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1. Introduction

String propagation on curved backgrounds with an AdS 3 factor has been of recent

interest (see for instance [1]–[6], and [7] for additional references). One motivation

is the fact that AdS 3 ' SL(2) is an exact background which can be treated in string
pertubation theory, and thus allows to consider the AdS/CFT correspondence [8] be-

yond the supergravity limit. Some specific examples that were studied in this context

include superstrings propagating on AdS3×N where N was a group manifold [3, 9],
or an orbifold of a group manifold [10, 11]. In this paper we study cases in which

N is a coset manifold. This is an interesting generalization of the AdS/CFT cor-
respondence which has been considered in the higher-dimensional cases of type-IIB

string theory on AdS 5×N 5 [12] and of M-theory on AdS 4×N 7 [13, 14], where N 5
and N 7 are Einstein manifolds (generically coset manifolds) preserving a fraction
of supersymmetry. This type of construction allows one to consider dual supersym-

metric CFTs which are not “orbifolds” of the maximally supersymmetric one. The

AdS 3×N case is somewhat different since here we have the possibility of studying
N in the context of coset CFTs.
We choose to study coset CFTs which have a large radius (or large level k)

semiclassical limit, corresponding to superstrings propagating on seven-dimensional

coset manifolds. Moreover, we focus on cases in which the dual two-dimensional
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theory (also referred to as the spacetime CFT) has an extended superconformal

symmetry.1 Coset models leading to N = 2 can be easily realized as particular

cases of the general construction of [15], where N decomposes as a U(1) factor times
a Kazama-Suzuki model [16]. On the other hand, there are no seven-dimensional

coset manifolds leading to N = 4 supersymmetry in spacetime (except of course the

cases [3, 9] in which the cosets are actually group manifolds). Therefore, we shall be

interested in the cases where the spacetime CFT has N = 3 supersymmetry.

Our main result, presented in sections 3 and 4, is the construction of the space-

time N = 3 superconformal algebra in the two cases:

AdS 3×SU(3)
U(1)

, AdS 3×SO(5)
SO(3)

, (1.1)

which actually turn out to be the only coset models giving rise to N = 3. An

interesting by-product of the construction is related to the fact that getting N = 3

depends on the choice of chiral GSO projection. Choosing the opposite projection

leads to an N = 1 superconformal algebra in spacetime together with an SU(2) affine

algebra acting trivially on the supercharges. This spacetime structure also appears

in [11], where a Z2 orbifold of the large N = 4 algebra obtained by [9] is taken.

We also go beyond the coset setup by providing in section 6 a set of sufficient

conditions on a CFT background N which allow for the construction of N = 3
superconformal symmetry in spacetime from superstrings on AdS 3×N . We recover
the N = 1 structure for the other GSO projection also in this general setup. The

proof elaborates on the construction of N = 2 spacetime supersymmetry by [15], the

additional ingredient being the presence in the CFT on N of an affine SU(2). Finally,
we comment in section 7 on a possible geometrical interpretation of these conditions,

and relate our work to the case of M-theory compactified on AdS 4×N 7 [13, 14], as
well as to brane configurations.

2. Spacetime N = 3 superconformal algebra

Extended superconformal algebras in two dimensions also include an affine R-symme-

try algebra, which generally leads to a quantization of the central charge in unitary

theories. Specifically, the N = 3 superconformal algebra has an affine SU(2) sub-

algebra. The central charge is related to the level k̃ of this affine SU(2), which is

an integer, by c̃ = 3
2
k̃ [17]. Therefore, a necessary condition for string theory on a

background of the form AdS 3×N to have spacetime N = 3 superconformal sym-
metry is the existence of an affine SU(2) in spacetime. This is obtained when the

worldsheet CFT on N has an affine SU(2) symmetry as well [3]. If the respective
worldsheet levels of SL(2) and of SU(2) are k and k′, the analysis of [3, 5] shows that
1In the following we refer to the supersymmetry of, say, the left-movers only. The supersymmetry

of the other sector depends on the particular superstring theory considered.
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in the spacetime theory we have c̃ = 6kp and k̃ = k′p, where p is the integer number
introduced in [3], related to the maximal number of “long strings” [5, 18]. A further

condition is thus k′ = 4k (recall that k is not forced to be an integer).
In the following we focus on coset manifolds N which have 7 dimensions, so that

a large k semi-classical limit is possible. Two cases which satisfy the conditions given

above are SL(2)k ×N with:
N1 = SU(3)4k

U(1)
(2.1)

and

N2 = SO(5)4k
SO(3)

. (2.2)

Note that there are several ways of choosing the SO(3) in N2, according to the
nesting of subgroups SO(3) ⊂ SO(3)×SO(3) ' SO(4) ⊂ SO(5). Since we require N2
to have an unbroken SO(3) symmetry, we are forced to mod out by one of the two

SO(3) factors of SO(4).2 It is straightforward to show that the two models above

are critical:

csl + c1 =
(9
2
+
6

k

)
+
(
12− 24

4k
− 3
2

)
= 15 , (2.3)

csl + c2 =
(9
2
+
6

k

)
+
(
15− 30

4k
− 9
2
+
6

4k

)
= 15 . (2.4)

We now show that these two models indeed possess N = 3 superconformal symmetry

in spacetime by explicit construction. Since the construction is similar in the two

cases, we will focus here on the first case, and then go briefly over the second one.

3. Superstring theory on AdS 3× SU(3)/U(1)
We first have to set some notations, starting from the SL(2) WZW part. We mainly

follow the formalism of [16] and [3]. For simplicity we only treat the holomorphic

sector.

The SL(2) supersymmetric WZW model is constituted of the three currents of

the SL(2) affine algebra at level k, and the three fermions implied by the N = 1

worldsheet supersymmetry, satisfying the following OPEs:

JP (z)JQ(w) ∼ (k/2)η
PQ

(z − w)2 +
iεPQRηRSJ

S(w)

z − w ,

JP (z)ψQ(w) ∼ iεPQRηRSψ
S(w)

z − w ,

ψP (z)ψQ(w) ∼ (k/2)η
PQ

z − w , (3.1)

2Note that modding out by the diagonal SO(3) and then by a further U(1) would lead to a

Kazama-Suzuki model [16].

3



J
H
E
P
0
4
(
2
0
0
0
)
0
1
0

where P,Q,R, S = 1, 2, 3, ηPQ = (++−) and ε123 = 1. As usual in supersymmetric
WZW models, the currents can be decomposed in two pieces:

JP = ĴP − i

k
ηPQεQRS ψ

R ψS . (3.2)

The first piece ĴP constitutes an affine algebra at level k + 2, and has regular OPE

with the fermions ψP . We will thus refer to ĴP as the bosonic currents. The second

part constitutes an affine algebra at level −2, and is referred to as the fermionic part
of the current.

The worldsheet stress-energy tensor and N = 1 supercurrent are:

Tsl =
1

k

(
ĴP ĴP − ψP∂ψP

)
,

Gsl =
2

k

(
ψP ĴP − i

3k
εPQRψ

PψQψR
)
. (3.3)

Let us now turn to the SU(3)/U(1) coset CFT. We start from the SU(3) affine

superalgebra at level k′ = 4k realized as follows:

KA(z)KB(w) ∼ (k
′/2)δAB

(z − w)2 +
ifABCK

C(w)

z − w ,

KA(z)χB(w) ∼ ifABCχ
C(w)

z − w ,

χA(z)χB(w) ∼ (k
′/2)δAB

z − w . (3.4)

Here A,B,C,D = 1, . . . , 8 and the structure constants fABC are f123 = 1, f147 =

−f156 = f246 = f257 = f345 = −f367 = 1/2 and f458 = f678 =
√
3/2. Since the metric

is δAB we will not keep track of the upper or lower position of the SU(3) indices. As

before, we split the currents into their bosonic and fermionic parts:

KA = K̂A − i

k′
fABC χ

BχC . (3.5)

The bosonic currents realize an affine algebra at level k′ − 3.
We now choose to mod out the SU(3) by the U(1) generated by K8. The SU(2)

subgroup generated by K1, K2, K3 is orthogonal to this U(1), and thus survives as an

affine algebra in the coset CFT. The stress-energy tensor and the supercurrent of the

coset CFT are built as in [16], using the decomposition TSU(3) = TSU(3)/U(1) + TU(1),

and similarly for the supercurrent G. The stress-energy tensor reads:

Tcoset =
1

k′

(
K̂1K̂1 + · · ·+ K̂7K̂7

)
− 1
k′

(
χ1∂χ1 + · · ·+ χ3∂χ3

)
−

− 1
k′

(
1− 3
2k′

)
(χ4∂χ4 + · · ·+ χ7∂χ7) + 2i

√
3

k′2
K̂8
(
χ4χ5 + χ6χ7

)
+

+
6

k′3
χ4χ5χ6χ7 . (3.6)
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Our goal now is to build the spacetime supercharges. For that we would like to

construct spin-fields via bosonization following [19]. Note that since we are dealing

with a coset and not with a group manifold, the fermions are generically not free.

Of course since the SU(2) is preserved as an affine symmetry, the fermions belonging

to it are free. Despite the above remark, we proceed to bosonize the 10 fermions

into 5 bosons. This will actually uncover the interesting structure of the above coset

model. Define:

∂H1 =
2

k
ψ1ψ2 , ∂H2 =

2

k′
χ1χ2 , i∂H3 =

1

k
ψ3χ3 ,

∂H4 =
2

k′
χ4χ5 , ∂H5 =

2

k′
χ6χ7 . (3.7)

The scalars HI are all canonically normalized: HI(z)HJ(w) ∼ −δIJ log(z−w). Con-
versely, the fermions are given by:

ψ1 =

√
k

2
(eiH1 + e−iH1), ψ2 =

i
√
k

2
(eiH1 − e−iH1) , (3.8)

and similarly for H2, H4 and H5, while:

ψ3 =

√
k

2
(eiH3 − e−iH3), χ3 =

√
k′

2
(eiH3 + e−iH3) , (3.9)

recalling that H†3 = −H3 and k′ = 4k.
In terms of these scalars, the total stress-energy tensor is:

T = Tsl + Tcoset =
1

k
(Ĵ1Ĵ1 + Ĵ2Ĵ2 − Ĵ3Ĵ3) + 1

k′
(K̂1K̂1 + · · ·+ K̂7K̂7)−

− 1
2
(∂H1∂H1 + ∂H2∂H2 + ∂H3∂H3) +

i
√
3

k′
K̂8(∂H4 + ∂H5)−

− 1
2

(
1− 3
2k′

)
(∂H4∂H4 + ∂H5∂H5) +

3

2k′
∂H4∂H5 . (3.10)

Obviously, the scalars H4 and H5 are not free in the coset CFT. However, it is also

easy to see that there is a linear combination of them which is free. This is what will

enable us to build the N = 3 spacetime superalgebra.

We thus write:

H± =
1√
2
(H4 ±H5) . (3.11)

Our final expression for T is therefore:

T =
1

k
(Ĵ1Ĵ1 + Ĵ2Ĵ2 − Ĵ3Ĵ3) + 1

k′
(K̂1K̂1 + · · ·+ K̂7K̂7)−

− 1
2
(∂H1∂H1 + ∂H2∂H2 + ∂H3∂H3 + ∂H−∂H−)−

− 1
2

(
1− 3

k′

)
∂H+∂H+ +

i
√
6

k′
K̂8∂H+ . (3.12)
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We conclude that H− is the fourth free scalar, namely that ∂H− is a primary field
of weight 1.

We now write the worldsheet N = 1 supercurrent, which will be used to enforce

the BRST condition on the spin fields. The supercurrent for the coset CFT reads:

Gcoset =
2

k′

(
χāK̂ ā − i

3k′
fāb̄c̄ χ

āχb̄χc̄
)
, (3.13)

where ā are indices in the coset G/H. Putting together (3.3) and (3.13), substituting

the structure constants of SU(3) and taking into account the bosonization in the term

trilinear in the fermions, we get the expression for Gtot = Gsl +Gcoset:

Gtot =
2

k
(ψ1Ĵ1 + · · · − ψ3Ĵ3) + 2

k′
(χ1K̂1 + · · ·+ χ7K̂7) +

+
i√
k

{
∂H1(e

iH3 − e−iH3)− 1
2

(
∂H2 +

1√
2
∂H−
)
(eiH3 + e−iH3)

}
+

+
1

2
√
k

(
eiH2−i

√
2H− − e−iH2+i

√
2H−
)
. (3.14)

Before going on to the BRST condition for the spin-fields, we write for complete-

ness the expressions for the SU(2) currents, which remain primary fields of weight 1

in the coset CFT and can also be considered as the upper components of the fermions

χ1, χ2, χ3. Writing K± = K1 ± iK2 and similarly for the bosonic currents and the
fermions, we get:

K± = K̂± ∓ e∓iH2(eiH3 + e−iH3)± e∓i
√
2H−

K3 = K̂3 − i
(
∂H2 +

1√
2
∂H−
)
. (3.15)

Note that since these currents are primaries of weight 1, this could have been an

alternative way of showing that H− is a free scalar.

3.1 Physical operators and the spacetime algebra

In order to construct the spacetime superconformal algebra we need, in particular,

to construct physical supercharges which we choose to write in the −1/2 picture [19]:

Q ∝
∮
e−ϕ/2uαSα(z) dz . (3.16)

Here Sα is a basis of spin-fields, u
α are constants, and ϕ is the bosonized super-

conformal ghost. The set of operators e−ϕ/2uαSα(z) should be BRST invariant and
mutually local. We choose a basis of spin-fields

S[ε1ε2ε3ε−] = e
i/2(ε1H1+ε2H2+ε3H3+ε−

√
2H−) , (3.17)

where εI = ±1. Because H− is a free scalar, these 16 spin-fields are primaries of
weight 5/8 and, therefore, e−ϕ/2uαSα(z) are primaries of weight 1, as they should be.

6



J
H
E
P
0
4
(
2
0
0
0
)
0
1
0

The super BRST condition on e−ϕ/2uαSα further requires that there will be no
(z − w)−3/2 singular terms in the OPE of uαSα with the supercurrent Gtot (note
that the only dangerous terms in Gtot are the ones trilinear in the fermions, i.e. the

second and third lines in (3.14)). This leaves 8 combinations uαSα out of the 16 spin-

fields (3.17). The GSO condition, i.e. mutual locality, further leads to one of two

choices of chirality: ε1ε2ε3 = −1 or ε1ε2ε3 = 1, under which 6 or 2 of the combinations
uαSα survive, respectively.

Explicitly, the outcome of the computation is the following. For spacetime chi-

rality ε1ε2ε3 = −1, we get 6 physical spin-fields:

S+1/2 = S[−−−−] ,

S−1/2 = S[−+++] ,

S31/2 =
1

2
(S[−++−] − S[−−−+]) ,

S+−1/2 = S[+−+−] ,

S−−1/2 = S[++−+] ,

S3−1/2 =
1

2
(S[++−−] − S[+−++]) . (3.18)

The lower and upper labels of Sar denote respectively the quantum numbers of the

global SL(2) and SU(2) symmetries, in the (2, 3) representation, as can be checked

by taking the OPEs with the respective currents (3.2) and (3.15). For the other

spacetime chirality ε1ε2ε3 = 1, we get 2 physical spin-fields:

S̃1/2 =
1

2
(S[−−++] + S[−+−−]) ,

S̃−1/2 =
1

2
(S[+++−] + S[+−−+]) . (3.19)

It can be checked that the above spin-fields S̃r have regular OPEs with the SU(2)

currents.

We thus see that the choice of GSO projection will lead to different amounts

of supersymmetry in spacetime. Namely, in a type II background, the projection in

the left and right moving sectors of the worldsheet CFT determine, respectively, the

amount of supersymmetry in the left and right moving sectors of the spacetime CFT.

Specifically, the different GSO projections would lead in type IIA to N = (3, 1) or

N = (1, 3), and in type IIB to N = (3, 3) or N = (1, 1). In the heterotic string, the

different GSO projections in the worldsheet supersymmetric sector lead to N = (3, 0)

or N = (1, 0) in spacetime.3

3Note that these examples provide, in particular, a construction of N = 1 supersymmetry in
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The generators of the spacetime global N = 3 superconformal algebra are the

following:

L±1 = −
∮
dzJ±(z) , L0 = −

∮
dzJ3(z) ,

T±0 =
∮
dzK±(z) , T 30 =

∮
dzK3(z) ,

Q±1/2 =
∮
dze−ϕ/2S±1/2(z) , Q31/2 =

∮
dze−ϕ/2S31/2(z) ,

Q±−1/2 =
∮
dze−ϕ/2S±−1/2(z) , Q3−1/2 =

∮
dze−ϕ/2S3−1/2(z) , (3.20)

where we omit the normalization and the cocycle factors in the definition of the Q’s.

These operators close the global part of the N = 3 superconformal algebra (up to

picture changing), in the NS sector:

[Lm, Ln] = (m− n)Lm+n ,
[T a0 , T

b
0 ] = iεabcT c0 ,

[Lm, T
a
0 ] = 0 ,

[Lm, Q
a
r ] =

(1
2
m− r

)
Qam+r ,

[T a0 , Q
b
r] = iεabcQcr ,

{Qar , Qbs} = 2δabLr+s + iεabc(r − s)T cr+s , (3.21)

where m,n = 0,±1, a, b, c = 1, 2, 3 and r, s = ±1/2. Of course this model reproduces
the full N = 3 superconformal algebra. The higher modes can be built as in [3, 5].

For instance, we can first construct all the Ln. Then acting with them on T
a
0 and

Qa± 1/2 one gets all the T
a
n and Q

a
r higher modes. To close the algebra an additional

fermionic field is needed, all the modes of which are obtained from commutators of

T an and Q
a
r . The full algebra appears for example in [17, 11].

For completeness, we also write the (global) algebra for the other GSO projec-

tion, that is an N = 1 superconformal algebra together with an affine SU(2) which

acts trivially on the supercharges. The supersymmetry generators are given in this

case by:

Q̃± 1/2 =
∮
dze−ϕ/2S̃± 1/2(z) , (3.22)

spacetime which is not a Z2 orbifolding of the N = 2 construction of [15]. If it was such an orbifold,

each of the supercharges would split into two BRST invariant pieces, leading to a total of 4 physical

spin-fields, in contrast with the result (3.19).
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and the algebra is:

[Lm, Ln] = (m− n)Lm+n ,
[T a0 , T

b
0 ] = iεabcT c0 ,

[Lm, T
a
0 ] = 0 ,

[Lm, Q̃r] =
(1
2
m− r

)
Q̃m+r ,

[T a0 , Q̃r] = 0 ,

{Q̃r, Q̃s} = 2δabLr+s . (3.23)

Again, using the higher modes of Ln one can generate the higher modes of the other

operators, together with the fermionic superpartners of the affine currents (see [11]

for an analogous construction).

Let us conclude this section by a brief comment on a special case, when the level

of the SU(3) is k′ = 3 (the minimal level allowed by unitarity). We can decompose
the coset CFT [SU(3)/U(1)] into the product [SU(2)]× [SU(3)/(SU(2)×U(1))]. The
central charge of the second piece is c = 0 in the k′ = 3 case, thus the whole model
reduces to string propagation on SL(2)3/4×SU(2)3. If we consider the six dimensional
model SL(2)k × SU(2)k′, criticality enforces 1/k − 1/k′ = 1. The only combination
which might allow N = 3 in spacetime (i.e. which verifies k′ = 4k) is the one above,
and our analysis indeed shows that it has N = 3. We will comment more on this

case later.

4. Superstring theory on AdS 3× SO(5)/ SO(3)
The construction of the N = 3 superconformal algebra in this case follows closely

the steps of the previous section. We shall therefore be more schematical, and focus

on the specifics of this model.

The SO(5) current algebra looks the same as (3.4), at the same level k′ = 4k,
but now the indices are A,B,C,D = 1, . . . , 9, 0 and the structure constants fABC are

f123 = f456 = 1, f170 = f189 = −f279 = f280 = f378 = f390 = 1/2 and −f470 = f489 =

−f579 = −f580 = f678 = −f690 = 1/2. We work in the basis where the two orthogonal
SO(3) subgroups of SO(5) are generated respectively by K1, K2, K3 and K4, K5, K6.

We will mod out by the second one, leaving the first one as the R-symmetry.

As before, we straightforwardly bosonize the 10 fermions in the SL(2) and in the

coset, to get:

∂H1 =
2

k
ψ1ψ2, ∂H2 =

2

k′
χ1χ2, i∂H3 =

1

k
ψ3χ3,

∂H4 =
2

k′
χ7χ8, ∂H5 =

2

k′
χ9χ0 . (4.1)
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We can now write the total stress-energy tensor in terms of them as (we also

use (3.11)):

T =
1

k

(
Ĵ1Ĵ1 + Ĵ2Ĵ2 − Ĵ3Ĵ3

)
+
1

k′

(
K̂1K̂1+ · · ·+ K̂3K̂3+ K̂7K̂7+ · · ·+ K̂0K̂0

)
−

− 1
2
(∂H1∂H1 + ∂H2∂H2 + ∂H3∂H3 + ∂H+∂H+)− 1

2

(
1− 3

k′

)
∂H−∂H− +

+
i
√
2

k′
K̂6∂H− − 1

k′
K̂4
(
ei
√
2H− − e−i

√
2H−
)
− i

k′
K̂5
(
ei
√
2H− + e−i

√
2H−
)
. (4.2)

Now H+ is the free scalar.

The analogous expression for the total supercurrent is:

Gtot =
2

k

(
ψ1Ĵ1 + · · · − ψ3Ĵ3

)
+
2

k′

(
χ1K̂1 + · · ·+ χ3K̂3 + χ7K̂7 + . . .+ χ0K̂0

)
+

+
i√
k

{
∂H1

(
eiH3 − e−iH3

)
− 1
2

(
∂H2 +

1√
2
∂H+

)(
eiH3 + e−iH3

)}
−

− 1

2
√
k

(
eiH2−i

√
2H+ − e−iH2+i

√
2H+
)
. (4.3)

The SU(2) currents are:

K± = K̂± ∓ e∓iH2(eiH3 + e−iH3)∓ e∓i
√
2H+

K3 = K̂3 − i
(
∂H2 +

1√
2
∂H+

)
. (4.4)

The solutions to the BRST invariance conditions on the spin-fields S[ε1ε2ε3ε+] are, for

the ε1ε2ε3 = −1 GSO projection:
S+1/2 = S[−−−−] ,

S−1/2 = S[−+++] ,

S31/2 =
1

2
(S[−++−] + S[−−−+]) ,

S+−1/2 = S[+−+−] ,

S−−1/2 = S[++−+] ,

S3−1/2 =
1

2
(S[++−−] + S[+−++]) . (4.5)

For the other chirality, ε1ε2ε3 = 1, we get:

S̃1/2 =
1

2
(S[−−++] − S[−+−−]) ,

S̃−1/2 =
1

2
(S[+++−] − S[+−−+]) . (4.6)

From the above spin-fields and currents, the construction of the N = 3 (or N = 1

according to the GSO projection) algebra proceeds in exactly the same manner as

in the former case.
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5. N = 3 superalgebra as an enhancement of N = 2

Since the N = 3 superconformal algebra has the N = 2 superalgebra as a subalgebra,

and since general conditions for the appearance of the latter are known [15], it is

natural and instructive to investigate the relation between the two constructions.

In [15] it was found that a general condition for having N = 2 superconformal

algebra in spacetime for a background of the form AdS 3×N , is the existence of an
affine U(1) current in N , such that N /U(1) has N = 2 worldsheet supersymmetry.
It was noted there that the U(1) must be chosen carefully in the cases where en-

hancement to N > 2 is expected, in order to embed the N = 2 construction into the

explicit construction of the larger algebra.

We now proceed to show that in our two cases there is only one choice of the

complex structure in N /U(1), where the U(1) is the Cartan subalgebra of the SU(2),
that leads to an N = 2 construction which is a subalgebra of the N = 3 algebra

constructed in the previous sections.

The general construction of the N = 2 superconformal algebra for coset mod-

els [16] leads to the following U(1) R-current:

JR =
i

k′
hāb̄ χ

āχb̄ +
1

k′
hāb̄ fāb̄C

(
K̂C − i

k′
fCd̄ēχ

d̄χē
)
. (5.1)

The index C can run over both H and G/H. The complex structure hāb̄ has to

satisfy conditions that can be found in [16].

The construction of N = 2 supercharges then proceeds as follows [15].4 We

present a canonically normalized scalar H0:

i
√
3∂H0 = JR − 4

k′
K3 , (5.2)

which is used to construct the spin-fields:

S = ei/2(ε1H1 + ε3H3 + ε0
√
3H0) , (5.3)

where H1 and H3 are built as before (3.7). The BRST condition will pick up 4 of

the above spin-fields as physical.5 This construction of N = 2 will be embedded in

our N = 3 constructions provided that the above spin-fields (5.3) can be rewritten

as special cases of (3.17).

Let us consider first the SU(3)/U(1) case. Here we have to look for complex

structures of the six dimensional manifold SU(3)/U(1)2. We take the Cartan sub-

algebra of the SU(3) to be generated by K3 and K8. We find three possible com-

plex structures.

4Note that this is not the standard construction [20] with respect to N = 2 supersymmetry on

the worldsheet.
5Note that the BRST condition in this construction leads to a definite GSO projection (i.e. no

BRST invariant spin-fields of the other chirality are explicitly constructed).
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The first complex structure is given by h12 = h45 = h67 = 1, and leads to an

R-current of the form:

J ′R = i∂H2 + i
√
2∂H+ +

2

k′
K3 +

2
√
3

k′
K8 . (5.4)

Note that the above expression is such that both ∂H+ and K
8 will appear in the

definition (5.2) of H0, and therefore the spin-fields (5.3) cannot be matched to (3.17).

The second complex structure is given by h12 = −h45 = −h67 = 1, and leads to
an R-current of the form:

J ′′R = i ∂H2 − i
√
2 ∂H+ +

2

k′
K3 − 2

√
3

k′
K8 . (5.5)

The same remark as above applies here. Moreover these two currents are the sum

and difference of the N = 2 U(1) R-currents that one can get by decomposing this

coset CFT into [SU(2)/U(1)]× [SU(3)/(SU(2)×U(1))]. We will explain shortly why
this direct-product decomposition cannot lead to the enhancement to N = 3.

The third complex structure is given by h12 = h45 = −h67 = 1, and leads to an
R-current of the form:

JR = i ∂H2 + i
√
2 ∂H− +

4

k′
K3 . (5.6)

The boson constructed as in (5.2) now reads
√
3H0 = H2 +

√
2H−. The spin-

fields (5.3) are thus exactly of the form (3.17) with ε2 = ε−. The BRST invariant
ones are exactly the N = 2 subalgebra generators of (3.18), namely S±±1/2.
Moving to the SO(5)/ SO(3) case, we have to consider the complex structure

of SO(5)/(SO(3) × SO(2)), where the SO(2) is again the Cartan subalgebra of the
remaining SO(3), generated by K3. This case is different, as there is only one possible

complex structure, given by h12 = h78 = h90 = 1. The associated R-current is:

JR = i ∂H2 + i
√
2∂H+ +

4

k′
K3 . (5.7)

As for (5.6), the BRST invariant spin-fields constructed according to [15] are the

N = 2 supercharges S±±1/2 of (4.5). The presence of only one complex structure in
this case (as opposed to three in the previous one) is due to the fact that the four

dimensional coset SO(5)/ SO(4) has no complex structure.

6. General conditions for obtaining N = 3

The above discussion leads us to present general conditions for the appearance of the

N = 3 superconformal algebra in the context of string theory on AdS 3×N . Such a
background leads to N = 3 superconformal algebra in spacetime provided that:
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(i) N has an affine SU(2) current algebra at level k′ = 4k, where k is the level of
SL(2).

(ii) N /U(1) has N = 2 worldsheet supersymmetry, where U(1) is the Cartan

subalgebra of the above SU(2). This condition alone allows one to construct

an N = 2 superconformal algebra in spacetime (for a definite GSO projection).

(iii) This spacetime N = 2 algebra is enhanced toN = 3 if the scalarH0 constructed

as in (5.2) can be decomposed as
√
3H0 = H2 +

√
2H̃0, where H2 derives from

the bosonization of the two remaining charged fermions of the SU(2), and H̃0
is orthogonal to it.

Interestingly, these conditions imply as a by-product that for the opposite GSO

projection we also get supersymmetry in spacetime, namely N = 1.

Let us present the proof by constructing the N = 3 superalgebra generators

given the above conditions. Recall that besides the scalar (5.2), we also define [15]

the scalars ∂H1 = (2/k)ψ
1ψ2 and i∂H3 = (1/k)ψ

3χ3. The existence of the affine

SU(2), of which χ3 is the lower component of the Cartan generator, allows us to

define also ∂H2 = (2/k
′)χ1χ2. Consider now the currents K3 and K±. Since they

form an SU(2) supersymmetric WZW model (embedded inside the CFT on N ), they
can be split into orthogonal pieces:

K3 = K̃3 − i ∂H2, K± = K̃± ∓ 2√
k′
e∓iH2χ3 . (6.1)

We start now by noting that condition (iii) implies the following (making use of (5.2)):

i
√
2 ∂H̃0(z)K

3(w) ∼ − 1

(z − w)2 . (6.2)

This means that K3 can be split further:

K3 = K̂3 − i√
2
∂H̃0 − i∂H2 , (6.3)

where K̂3 has a regular OPE with H̃0 (and of course H2). Similarly, the currents

K± also split into a “bosonic” part K̂± which realizes an affine SU(2)k′−3, an SU(2)1
part built from H̃0 and the usual fermionic SU(2)2 piece:

K± = K̂± ∓ e∓i
√
2H̃0 ∓ e∓iH2(eiH3 + e−iH3) . (6.4)

We can now construct the 4 physical spin-fields as in [15]. Note that the presence

of the full SU(2) is irrelevant in this step. Using the spin-fields of the form (5.3), we

get S[ε1ε3ε0] = S[−−−], S[−++], S[++−], S[+−+]. Splitting
√
3H0 = H2 +

√
2H̃0, we can

rewrite them as:

S[ε1ε2ε3ε̃0] = S[−−−−], S[−+++], S[+−+−], S[++−+] . (6.5)
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We now find the additional two BRST invariant supercharges, by acting on the above

spin-fields with the SU(2) ladder operators K±, which are also BRST invariant (as
upper components of primaries of weight 1/2). The result is:

1

2
(S[−−−+] + S[−++−]),

1

2
(S[+−++] + S[++−−]) . (6.6)

The set of spin-fields (6.5)– (6.6) matches exactly the ones found in the cases detailed

in the previous sections (note that the apparent sign difference with (3.18) and (3.15)

can be absorbed in a redefinition of fields; in section 3 we preferred to stick to the

usual Gell-Mann basis of SU(3)).

Defining the spacetime operators as in (3.20), one can show that the N = 3

superconformal algebra closes.

The above proof builds upon the existence of the N = 2 superalgebra, enhancing

it to N = 3 using the SU(2) currents. An alternative way of building the N = 3

superalgebra, which also reveals the existence of the N = 1 superalgebra for the

other GSO projection, is to decompose the supercurrent of the CFT on N into an
SU(2) part and a N / SU(2) one. It can then be used to directly find all of the 8
physical spin-fields, 6 of one chirality and 2 of the other. The SU(2) part of the

supercurrent is:

GSU(2) =
2

k′

(1
2
χ+K̃− +

1

2
χ−K̃+ + χ3K̃3 − 2i

k′
χ1χ2χ3

)
. (6.7)

Using (6.1), (6.3) and (6.4), and the bosonization, the relevant part of GSU(2) for the

BRST condition (i.e. the one that might lead to (z − w)−3/2 singular terms in the
OPE with the spin-fields) is:

GSU(2) = · · ·+ 1√
k′

{
− i
(
∂H2 +

1√
2
∂H̃0

)
(eiH3 + e−iH3)−

−
(
eiH2−i

√
2H̃0 − e−iH2+i

√
2H̃0
)}

. (6.8)

The first piece will give rise to a (z − w)−3/2 singularity only when ε2 = ε̃0, while

the second piece will do so only when ε2 = −ε̃0. Choosing ε2 = ε̃0, we get 4 physical
spin-fields of the same chirality. For ε2 = −ε̃0 we get 4 physical spin-fields, two of
each chirality.

It is worth noting that the direct product N = SU(2)k′ ×N ′, which manifestly
fulfills conditions (i) and (ii), does not fulfill the third condition (except for one

case which will be discussed shortly). The reason for this is the following. If H0
fulfills condition (iii), it is straightforward to compute the OPE of i∂H2 with JR, the

R-current of N /U(1), the result being:

i∂H2(z)JR(w) ∼ 1− 4/k
′

(z − w)2 . (6.9)
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However, if N = SU(2)4k ×N ′, then:

JR = J
SU(2)/U(1)
R + J ′R = i∂H2 +

2

k′
K3 + J ′R . (6.10)

Since i∂H2 has a regular OPE with J
′
R, its OPE with JR in (6.10) gives a double

pole with a residue of (1 − 2/k′) instead of (6.9). Thus such a CFT with a direct
product SU(2) factor will not lead to N = 3 in spacetime through the mechanism

described above.

This seems to contradict what was noted about the limiting k′ = 3 case, which
was reduced to SL(2)3/4 × SU(2)3. This is resolved by noting that we can always
take JR to −JR (this amounts to changing an overall sign in the complex structure,
see (5.1)). Doing this, the OPE of i∂H2 with JR gives a residue of −(1−2/k′), which
is equal to (1− 4/k′) only if k′ = 3, that is in this particular case. For completeness,
we sketch the construction in this case. Using (5.2) and (6.10), we write:

i
√
3∂H0 = −JR − 4

3
K3 = −i∂H2 − 2K3 = i∂H2 − 2K̃3 . (6.11)

Now we use the fact that the bosonic SU(2) WZW model at level 1 can be reformu-

lated as the CFT of a free scalar at its self-dual radius. Denoting this scalar by H̃0, we

have K̃3 = −i/√2∂H̃0 and K̃± = e∓i
√
2H̃0 . It is thus clear that H0 fulfills condition

(iii), and the construction of the N = 3 superalgebra then proceeds as before.

7. Comments

Let us first comment on the relation between the general construction of the previous

section and the two specific coset CFTs discussed before. It is possible to check that

the only 7-dimensional cosetsN which have an SU(2) symmetry (and do not factorize
into a direct product SU(2)×N ′) are precisely N1 and N2 of eqs. (2.1) and (2.2). It
is interesting that condition (i) of the previous section together with the requirement

of having a semiclassical k → ∞ limit automatically lead to models which fulfill
the two remaining conditions. Considering 7 dimensional group manifolds, only

the case N = SU(2)2k × SU(2)2k × U(1) satisfies condition (i), where the SU(2)4k
is the diagonal one. It is straightforward to show that this manifold also satisfies

conditions (ii) and (iii). This manifold actually possesses large N = 4 superconformal

symmetry [9], of which N = 3 is a subalgebra. This fact was used in [11] to break

N = 4 to N = 3 through a Z2 orbifold construction. It would be interesting to

find the relation between this small set of models which share the same spacetime

superconformal symmetry.

We conclude by commenting on the geometrical interpretation. It would be nice

to translate the conditions we impose on the CFT on N into conditions on the ge-
ometry of the manifold. It is clear as was commented before that the S3 ∼= SU(2)
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has to be non-trivially fibered over the 4 dimensional base N / SU(2). A related,
but different, problem was actually discussed in the literature [13, 14], where con-

ditions on Einstein 7-manifolds N are found in order to get different amounts of
supersymmetry when considering 11 dimensional supergravity on AdS4 × N . The
condition for getting N = 3 in AdS4 is that N has a tri-sasakian structure (in other
words, the cone over it C(N ) is hyperKähler; see for instance [14] for the notions
introduced hereafter). The above geometries are considered as near horizon geome-

tries of M2-branes at the singularity of the Ricci-flat cone C(N ) over such manifolds.
The tri-sasakian structure implies the presence of 3 Killing vectors forming an SO(3)

algebra which rotates the 3 Killing spinors. It turns out that the only 7-dimensional

tri-sasakian manifolds (satisfying some additional regularity conditions, see also [21])

are exactly the cosets6 SU(3)/U(1) and SO(5)/ SO(3) ∼= S7. In the second case, the
quotient is taken as in section 4 [22]. Note also that S7 is trivially tri-sasakian since

it has N = 8 Killing spinors.

Tri-sasakian manifolds can be seen as S3 fibrations over a base, in the above

cases CP2 and S4 respectively. It is interesting to note that “squashing” a tri-

sasakian manifold (i.e. rescaling the fiber with respect to the base) leads, for a

definite value of the squashing parameter, to another Einstein manifold having one

Killing spinor (instead of 3) and an unbroken SO(3) algebra of Killing vectors which

acts trivially on the spinor. This is reminiscent of our results, where the different

amounts of supersymmetry, N = 3 or N = 1, depend however on the GSO projec-

tion.

We should nevertheless stress that in spite of these similarities, there are a few

differences. For instance, superstring theory on AdS 3×N does not require N to
be an Einstein manifold.7 Recall that the metric of the coset CFT sigma model,

which can be obtained by gauging the WZW model on the group G and integrating

out the gauge fields, is not the same as the metric on the homogeneous G/H coset

space. Thus presumably the direct relation between the two issues is more algebraic

in nature than geometrical.

Another question regards the brane configuration which might lead to the mod-

els considered here in the near horizon limit. Since we are dealing with pure NSNS

backgrounds in type II theories, we expect such a brane configuration to involve

fundamental strings and NS5-branes intersecting on the string, and possibly at non-

trivial angles. Indeed it is known that the AdS 3×S3×T 4 and the AdS 3×S3×S3×S1
backgrounds are the near horizon geometries of configurations involving respectively

a fundamental string within a NS5-brane [3], and an additional NS5-brane inter-

6The case S3 × S3 × S1, which has N = 3 as a subgroup of large N = 4, does not appear in the
classification above since its metric cannot be rescaled to become an Einstein manifold because of

the flat S1 factor.
7This might explain why in the SO(5)/ SO(3) case discussed in section 4 we do not find N = 8

supersymmetry but only N = 3.

16



J
H
E
P
0
4
(
2
0
0
0
)
0
1
0

secting the other orthogonally on the string [23, 24]. The latter brane configuration

can be generalized by introducing a non-trivial angle between the two NS5-branes,

but still requiring that some supersymmetries are preserved. This problem has been

studied from the supergravity solution point of view in [25, 26], and it can be re-

duced to a problem of classifying the holonomy of an 8-dimensional manifold (the

manifold which is orthogonal to the string intersection). It turns out [25] that so-

lutions preserving a fraction of 3/16 of the supersymmetries are associated with

8-dimensional manifolds of holonomy Sp(4) ∼= U(2,H) ∼= SO(5) ⊂ SO(8), which
are thus hyperKähler. This configuration would lead to N = (3, 3) supersym-

metry in type IIA.8 This is still different from what we are looking for. In [26]

more general NS5-brane configurations are considered, which are related to hy-

perKähler manifolds with torsion. The torsion allows for the holonomy to be dif-

ferent for the two chiralities of the spinors (again in type IIA). In this set up, so-

lutions which have N = (3, 1) supersymmetry are found, the associated manifold

having Sp(4) holonomy for one chirality and Spin(7) holonomy for the other. It

should be noted that the latter solutions, as presented in [26], do not include fun-

damental strings. The near horizon geometry of some of the configurations above

is considered in [27], where it is found to be actually AdS 3×S3 × S3 × S1 like

in the orthogonal case (hinting towards a large N = 4 dual CFT, instead of an

N = 3 one).

It is not straightforward to see how our coset manifolds could arise as near

horizon geometries, at least in this context. In order to investigate this problem, one

might need to further characterize the 8-dimensional hyperKähler manifolds involved

in the brane configurations. Note that the latter are asymptotically flat, and thus

generically not in the same class as the conical ones discussed previously, which were

related to the classification of tri-sasakian (coset) manifolds.

An alternative to configurations with branes at angles, is to consider the near

horizon limit of NS5-branes wrapping on 4-cycles, together with fundamental strings

stretched along the unwrapped direction. These are expected [28] to be equivalent

to a superstring on AdS 3×N where N has an affine U(1) symmetry and N /U(1) is
an N = 2 SCFT related to the geometry of the 4-cycle. For particular geometries,

the N /U(1) SCFT was identified with the infrared limit of N = 2 Landau-Ginzburg
(LG) models [28]. In the examples considered in this work N /U(1) is SU(3)/U(1)2
and SO(5)/(SO(3) × U(1)). Generically, these N = 2 quotients do not have a LG
description (except for the lowest levels of the SU(3)/U(1)2 case). Therefore, the

relation to brane configurations along these lines requires the understanding of the

duality of [28] in models of the form AdS 3×G/H, where G/(H ×U(1)) is a generic
N = 2 quotient.

8The supersymmetry of the full brane configuration in type IIB is further reduced. For instance,

the orthogonal intersection already preserves only 1/8 of the supersymmetries.
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