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Abstract
It is shown that all the Frequentist methods are equivalent from a statistical
point of view, but thephysical significanceof theconfidence intervalsdepends
on the method. The Bayesian Ordering method is presented and confronted
with the Unified Approach in the case of a Poisson process with background.
Some criticisms to both methods are answered. It is also argued that a general
Frequentist method is not needed.

1. INTRODUCTION

In this report I will be concerned mainly with the Frequentist (classical) theory of statistical inference,
but I think that it is interesting and useful that I expressmy opinion on thewar between Frequentistsand
Bayesians. To thequestion

“Areyou Frequentist or Bayesian?”

I answer

“ I likestatistics.”

I think that if one likesstatistics, onecan appreciate thebeauty of both Frequentist and Bayesian theories
and the subtleties involved in their formulation and application. I think that both approaches are valid
from a statistical as well as physical point of view. Their difference arises from different definitions
of probability and their results answer different statistical questions. One can like more one of the two
theories, but I think that it is unreasonable to claim that only one of them is correct, as some partisans
of that theory claim. These partisans often produce examples in which the other approach is shown to
yield misleading or paradoxical results. I think that each theory should be appreciated and used in its
limited range of validity, in order to answer the appropriate questions. Finding some example in which
oneapproach fails does not disprove its correctness in many other cases that lie in its rangeof validity.

My impression is that the Bayesian theory (see, for example, [1]) has a wider range of validity
because it can be applied to cases in which the experiment can be done only once or a few times (for
example, our thoughts in everyday decisions and judgments seem to follow an approximate Bayesian
method). In these cases the Bayesian definition of probability as degree of belief seems to me the only
one that makes senseand is able to providemeaningful results.

Let me recall that since Galileo an accepted basis of scientific research is the repeatability of ex-
periments. This assumption justifies the Frequentist definition of probability as ratio of the number of
positive cases and total number of trials in a large ensemble. The concept of coverage follows imme-
diately: a

���������
confidence interval for a physical quantity � is an interval that contains (covers) the

unknown true value of that quantity with a Frequentist probability
�

. In other words, a
���������

confi-
dence interval for � belongs to a set of confidence intervals that can be obtained with a large ensemble
of experiments,

���������
of which contain the truevalueof � .
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2. THE STATISTICAL AND PHYSICAL SIGNIFICANCE OF CONFIDENCE INTERVALS

I think that in order to fully appreciate the meaning and usefulness of Frequentist confidence intervals
obtained with Neyman’smethod [2, 3], it is important to understand that theexperiments in theensemble
do not need to be identical, as often stated, or even similar, but can be real, different experiments [2, 4].
One can understand this property in a simple way [5] by considering, for example, two different exper-
iments that measure the same physical quantity � . The

���������
classical confidence interval obtained

from theresultsof each experiment belongsby construction to aset of confidence intervalswhich can be
obtained with an ensemble of identical experiments and contain the true value of � with probability

�
.

It is clear that the sum of these two sets of confidence intervals, containing the two confidence intervals
obtained in the two different experiments, is still a set of confidence intervals that contain the true value
of � with probability

�
.

Moreover, for the same reasons it is clear that the results of different experiments can also be
analyzed with different Frequentist methods [6], i.e. methods with correct coverage but different pre-
scriptions for the construction of the confidence belt. This for me is amazing and beautiful: whatever
method you choose you get a result that can be compared meaningfully with the results obtained by
different experiments using different methods! It is important to realize, however, that the choice of the
Frequentist method must bedoneindependently of theknowledgeof thedata(beforelooking at thedata),
otherwise theproperty of coverage is lost, as in the “flip-flop” example in Ref. [7].

This property allow us to solve an apparent paradox that follows from the recent proliferation of
proposed Frequentist methods[7, 8, 9, 10, 11, 12]. Thisproliferation seemsto introducealargedegreeof
subjectivity in theFrequentist approach, supposed to beobjective, due to theneed to chooseonespecific
prescription for the construction of the confidence belt, among several available with similar properties.
Fromtheproperty above, weseethat whatever Frequentist methodonechooses, if implementedcorrectly,
the resulting confidence interval can be compared statistically with the confidence intervals of other
experiments obtained with other Frequentist methods. Therefore, the subjective choice of a specific
Frequentist method does not haveany effect from a statistical point of view!

Then you should ask me:

Why areyou proposing aspecific Frequentist method?

The answer lies in physics, not statistics. It is well known that the statistical analysis of the same data
with different Frequentist methods produce different confidence intervals. This difference is sometimes
crucial for the physical interpretation of the result of the experiment (see, for example, [8, 10]). Hence,
thephysical significanceof theconfidenceintervalsobtained with different Frequentist methodsissome-
timescrucially different. In other words, theFrequentist method suffersfroma degreeof subjectivity from
a physical, not statistical, point of view.

3. THE BEAUTY OF THE UNIFIED APPROACH AND ITS PITFALLS

The possibility to apply successfully Frequentist statistics to problematic cases in frontier research has
received a fundamental contribution with theproposal of theUnified Approach by Feldman and Cousins
[7]. TheUnified Approach consists in aclever prescription for theconstruction of “aclassical confidence
belt which unifies the treatment of upper confidence limits for null results and two-sided confidence
intervals for non-null results” .

In thefollowing I will consider thecaseof aPoisson processwith signal � and known background	
. Theprobability to observe 
 events is

�� 
�� ��� 	����
� ��� 	����������! #"%$'&


�( ) (1)
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The Unified Approach is based on the construction of the acceptance intervals * 
�+ � � � �,
�- � � �/.
ordering the 
 ’s through their rank given by the relativemagnitudeof the likelihood ratio

01� 
��2��� 	3���
�4� 
5� ��� 	���� 
5� ��687�9/:;� 	��

� ��� 	
�<6=7>9?:@� 	

� �  BADC?EGF��% � (2)

where �<6=7>9?: is themaximum likelihood estimateof � ,

�<6=7>9?: � 
�� 	3���IHKJ�L * � �,
�M 	>.
) (3)

Asaresult of thisconstruction theconfidence intervalsare two-sided (i.e. * �<NPO2Q��2�<R�S . with �<N O2QUT �
) for
KV 	

, whereas for 
KW 	
they areupper limits (i.e. � N O2Q � �

).

The fact that the confidence intervals are two-sided for 
XV 	
can be understood by considering
YT 	

, that gives � 687�9/: � 
�M 	
. In this case the likelihood ratio (2) isgiven by

01� 
YT 	 �2��� 	���� ��� 	



� � �#���Z #"%$[& �]\=L#^4_ 
K* � �a` b � ��� 	�� Ma` bc
 . M � ��� 	��[d �%efM<g �
) (4)

This implies that the rank of high values of 
 is very low and they are excluded from the confidence
belt. Therefore, the acceptance intervals * 
�+ � � � �,
�- � � �/. are always bounded, i.e. 
<- � � � is finite, and
the confidence intervals are two-sided for 
hV 	

, as illustrated in Fig. 1, where the solid lines show the
borders of theconfidencebelt for abackground

	i�kj
and aconfidence level

� � �
)
l��

.

Fig. 1: Confidence belt in the Unified Approach for back-

ground m�npo and confidence level qrnts�u!v>s .

Fig. 2: Confidence belt in the Unified Approach for back-

ground mwn�o and confidence level qrnts�u!o>s .

The fact that the confidence intervals are upper limits for 
KW 	
can be understood by considering
yx 	

, for which we have �<6=7>9?: � �
and the likelihood ratio that determines the ordering of the 
 ’s in

theacceptance intervals is given by

01� 
�x 	 �2��� 	���� � � � 	
� � �% 

) (5)

Considering now the acceptance interval for � � �
, we have

01� 
zx 	 �2� � � � 	��� �
. Therefore, all
Ix 	

for � � �
have highest rank and are guaranteed to lie in the confidence belt. This is illustrated

in Fig. 1, where the thick solid segment shows the 
ax 	
part of the acceptance interval for � � �

, that
must lie in the confidence belt. Since � is a continuous parameter, also for small values of � the 
Xx 	
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have rank close to the highest one and lie in the confidence belt. Indeed, for �{T �
, the likelihood ratio

(2) increases for 
 going from zero to the largest integer smaller or equal to
	

and decreases for larger
values of 
 . Hence, the largest integer 
�|�} such that 
�|�}~x 	

has highest rank. If � is sufficiently small
all 
ax 	

have rank close to maximum and are included in the confidence belt if the confidence level is
large enough,

� V �
)
���

. For example,
0�� 
 � � �2��� 	�� T 01� 
�|�}�� � �2��� 	�� for �U� � � � 	3�[��� +�� � + "%$'& M 	

.
Therefore, the left edgeof theconfidencebelt must change itsslope for 
KW 	

and intercept the � -axisat
a positive value of � , as illustrated in Fig. 1. The value of � at which the left edge of the confidence belt
intercepts the � -axis, that corresponds to �<R�S � 
 � � �

, depends on the value of the background
	

and on
thevalueof theconfidence level

�
.

However1, for small values of
�

the Unified Approach gives zero-width confidence intervals for
a� 	
, as illustrated in Fig. 2, where I have chosen

	���j
and

� � �
)
j �

. One can see that the segment
Yx 	
isenclosed in theconfidencebelt for � � �

, but for any valueof �YT �
thesum of theprobabilities

of the 
 ’s close to ��� 	
is enough to reach the confidence level and low values of 
 are not included in

the confidence belt. Hence, in this case the Unified Approach gives zero-width confidence intervals for
Y�I� .
The unification of the treatments of upper confidence limits for null results and two-sided con-

fidence intervals for non-null results obtained with the Unified Approach is wonderful, but it has been
noticed that the upper limits obtained with the Unified Approach for 
X� 	

are too stringent (meaning-
less) from a physical point of view [8, 13]. In other words, although these limits are statistically correct
from a Frequentist point of view, they cannot be taken as reliable upper bounds to be used in physical
applications.

This problem is illustrated in Fig. 3A, where I plotted the 90% CL upper limit � R�S as a function
of
	

for 
 � � � )=)�) �
j
. The solid part of each line shows where

	4� 
 . One can see that for a given 
 ,� R�S decreases rather steeply when
	

is increased, until a minimum value close to one is reached. The
curveshave jumpsbecause 
 is an integer and generally thedesired confidence level cannot beobtained
exactly, but with someunavoidableovercoverage.

Fig. 3: 90% CL upper limit ���2� as a function of the background m for ��n�s (lower lines), u,u,u , ��n�o (upper lines). The solid

part of each lineshows where m���� .

Let meemphasizethat theproblem of obtaining too stringent upper limitsfor 
Y� 	
isvery serious

for ascientist that wantsto obtain reliableinformation from experiment and usethisinformation for other
purposes(as input for a theory or another experiment). In thepast, researchersbearing thesamephysical
point of view refrained to report empty confidence intervals or very stringent upper limits when 
�� 	

1Let me emphasize that I discuss this case only for the sake of curiosity. It is pretty obvious that a low value of q is devoid
of any practical interest.
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was measured. These confidence intervals are correct from a statistical point of view, but useless from a
physical point of view. Furthermore, the same reasoning lead to prefer the Unified Approach to central
confidence intervals or upper limits, because the non-empty confidence interval obtained when 
]� 	

is
measured is certainly more significant, from a physical point of view, than an empty one, although they
arestatistically equivalent, as shown in Section 2..

4. A BRUTAL MODIFICATION OF THE UNIFIED APPROACH

In the Unified Approach �<6=7>9?: is positive and equal to zero for 
zx 	
. If �<687�9/: is forced to be always

bigger than zero, the 
 ’ssmaller than
	

haverank higher than in theUnified Approach. Asaconsequence,
thedecreaseof theupper limit � R�S as

	
increasesisweakened. This is illustrated by a “ Brutally Modified

Unified Approach” (BMUA) in which we take

�<6=7>9?: �IHKJ3L * �<��� �6=7>9?: �,
pM 	>. � (6)

where � ���P�6=7>9?: is apositive real number.

In Fig. 4 I plotted the confidence belts for � ���P�6=7>9?: � �
(solid lines), that corresponds to the Unified

Approach, � ���P�6=7>9?: � �
(dashed lines) and � ��� �6=7>9?: � � (dotted lines), for

	t� ���
. One can see that in the

BMUA theupper limitsof theconfidenceintervalsareconsiderably higher than in theUnified Approach.
The behavior of � R�S as a function of

	
for 
 � �

is shown in Fig. 5, from which it is clear that the
decrease of ��R�S when

	
increases is much weaker in the BMUA (dashed and dotted lines) than in the

Unified Approach (solid line) and it isalmost absent for � ��� �687�9/: Vy� .

Fig. 4: 90% confidence belts for m�n��>s in the Unified Ap-

proach (����� �ADC?EGF nts , solid lines) and in theBrutally Modified

Unified Approach (BMUA) for � ��� �ADC?EGF nz� (dashed lines)

and ����� �A[C�E�F np� (dotted lines).

Fig. 5: 90% CL upper limit ���2� as a function of the back-

ground m for ��n�s in the Unified Approach (����� �A[C�E�F n s ,

solid line) and in the BMUA for � ��� �ADC?EGF ny� (dashed line)

and ����� �A[C�EGF np� (dotted line).

Let meemphasize that

1. TheBMUA is astatistically correct Frequentist method and coverage is satisfied.

2. In the BMUA one obtains upper limits for 
YW 	
and central confidence intervals for 
�V 	

, as in
theUnified Approach2.

2For �t¡tm<¢4����� �ADC?EGF wehave � A[C�E�F n������ �ADC?EGF and the likelihood ratio (2) becomes

£i¤ ��¡tm<¢� ��� �A[C�E�F�¥ � ¥ m3¦�n ��¢m� ��� �ADC?EGF ¢m
§�¨8©2ª�« ¬¯®±°³²2´ © u (7)
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3. The BMUA method is not general (although it can be extended in an obvious way at least to the
caseof agaussian variablewith aphysical boundary).

4. I am not proposing the BMUA! (But those that think that the upper limit for 
 � �
should not

depend on
	

may consider the possibility of using the BMUA with � ��� �687�9/: � � instead of resorting
to morecomplicated methods that may even jeopardize theproperty of coverage3.)

As shown in Fig. 4, the right edge of the confidence belt in the BMUA is not very different from
theonein theUnified Approach. This isdueto thefact that adding small valuesof 
 with low probability
to the acceptance intervals has little effect. Moreover, it is clear that the acceptance interval for � � �
is equal for all Frequentist methods with correct coverage that unify the treatment of upper confidence
limits and two-sided confidence intervals.

5. BAYESIAN ORDERING

An elegant, natural and general way to obtain automatically � ���P�6=7>9?: T �
isgiven by theBayesian Ordering

method [8], in which �<6=7>9?: is replaced by theBayesian expectation value for � , ��µ .

Choosing a natural flat prior, the Bayesian expectation value for � in a Poisson process with
background is given by

�<µ � 
�� 	���� 
p� � M
�
¶�·¹¸

º�	 ¶
º (

�
¶»·#¸

	 ¶
º (

� + � 
�� � M 	 �#� +
¶»·#¸

	 ¶
º (

�
¶»·#¸

	 ¶
º (

� +
) (8)

The obvious inequality
�¶»·#¸ ºc	 ¶#¼ º (�x½
 �¶»·#¸ 	 ¶¹¼ º ( implies that �<µ � �

. Therefore, the reference
value for � in the likelihood ratio

0�� 
��,��� 	����
�� 
5� ��� 	���� 
�� �<µw� 	��

� ��� 	
�<µ¾� 	

� �  ¹¿B�% � (9)

that determines the construction of the acceptance intervals as in the Unified Approach, is bigger or
equal than one. Asaconsequence, thedecreaseof theupper confidence limit � R�S for agiven 
 when the
expected background

	
increases is significantly weaker than in the Unified Approach, as illustrated in

Fig. 3B.

Figure 3C shows �<R�S as a function of
	

in the Bayesian Theory with a flat prior and shortest
credibility intervals4. Onecan see that thebehavior of � R�S obtained with theBayesian Ordering method

For �tÀt����� �ADC?EGF , wehave
¤ �i¢cm3¦�Á ¤ ����� �A[C�E�F ¢cm�¦�À¾� and

£Â¤ �t¡tm�¢Â����� �ADC?EGF ¥ � ¥ m�¦ decreaseswith increasing � . Let usconsider now��Ã�mÄ¢����� �ADC?EGF , for which � ADC?EGF n��Åm and the likelihood ratio (2) is given by the expression in Eq. (4). This expression has
amaximum for � equal to oneof the two integersclosest to ��¢1m . For �tÀt����� �ADC?EGF , this integer is thefirst one in theconsidered
range (��Ãtm�¢����� �ADC?EGF ). Therefore, for sufficiently low valuesof � , ��Àt����� �A[C�EGF , the likelihood ratio (2) decreasesmonotonically
as � increases. In thiscase, low valuesof � havehighest ranksand areguaranteed to lie in theconfidencebelt and the left edge
of theconfidencebelt must change itsslope for �1WK����� �A[C�E�F ¢�m and intercept the � -axisat apositivevalueof � , as illustrated in
Fig. 4.

3By the way, I think that coverage is the most important property of the Frequentist theory. If coverage is not satisfied the
results arestatistically useless in thecontest of Frequentist theory.

4In this case theposterior p.d.f. for � is

ÆÂ¤ �ÈÇ � ¥ m3¦�n ¤ m<¢�É¦ § ¨ ´ © �ÉÊ
§
Ë,Ì�Í m

ËÎ Ê
´#Ï ¥ (10)

and theprobability (degreeof belief) that the truevalueof � lies in the range Ð �ÑÏ ¥ �ÉÒ?Ó is given by

ÆÂ¤ �tÔ4Ð ��Ï ¥ �ÈÒ�ÓÕÇ � ¥ m3¦�n ¨ ´ ©�Ö §Ë2Ì�Í
¤ m<¢��Ï¯¦ ËÎ Ê Å ¨ ´ ©2×

§
Ë2Ì�Í

¤ m<¢�ÈÒ2¦ ËÎ Ê
§
Ë,Ì�Í m

ËÎ Ê
´#Ï
u (11)

The shortest �>s3s�q<Ø credibility intervals Ð �ÉÙ Ú?Û ¥ �É�¯�¯Ó are obtained by choosing �ÉÙ Ú?Û and ���¯� such that
Æc¤ � ÔÐ � Ù Ú/Û ¥ ���2�>ÓÕÇ � ¥ m3¦�n�q and

Æc¤ � Ù Ú/Û Ç � ¥ m�¦�n Æc¤ ���2��Ç � ¥ m�¦ if possible (with � Ù Ú?Û �Üs ), or � Ù Ú?Û nts .
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is intermediate between those in the Unified Approach and in the Bayesian Theory. Although one must
always remember that thestatistical meaning of �<R�S isdifferent in the two Frequentist methods (Unified
Approach and Bayesian Ordering) and in the Bayesian Theory, for scientists using these upper limits it
is often irrelevant how they have been obtained. Hence, I think that an approximate agreement between
Frequentist and Bayesian results is desirable.

Fig. 6: Confidence belt obtained with the Bayesian Order-

ing for background mwnpo and confidence level qrnts�u!v>s .

Fig. 7: Confidence belt obtained with the Bayesian Order-

ing for background mwnpo and confidence level qrnts�u!o>s .

From Eq. (8) onecan see that


YÝ 	 �<Þ �<µ � 
�� 	3��ß 
�� � M 	iß 
r� (12)


KW 	 � 	 Ý � �<Þ �<µ � 
�� 	3��ß �
) (13)

Therefore, for 
{Ý 	
the confidence belt obtained with the Bayesian Ordering method is similar to that

obtained with the Unified Approach. The difference between the two methods show up only for 
UW 	
.

This is illustrated in Figs. 6 and 7, that must be confronted with the corresponding Figures 1 and 2 in
the Unified Approach. Notice that, as shown in Fig. 7, contrary to the Unified Approach, the Bayesian
Ordering method gives physically significant (non-zero-width) confidence intervals even for low values
of theconfidence level

�
.

6. ANSWERS TO SOME CRITICISMS

Criticism: Bayesian Ordering is a mixture of Frequentism and Bayesianism. The uncompromising Fre-
quentist cannot accept it.

No! It is aFrequentist method.

Bayesian theory is only used for the choice of ordering in the construction of the acceptance
intervals, that in any case is subjective and beyond Frequentism (as, for example, the central interval
prescription or the Unified Approach method). The Bayesian method for such a subjective choice is
quitenatural.

If you belong to the Frequentist Orthodoxy (sort of religion!) and the word “Bayesian” gives you
thecreeps, you can changethename“Bayesian Ordering” into whatever you likeand useitsprescription
for theconstruction of theacceptance intervals as asuccessful recipe.

Criticism: In the Unified Approach (and maybe Bayesian Ordering?) the upper limit on � goes to zero
for every 
 as

	
goes to infinity, so that a low fluctuation of the background entitles to claim a very

stringent limit on thesignal.
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This is not true!

Onecan see it5 doing acalculation of theupper limit for � as a function of
	

for largevalues of
	
.

The result of such a calculation in the Unified Approach is shown in Fig. 8A, where the 90% CL upper
limit � R�S is plotted as a function of

	
in the interval

� x 	 xà� ��� for 
 � �
(solid line), 
 ��j

(dashed
line) and 
 � ���

(dotted line). Onecan seethat initially � R�S decreaseswith increasing
	
, but it stabilizes

to about 0.8 for
	 Ýá
 , with fluctuations due to the discreteness of 
 . Figure 8B shows the same plot

obtained with theBayesian Ordering. Onecan see that initially � R�S decreaseswith increasing
	
, but less

steeply than in the Unified Approach, and it stabilizes to about 1.8. For comparison, in Fig. 8C I plotted� R�S asa function of
	

in theBayesian Theory with aflat prior and shortest credibility intervals. Onecan
see that thebehavior of � R�S in the threemethods considered in Fig. 8 is rather similar.

â ã ä å æ ç è é ê æ ë ì í è î ï ç

ð

ñ òó
ô õö
÷ ø ù
ú

û ü üý þ üý ü üþ üü

ý ÿ
ý �
ý û
ý ü
�
ÿ
�
û
ü

� � � � � � � 	 
 � � �  � �  
 � �

�

� ��
� ��
� �
��

� � �� � �� � �� ��

� �
�  
� �
� �
!
�
 
�
�

" # $ % & ' ( ) * + , , - . / 0 1

2

3 45
6 78
9 :
;<

= > >? @ >? > >@ >>

? A
? B
? =
? >
C
A
B
=
>

Fig. 8: 90% CL upper limit �É�¯� as a function of the background m for � n s (solid lines), � n�o (dashed lines) and � n��>s
(dotted lines).

Criticism: For 
 � �
theupper limit � R�S should be independent of thebackground

	
.

But for 
IT �
the upper limit ��R�S always decreases with increasing

	
! It is true that for 
 � �

one is sure that no background event as well as no signal has been observed. But this is just the effect
of a low fluctuation of the background that is present! Should we built a special theory for 
 � �

? I
think that this is not interesting in theFrequentist framework, because I guess that it leads necessarily to
aviolation of coverage (that could be tolerated, but not welcomed, only if it is overcoverage).

I think that if one is so interested in having an upper limit � R�S independent of the background
	

for 
 � �
, one better embrace the Bayesian theory (see Fig. 3C, Fig. 8C and Ref. [14]), which, by the

way, may present many other attractivequalities (see, for example, [1]).

Criticism: A (worse) experiment with larger background
	

should not givea smaller upper limit � R�S for
thesamenumber 
 of observed events.

But, asshown in Fig. 3, thisalwayshappens! Notice that it happensboth for 
YT 	
(dotted part of

lines) and for 
Xx 	
(solid part of lines), in Frequentist methods as well as in the Bayesian Theory (for
YT �

). Asfar asI know, nobody questionsthedecreaseof � R�S as
	

is increased if 
YT 	
. So why should

wequestion thesamebehavior when 
Yx 	
? Thereason for thisbehavior issimple: theobservation of a

5In the Unified Approach the likelihood ratio for � ¡ m is given by the expression in Eq. (5), that tends to

¨ ´ © for mEDI�
and small � . For �GF�� , ¨ ´ ©IH � and all �GF�m have rank close to maximum. For � Ãrm the likelihood ratio is given by the
expression in Eq. (4). For large values of m , taking into account that �rÃ m , we have �Ä¢KJML ¤ �1¢4m�¦#ÅKJNLÄ� H

JNLÄm@ÅOJMLÄ�rÀ�s
and �4¢tm H m , which imply that

£i¤ �pÃ�m ¥ � ¥ m3¦�À ¨ ´QP PSRUTÅWV s . So the rank drops rapidly for �pÃ�m . Therefore, for small
valuesof � the � ’smuch smaller than m havehighest rank. Since they havealso very small probability, they all lie comfortably
in theconfidencebelt, if theconfidence level q is sufficiently large (qÜV�s�uYX>s ).
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given number 
 of observed events has the same probability if the background is small and the signal is
largeor thebackground is largeand thesignal is small.

I think that it is physically desirable that and experiment with a larger background do not give a
much smaller upper limit for the same number of observed events, but a smaller upper limit is allowed
by statistical fluctuation. Indeed,

upper limits (as confidence intervals, etc.) arestatistical quantities that must fluctuate!

I think that the current race of experiments to find the most stringent upper limit is bad6, because it
induces people to think that limits arefixed and certain. Instead, everybody should understand that

abetter experiment can sometimesgiveaworseupper limit becauseof statistical fluctuations
and there is nothing wrong about it!

7. CONCLUSIONS

In this report I have shown that the necessity to choose a specific Frequentist method, among several
available, does not introduce any degree of subjectivity from a statistical point of view (Section 2.) [6].
In other words, all Frequentist methods arestatistically equivalent.

However, the physical significance of confidence intervals obtained with different methods is dif-
ferent and scientists interested in obtaining reliable and useful information on the characteristics of the
real world must worry about this problem. Obtaining empty or very small confidence intervals for a
physical quantity as a result of a statistical procedure is useless. Sometimes it is even dangerous to
present such results, that lead non-experts in statistics (and sometimes experts too) to falsebeliefs.

In Section 3. I have discussed some virtues and shortcomings of the Unified Approach [7]. These
shortcomingsareameliorated in theBayesian Ordering method [8], discussed in Section 5., that isnatu-
ral, relatively easy, and leads to more reliableupper limits.

In conclusion, I would like to emphasize the following considerations:
Z One must always remember that, in order to have coverage, the choice of a specific Frequentist

method must bedone independently of theknowledgeof thedata.Z Finding someexamples in which amethod failsdoesnot imply that it should not beadopted in the
cases in which it performs well.Z Sinceall Frequentist methods arestatistically equivalent,

there is no need of ageneral Frequentist method!
In each caseonecan choosethemethod that worksbetter (basing the judgment on easiness, mean-
ingfulness of limits, etc.). Complicated methods with a wider range of applicability are theoreti-
cally interesting, but not attractive in practice.Z Somebody thinks that the physics community should agree on a standard statistical method (see,
for example, [15])7. In that case, it is clear that this method must be always applicable. But this
is not the case, for example, of the Unified Approach, as shown in [16]. Although the Bayesian
Ordering method has not been submitted to a similar thorough examination, I doubt that it is
generally applicable.

6It is surprising that even at the Panel Discussion [15] of this Workshop (full of experts) the statement “ the experimenters
like to quote the smallest bound they can get away with” was not strongly criticized. What is the purpose of experiments? (A)
Give the smallest bound. (B) Give useful and reliable information. If your answer is (A) and you are an experimentalist, I
suggest that you stop deceiving us and move to somemore rewarding cheating activity.

7As a theorist, I find the argument, presented by an experimentalist, that a standard is useful because otherwise one is
tempted to analyze the data with the method that gives the desired result quite puzzling. But if I were an experimentalist I
would bequiteoffended by it. Isn’t it adenigration of theprofessional integrity of experimental physicists?
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I do not see why experiments that explore different physics and use different experimental tech-
niques should all use the same statistical method (except a possible ignorance of statistics and
blind belief of “authorities” ).
I would recommend that

instead of wasting time on useless characteristics as generality, the physics community
should worry about theusefulness and credibility of experimental results.
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Discussion after talk of Carlo Giunti. Chairman: Jim Linnemann.

Bob Cousins

In theprevioustalk I showed on thepagefrom Kendall and Stuart and Ord that the likelihood ratio
ordering isanything but arbitrary. It is inspired by theNeyman-Pearson lemmawhich ishardly arbitrary.

C. Giunti

What do you mean - Is that abible?

R. Cousins

The Neyman-Pearson lemma shows that the likelihood ratio is the optimal way to classify events.
We thought about it a lot and we don’t completely understand how to leap from there to confidence
intervals, but thefact that an ordering based on theNeyman-Pearson lemmaistheoptimal way to separate
out signal from background is not arbitrary.

C. Giunti

No, but that has nothing to do with ordering. So, I understand that the maximum likelihood is a
useful quantity, but ...

R. Cousins

It’s not themaximum likelihood, it is the likelihood ratio.

Gary Feldman

Can I add to that comment? You made the statement that you get coverage in all cases, so it’s
arbitrary which ordering principle you use. This is not true. The point is that there are two types of
errors you can make in statistics. The error of the first type is to reject a true hypothesis. That we do
a fixed fraction of the time if we do statistics and that’s the confidence level. The error of the second
type is to accept a false hypothesis. This is the power of the technique, and generally you strive for the
technique which is most powerful. Now, when you have two-sided intervals there is no uniformly most
powerful method. However, for one sided intervals there is, and you will notice that in the case where
your intervalsareone-sided, compared to wherethey areone-sided in theunified method, that theunified
method is morepowerful, in other words the intervals aresmaller.

C. Giunti

You say that the limit is more stringent. Let’s take a specific example. For the Poisson with
background, when the number of events is bigger than the background, then the limit is very similar in
the two cases. When you go below thebackground, then the limit in theunified approach issignificantly
morestringent, but this, from thephysical point of view, is not meaningful.

Jacques Bouchez

MaybeBob can comment also on my question. I wanted to know on which criteriayou judge that
one ordering method is better than another. In Bob’s list of properties of the Feldman-Cousins method,
onewas: Thereisan improvement over central intervals. In what sensedo you think it’san improvement?
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Just because thereare fewer null results? Is it not subjective to consider that thenull hypothesis isbad or
good?

C. Giunti

The choice of the methods is always subjective. Take, for example, the case of the Karmen I
experiment which is very well-known. In the Neutrino ’98 conference, they used Feldman and Cousins’
method and they observed zero events with a background of 2.88, and then with this they claimed that
they were in contradiction with the LSND experiment. But people believed that. So if you take it only
statistically, it’s very good.

J. Bouchez

Is it worse to publish signal lower than minus 2, or -0.0001, which doesn’t seem to please you,
or lower than one, depending on the method you choose? Is there a criterion to decide what is the best
ordering?

C. Giunti

I don’t know if there isabest ordering. I am proposing thisasan improvement. I am not claiming
that it is thebest.

J. Bouchez

Why do you think it is an improvement?

C. Giunti

Just what I said. If you measure fewer events than you expect from background, then your limits
arenot unphysically narrow.

J. Bouchez

And why does Bob think that theFeldman-Cousins method is better than central intervals?

R. Cousins

Let me refer back to this plot from my talk. These are two methods for calculating neutrino
oscillations limits which both have exact frequentist coverage, and the point Gary was trying to make
was that two methods with exact frequentist coverage are not equivalent if they are very different in
rejecting false hypotheses. Any statistician will tell you that you want to minimize both types of errors.
There isatrade-off you can argueabout, but if two methodsboth givefrequentist coverage, certainly one
criterion for preferring oneor theother is thepower to reject falsehypotheses.

C. Giunti

What is theproblem with falsehypotheses? Herewearegiving somerangeof parametersso there
is no falsehypothesis.

74



  

R. Cousins

Both thosemethodshappen to givean interval that actually covers the truevalue, and oneof them
coversawhole lot of values that arenot the truevalue, and theother onecovers just a few values that are
not the truevalue.

Don Groom

Maybe I misunderstood you, but I thought you said that the case of zero events wasn’t especially
different from any other case, and you seem happy that thelimitsshould bedependent on thebackground.
And yet you know for sure that there are no signal events and that’s a totally independent fact from
whatever thebackground is. Why doesn’t the limit have to be independent of B?

C. Giunti

Well, I am also asking why not? When [ � �
it is true that there is no background and no signal

observed. But still there is background expected, so in my opinion we could formulate a special theory
for [ � �

, but it would not be general. We should treat all [ in the same way. For example here I
coloured the curves only when \ is bigger than [ . So you can see that in both the unified approaches,
there isadecrease. In Bayesian ordering thedecrease is lesssteep and theminimum upper limit that one
can get is higher. But I think nobody can question, for example, this part of the curves. Indeed, what
do you have here ? If you measure a given number of events, the limit will be stronger if the expected
background ishigher. So this isanatural behaviour, as I said, because there is less room for a trueevent,
and this is true also when [ � �

. When [ � �
, if you measure [ � �

there is less room for a true
event.

Peter Clifford

The likelihood ratio, of course, finds the optimal test for one simple hypothesis against a simple
hypothesis. When you put in the denominator the maximum likelihood estimate, you’re saying ‘well
let’s construct a test against thespecific valueof theparameter, let’smake that parameter theonewhich,
in a sense, would be the most challenging one to test against’ . It’s not the likelihood ratio with the
maximum likelihood estimate, it’s not the uniformly most powerful test, because there isn’t a uniformly
most powerful test. I just wanted to eliminate that confusion which might havecrept in. So, thequestion
is ‘what valueof theparameter decides theoneyou’re testing?’ Should you be trying to design your test
to be optimal against. I would tend to support you when saying ‘well, that’s your choice, and you’ve
chosen a parameter value which is the expected value according to some Bayesian calculation’ whereas
you could chooseaparameter according to amaximum likelihood criterion.

C. Giunti

I make this choiceonly for physical reasons, not for statistical reasons.
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