that it happens both for n > b (dotted part of
lines) and for n < b (solid part of lines), in Frequentist methods as well asin the Bayesian Theory (for
n > 0). Asfar as| know, nobody questions the decrease of ..., asb isincreased if n > b. So why should
we question the same behavior when n < b? The reason for this behavior is simple: the observation of a

5In the Unified Approach the likelihood ratio for n < b is given by the expression in Eq. (5), that tendsto e * for b >> n
and small . For p < 1, e * ~ 1 and dl n < b have rank close to maximum. For n > b the likelihood ratio is given by the
expression in Eq. (4). For large values of b, taking into account that » > b, wehave 1l + In(u +b) —Inn ~Inb—1Inn < 0

and yu + b ~ b, which imply that R(n > b, 1,b) < e~® "= 0. So the rank drops rapidly for n > b. Therefore, for small
values of i the n’s much smaller than b have highest rank. Since they have also very small probability, they all lie comfortably
in the confidence belt, if the confidence level « is sufficiently large (o« 2 0.60).
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given number n of observed events has the same probability if the background is small and the signal is
large or the background is large and the signal is small.

I think that it is physically desirable that and experiment with a larger background do not give a
much smaller upper limit for the same number of observed events, but a smaller upper limit is allowed
by statistical fluctuation. Indeed,

upper limits (as confidence intervals, etc.) are statistical quantities that must fluctuate!

| think that the current race of experiments to find the most stringent upper limit is bad®, because it
induces people to think that limits are fixed and certain. Instead, everybody should understand that

abetter experiment can sometimes give aworse upper limit because of statistical fluctuations
and there is nothing wrong about it!

7. CONCLUSIONS

In this report | have shown that the necessity to choose a specific Frequentist method, among severa
available, does not introduce any degree of subjectivity from a statistical point of view (Section 2.) [6].
In other words, all Frequentist methods are statistically equivalent.

However, the physical significance of confidence intervals obtained with different methods is dif-
ferent and scientists interested in obtaining reliable and useful information on the characteristics of the
real world must worry about this problem. Obtaining empty or very small confidence intervals for a
physical quantity as a result of a statistical procedure is useless. Sometimes it is even dangerous to
present such results, that lead non-experts in statistics (and sometimes experts too) to false beliefs.

In Section 3. | have discussed some virtues and shortcomings of the Unified Approach [7]. These
shortcomings are ameliorated in the Bayesian Ordering method [8], discussed in Section 5., that is natu-
ral, relatively easy, and leads to more reliable upper limits.

In conclusion, | would like to emphasi ze the following considerations:

e One must aways remember that, in order to have coverage, the choice of a specific Frequentist
method must be done independently of the knowledge of the data.

¢ Finding some examplesin which amethod fails does not imply that it should not be adopted in the
casesin which it performs well.

e Since all Frequentist methods are statistically equivalent,
there is no need of ageneral Frequentist method!
In each case one can choose the method that works better (basing the judgment on easiness, mean-
ingfulness of limits, etc.). Complicated methods with a wider range of applicability are theoreti-
cally interesting, but not attractive in practice.

e Somebody thinks that the physics community should agree on a standard statistical method (see,
for example, [15])7. In that case, it is clear that this method must be always applicable. But this
is not the case, for example, of the Unified Approach, as shown in [16]. Although the Bayesian
Ordering method has not been submitted to a similar thorough examination, | doubt that it is
generally applicable.

81t is surprising that even at the Panel Discussion [15] of this Workshop (full of experts) the statement “the experimenters
like to quote the smallest bound they can get away with” was not strongly criticized. What is the purpose of experiments? (A)
Give the smallest bound. (B) Give useful and reliable information. If your answer is (A) and you are an experimentalist, |
suggest that you stop deceiving us and move to some more rewarding cheating activity.

"As a theorigt, | find the argument, presented by an experimentalist, that a standard is useful because otherwise one is
tempted to analyze the data with the method that gives the desired result quite puzzling. But if | were an experimentalist |
would be quite offended by it. Isn’t it a denigration of the professional integrity of experimental physicists?

71



| do not see why experiments that explore different physics and use different experimental tech-
niques should all use the same statistical method (except a possible ignorance of statistics and
blind belief of “authorities”).

| would recommend that

instead of wasting time on useless characteristics as generality, the physics community
should worry about the usefulness and credibility of experimental results.
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Discussion after talk of Carlo Giunti. Chairman: Jim Linnemann.

Bob Cousins

In the previoustak | showed on the page from Kendall and Stuart and Ord that the likelihood ratio
ordering is anything but arbitrary. It isinspired by the Neyman-Pearson lemmawhich is hardly arbitrary.

C. Giunti

What do you mean - Isthat a bible?

R. Cousins

The Neyman-Pearson lemma shows that the likelihood ratio is the optimal way to classify events.
We thought about it a lot and we don’t completely understand how to leap from there to confidence
intervals, but the fact that an ordering based on the Neyman-Pearson lemmaisthe optimal way to separate
out signal from background is not arbitrary.

C. Giunti

No, but that has nothing to do with ordering. So, | understand that the maximum likelihood is a
useful quantity, but ...

R. Cousins

It’s not the maximum likelihood, it is the likelihood ratio.

Gary Feldman

Can | add to that comment? You made the statement that you get coverage in all cases, so it's
arbitrary which ordering principle you use. This is not true. The point is that there are two types of
errors you can make in statistics. The error of the first type is to reject a true hypothesis. That we do
a fixed fraction of the time if we do statistics and that’s the confidence level. The error of the second
type is to accept a false hypothesis. Thisis the power of the technique, and generally you strive for the
technique which is most powerful. Now, when you have two-sided intervals there is no uniformly most
powerful method. However, for one sided intervals there is, and you will notice that in the case where
your intervals are one-sided, compared to where they are one-sided in the unified method, that the unified
method is more powerful, in other words the intervals are smaller.

C. Giunti

You say that the limit is more stringent. Let's take a specific example. For the Poisson with
background, when the number of events is bigger than the background, then the limit is very similar in
the two cases. When you go below the background, then the limit in the unified approach is significantly
more stringent, but this, from the physical point of view, is not meaningful.

Jacques Bouchez

Maybe Bob can comment also on my question. | wanted to know on which criteriayou judge that
one ordering method is better than another. In Bob's list of properties of the Feldman-Cousins method,
onewas: Thereisan improvement over central intervals. In what sense do you think it’san improvement?
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Just because there are fewer null results? Isit not subjective to consider that the null hypothesisis bad or
good?

C. Giunti

The choice of the methods is aways subjective. Take, for example, the case of the Karmen |
experiment which is very well-known. In the Neutrino ’ 98 conference, they used Feldman and Cousins
method and they observed zero events with a background of 2.88, and then with this they claimed that
they were in contradiction with the LSND experiment. But people believed that. So if you take it only
statistically, it's very good.

J. Bouchez

Isit worse to publish signal lower than minus 2, or -0.0001, which doesn’t seem to please you,
or lower than one, depending on the method you choose? Is there a criterion to decide what is the best
ordering?

C. Giunti

| don't know if there isabest ordering. | am proposing this as an improvement. | am not claiming
that it is the best.

J. Bouchez

Why do you think it is an improvement?

C. Giunti

Just what | said. If you measure fewer events than you expect from background, then your limits
are not unphysically narrow.

J. Bouchez

And why does Bob think that the Feldman-Cousins method is better than central intervals?

R. Cousins

Let me refer back to this plot from my talk. These are two methods for calculating neutrino
oscillations limits which both have exact frequentist coverage, and the point Gary was trying to make
was that two methods with exact frequentist coverage are not equivalent if they are very different in
rejecting false hypotheses. Any statistician will tell you that you want to minimize both types of errors.
Thereisatrade-off you can argue about, but if two methods both give frequentist coverage, certainly one
criterion for preferring one or the other is the power to reject false hypotheses.

C. Giunti

What is the problem with fal se hypotheses? Here we are giving some range of parameters so there
is no false hypothesis.
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R. Cousins

Both those methods happen to give an interval that actually covers the true value, and one of them
coversawholelot of valuesthat are not the true value, and the other one coversjust afew values that are
not the true value.

Don Groom

Maybe | misunderstood you, but | thought you said that the case of zero events wasn’t especially
different from any other case, and you seem happy that the limits should be dependent on the background.
And yet you know for sure that there are no signal events and that's a totally independent fact from
whatever the background is. Why doesn’t the limit have to be independent of B?

C. Giunti

Well, | am also asking why not? When N = 0 it istrue that there is no background and no signal
observed. But still there is background expected, so in my opinion we could formulate a special theory
for N = 0, but it would not be general. We should treat al NV in the same way. For example here |
coloured the curves only when B is bigger than N. So you can see that in both the unified approaches,
thereis adecrease. In Bayesian ordering the decrease is | ess steep and the minimum upper limit that one
can get is higher. But | think nobody can question, for example, this part of the curves. Indeed, what
do you have here ? If you measure a given number of events, the limit will be stronger if the expected
background is higher. So thisisanatural behaviour, as| said, because there islessroom for atrue event,
and thisistrue also when N = 0. When N = 0, if you measure N = 0 there is less room for a true
event.

Peter Clifford

The likelihood ratio, of course, finds the optimal test for one simple hypothesis against a simple
hypothesis. When you put in the denominator the maximum likelihood estimate, you're saying ‘well
let’s construct atest against the specific value of the parameter, let's make that parameter the one which,
in a sense, would be the most challenging one to test against’. It's not the likelihood ratio with the
maximum likelihood estimate, it’s not the uniformly most powerful test, because there isn’'t a uniformly
most powerful test. | just wanted to eliminate that confusion which might have crept in. So, the question
is‘what value of the parameter decides the one you're testing? Should you be trying to design your test
to be optimal against. | would tend to support you when saying ‘well, that's your choice, and you've
chosen a parameter value which is the expected value according to some Bayesian calculation’ whereas
you could choose a parameter according to a maximum likelihood criterion.

C. Giunti

I make this choice only for physical reasons, not for statistical reasons.
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