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Abstract

We present an inductive algebraic approach to the systematic construction and classifica-
tion of generalized Calabi-Yau (CY) manifolds in different numbers of complex dimensions,
based on Batyrev’s formulation of CY manifolds as toric varieties in weighted complex pro-
jective spaces associated with reflexive polyhedra. We show how the allowed weight vectors in
lower dimensions may be extended to higher dimensions, emphasizing the roles of projection
and intersection in their dual description, and the natural appearance of Cartan-Lie alge-
bra structures. The 50 allowed extended four-dimensional vectors may be combined in pairs
(triples) to form 22 (4) chains containing 90 (91) K3 spaces, of which 94 are distinct, and
one further K3 space is found using duality. In the case of CY3 spaces, pairs (triples) of the
10 270 allowed extended vectors yield 4242 (259) chains with K3 (elliptic) fibers containing
730 additional K3 polyhedra. A more complete study of CY3 spaces is left for later work.
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1 Introduction

One of the outstanding issues in both string theory and phenomenology is the choice of
vacuum. Recent dramatic advances in the non-perturbative understanding of strings have
demonstrated that all string theories, thought previously to be distinct, are in fact related
by various dualities, and can be regarded as different phases of a single underlying theory,
called variously M and/or F theory [1]. This deeper non-perturbative understanding does not
alter the fact that many classical string vacua appear equally consistent at the perturbative
level. However, the new non-perturbative methods may provide us with new tools to under-
stand transitions between these classical vacua, and perhaps eventually provide a dynamical
criterion for deciding which vacuum is preferred physically [2, 3].

Consistent string vacua are constrained by the principles of quantum mechanics applied to
extended objects. At the classical level, these are expressed in the conformal symmetry of the
supersymmetric world-sheet field theory. Consistent quantization of the string must confront
a possible anomaly in conformal symmetry, as manifested in a net non-zero central charge of
the Virasoro algebra. Early studies of the quantum mechanics of extended objects indicated
that strings could not survive in the familiar dimension D = 3+1 of our space-time. The way
initially used to cancel the conformal anomaly was to choose appropriately the dimension of
the ambient space-time, for example, D = 25 + 1 for bosonic strings and D = 9 + 1 for the
supersymmetric and heterotic strings.

This suggested that the surplus n = 6 real dimensions should be compactified. The sim-
plest possibility is on a Calabi-Yau manifold [4], which is defined by the following conditions:

• It has a complex structure, with N = 3 complex dimensions required for the D =
9 + 1 → 3 + 1 case of most direct interest, though all the cases N = 1, 2, 3, 4, .. have
some interest.

• It is compact.

• It has a Kähler structure.

• It has holonomy group SU(n) or Sp(n), e.g., SU(3) in the N = 3 case.

It has subsequently been realized that one could compactify on an orbifold [5], rather than a
manifold, and also that generalized heterotic strings could be formulated directly in D = 3+1
dimensions, with extra world-sheet degrees of freedom replacing the surplus space coordinates.
More recently, the non-perturbative formulation of the theory in eleven or twelve dimensions,
as M or F theory, has opened up new possibilities [6]. However, Calabi-Yau compactifications
continue to play a key role in the search for realistic four-dimensional string models, motivating
us to revisit their classification.

One of the most important tools in the investigation of such complex manifolds is the
feature that their singularities are connected with the structure of Lie algebras. Kaluza was
the first to attempt to understand this circumstance, and used this idea to embark on the
unification of all the gauge interactions known at that time, namely electromagnetism and
gravitation. These ideas were subsequently extended to non-Abelian gauge theories, and
string theory can be regarded as the latest stage in the evolution of this programme.
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The three-complex-dimensional CY manifolds can be situated in a sequence of com-
plex spaces of increasing dimensions: two-real- (one-complex-)dimensional tori T2, the two-
complex-dimensional K3 spaces, the three-complex-dimensional CY3 themselves, four-complex-
dimensional CY4, etc., whose topological structure and classification become progressively
more complicated. Their topologies may be described by the Betti-Hodge numbers which
count the numbers of distinct one-, two-, three-dimensional, ... cycles (holes,...). The topo-
logical data of the different CY manifolds determine their physical properties, such as the
different numbers of generations Ng (which are related to the Euler characteristics of CY3

spaces), etc.. This emphasizes the desirability of approaching systematically the problem of
their classification and the relations between, e.g., CY3 manifolds with different values of the
Euler characteristic and hence the number of generations Ng. Since some non-perturbative
tools now exist for studying transitions between different CY manifolds, one could hope even-
tually to find some dynamical criterion for determining Ng.

The topologies and classification of the lower-dimensional spaces in this sequence are
better known: although our ultimate objective is deeper understanding of CY3 spaces, in
this paper we study as a warm-up problem the simpler case of the two-complex-dimensional
K3 hypersurfaces. These are of considerable interest in their own right, since, for example,
they may appear as fibrations of higher-dimensional CYn spaces. It is well known that any
two K3 spaces are diffeomorphic to each other. This can be seen, for example, by using the
polyhedron techniques of Batyrev [7] discussed in Sections 2 and 3, to calculate the Betti-

Hodge invariants for all the K3 hypersurfaces corresponding to the ~k4 vectors we find. It is
easy to check that Batyrev’s results yield the same Euler number 24 for all K3 manifolds [8].

The quasi-homogeneous polynomial equations (hereafter called CY equations) whose ze-
roes define the CY spaces as hypersurfaces in complex projective space are defined (2.6, 2.7,

2.8, 2.9) by projective vectors ~k, whose components specify the exponents of the polynomials.
The number of CY manifolds is large but finite, as follows from the property of reflexiv-
ity introduced in Section 2. The central problem in the understanding of classifying these
manifolds may be expressed as that of understanding the set of possible projective vectors
~k = (k1, . . . , kn+1), the corresponding Lie algebras and their representations. More precisely,
the classification of all CY manifolds contains the following problems:
• To study the structure of the K3, CY3, ... projective vectors ~kn, in particular, to find the
links with the projective vectors of lower dimensions: D = n − 1, n − 2, ....
• To establish the web of connections between all the projective vectors ~kn of the same di-
mension.
• To find an algebraic description of the geometrical structure for all projective vectors, and
calculate the corresponding Betti-Hodge invariants.
• To establish the connections between the projective vectors ~kn, the singularities of the cor-
responding CY hypersurfaces, the gauge groups and their matter representations, such as the
number of generations, Ng.
• To study the duality symmetries and hypermodular transformations of the projective vectors
~kn.

In addition to the topological properties and gauge symmetries already mentioned, it
is now well known that string vacua may be related by duality symmetries. This feature
is familiar even from simple compactifications on S1 spaces of radius R, which revealed a
symmetry: R → 1/R [9]. In the case of compactifications on tori, there are known to be S, T ,
and U dualities that interrelate five string theories and play key roles in the formulations of
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M and F theories [10]. Compactifications on different types of CY manifolds have also been
used extensively in verifying these string dualities [10]. For example, in proving the duality
between type-IIA and type-IIB string theories, essential use was made of the very important
observation that all CY manifolds have mirror partners [11, 12, 13, 14, 7, 15]. Thus, duality
in string theory found its origins in a duality of complex geometry.

Further information about string/M/F theory and its compactifications on CY manifolds
can be obtained using the methods of toric geometry. The set of homogeneous polynomials of
degree d in the complex projective space CP n defined by the vector ~kn+1 with d = k1 + ...kn+1

defines a convex reflexive polyhedron ∗, whose intersection with the integer lattice corresponds
to the polynomials of the CY equation. Therefore, instead of studying the complex hypersur-
faces directly, one can study the geometry of polyhedrons. This method was first used to look
for the solutions of the algebraic equations of degree five or more in terms of radicals [16].
Thus, the problem of classifying CY hypersurfaces is also connected with the problem of
solving high-degree polynomial equations in terms of radicals. The solutions of quintic- and
higher-degree algebraic equations in terms of radicals may be expressed using elliptic and
hyperelliptic functions, respectively. Specifically, it is known that CY manifolds may be rep-
resented using double-periodic elliptic or multi-periodic hyperelliptic functions [17]. These
functions have therefore been used to describe the behaviour of strings, and they should also
be used to construct the ambient space-time in which strings move.

We embark here on a systematic classification of K3 manifolds, as a prelude to a subse-
quent classification of CY3 manifolds, based on their construction in the framework of toric
geometry. Within this approach, CY manifolds and their mirrors are toric varieties that can
be associated with polyhedra in spaces of various dimensions. We propose here an inductive
algebraic-geometric construction of the projective vectors ~k that define these polyhedra and
the related K3 and CY spaces. This method has the potential to become exhaustive up to
any desired complex dimensionality d = 1, 2, 3, 4, 5, 6, ... (see Figure 1), limited essentially by
the available computer power. As a first step in this programme, we present in this article a
construction of K3 spaces, which is complete for those described by simple polynomial zeroes,
and in principle for K3 spaces obtained as the complete intersections of pairs or triples of such
polynomial zero loci. In the construction of projective vectors corresponding to hypersurfaces
without an intersection with one internal point, the duality between a complex manifold and
its mirror (which does contain an intersection) plays an important role. We discuss here also
aspects of the CY3 construction that are relevant for the classification of K3 spaces. We also
indicate already how one may generate CY3 manifolds with elliptic fibrations or K3 fibers.
More aspects of our CY3 construction are left for later work.

To get the flavour of our construction, which is based on the formalism reviewed in Sections
2 and 3 [7], and is discussed in more detail in Sections 4 et seq., consider first CP 1 space.

Starting from the trivial unit ‘vector’ ~k1 ≡ (1), we introduce two singly-extended basic vectors

~kex′
1 = (0, 1), ~kex′′

1 = (1, 0), (1.1)

obtained by combining ~k1 with zero in the two possible ways. The basic vectors (1.1) corre-
spond to the sets of polynomials

xn · y =⇒ { ~µ1 } = (n, 1) : ~µ1 · ~kex′
1 = d = 1,

x · ym =⇒ { ~µ2 } = (1, m) : ~µ2 · ~kex′′
1 = d = 1, (1.2)

∗The notion of a reflexive polyhedron is introduced and defined in Section 2.

5



 

T
or

K3

2

4

6

8

1

0
(1)

4
95 vectors

THE  GENEALOGICAL  GEOMETRY TREE

 origin

(1, 1)

3

4 CY

 CY

 Torus

  Circle

  Point

triple  chainsdouble chains22

3 vectors: (1,1,1) , (1,1,2) ,  (1,2,3)

259 64242

    double  chains,  triple  chains, ,
,four-chains, five-chains

,double  chains, triple  chains, four-chains

Figure 1: The genealogical tree of reflexive projective vectors in different dimensions up to
d = 4.

respectively. The only polynomial common to these two sequences is xy, which may be
considered as corresponding to the trivial ‘vector’ ~k1 = (1). Consider now the composite

vector ~k2 = (1, 1), which can be constructed out of the basic vectors (1.1), and is easily seen
to correspond the following three monomials of two complex arguments (x, y):

{ x2, x · y, y2 } =⇒ ~µ|i=1,2,3 = { (2, 0), (1, 1), (0, 2) } =⇒
~µ

′|i=1,2,3 ≡ ~µ|i=1,2,3 −~1 = { (1,−1), (0, 0), (−1, +1) }, (1.3)

where we have used the condition: ~µ·~k2 = µ1·1+µ2·1 = d = 2, corresponding to ~µ ′·~k2 = 0, and
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we denote by d the dimensionality of the projective vectors. It is convenient to parametrize
(1.3) in terms of the new basis vector ~e = (−1, 1):

~µ
′|i=1,2,3 =⇒ ~(e)|i=1,2,3 = { (−1), (0), (+1) } × ~e (1.4)

The three points (2, 0), (1, 1), (0, 2) (or −1, 0, +1) corresponding to the composite vector k2 =
(1, 1) may be considered as composing a degenerate linear polyhedron with two integer vertices
{(2, 0), (0, 2)} (±1) and one central interior point (1, 1) (0). As we see in more detail later,
this polyhedron is self-dual, or reflexive as defined in Section 2.

To describe CY1 spaces in CP 2 projective space, via the analogous projective vectors
~k3 = (1, 1, 1), (1, 1, 2), (1, 2, 3) that are associated with the corresponding polynomial zero loci,
one may introduce the two following types of extended vectors: the doubly-extended basic
vectors

~kex
1 = (0, 0, 1), (0, 1, 0), (1, 0, 0) (1.5)

obtained by adding zero to the two-dimensional basic vectors (1.1) in all possible ways, and

the three simple extensions of the composite vector ~k2 = (1, 1):

~kex
2 = (0, 1, 1), (1, 0, 1), (1, 1, 0). (1.6)

Then, out of all the extended vectors (1.5) and (1.6) and the corresponding sets of monomials,
one should consider only those pairs (triples) whose common monomials correspond to the

composite vector ~k2 = (1, 1) (to the unit vector) which produces the reflexive linear polyhe-
dron with three integer points (a single point). The condition of reflexivity restricted to the
extended vector pairs (triples), ... will also be very important for constructing the closed sets
of higher-dimensional projective vectors (again reflexive).

For example, consider one such ‘good’ pair,

~kex
2 = (0, 1, 1) ⇐⇒ ~kex

1 = (1, 0, 0), (1.7)

with the corresponding set of monomials,

{xm · y2} =⇒ ~µ = (m, 2, 0),

{xn · y · z} =⇒ ~µ = (n, 1, 1),

{xp · z2} =⇒ ~µ = (p, 0, 2),

~µi · ~kex
2 = 2, (1.8)

and

{x · yk · zl} =⇒ ~µ = (1, k, l),

~µ · ~kex
1 = 1. (1.9)

The common action of these two extended vectors, (0,1,1) and (1,0,0), gives as results only
the following three monomials:

{x · y2, x · y · z, x · z2} =⇒
~µ|i=1,2,3 = {(1, 2, 0), (1, 1, 1), (1, 0, 2)} =⇒

~µ|i=1,2,3 −~1 = {(0, 1,−1), (0, 0, 0), (0,−1, 1)} =⇒
~e|i=1,2,3 = {(−1), (0), (1)} (1.10)
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which correspond to the CP 1 case. Such pairs or triples may be termed ‘reflexive’ pairs or
triples, because the vertices ~e|i=1,2,3 above generate a (degenerate) reflexive polyhedron.

Such pairs, triples and higher-order sets of projective vectors ~k1 may be used to define
chains of integer-linear combinations, as explained in more detail in subsection 4.1:

m1
~k1 + m2

~k2 + . . . (1.11)

We use the term eldest vector for the leading entry in any such chain, with minimal val-
ues of m1, m2, . . .. In the above case, there are just two distinct types of ‘reflexive’ pairs:
{(0, 0, 1), (1, 1, 0)} and {(0, 1, 1), (1, 0, 1)}, which give rise to two such chains: {(1, 1, 1), (1, 1, 2)}
and {(1, 1, 2), (1, 2, 3)}. There is only one useful ‘reflexive’ triple: {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
defining a non-trivial three-vector chain. Together, these chains can be used to construct all
three projective ~k2 vectors. The second possible ‘reflexive’ triple {(0, 1, 1), (1, 0, 1), (1, 1, 0)}
produces a chain that consists of only one projective ~k3 vector: (1, 1, 1).

In addition to the zero loci of single polynomials, CY spaces may be found by higher-
level contructions as the intersections of the zero loci of two or more polynomial loci. The
higher-level CY1 spaces found in this way are given in the last Section of this paper.

In the case of the K3 hypersurfaces in CP 3 projective space, our construction starts
from the five possible types of extended vectors, with all their possible Galois groups of
permutations. These types are the triply-extended basic vectors with the cyclic C4 group of
permutations,

~kex
1 = (0, 0, 0, 1) : |C4| = 4, (1.12)

the doubly-extended composite vectors with the D3 dihedral group of permutations,

~kex
2 = (0, 0, 1, 1) : |D3| = 6, (1.13)

and the following singly-extended composite vectors with the cyclic C4, alternating A4 and
symmetric S4 groups of permutations, respectively:

~kex
3 = (0, 1, 1, 1) : |C4| = 4, (1.14)

~kex
3 = (0, 1, 1, 2) : |A4| = 12, (1.15)

~kex
3 = (0, 1, 2, 3) : |S4| = 24. (1.16)

The A4 and S4 groups of permutations can be identified with the tetrahedral T and octahedral
O rotation groups, respectively. Combining these 50 extended vectors in pairs, we find 22
pairs whose common actions correspond to reflexive polyhedra in the plane. These give rise to
22 chains (lattices parametrized by two positive integers), which together yield 90 vectors ~k4

based on such extended structures, that are discussed in more detail in Section 5. In addition,
there exist just four triples constructed from the 10 extended vectors (0, 0, 0, 1) + permutations
and (0, 0, 1, 1) + permutations whose common actions give a unique reflexive polyhedron on
the line: (−1), (0), (+1). The corresponding four triple chains (lattices parametrized by three

positive integers) yield 91 ~k4 vectors, as discussed in Section 6. As also discussed there,

it turns out that most of the vectors ~k4 obtained from the triple combinations are already
included among those found in the double chains, so that the combined number of distinct
vectors is just 94. The total number of vectors is, however, 95 (see Table 1), because there

exists, in addition to the above enumeration, a single vector ~k4 = (7, 8, 9, 12) which has only
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a trivial intersection consisting just of the zero point. This can be found within our approach
using the non-trivial projection structure of its dual, which is an example of the importance
of duality in our classification, as discussed in Section 7.

To find all CY manifolds, and thereby to close their algebra with respect the duality
between intersection and projection that is described in more detail in Sections 3 and 4, one
must consider how to classify the projective structures of CY manifolds. Some of the 22
chains are dual with respect to the ‘intersection-projection’ structure, but more analysis is
required to close the CY algebra. As discussed in Section 7, it is useful for this purpose to
look for so-called invariant directions. To find all such invariant directions in the case of
K3 spaces, one should consider all triples selected from the following five extended vectors:
(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (0, 1, 1, 2), (0, 1, 2, 3), and their possible permutations, whose
intersections give the following five types of invariant directions defined by two monomials:

~πα
1 = {(1, 1, 1, 1) → (0, 1, 1, 3)}, α = 1, 2,

~πα
2 = {(1, 1, 1, 1) → (0, 0, 0, 3)}, α = 1, 2, 3, 4,

~πα
3 = {(1, 1, 1, 1) → (0, 0, 1, 3)}, α = 1, 2, 3, 4,

~πα
4 = {(1, 1, 1, 1) → (0, 0, 0, 4)}, α = 1, 2, 3, 4,

~πα
5 = {(1, 1, 1, 1) → (0, 0, 1, 4)}, α = 1,

(1.17)

and the following three types of invariant directions defined by three monomials:

~πα
6 = {(0, 2, 1, 1) → (1, 1, 1, 1) → (2, 0, 1, 1)}, α = 1, 2,

~πα
7 = {(0, 0, 1, 2) → (1, 1, 1, 1) → (2, 2, 1, 0)}, α = 1, 2, 3, 4,

~πα
8 = {(0, 0, 0, 2) → (1, 1, 1, 1) → (2, 2, 2, 0)}, α = 1, 2, 3, 4,

(1.18)

respectively. Each double intersection of a pair of extended vectors from one of these triples
gives the same ‘good’ planar polyhedron whose intersection with the plane integer lattice Z2

has just one interior point.
By this method, one can classify the projective vectors by projections, finding 78 projec-

tive vectors which can be characterized by their invariant directions. Taking into account
the projective vectors with intersection-projection duality that have already been found by
the double-intersection method, one can recover all 95 K3 projective vectors, including the
exceptional vector (7, 8, 9, 12) that was not found previously among the double and triple
chains.

Section 8 of this paper contains a systematic description how various gauge groups emerge
associated with singularities in our construction of K3 spaces [18]. These are interesting
because of their possible role in studies of F theory. Since this may be regarded as a de-
compactification of type-IIA string, understanding of duality between the heterotic string
and type IIA string in D = 6 dimensions can be used to help understand the duality be-
tween the heterotic string on T 2 and F theory on an elliptically-fibered K3 hypersurface [19].
The gauge group is directly defined by the ADE classification of the quotient singularities
of hypersurfaces. The Cartan matrix of the Lie group in this case coincides up to a sign
with the intersection matrix of the blown-down divisors. There are two different mechanisms
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Table 1: The algebraic structure of the 95 projective vectors characterizing K3 spaces. The
numbers of points/vertices in the corresponding polyhedra (their duals) are denoted by N/V
(N∗/V ∗), and their Picard numbers are denoted by Pic (Pic∗). In each case, we also list the
double, triple chains and projective chains where the corresponding K3 vector may be found.

ℵ ~k4 N N∗ V V ∗ Pic P ic∗ Double chains Triple chains Projective chains

1 (1, 1, 1, 1) 35 5 4 4 1 19 I, V II, X, XII I ~π3, ~π4, ~π6

2 (1, 1, 1, 2) 34 6 6 5 2 18 I, IV, XI, XIV I, II ~π1, ~π3, ~π5, ~π6, ~π7

3 (1, 1, 1, 3) 39 6 4 4 1 19 I, V, XX I, III ~π8

4 (1, 1, 2, 2) 30 6 4 4 4 18 II, IV, X, XXIXXII I, II, IV ~π2, ~π6, ~π7

5 (1, 1, 2, 3) 31 8 7 6 4 16 IV, XI, XIII, XV I, II ~π1, ~π3, ~π6, ~π7

6 (1, 1, 2, 4) 35 7 4 4 3 18 IV, V, V I, XV I I, II, III ~π8

7 (1, 1, 3, 4) 33 9 5 5 4 16 XI, XV II I, II ~π2, ~π6

8 (1, 1, 3, 5) 36 9 5 5 3 17 V, XV III I, III ~π8

9 (1, 1, 4, 6) 39 9 4 4 2 18 V, XIX I, III
10 (1, 2, 2, 3) 24 8 6 5 7 16 V II, V III, XI, XV, XXII I, II, IV ~π1, ~π3, ~π4, ~π7

11 (1, 2, 2, 5) 28 8 4 4 6 18 V, IX, XV I I, III ~π8

12 (1, 2, 3, 3) 23 8 6 5 8 16 II, III,XIV, XV I, II ~π1, ~π2, ~π7

13 (1, 2, 3, 4) 23 11 7 6 8 13 XII, XIII, XV, XXII II, IV ~π1, ~π3, ~π7

14 (1, 2, 3, 5) 24 13 8 7 8 12 XIII, XIV, XV II ~π1, ~π3, ~π5, ~π7

15 (1, 2, 3, 6) 27 9 4 4 7 16 V I, XV, XV I, XX II, III ~π8

16 (1, 2, 4, 5) 24 12 5 5 8 14 XV II, XXI, XXII II, IV ~π1, ~π2

17 (1, 2, 4, 7) 27 12 5 5 7 15 XV I, XV III III ~π8

18 (1, 2, 5, 7) 26 17 6 6 8 12 XV II II ~π1, ~π2

19 (1, 2, 5, 8) 28 14 5 5 7 14 XV I, XV III III ~π8

20 (1, 2, 6, 9) 30 12 4 4 6 16 XV I, XIX III
21 (1, 3, 4, 4) 21 9 4 4 10 16 II, V III I, II ~π2, ~π7

22 (1, 3, 4, 5) 20 15 7 7 10 10 XIII, XIV II ~π7

23 (1, 3, 4, 7) 22 17 6 6 10 10 XIII II ~π3, ~π7

24 (1, 3, 4, 8) 24 12 5 5 9 14 V I, IX II, III ~π8

25 (1, 3, 5, 6) 21 15 5 5 10 12 III, XV II II
26 (1, 3, 5, 9) 24 15 5 5 9 13 XV III,XX III ~π8

27 (1, 3, 7, 10) 24 24 4 4 10 10 XV II II ~π2

28 (1, 3, 7, 11) 25 20 5 5 9 11 XV III III ~π8

29 (1, 3, 8, 12) 27 15 4 4 8 14 XIX III
30 (1, 4, 5, 6) 19 17 6 6 11 9 V III, XIII II ~π7

31 (1, 4, 5, 10) 23 13 4 4 10 14 V I II, III ~π8

32 (1, 4, 6, 7) 19 20 6 6 11 9 XV II II
33 (1, 4, 6, 11) 22 20 6 6 10 10 IX, XV III III
34 (1, 4, 9, 14) 24 24 4 4 10 10 XV III III ~π8

35 (1, 4, 10, 15) 25 20 5 5 9 11 XIX III
36 (1, 5, 7, 8) 18 24 5 5 12 8 XV II II
37 (1, 5, 7, 13) 21 24 5 5 11 9 XV III III
38 (1, 5, 12, 18) 24 24 4 4 10 10 XIX III
39 (1, 6, 8, 9) 18 24 5 5 12 8 XV II II
40 (1, 6, 8, 15) 21 24 5 5 11 9 XV III III
41 (1, 6, 14, 21) 24 24 4 4 10 10 XIX III
42 (2, 2, 3, 5) 17 11 5 5 11 14 V III,XI I, II ~π4, ~π6, ~π7

43 (2, 2, 3, 7) 19 11 5 5 10 16 V, IX I, III ~π8

44 (2, 3, 3, 4) 15 9 4 4 12 16 III, V II, XXI I, IV ~π1, ~π2, ~π3, ~π4, ~π6

45 (2, 3, 4, 5) 13 16 7 7 13 9 XII, XIV, XXII II, IV ~π1, ~π3, ~π5, ~π7

leading to enhanced gauge groups on the F -theory side and on the heterotic side. On the
F -theory side, the singularities of the CY hypersurface give rise to the gauge groups, but
on the heterotic side the singularities can give an enhancement of the gauge group if ‘small’
instantons of the gauge bundle lie on these singularities [20]. This question has been stud-
ied in terms of the numbers of instantons placed on a singularity of type G, where G is a
simply-laced group. Studies of groups associated with singularities of K3 spaces are also in-
teresting because elliptic CYn (n = 3, 4) manifolds with K3 fibers can be considered to study
F -theory dual compactifications of the E8 × E8 or SO(32) string theory. To do this in toric
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Table 2: Continuation of Table 1.
46 (2, 3, 4, 7) 14 18 6 6 13 10 V III,XIV II ~π1, ~π3, ~π4, ~π5, ~π7

47 (2, 3, 4, 9) 16 14 5 5 12 13 IX, XV I, XX III ~π8

48 (2, 3, 5, 5) 14 11 6 5 14 14 II I, II ~π2, ~π7

49 (2, 3, 5, 7) 13 20 8 8 14 6 XIII II ~π3, ~π5, ~π7

50 (2, 3, 5, 8) 14 20 6 6 14 7 XIII II ~π3, ~π7

51 (2, 3, 5, 10) 16 14 5 5 13 12 V I II, III ~π8

52 (2, 3, 7, 9) 14 23 6 6 14 8 XV II II ~π2

53 (2, 3, 7, 12) 16 20 5 5 13 10 XV III III ~π8

54 (2, 3, 8, 11) 15 27 4 4 14 8 XV II II ~π2

55 (2, 3, 8, 13) 16 23 5 5 13 9 XV III III ~π8

56 (2, 3, 10, 15) 18 18 4 4 12 12 XIX III
57 (2, 4, 5, 9) 13 23 4 4 14 10 V III II ~π1, ~π4, ~π7

58 (2, 4, 5, 11) 14 19 5 5 13 11 IX, XV I III ~π8

59 (2, 5, 6, 7) 11 23 5 5 15 7 V III II ~π3, ~π4, ~π7

60 (2, 5, 6, 13) 13 23 5 5 14 9 IX III ~π8

61 (2, 5, 9, 11) 11 32 6 6 16 4 XV II II ~π2

62 (2, 5, 9, 16) 13 29 5 5 15 6 XV III III ~π8

63 (2, 5, 14, 21) 15 27 4 4 14 8 XIX III
64 (2, 6, 7, 15) 13 23 4 4 14 10 IX III ~π8

65 (3, 3, 4, 5) 12 12 5 5 14 14 III I ~π2, ~π3, ~π5, ~π6

66 (3, 4, 5, 6) 10 17 6 6 15 9 III, XII, XXI IV ~π1, ~π2, ~π3

67 (3, 4, 5, 7) 9 24 7 8 16 4 XIV II ~π3, ~π5, ~π7

68 (3, 4, 5, 8) 10 22 6 6 16 7 V III II ~π1, ~π3, ~π4, ~π7

69 (3, 4, 5, 12) 12 18 5 5 15 10 IX, XX III ~π8

70 (3, 4, 7, 10) 10 26 5 6 17 3 XIII II ~π3, ~π7

71 (3, 4, 7, 14) 12 18 5 5 16 10 V I II, III ~π8

72 (3, 4, 10, 13) 10 35 5 5 17 3 XV II II ~π2

73 (3, 4, 10, 17) 11 31 6 6 16 4 XV III III ~π8

74 (3, 4, 11, 18) 12 30 4 4 16 6 XV III III ~π8

75 (3, 4, 14, 21) 13 26 5 5 15 7 XIX III
76 (3, 5, 6, 7) 9 21 5 5 16 8 III ~π1, ~π2

77 (3, 5, 11, 14) 9 39 4 4 18 2 XV II II ~π2

78 (3, 5, 11, 19) 10 35 5 5 17 3 XV III III ~π8

79 (3, 5, 16, 24) 12 30 4 4 16 6 XIX III
80 (3, 6, 7, 8) 9 21 4 4 16 10 III ~π1, ~π2, ~π3, ~π4

81 (4, 5, 6, 9) 8 26 5 6 17 4 XIV II ~π3, ~π4, ~π5, ~π7

82 (4, 5, 6, 15) 10 20 5 5 16 9 XX III ~π8

83 (4, 5, 7, 9) 7 32 5 6 18 2 II ~π3, ~π7

84 (4, 5, 7, 16) 9 27 5 5 17 6 IX III ~π8

85 (4, 5, 13, 22) 9 39 4 4 18 2 XV III III ~π8

86 (4, 5, 18, 27) 10 35 5 5 17 3 XIX III
87 (4, 6, 7, 11) 7 35 4 4 18 3 V III II ~π4, ~π5, ~π7

88 (4, 6, 7, 17) 8 31 5 5 17 4 IX III ~π8

89 (5, 6, 7, 9) 6 30 5 6 18 2 III ~π2, ~π3, ~π5

90 (5, 6, 8, 11) 6 39 4 4 19 1 II ~π3, ~π7

91 (5, 6, 8, 19) 7 35 5 5 18 2 IX III ~π8

92 (5, 6, 22, 33) 9 39 4 4 18 2 XIX III
93 (5, 7, 8, 20) 8 28 4 4 18 6 III ~π8

94 (7, 8, 10, 25) 6 39 4 4 19 1 III ~π8

95 (7, 8, 9, 12) 5 35 4 4 19 1 ~π2, ~π3, ~π4, ~π5

geometry, it is possible to consider the K3 polyhedron fiber as a subpolyhedron of the CYn

polyhedron, and the Dynkin diagrams of the gauge groups of the type-IIA string (F -theory)
compactifications on the corresponding threefold (fourfold) can then be seen precisely in the
polyhedron of this K3 hypersurface. By extension, one could consider the case of an elliptic
CY4 with CY3 fiber, where the last is a CY hypersurface with K3 fiber. We give in Section 8
several detailed examples of group structures associated with chains of K3 spaces, which our
algebraic approach equips us to study systematically.

Finally, Section 9 provides a brief discussion of CY3 manifolds and describes how additional
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CY spaces can be constructed at higher levels as the intersections of multiple polynomial loci.
This discussion is illustrated by the examples of higher-level CY1 and K3 spaces obtained via
our construction of lower-level K3 and CY3 spaces. We find, for example, 7 new polyhedra
describing CY1 spaces given by ‘level-one’ intersections of pairs of polynomial loci, and three
new ‘level-two’ polyhedra given by triple intersections of polynomial loci. In looking for higher-
level K3 spaces, we start from 100 types of extended vectors in five dimensions, corresponding
to 10 270 distinct vectors when permutations are taken into account. We find that these give
rise to 4242 two-vector chains of CY3 spaces, 259 triple-vector chains and 6 quadruple-vector
chains. Analyzing their internal structures, we we find 730 new K3 polyhedra at level one, of
which 146 can be obtained as intersections of polynomials corresponding to simple polyhedra
(points, line segments, triangles and tetrahedra). A complete characterization of higher-level
K3 spaces given by multiple intersections of polynomial loci lies beyond our present computing
scope, and we leave their further study to later work.

2 Calabi-Yau Spaces as Toric Varieties

We recall that an n-dimensional complex manifold is a 2 · n-dimensional Riemannian space
with a Hermitean metric

ds2 = gij̄ · dzi · dz̄j̄ : gij = gīj̄ = 0, gij̄ = ḡj̄i. (2.1)

on its n complex coordinates zi. Such a complex manifold is Kähler if the (1, 1) differential
two-form

Ω =
1

2
· i · gij̄ · dziΛdz̄j̄ , (2.2)

is closed, i.e., dΩ = 0. In the case of a Kähler manifold, the metric (2.1) is defined by a Kähler
potential:

gij̄ =
∂2K(zi, z̄j̄)

∂zi∂z̄j̄
. (2.3)

The Kähler property yields the following constraints on components of the Cristoffel symbols:

Γi
j̄k = Γī

jk̄ = Γi
j̄k = 0,

Γī
j̄k̄ = Γ̄i

jk = g īs · ∂gk̄s

∂z̄j̄
. (2.4)

yielding in turn the following form

Rīj = −∂Γk̄
īk̄

∂zj
. (2.5)

for the Ricci tensor.
Since the only compact submanifold of Cn is a point [21], in order to find non-trivial com-

pact submanifolds, one considers weighted complex projective spaces, CP n(k1, k2, ..., kn+1),
which are characterized by (n + 1) quasihomogeneous coordinates z1, ..., zn+1, with the iden-
tification:

(z1, . . . , zn+1) ∼ (λk1 · z1, . . . , λ
kn+1 · zn+1). (2.6)

The loci of zeroes of quasihomogeneous polynomial equations in such weighted projective
spaces yield compact submanifolds, as we explain in more detail in the rest of Section 2,
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where we introduce and review several of the geometric and algebraic techniques used in
our subsequent classification. Other compact submanifolds may be obtained as the complete
intersections of such polynomial zero constraints, as we discuss in more detail in Section 9.

2.1 The Topology of Calabi-Yau Manifolds in the Polyhedron Method

A CY variety X in a weighted projective space CP n(~k) = CP n(k1, ..., kn+1) is given by
the locus of zeroes of a transversal quasihomogeneous polynomial ℘ of degree deg(℘) = d,
with d =

∑n+1
j=1 kj [7, 21, 22, 23, 13, 14, 24, 25, 26, 15, 27, 28, 29]:

X ≡ Xd(k) ≡ {[x1, ..., xn+1] ∈ CP n(k)|℘(x1, ..., xn+1) = 0}. (2.7)

The general polynomial of degree d is a linear combination

℘ =
∑
~µ

c~µx
~µ (2.8)

of monomials x~µ = xµ1
1 xµ2

2 ...x
µr+1

r+1 with the condition:

~µ · ~k = d. (2.9)

We recall that the existence of a mirror symmetry, according to which each Calabi-Yau
manifold should have a dual partner, was first observed pragmatically in the literature [12,
27, 14, 13, 11]. Subsequently, Batyrev [7] found a very elegant way of describing any Calabi-
Yau hypersurface in terms of the corresponding Newton polyhedron, associated with degree-d
monomials in the CY equation, which is the convex hull of all the vectors ~µ of degree d. The
Batyrev description provides a systematic approach to duality and mirror symmetry.

To each monomial associated with a vector ~µ of degree d, i.e., ~µ ·~k = d, one can associate
a vector ~µ

′ ≡ ~µ − ~e0 : ~e0 ≡ (1, 1, ..., 1), so that ~µ
′ · ~k = 0. Using the new vector ~µ

′
, hereafter

denoted without the prime (′), it is useful to define the lattice Λ:

Λ = {−→µ ∈ Zr+1 : −→µ · −→k = 0} (2.10)

with basis vectors ei, and the dual lattice Λ∗ with basis e∗j , where e∗j · ei = δij . Consider the
polyhedron 4, defined to be the convex hull of {~µ ∈ Λ : µi ≥ −1, ∀i}. Batyrev [7] showed
that to describe a Calabi-Yau hypersurface †, such a polyhedron should satisfy the following
conditions:

• the vertices of the polyhedron should correspond to the vectors ~µ with integer compo-
nents;

• there should be only one interior integer point, called the center;

• the distance of any face of this polyhedron from the center should be equal to unity.

Such an integral polyhedron 4 is called reflexive, and the only interior point of 4(k1 + ... +
kr+1 = d) may be taken as the origin (0, ..., 0). Batyrev [7] showed that the mirror polyhedron

4∗ ≡ {~ν ∈ Λ∗ : ~ν · ~µ ≥ −1, ∀~µ ∈ 4} (2.11)

†I.e., with trivial canonical bundle and at worst Gorenstein canonical singularities only.
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of any reflexive integer polyhedron is also reflexive, i.e., is also integral and contains one
interior point only. Thus Batyrev proved the existence of dual pairs of hypersurfaces M and
M ′ with dual Newton polyhedra, 4 and 4∗.

Following Batyrev [7], to obtain all the topological invariants of the K3, CY 3, etc., man-
ifolds, one should study the reflexive regular polyhedra in three, four, etc., dimensions. For
this purpose, it is useful to recall the types of polyhedra and their duality properties. In three
dimensions, the Descartes-Euler polyhedron formula relates the numbers of vertices, N0, the
number of edges, N1 and numbers of faces, N2:

1 − N0 + N1 − N2 + 1 = 0. (2.12)

This formula yields:

1 − 4 + 6 − 4 + 1 = 0 ⇒ {3, 3} : Tetrahedron

1 − 8 + 12 − 6 + 1 = 0 ⇒ {3, 4} : Cube

1 − 6 + 12 − 8 + 1 = 0 ⇒ {4, 3} : Octahedron

1 − 20 + 30 − 12 + 1 = 0 ⇒ {5, 3} : Dodecahedron

1 − 12 + 30 − 20 + 1 = 0 ⇒ {3, 5} : Icosahedron (2.13)

in the particular cases of the five Platonic solids, with the duality relations T ↔ T, C ↔
O, D ↔ I.

As we shall see later when we consider the K3 classification, it is interesting to recall the
link between the classification of the five ADE simply-laced Cartan-Lie algebras and the finite
rotation groups in three dimensions, namely the cyclic and dihedral groups and the groups of
the tetrahedron, octahedron (cube) and icosahedron (dodecahedron): GM ≡ Cn, Dn, T, O, I,
corresponding to the An, Dn series and the exceptional groups E6,7,8, respectively [30]. Any
cyclic group Cn of order n may be represented as the rotations in a plane around an axis
0x through angles (2 · m · π)/n for m = 0, 1, 2, ..., n − 1. This symmetry is realized by the
group of symmetries of an oriented regular n-gon. The dihedral group Dn consists of the
transformations in Cn and in addition n rotations through angles π around axes lying in
planes orthogonal to 0x, crossing 0x and making angles with one another that are multiples
of (2 · π)/n. This group has order 2 · n. In the case of three-dimensional space, there are three
exceptional examples T, O, I of finite groups, related to the corresponding regular polyhedra.
The order of the corresponding GM is equal to the product of the number of the vertexes of
the regular polyhedra with the number of edges leaving the vertex:

|T | = |A4| = 12;

|O| = |S4| = 24;

|I| = |A5| = 60.

(2.14)

The dual polyhedron, whose vertexes are the midpoints of the faces of the corresponding
polyhedron, has the same group of symmetry, GM . The finite groups of orthogonal trans-
formations in three-dimensional space do not consist only of rotations. It is remarkable to
note that every finite group of rotations of three-space that preserves the sphere centred at
the origin can be interpreted as a fractional-linear transformation of the Riemann sphere of
a complex variable.
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Finally, we recall that all K3 hypersurfaces have the following common values of the
topological invariants: the Hodge number h1,1 is 20, the Betti number b2 = 22, and we have

Pic = h1,1 − (l(∆) − 4 − ∑
θ∈∆

l′(θ)) ≤ 20. (2.15)

for the Picard number, where l(∆) is the number of integer points in the polyhedron and l′(θ)
is the number of integer interior points on the facets.

In the case of the CY3 classification, a corresponding important role will be played by the
structure and the duality properties of the four regular polyhedra known in four-dimensional
Euclidean space [31]. The Descartes-Euler formulae for these cases become:

1 − 5 + 10 − 10 + 5 − 1 = 0 ⇒ {3, 3, 3} : Pentahedroid

1 − 16 + 32 − 24 + 8 − 1 = 0 ⇒ {3, 3, 4} : Hypercube

1 − 8 + 24 − 32 + 16 − 1 = 0 ⇒ {4, 3, 3} : 16 − hedroid

1 − 24 + 96 − 96 + 24 − 1 = 0 ⇒ {3, 4, 3} : 24 − hedroid

1 − 600 + 1200 − 720 + 120 − 1 = 0 ⇒ {3, 3, 5} : 120 − hedroid

1 − 120 + 720 − 1200 + 600 − 1 = 0 ⇒ {5, 3, 3} : 600 − hedroid.

(2.16)

with the duality relations P ↔ P , H ↔ 16 − hedroid, 24 − hedroid ↔ 24 − hedroid,
120 − hedroid ↔ 600 − hedroid.

We do not discuss these relations further in this paper, but do recall that each mirror
pair of CY spaces, MCY and M∗

CY , has Hodge numbers that satisfying the mirror symmetry
relation [7, 15]:

h1,1(M) = hd−1,1(M
∗),

hd−1,1(M) = h1,1(M
∗) (2.17)

This means that the Hodge diamond of M∗
CY is a mirror reflection through a diagonal axis of

the Hodge diamond of MCY . The existence of mirror symmetry is a consequence of the dual
properties of CY manifolds. A pair of reflexive polyhedra (4,4∗) gives a pair of mirror CY
manifolds and the following identities for the Hodge numbers for n ≥ 4:

h1,1(4) = hd−1,1(4∗) =

= l(4∗) − (d + 2) − ∑
codimΘ∗=1

l
′
(Θ∗)

+
∑

codimΘ∗=2

l′(Θ∗)l
′
Θ, (2.18)

h1,1(4∗) = hd−1,1(4) =

= l(4) − (d + 2) − ∑
codimΘ=1

l′(Θ)

+
∑

codimΘ=2

l′(Θ)l′(Θ∗), (2.19)
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hp,1 =
∑

codimΘ∗=p+1

l
′
(Θ) · l′(Θ∗), 1 < p < d − 1. (2.20)

Here, the quantities l(Θ) and l′(Θ) are the numbers of integer points on a face Θ of 4 and in its
interior, and similarly for Θ∗ and 4∗. An l−dimensional face Θ can be defined by its vertices
(vi1 = ... = vik), and the dual face defined by Θ∗ = {m ∈ 4∗ : (m, vi1) =, ..., = (m, vik) = −1}
is an (n − l − 1)-dimensional face of 4∗. Thus, we have a duality between the l-dimensional
faces of 4 and the (n−l−1)-dimensional faces of 4∗. The last terms in (2.18, 2.19) correspond
to the ‘twisted’ contributions, and the last term corresponds to d = 4. In this case, if the
manifold has SU(4) group holonomy, then h2,0 = h1,0 = 0, and the remaining non-trivial
Hodge number h2,2 is determined by:

h2,2 = 2[22 + 2h1,1 + h3,1 − h2,1]. (2.21)

Some further comments about CY3 spaces are made in Section 9.

2.2 The Web of CY Manifolds in the Holomorphic-Quotient Approach to Toric
Geometry

It is well known that weighted projective spaces are examples of toric varieties [32]. The
complex weighted projective space CP n can be defined as

CP n ≡ Cn+1 − ~0

C∗ , (2.22)

with the action C∗:

(x1, ..., xn+1) ⇒ (λk1 · x1, ...., λ
kn+1 · xn+1), λ ∈ C\0. (2.23)

The generalization of the projective space CP n to a toric variety can be expressed in the
following form:

0 ≡ Cn − ZΣ

(C∗)p
, (2.24)

where, instead of removing the origin, as in the case of a simple projective space, here one
removes a point set ZΣ, and one takes the quotient by a suitable set of C∗ actions. Thus, to
understand the structure of certain geometrical spaces in the framework of toric geometry,
one must specify the combinatorical properties of the ZΣ and the actions C∗.

In the toric-geometry approach, algebraic varieties are described by a dual pair of lattices
M and N , each isomorphic to Zn, and a fan Σ∗ [32] defined on NR, the real extension of the
lattice N . In the toric-variety description, the equivalence relations of projective vectors can
be considered as diagrams in the lattice N , in which some vectors ~vi satisfy linear relations
(see later some examples in P 2(1, 1, 1), P 2(1, 1, 2), P 2(1, 2, 3) projective spaces). The complex
dimension of the variety coincides with the dimension of the lattice N . To determine the
structure of a toric variety in higher dimensions d > 2, it is useful to introduce the notion
of a fan [33, 32]. A fan Σ∗ is defined as a collection of r-dimensional (0 ≤ r ≤ d) convex
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polyhedral cones with apex in 0, with the properties that with every cone it contains also a
face, and that the intersection of any two cones is a face of each one.

In the holomorphic-quotient approach of Batyrev [7] and Cox [29], a single homogeneous
coordinate is assigned to the system 0Σ of varieties, in a way similar to the usual construction
of P n. This holomorphic-quotient construction gives immediately the usual description in
terms of projective spaces, and turns out to be more natural in the descriptions of the elliptic,
K3 and other fibrations of higher-dimensional CY spaces.

One can assign a coordinate zk : k = 1, ..., N to each one-dimensional cone in Σ. The
integer points of ∆∗ ∩ N define these one-dimensional cones

(v1, ..., vN) = Σ1
∗ (2.25)

of the fan Σ∗. The one-dimensional cones span the vector space NR and satisfy (N −n) linear
relations with non-negative integer coefficients:

∑
l

kl
jvl = 0, kl

j ≥ 0. (2.26)

These linear relations can be used to determine equivalence relations on the space CN\ZΣ∗.
A variety 0Σ∗ is the space CN\ZΣ∗ modulo the action of a group which is the product of a
finite Abelian group and the torus (C∗)(N−n) :

(z1, ..., zN ) ∼ (λk1
j z1, ...., λ

kN
j zN ), j = 1, ...,N − n. (2.27)

The set ZΣ∗ is defined by the fan in the following way:

ZΣ∗ ≡ ⋃
I

((z1, ..., zN )|zi = 0, ∀i ∈ I) (2.28)

where the union is taken over all index sets I = (i1, ..., ik) such that (vi1 , ..., vik) do not
belong to the same maximal cone in Σ∗, or several zi can vanish simultaneously only if the
corresponding one-dimensional cones vi are from the same cone.

It is clear from the above definitions that toric varieties can have often singularities, which
will be very important for understanding the link between the topological properties of Calabi-
Yau hypersurfaces and Cartan-Lie algebras: see the more systematic discussion in Section 8.
The method of blowing up (blowing down) these singularities was developed in algebraic
geometry: it consists of replacing the singular point or curve by a higher-dimensional (lower-
dimensional) variety. The structure of the fan Σ∗ determines what kind of singularities will
appear in Calabi-Yau hypersurfaces. For example, if the fan Σ∗ is simplicial, one can get only
orbifold singularities in the corresponding variety [33].

The elements of Σ∗
1 are in one-to-one correspondence with divisors

Dvi
= 0Σ∗

1i
, (2.29)

which are subvarieties given simply by zi = 0. This circumstance was used [34] to give a
simple graphic explanation of Cartan-Lie algebra (CLA) diagrams, whose Coxeter number
could be identified with the intersections of the divisors Dvi

.
Two divisors, Dvi

and Dvj
, can intersect only when the corresponding one-dimensional

cones vi and vj lie in a single higher-dimensional cone of the fan Σ∗. The divisors Dvi
form a
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free Abelian group Div(0Σ∗). In general, a divisor D ∈ Div(0Σ∗) is a linear combination of
some irreducible hypersurfaces with integer coefficients:

qD =
∑

ai · Dvi
. (2.30)

If ai ≥ 0 for every i, one can say that D > 0. For a meromorphic function f on a toric
variety, one can define a principal divisor

(f) ≡ ∑
i

ordDi
(f) · Di, (2.31)

where ordDi
(f) is the order of the meromorphic function f at Di. One can further define the

zero divisor (f)0 and the polar divisor (f)inf of the meromorphic function f , such that

(f) = (f)0 − (f)inf . (2.32)

Any two divisors D1, D2 are linearly equivalent: D1 ∼ D2, if their difference is a principal
divisor, D − D′ = (f) for some appropriate f . The quotient of all divisors Div(0Σ∗) by the
principal divisors forms the Picard group.

The points of ∆ ∩ M are in one-to-one correspondence with the monomials in the homo-
geneous coordinates zi. A general polynomial is given by

℘ =
∑

m∈∆∩M

cm

N∏
l=1

z
〈vl ,m〉+1
l . (2.33)

The equation ℘ = 0 is well defined and ℘ is holomorphic if the condition

〈vl, m〉 ≥ −1 for all l (2.34)

is satisfied. The cm parametrize a family M∆ of CY surfaces defined by the zero locus of ℘.

2.3 Three Examples of CY1 Spaces

As discussed in Section 1, three CY1 spaces may be obtained as simple loci of polynomial
zeroes associated with refelxive polyhedra. For a better understanding of the preceding for-
malism, we consider as warm-up examples the three elliptic reflexive polyhedron pairs ∆i and
∆∗

i , which define the CY1 surfaces P 2(1, 1, 1)[3], P 2(1, 1, 2)[4], and P 2(1, 2, 3)[6] ‡. The first
polyhedron ∆I ≡ ∆(P 2(1, 1, 1)[3]) consists of the following ten integer points:

z3 =⇒ µ
(I)
1 = (−1, 2),

xz2 =⇒ µ
(I)
2 = (−1, 1),

x2z =⇒ µ
(I)
3 = (−1, 0),

x3 =⇒ µ
(I)
4 = (−1,−1),

yz2 =⇒ µ
(I)
5 = (0, 1),

‡Here and subsequently, we use the conventional notation for such surfaces in n-dimensional projective
space: Pn(k1, k2, ...)[k1 + k2 + ...].
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xyz =⇒ µ
(I)
6 = (0, 0),

x2y =⇒ µ
(I)
7 = (0,−1),

y2z =⇒ µ
(I)
8 = (1, 0),

xy2 =⇒ µ
(I)
9 = (1,−1),

y3 =⇒ µ
(I)
10 = (2,−1). (2.35)

and the mirror polyhedron ∆∗
I ≡ ∆∗(P 2(1, 1, 1)[3]) consists of one interior point and three

one-dimensional cones:

v
(I)
1 = (0, 1),

v
(I)
2 = (1, 0),

v
(I)
3 = (−1,−1). (2.36)

We use as a basis the exponents of the following monomials:

y2z =⇒ ~e1 = (−1, 1, 0),

yz2 =⇒ ~e2 = (−1, 0, 1). (2.37)

where the determinant of this lattice coincides with the dimension of the projective vector
~k = (1, 1, 1) (see Figure 2):

det{~e1, ~e2, ~e0} = dim(~k) = 3, (2.38)

where ~e0 is the unit vector (1,1,1).
For this projective vector there exist 27 possibilities of choising two monomials for con-

structing the basis. Of course, all these bases are equivalent, i.e., they are connected by the
SL(2, Z) modular transformations:

Li,j =
(

a b
c d

)

where a, b, c, d ∈ Z and ad− bc = 1. For the mirror polyhedron obtained from this vector, the
basis should correspond to a lattice with determinant three times greater than (2.38), namely
9, for example:

~e1 = (−1, 2,−1),

~e2 = (−1,−1, 2). (2.39)

with

det{~e1, ~e2, ~e0} = dim(~k) = 9. (2.40)

where ~e0 is again the unit vector (1,1,1).
To describe this toric curve, one should embed it in the toric variety

P 2 = (C3\0)/(C\0), (2.41)
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S  =  9/2 S* = 3/2

    Projective vector k  =  (1, 1, 1)[3]

 Dual  pair  of  triangles  S  and  S*

Figure 2: The dual pair of reflexive plane polyhedra defined by the projective vector (1, 1, 1) with
N(S) = 10 and N(S∗) = 4 integer points, respectively. SL(2, Z) transformations produce an
infinite number of dual-pair triangles, conserving the areas S = 9/2 and S∗ = 3/2, respectively.

where the equivalence relation

(x1, x2, x3) ∼ (λx1, λx2, λx3) for λ ∈ C\0 (2.42)

is a consequence of the equation:

q1 · v(I)
1 + q2 · v(I)

2 + q3 · v(I)
3 = 0, (2.43)

where the qi = 1, i = 1, 2, 3 are the exponents of λ. The corresponding general polynomial
describing a CY surface is (setting zl ≡ xl):

℘I = x3
1 + x3

2 + x3
3 + x1x2x3

+ x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2. (2.44)
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and the Weierstrass equation can be written in the following form:

y2 · z = x3 + a · x · y3 + b · z3 (2.45)

where we have set x1 = x, x2 = y, x3 = z.
The second dual pair of triangle polyhedra ∆II ≡ ∆(P 2(1, 1, 2)[4]) and its mirror ∆∗

II ≡
∆∗(P 2(1, 1, 2)[4]) have nine points

y4 =⇒ µ
(II)
1 = (−1, 2),

xy3 =⇒ µ
(II)
2 = (−1, 1),

x2y2 =⇒ µ
(II)
3 = (−1, 0),

x3y =⇒ µ
(II)
4 = (−1,−1),

x4 =⇒ µ
(II)
5 = (−1,−2),

y2z =⇒ µ
(II)
6 = (0, 1),

xyz =⇒ µ
(II)
7 = (0, 0),

x2z =⇒ µ
(II)
8 = (0,−1),

z2 =⇒ µ
(II)
9 = (1, 0). (2.46)

and five points, respectively (see Figure 3).
We use as a basis the exponents of the following monomials:

z2 =⇒ ~e1 = (−1,−1, 1),

y2z =⇒ ~e2 = (−1, 1, 0). (2.47)

where the determinant of this lattice coincides with the dimension of the projective vector
~k = (1, 1, 2):

det{~e1, ~e2, ~e0} = dim(~k) = 4, (2.48)

where ~e0 is again the unit vector (1,1,1).
To get the mirror polyhedron with 5 integer points, 4 on the edges and one interior point,

one should find a basis with lattice determinant twice (2.48), namely 8, for example:

~e1 = (−1,−1, 1),

~e2 = (−2, 2, 0). (2.49)

The following four points define four one-dimensional cones in Σ1(∆
∗
II):

v
(3)
1 = (1, 0),

v
(3)
2 = (−1, 0),

v
(3)
3 = (−1,−1),

v
(3)
4 = (−1, 1). (2.50)
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 N(S)  =  9
 S*  =  2S  =  4

 Projective  vector  k = (1, 1, 2)[4]

  N(S*) =  5

  Dual pair of triangles  S  and  S*

Figure 3: The dual pair of reflexive plane polyhedra defined by the projective vector (1, 1, 2)
with N(S) = 9 and N(S∗) = 5 integer points, respectively. SL(2, Z) transformations produce
an infinite number of dual-pair triangles, conserving the areas S = 4 and S∗ = 2, respectively.

Using the linear relations between the four one-dimensional cones, the corresponding (C∗)2 is
seen to be given by (zl ≡ χl):

(χ1, χ2, χ3, χ4) =⇒ (λµ2χ1, λχ2, µχ3, µχ4). (2.51)

and the general polynomial has the following nine terms:

℘II = χ2
2χ

4
3 + χ2

2χ
3
3χ4 + χ2

2χ
2
3χ

2
4 + χ2

2χ3χ
3
4 + χ2

2χ
4
4

+ χ1χ2χ
2
3 + χ1χ2χ3χ4 + χ1χ2χ

2
4 + χ2

1 (2.52)

in this case.
The vectors ~k = (1, 1, 1) and ~k = (1, 1, 2) have three common monomials and a related

reflexive segment-polyhedron, corresponding to the projective vector ~k2 = (1, 1) of CP 1. This
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circumstance can be used further in the construction of the projective algebra in which these
two vectors appear in the same chain.

The last CY1 example involves the plane of the projective vector ~k = (1, 2, 3), whose poly-
hedron ∆III ≡ ∆(P 2(1, 2, 3)[6]) and its mirror partner ∆∗

III ≡ ∆∗(P 2(1, 2, 3)[6]) both have
seven self-dual points, and one can check the existence of the following six one-dimensional
cones (see Figure 4):

z2 =⇒ v
(III)
1 = (1, 0),

x2y2 =⇒ v
(III)
2 = (−1, 0),

x3z =⇒ v
(III)
3 = (0, 1),

y3 =⇒ v
(III)
4 = (−1,−1),

x4y =⇒ v
(III)
5 = (−1, 1),

x6 =⇒ v
(III)
6 = (−1, 2). (2.53)

We use as a basis the exponents of the following monomials:

z2 =⇒ ~e1 = (−1,−1, 1),

x3z =⇒ ~e2 = (2,−1, 0). (2.54)

where the determinant of this lattice coincides with the dimension of the projective vector
~k = (1, 2, 3):

det{~e1, ~e2, ~e0} = dim(~k) = 6. (2.55)

As in the case of the two projective vectors ~k = (1, 1, 1) and ~k = (1, 1, 2), the vectors ~k =

(1, 1, 2) and ~k = (1, 2, 3) also have three common monomials, corresponding to the reflexive

segment polyhedron described by the vector ~k2 = (1, 1) in CP 1 projective space. Hence these
vectors will appear in the second chain of the plane projective algebra.

Thus one can see that, with these three plane projective vectors, ~k = (1, 1, 1), ~k = (1, 1, 2),
~k = (1, 2, 3), one finds only triangle reflexive polyhedra intersecting the integer planar lattice
in 10+4∗, 9+5∗, 7+7∗ points. Of course, on the plane one can find other reflexive polyhedra,
whose intersection with the integer plane lattice will give new CP 1 surfaces corresponding
to different polygons with more then three vertices, such as a reflexive pair of square and
rhombus. These new figures can be obtained using the techniques of extended vectors.

In the following, we will go on to study reflexive polyhedron pairs in three-dimensional
space. The corresponding general polynomial can be expressed in terms of six variables, and
contains seven monomials:

℘III = z2
1z3 + z2

2z3z
2
4z

2
5z

2
6 + z1z2z

2
3z

2
5z

3
6 + z2

2z
3
4z5 +

+ z2
2z

2
3z4z

3
5z

4
6 + z2

2z
3
3z

4
5z

6
6 + z1z2z3z4z5z6. (2.56)

The C∗4 action is determined by the following linear relations:

v
(III)
1 + v

(III)
2 = 0,

2v
(III)
1 + v

(III)
4 + v

(III)
5 = 0,

v
(III)
1 + v

(III)
3 + v

(III)
4 = 0,

3v
(III)
1 + 2v

(III)
4 + v

(III)
6 = 0 (2.57)
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Figure 4: The self-dual pair of reflexive plane polyhedra defined by the projective vector (1,2,3)
with N(S) = 7 and N(S∗) = 7 integer points. SL(2, Z) transformations produce an infinite
number of the dual-pair triangles, conserving the areas S = 3 and S∗ = 3, respectively.

between the elements of Σ1(∆
∗
III), and is given by

(z1, z2, z3, z4, z5, z6) −→ (λµ2νρ3z1, λz2, νz3, µνρ2z4, µz5, ρz6). (2.58)

One can introduce the following birational map between P 2(1, 2, 3)[6] and 0Σ∗ :

z2
1z3 = y2

3 (2.59)

z2
2z

3
4z5 = y3

2 (2.60)

z2
2z

3
3z

4
5z

6
6 = y6

1 (2.61)

Then, a dimensionally-reduced example of a CY manifold embedded in a toric variety is
described by the weight vector k = (1, 2, 3) and the zero locus of the Weierstrass polynomial

℘III = y6
1 + y3

2 + y2
3 + y1y2y3 + y4

1y2 + y2
1y

2
2 + y3

1y3. (2.62)
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The elliptic Weierstrass equation can be written in the weighted projective space P 2(1, 2, 3)[6]
as

y2 = x3 + a · x · z4 + b · z6 (2.63)

with the following equivalence relation

(x, y, z) ∼ (λ2x, λ3y, λz), λ ∈ C\0 (2.64)

in this case.
These examples illustrate how toric varieties can be defined by the quotient of Ck\ZΣ,

and not only by a group (C\0)k−n. One should divide Ck\ZΣ also by a finite Abelian group
G(v1, ..., vk), which is determined by the relations between the Dvi

divisors. In this case,
the toric varieties can often have orbifold singularities, Ck\G. For example, the toric variety
defined by (2.63) looks near the points y = z = 0 and x = z = 0 locally like C2\Z2 (related
to the SU(2) algebra) and C2\Z3 (related to the SU(3) algebra), respectively, as seen in
Figure 5.
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The  fan  for  P(1,2,3) The  fan  for  the  blow-up  of  P(1,2,3)

( vt, ) SU(3)

Figure 5: The toric variety P (1, 2, 3) with two orbifold singularities at the points y = z = 0
and x = z = 0 can be blown up by extra divisors D(vu) and D(vs), D(vt), respectively.

3 Gauge Group Identifications from Toric Geometry

3.1 Calabi-Yau Spaces as Toric Fibrations

As discussed in section 2, any Calabi-Yau manifold can be considered as a hypersurface in
a toric variety, with a corresponding reflexive polyhedron ∆ with a positive-integer lattice Λ,
associated with a dual polyhedron ∆∗ in the dual lattice Λ∗. The toric variety is determined
by a fan Σ∗, consisting of the cones which are given by a triangulation of ∆∗. A large subset
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of reflexive polyhedra and their corresponding Calabi-Yau manifolds can be classified in terms
of their fibration structures. In this way, it is possible, as we discuss later, to connect the
structures of all the projective vectors of the one dimensionality with the projective vectors
of other dimensionalities, and thereby construct a new algebra in the set of all ‘reflexive’
projective vectors that gives the full set of CYd hypersurfaces in all dimensions: d = 1, 2, 3, ....

In order to embark on this programme, it is useful first to review two key operations,
intersection and projection, which can give possible fibration structures for reflexive polyhe-
dra [34]:

• There may exist a projection operation π : Λ → Λn−k, where Λn−k is an (n − k)-
dimensional sublattice, and π(∆) is also a reflexive polyhedron, and

• there may exist an intersection projection J through the origin of a reflexive polyhedron,
such that J(∆) is again an (n − l)-dimensional reflexive polyhedron, and

• these operations may exhibit the following duality properties:

Π(∆) ⇔ J(∆∗)

J(∆) ⇔ Π(∆∗). (3.1)

For a reflexive polyhedron ∆ with fan Σ over a triangulation of the facets of ∆∗, the CY
hypersurface in variety 0Σ is given by the zero locus of the polynomial:

℘ =
∑

µ∈∆∩M

c~µ ·
N∏

i=1

z
〈~vi·~µ〉+1
i . (3.2)

One can consider the variety 0Σ as a fibration over the base 0Σbase
with generic fiber 0Σfiber

.
This fibration structure can be written in terms of homogeneous coordinates. The fiber as an
algebraic subvariety is determined by the polyhedron ∆∗

fiber ⊂ ∆∗
CY , whereas the base can be

seen as a projection of the fibration along the fiber. The set of one-dimensional cones in Σbase

(the primitive generator of a cone is zero or ṽi) is the set of images of one-dimensional cones
in ΣCY (with primitive generator vj) that do not lie in Nfiber. The image Σbase of ΣCY under
Π : NCY → Nbase gives us the following relation:

Πvi = rj
i · ṽj, (3.3)

if Πvi is in the set of one-dimensional cones determined by ṽj rj
i ∈ N , otherwise rj

i = 0.
Similarly, the base space is the weighted projective space with the torus transformation:

(x̃1, ..., x̃Ñ) ∼ (λk̃1
j · x̃1, ..., λ

k̃Ñ
j · x̃Ñ), j = 1, ..., Ñ − ñ, (3.4)

where the k̃i
j are integers such that

∑
j k̃j

i ṽj = 0. The projection map from the variety 0Σ to
the base can be written as

x̃i =
∏
j

x
ri
j

j , (3.5)

corresponding to the following redefinitions of the torus transformation for x̃i:

Π : x̃i → λkj
l
·ri

j · x̃i,
∑

kj
l · ri

j · ṽi = 0. (3.6)
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In the toric description of K3 surfaces with elliptic fibers, denoted by ∆∗
fiber, one can consider

the following divisors: Dfiber, Dsection, Dva and Dvb
. The last pair of divisors correspond to

lattice points of ∆∗ that are ‘above’ or ‘below’ the fiber, respectively. Let us consider the case
when all divisors Dva (or Dvb

) shrink to zero size. In this case, there appears a K3 hypersurface
with two point singularities, which belong to the ADE classification. The process of blowing
up these singularities gives the primordial K3 manifold, and its intersection structure is given
by the structure of the edges. The Cartan-Lie algebra (CLA) diagrams of the gauge groups
that appear when the exceptional fibers are blown down to points are nothing but the edge
diagrams of the upper and lower parts of ∆∗ without vertices, respectively. A simple well-
known example with elliptic fiber and with base P 1 is given by the following Weierstrass
equation for the fiber:

y2 = x3 + f(z1, z2) · x · z4 + g(z1, z2) · z6, (3.7)

where the coefficients f(z1, z2), g(z1, z2) are functions on the base.
In the following parts of this Section, we discuss some examples of K3 spaces from our

general classification, and explain the identification of their corresponding gauge groups.

3.2 Examples of K3 Toric Fibrations with J = Π Weierstrass structure

As a first example, we consider the case of the elliptic K3 hypersurface with elliptic fiber
P 2(1, 2, 3)[6] defined by the integer positive lattice with basis (we explain this lattice basis
later in terms of our algebraic description):




~e1

~e2

~e3


 =



−m n 0 0
−2 −2 1 0
−1 −1 −1 1


 ,

where we consider the following 12 pairs of integer numbers (m, n) which are taken from the
numbers: 1, 2, 3, 4, 5, 6,

{ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 5) (3, 4), (4, 5), (5, 6)}.
With this choice of the pairs, the basis above determines a self-dual set of 12 projective
~k4-vectors:

m = 1, n = 1 =⇒ ~k4 = (1, 1, 4, 6 )[12], ⇐⇒ (5, 6, 22, 33)

m = 1, n = 2 =⇒ ~k4 = (1, 2, 6, 9 )[18], ⇐⇒ (3, 5, 16, 24)

m = 1, n = 3 =⇒ ~k4 = (1, 3, 8, 12)[24], ⇐⇒ (2, 5, 14, 21)

m = 1, n = 4 =⇒ ~k4 = (1, 4, 10, 15)[30], ⇐⇒ DI
′

m = 1, n = 5 =⇒ ~k4 = (1, 5, 12, 16)[36], ⇐⇒ self − dual

m = 1, n = 6 =⇒ ~k4 = (1, 6, 14, 21)[42], ⇐⇒ self − dual

m = 2, n = 3 =⇒ ~k4 = (2, 3, 10, 15)[30], ⇐⇒ self − dual

m = 2, n = 5 =⇒ ~k4 = (2, 5, 14, 21)[42], ⇐⇒ (1, 3, 8, 12)

m = 3, n = 4 =⇒ ~k4 = (3, 4, 14, 21)[42], ⇐⇒ DI
′′

m = 3, n = 5 =⇒ ~k4 = (3, 5, 16, 24)[48], ⇐⇒ (1, 2, 6, 9)
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m = 4, n = 5 =⇒ ~k4 = (4, 5, 18, 27)[54], ⇐⇒ DI
′′′

m = 5, n = 6 =⇒ ~k4 = (5, 6, 22, 33)[66], ⇐⇒ (1, 1, 4, 6)

(3.8)

Later this set will emerge as the intersection-projection symmetric XIX chain (J = Π) of our
algebraic classification. In this example, one can see that the projective vectors corresponding
to the tetrahedra produce a self-dual set. We also show in (3.8) the duality relations between
6 other vectors and some of the vectors in Table 1.

However, three of the projective vectors in (3.8), ~k4 = (1, 4, 10, 15)[30], (3, 4, 14, 21)[42]
and (4, 5, 18, 27)[54], correspond to polyhedra with 5 vertices, and their duals can be found
among higher-level K3 spaces. They are found by double intersections (DI) among the five-
dimensional extensions of the K3 vectors shown in Table 1:

~k4 = (1, 4, 10, 15)[30]
DI

′
⇐⇒ {~kex

5 = (0, 1, 6, 8, 15)[30]}⋂{~kex
5 = (6, 1, 0, 14, 21)[42]}

~k4 = (3, 4, 14, 21)[42]
DI

′′
⇐⇒ {~kex

5 = (2, 1, 0, 6, 9)[18]}⋂{~kex
5 = (0, 1, 2, 4, 7)[14]}

~k4 = (4, 5, 18, 27)[54]
DI

′′′
⇐⇒ {~kex

5 = (1, 0, 1, 4, 6)[12]}⋂{~kex
5 = (0, 1, 1, 3, 5)[10]}

(3.9)

as discussed in more detail in Section 6.
The ascending Picard numbers for polyhedra in this chain include:

(∆(P 3(1, 6, 14, 21)[42]) : ℵ = 24(24∗), P ic = 10(10∗)

≈ (∆(P 3(1, 5, 12, 18)[36]) : ℵ = 24(24∗), P ic = 10(10∗)

⊂ (∆(P 3(1, 4, 10, 15)[30]) : ℵ = 25(20∗), P ic = 9(11∗)

⊂ (∆(P 3(1, 3, 8, 12)[24]) : ℵ = 27(15∗), P ic = 8(14∗)

⊂ (∆(P 3(1, 2, 6, 9)[18]) : ℵ = 30(12∗), P ic = 6(16∗)

⊂ (∆(P 3(1, 1, 4, 6)[12]) : ℵ = 39(9), P ic = 2(18∗) ⊂ ......... (3.10)

In the case of the mirror polyhedron chain, there is the inverse property: ∆∗(P 3(1, 6, 14, 21)[42])
corresponds to the maximal member of the set of mirror polyhedra. These Picard numbers
are tabulated in Table 1, together with those of the other K3 spaces.

In the chain (3.8), the mirror polyhedra, ∆∗, have an intersection plane H∗
fiber through the

interior point which defines an elliptic-fiber triangle with seven integer points, P 2(1, 2, 3)[6]
(see Figures 6,7):

∆∗
fiber = ∆∗ ⋂

H∗
fiber. (3.11)

By mirror symmetry in the polyhedron ∆, a projection operator π can be defined: π :
M → Mn−1, where Mn−1 is an (n − 1)-dimensional sublattice, such that π(∆) is a reflexive
polyhedron in Mn−1. This reflexive polyhedron also consists of seven points, so it is self-dual.
Also, one can find a planar intersection H through ∆ and through the interior point, which
also produces the reflexive polyhedron with seven points, namely the fiber P 2(1, 2, 3)[6] (see
Figures 6,7):

∆fiber = ∆
⋂

Hfiber. (3.12)

The dual pair of tetrahedra ∆(P 3(1, 1, 4, 6)[12] and ∆(P 3(5, 6, 22, 33)[66] consist of 39 and 9
points, respectively, as seen in Figure 6. They are the biggest and smallest polyhedra in the
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chain (3.8), and all other tetrahedra in this chain can be found in this Figure. This contains, in
particular, the two self-dual polyhedra ∆(P 3(1, 6, 14, 21)[42] and ∆(P 3(2, 3, 10, 15)[30] consist
of 24 + 24∗ and 18 + 18∗ points, respectively, as seen in Figure 7:

(0, 0, 1), (0, 1. − 1), (−1,−2,−1), (6,−2,−1);

(0, 0, 1), (0, 1. − 1), (−2,−2,−1), (3,−2,−1).

(3.13)

u 2

u3y3x

z 3

x 2 2y z 2

x zy4 4

x 6 y 6

8

3

x

x z

u

x y

yzzy

yx u

y u

u

y

x y
6 6

24

3

8
z

2

6
x

3

6

4 2

10 2

8 4

x y
4 8

y12

x

z

y uz2

12
x

x
2

y
10

z u
2

x

x  y  z  u

e3

e1

e2

The dual pair of projective vectors  k = (1, 1, 4, 6)[12]  and  k = (5, 6, 22, 33)[66] 

7  invariant  monomials

The dual pair of reflexive polyhedra S  and  S* : 
N(S*) = 9,         V(S*) =  2

N(S) = 39,         V(S) = 12          

Figure 6: The dual pair of reflexive planar polyhedra defined by the eldest projective vector
(1,1,4,6) with N(S) = 39 and the youngest projective vector (5,6,22,33) with N(S∗) = 9
integer points (marked by circles), respectively. SL(3, Z) transformations produce an infi-
nite number of dual pairs of tetrahedra, conserving the volumes V ol(S) = 12, V ol(S∗) = 6,
respectively.

We now consider the intersection of the three-dimensional polyhedron ∆(P 3(1, 6, 14, 21)[42])
with the two-dimensional plane H through the interior point. The intersection of this plane
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with the polyhedron, H
⋂

∆, forms a reflexive polyhedron fiber P 2(1, 2, 3) with seven points.
The equation of this plane in canonical coordinates µ1, µ2, µ3 is: m1 = 0. The fiber consists
of the following polyhedron points:

v0 = (0, 0, 0)

v1 = (0,−1, 0)

v2 = (0, 0, 1)

v3 = (0, 1,−1)

v4 = (0, 0,−1)

v5 = (0,−1,−1)

v6 = (0,−2,−1). (3.14)

Here and subsequently, the components of the vector corresponding to the fiber are underlined.
With respect to this fiber, the base is one-dimensional: P 1, and its fan F2 consists of

the divisors corresponding to the interior point and two divisors corresponding to two rays,
R1 = +~e1 and R2 = −~e1, with directions from the point (0,−2,−1) to the point (6,−2,−1)
and from the point (0,−2,−1) to (−1,−2,−, 1), respectively. The points of π−1

B (Ri) ( i.e.,
the points projected onto Ri by πB) for the rays Ri, (i = 1 = +, i = 2 = −) are of the form
(±..., b, c), where (0, b, c) is the point of the fiber.

The 16 points of π−1
B (R1) are listed in the Table 3: they correspond to the divisors Dvi

,
which produce the E8 algebra [34]. Also, from this Table one can easily read the Coxeter
numbers/weights. There is only one point in π−1

B (R2), namely

ṽ1
1 = (−1,−2,−1) (3.15)

which therefore does not correspond to any non-trivial group.

Table 3: The points of π−1
B (R1).

Coxeter # v
(i)
6 v

(i)
5 v

(i)
1 v

(i)
4 v

(i)
0

1 (1,−2,−1) (1,−1,−1) (1,−1, 0) (1, 0,−1) (1, 0, 0)

2 (2,−2,−1) (2,−1,−1) (2,−1, 0) (2, 0,−1) −−−
3 (3−2,−1) (3,−1,−1) (3,−1, 0) −−− −−−
4 (4,−2,−1) (4,−1,−1) −−− −− −−−−
5 (5,−2,−1) −−− −−− −−− −−−
6 (6,−2,−1) −−− −−− −−− −−−

3.3 Example of Gauge-Group Identification

Consider again the toric variety determined by the dual pair of polyhedra ∆(P 3(1, 1, 4, 6)[12])
and its dual ∆∗ shown in Figure 6. The mirror polyhedron contains the intersection H∗

through the interior point, the elliptic fiber P 2(1, 2, 3). For all integer points of ∆∗ (apart
from the interior point), one can define in a convenient basis the corresponding complex
variables:

v1 = (0,−2,−3) → z1

v2 = (0,−1,−2) → z2
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The self-dual projective vectors  k  =  (1, 6, 14, 21)[42]  and  k  =  (2, 3, 10, 15)[30] 

Weierstrass monomials

The self-dual reflexive polyhedra

N(S1)  =  N(S1*)  =  24
V(S1)  =  V(S1*)  =  7 

N(S2)  =  N(S2*)  =  18
 V(S2)  =  V(S2*)  =  5 

Figure 7: The self-dual polyhedra in the chain XIX determined by projective vector (1,6,14,21)
with N(S1) = 24 and vector (2,3,10,15) with N(S2) = 18 integer points, respectively.
SL(3, Z) transformations produce an infinite number of dual pairs of tetrahedra, conserving
the volumes V ol(S1) = 7 and V ol(S2) = 5, respectively.

v3 = (0,−1,−1) → z3

v4 = (0, 0,−1) → z4

v0 = (0, 0, 0)

v6 = (0, 1, 0) → z6

v7 = (0, 0, 1) → z7 (3.16)

and

v8 = (−1,−4,−6) → z8

v9 = (1, 0, 0) → z9. (3.17)
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There are some linear relations between integer points inside the fiber:

v1 + 2 · v6 + 3 · v7 = 0,

v2 + v6 + 2 · v7 = 0,

v3 + v6 + v7 = 0,

v4 + v6 + v7 = 0 (3.18)

and also the following relation between points in ∆∗:

v8 + v9 + 4 · v6 + 6 · v7 = 0 (3.19)

The polyhedron ∆(P 3(1, 1, 4, 6)) contains 39 points, which can be subdivided as follows.
There are seven points in the fiber P 2(1, 2, 3), determined by the intersection of the plane
m1 + 2 ·m2 + 3 ·m3 = 0 and the positive integer lattice. This plane separates the remaining
32 points in 16 ‘left’ and 16 ‘right’ points.

These ‘left’ and ‘right’ points define singularities of the E8L
and E8R

types, respectively,
which may be illustrated as follows. The plane H(∆) = m1+2m2+3m3 contains the following
seven points:

t1 = (5,−1,−1) → (z6
8z

6
9) · (z6

1z
4
2z

3
3z

2
4),

t2 = (3, 0,−1) → (z4
8z

4
9) · (z4

1z
3
2z

3
2z

2
4z6),

t3 = (2,−1, 0) → (z3
8z

3
9) · (z3

1z
2
2z

2
3z4z7),

t4 = (1, 1,−1) → (z2
8z

2
9) · (z2

1z
2
2z3z

2
4z

2
6),

t5 = (0, 0, 0) → (z8z9) · (z6
1z

4
2z

3
3z

2
4),

t6 = (−1, 2,−1) → (z2z
2
4z

3
6),

t7 = (−1,−1, 1) → (z3z
2
7).

(3.20)

The Weierstrass equation for the E8L
group based on the polyhedron ∆(P 3(1, 1, 4, 6)) can be

written in the form:

z3
6 + z2

6 · (a(1)
2 z8z

3
9 + a

(2)
2 z4

9) +

z4
1 · z6 · (a(1)

4 z3
8z

5
9 + a

(2)
4 z2

8z
6
9 + a

(3)
4 z8z

7
9 + a

(4)
4 z8

9) +

z6
1 · (a(1)

6 z5
8z

7
9 + a

(2)
6 z4

8z
8
9 + a

(3)
6 z3

8z
9
9 + a

(4)
6 z2

8z
(10)
9 + a

(5)
6 z8z

(11)
9 + a

(6)
6 z

(12)
9 )

= z2
7 + a1 · z6z7 · z2

9 + z7 · (a(1)
3 z2

8z
4
9 + a

(2)
3 z8z

(5)
9 ). (3.21)

The second Weierstrass equation for the E8R
group can be obtained from this equation by

interchanging the variables desrcibing the base: z8 ↔ z9
§. The Weierstrass triangle equation

can be presented in the following general form, where we denote z6 = x, z7 = y:

y2 + a1 · x · y + a3 · y = x3 + a2 · x2 + a4 · x + a6, (3.22)

where the ai are polynomial functions on the base. The Weierstrass equation can be written
in more simplified form as:

y2 = x3 + x · f + g, (3.23)

§The coefficients ai correspond to the notations of [35].
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with discriminant
∆ = 4f 3 + 27g2. (3.24)

In the zero locus of the discriminant, some divisors Di define the degeneration of the torus
fiber.

In addition to the method [34] described above, there is a somewhat different way to find
the singularity type [35]. As we saw in the above example, the polynomials f and g can
be homogeneous of orders 8 and 12, respectively, with a fibration that is degenerate over 24
points of the base. For this form of Weierstrass equation, there exists the ADE classification
of degenerations of elliptic fibers. In this approach, the type of degeneration of the fiber is
determined by the orders of vanishing of the functions f , g and δ. In the case of the general
Weierstrass equation, a general algorithm for the ADE classification of elliptic singularities
was considered by Tate [36]. For convenience, we repeat in the Table 4 some results of Tate’s
algorithm, from which one can recover the E8 × E8 type of Lie-algebra singularity for the
(1,1,4,6) polyhedron.

Table 4: Lie algebras obtained from Tate’s algorithm [36]: aj;k = aj/σ
k.

Type Group k(a1) k(a2) k(a3) k(a4) k(a6) k(∆)

I0 −−− 0 0 0 0 0 0
I1 −−− 0 0 1 1 1 1
I2 SU(2) 0 0 1 1 1 1
Ins
2k

Sp(2k) 0 0 k k 2k 2k
Is
2k SU(2k) 0 1 k k 2k 2k

Is
2k+1 SU(2k + 1) 0 1 k k + 1 2k + 1 2k + 1

III SU(2) 1 1 1 1 2 3
IVs SU(3) 1 1 1 2 3 4
I∗ns
0 G2 1 1 2 2 3 6
I∗s
1 SO(10) 1 1 2 3 5 7

I∗ns
2k−3 SO(4k + 1) 1 1 k k + 1 2k 2k + 3

I∗s
2k−3

SO(4k + 2) 1 1 k k + 1 2k + 1 2k + 3

I∗ns
2k−2 SO(4k + 3) 1 1 k + 1 k + 1 2k + 1 2k + 4

I∗s
2k−2

SO(4k + 4) 1 1 k + 1 k + 1 2k + 1 2k + 4

IV ∗ns F4 1 2 2 3 4 8
IV ∗s E6 1 2 2 3 5 8
III∗ E7 1 2 3 3 5 9
II∗ E8 1 2 3 4 5 10

4 The Composite Structure of Projective Vectors

We now embark in more detail on our construction of the projective vectors ~k which deter-
mine CY hypersurfaces, as previewed briefly in the Introduction and based on the polyhedron
technique and the concept of duality [7] reviewed in Section 2. We develop this construction
inductively, studying the structure of these vectors initially in low dimensions and then pro-
ceeding to higher ones.

4.1 Initiation to the Dual Algebra of CY Projective Vectors

Our starting point is the trivial zero-dimensional ‘vector’,

~k1 = (1). (4.1)
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which defines the trivial self-dual polyhedron comprising a single point, with the simplest
possible associated monomial:

x ⇒ µ1 = 1 ⇒ µ′
1 = (0). (4.2)

The next step is to consider the only polyhedron on the line R1 which is also self-dual, and
whose intersection with the integer lattice on the line contains three integer points:

µ′
1 = (−1), µ′

1 = (0), µ′
1 = (+1). (4.3)

The projective vector corresponding to this linear polyhedron is

~k2 = (1, 1), (4.4)

which can be constructed from the ~k1 vector, by the following procedure.
We extend the vector ~k1 to a two-dimensional vector in CP1, by inserting a zero component

in all possible ways:

~kex′
1 = (0, 1)

~kex′′
1 = (1, 0). (4.5)

The following monomials correspond to these ‘extended’ vectors:

µ
′

= (ν, 1) ⇒ xν · y
µ

′′
= (1, ξ) ⇒ x · yξ (4.6)

with the arbitrary integer numbers ν, ξ. From all the possible ~k pairs:

(~kex′ ⇔ ~kex′
), (~kex′′ ⇔ ~kex′′

) (~kex′ ⇔ ~kex′′
), (4.7)

we select only those whose intersections give a reflexive polyhedron. In this simple two-
dimensional case, only a single pair is so selected, namely ~kex′

1 and ~kex′′
1 :

~kex′
1

⋂
~kex′′

1 = 1. (4.8)

and the reflexive polyhedron comprises just a single point. The corresponding monomial is
x · y, whose degree is unity for both variables: degx = 1 and degy = 1.

We now introduce a second operation on these ‘extended’ vectors ~k
′..., which is ‘dual’ to

the intersection, namely the ‘sum’ operation:

~kex′
1

⋃
~kex′′

1 = ~k2 = (0, 1) + (1, 0) = (1, 1). (4.9)

In this simple case, one has three quadratic monomials:

x2 ⇒ µ1 = (2, 0) ⇒ µ′
1 = (−1);

x · y ⇒ µ2 = (1, 1) ⇒ µ′
2 = (0);

y2 ⇒ µ3 = (0, 2) ⇒ µ′
3 = (+1).

(4.10)
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If a projective vector is multiplied by a positive integer number m ∈ Z+, it still determines
the same hypersurface. Therefore, we should also consider sums of such vectors, characterized
by two positive integer numbers, m, n:

m · ~kex′
1 + n · ~kex′′

1 . (4.11)

It turns out that, in order to get a reflexive polyhedron with only one interior point, the
numbers m and n have to be lower than certain maximal values: mmax and nmax, respectively.
In our first trivial example, we find that

mmax = 1, nmax = 1. (4.12)

In general, the set of all pairs (m, n) with m ≤ mmax and n ≤ nmax generate a ‘chain’ of
possible reflexive polyhedra, which happens to be trivial in this simple case.

Following the previous procedure, to construct all possible vectors on the plane we should
start from two vectors, ~k1 and ~k2, ‘extended’ to dimension three in CP2 space:

~kex′
1 = (0, 0, 1), ~kex′′

1 = (0, 1, 0), ~kex′′′
1 = (1, 0, 0);

~kex′
2 = (0, 1, 1), ~kex′′

2 = (1, 1, 0), ~kex′′′
2 = (1, 0, 1). (4.13)

The next step consists of finding all possible pairs of these three-dimensional vectors whose
intersection gives the only reflexive polyhedron of dimension two, which corresponds to the
polyhedron projective vector ~k2 = (1, 1). Only two pairs (plus cyclic permutations) satisfy
this constraint:

[~kex′
1 (0, 0, 1)]

⋂
[~kex′′

2 (1, 1, 0)] = [~k2(1, 1)]J (4.14)

and

[~kex′
2 (0, 1, 1)]

⋂
[~kex′′

2 (1, 1, 0)] = [~k2(1, 1)]J . (4.15)

In these two cases, the corresponding monomials are:

x2 · z ⇒ µ1 = (2, 0, 1) ⇒ (−1);

x · y · z ⇒ µ2 = (1, 1, 1) ⇒ (0);

y2 · z ⇒ µ3 = (0, 2, 1) ⇒ (+1);

(4.16)

and

x2 · z2 ⇒ µ1 = (2, 0, 2) ⇒ (−1);

x · y · z ⇒ µ2 = (1, 1, 1) ⇒ (0);

y2 ⇒ µ3 = (0, 2, 0) ⇒ (+1);

(4.17)

respectively. These lead to the two following chains:

I. ~k3(1) = 1 · ~kex′
1 + 1 · ~kex′′

2 = (1, 1, 1); m = 1, n = 1

~k3(2) = 2 · ~kex′
2 + 1 · ~kex′′

2 = (1, 1, 2); m = 2, n = 1

mmax = dim(~kex′′
2 ) = 2, nmax = dim(~kex′

2 ) = 1 (4.18)
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and

II. ~k3(2) = 1 · ~kex′
2 + 1 · ~kex′′′

2 = (1, 1, 2); m = 1, n = 1;

~k3(3) = 2 · ~kex′
2 + 1 · ~kex′′′

2 = (1, 2, 3); m = 2, n = 1,

mmax = dim(~kex′′
2 ) = 2, nmax = dim(~kex′

2 ) = 2. (4.19)

Where the eldest vectors are given on the first lines of the two preceding equations, and we
note that the vector (1, 1, 2) is common to both chains.

It turns out that, also in higher dimensions, some ~k vectors are common to more than
one chain. Thus it is possible to make a transition from one chain to another by passing
through the common vectors. The algebra of projective vectors with the two operations

⋂
and

⋃
should be closed under duality symmetry:

J ⇐⇒ Π, (4.20)

where the symbols J and Π denotes two dual conjugate operations: intersection and projec-
tion, respectively. In this way, all vectors ~kd can be found. This structure underpins the idea
of a web of transitions between all Calabi-Yau manifolds.

4.2 General Formulation of Calabi-Yau Algebra

In the spirit of the simple constructions of the previous subsection, we can also construct
the corresponding closed ~k4 algebra in the case of K3 hypersurfaces. However, before giv-
ing the results, we first briefly formulate a theorem underlying the construction of a ~kd+1

projective vector, determining an associated reflexive d + 1-dimensional polyhedron and CYd

hypersurface, starting from ~kd projective vectors, which determine a d-dimensional reflexive
polyhedron with one interior point and a corresponding CYd−1 hypersurface. This theorem
underlies our systematic inductive algebraic construction of CY manifolds.

The theorem is based on two general points:

• First: from the vector ~kd, we construct the ‘extended’ vectors ~kex
d+1 using the rule:

(∗) ~kd = (k1, ..., k2)
π−1

=⇒ ~k
ex(i)
d+1 = (k1, ..., 0

i, ..., kd). (4.21)

• Second: we consider only those pairs of all possible ‘extended’ vectors, ~k
ex(i)
d+1 and ~k

ex(j)
d+1

with 0 ≤ i, j ≤ d, whose intersection gives the reflexive polyhedron of dimension d with
only one interior point. We denote this operation by:

(∗∗) ~k
ex(i)
d+1

⋂
~k

ex(j)
d+1 = [~kd]J . (4.22)

The statement of the theorem is:

• If by the rule (*) one can get, from the projective ~kd-vector, a set of ‘extended’ vectors
~k

ex(i)
d+1 , 0 ≤ i ≤ d, and for any pair of such “extended” ~k

ex(i)
d+1 -vectors the conditions (**)

are fulfilled, then the sum of these two ‘extended’ vectors will give an eldest projective
vector ~kd+1, which determines a reflexive polyhedron with only one interior point.

36



• Two finite positive integer numbers, nmax, mmax ∈ Z+, exist such that any linear combi-
nation of two vectors ~ki,j

d+1(n, m), with integer coefficients m ≤ mmax; n ≤ nmax produce
a CY hypersurface. We call ‘chain’ the set of vectors generated by any such pair of
‘extended’ vectors:

p · ~ki,j
d+1(n, m) = m · ~kex(i)

d+1 + n · ~kex(j)
d+1 ;

~ki,j
d+1(1, 1) = ~ki,j

d+1(eld) (4.23)

• The intersection of the vector ~ki,j
d+1(m, n) with the vector ~k

ex(i)
d+1 is equal to the intersection

of this vector with the vector ~k
ex(j)
d+1 :

[~ki,j
d+1(m, n)]

⋂
[~k

ex(j)
d+1 ] = [~ki,j

d+1(m, n)]
⋂

[~k
ex(i)
d+1 ]. (4.24)

We can also formulate a converse theorem:

• If one can decompose a reflexive projective vector ~kd+1 as the sum of two reflexive
projective vectors ~k

′
d+1 and ~k“

d+1, then there exists the intersection of the vector ~kd+1

with either of these two vectors, which defines a projective vector ~kd and a reflexive
polyhedron with only one interior point.

The above theorem provides a description of all CYd+1 hypersurfaces with d-dimensional
fibers in terms of two positive-integer parameters. Similarly, one can also consider the intersec-

tions of three (or more) ‘doubly-extended’ vectors ~k
ex(′)
d+1 , ~k

ex(′′)
d+1 , ~k

ex(′′′)
d+1 (by ‘doubly-extended’

we mean that they may be obtained by inserting two zero components in ~kd−1 vectors). One
should check that this intersection gives a reflexive polyhedron in the d − 2 space:

[~k
ex(2

′
)

d−1 ]
⋂

[~k
ex(2

′′
)

d−1 ]
⋂

[~k
ex(2

′′′
)

d−1 ] = [~kd−1]J . (4.25)

In this way, one may obtain a 3, 4, ...,≤ d positive-integer parameter description of the (d+1)-
dimensional polyhedra with (d − 1), (d − 2), ...-dimensional fiber sections:

p · ~kd+1 = m · ~kex(2
′
)

d−1 + n · ~kex(2
′′
)

d−1 + l · ~kex(2
′′′

)
d−1 . (4.26)

Finally, one can obtain additional lists of ~kd+1 vectors by using three ‘extended’ vectors, ~kexr

d ,
~kexi

d
~kexj

d (and similarly using four ~kex
... , etc.), and a special algebra of summing these vectors

only if the following three conditions are fulfilled:.

1.[~kexr

d ]
⋂

[~kexi

d ] = [~kd−1]
′
J ;

2.[~kexi

d ]
⋂

[~kexj

d ] = [~kd−1]
′′
J ;

3.[~kexj

d ]
⋂

[~kexr

d ] = [~kd−1]
′′′
J .

(4.27)

In this way, one may obtain a complete description of the positive-integer lattice which defines
all reflexive ~k vectors.
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5 Two-Vector Chains of K3 Spaces

We now embark on a parametrization of the ~k4 vectors defining K3 hypersurfaces with
fiber sections. Our description of K3 hypersurfaces is based on the above understanding of
the composite and dual structure of the projective ~k4 vectors. As already mentioned, we find
a link between this structure and the finite subgroups of the group of rotations of three-space,
namely the cyclic and dihedral groups and the symmetry groups of the Platonic solids: the
tetrahedron, the octahedron-cube and the icosahedron-dodecahedron:

• Cn : n = 1, 2, 3, ..., the cyclic group of finite rotations in the plane around an axis ‘1’ by
the angles α = 2π/n;

• Dn : n = 2, 3, 4, ..., the dihedral group, comprising all these rotations together with the
all reflections of a second axis ‘n’ lying in this plane, which is orthogonal to the axis ‘l’,
and producing with respect to each other the angle α/2;

• T -The finite group of the transformations leaving invariant the regular tetrahedron,
with 12 parameters;

• O- The finite group of the transformations leaving invariant the regular cube and octa-
hedron, with 24 parameters;

• I- The finite group of the transformations leaving invariant the regular icosahedron and
dodecahedron, with 60 parameters.

We use the polyhedron technique introduced in the previous Section, taking into account all
its duality, intersection and projection properties to study the projective-vector classification
of K3 spaces.

5.1 Two-Dimensional Integer Chains of K3 Hypersurfaces

In the K3 case, as already foreshadowed in the Introduction, the classification can start
from a basis of five types of ‘extended’ vectors. We recall that the structure of the three
‘planar’ projective vectors ~k3 = (1, 1, 1), (1, 1, 2), (1, 2, 3) can easily be understood on the basis

of the doubly-extended vector ~kext
1 = (0, 0, 1) and the singly-extended vector ~kext

2 = (0, 1, 1).

The structure of the underlying composite vector ~k2 = (1, 1) is also obvious. The full list of
K3 projective vectors is obtainable from the algebra of the following five extended vectors:
the maximally-extended vector of the form

~kext
C = (0, 0, 0, 1) (5.1)

with its 4 cyclic permutations, the doubly-extended dihedral vector of the form

~kext
D = (0, 0, 1, 1) (5.2)

with its 6 dihedral permutations, the singly-extended tetrahedral vector of the form

~kext
T = (0, 1, 1, 1) (5.3)
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with its 4 cyclic permutations, the extended octahedral vector of the form

~kext
O = (0, 1, 1, 2) (5.4)

with its 12 permutations, and finally the extended icosahedral vector of the form

~kext
I = (0, 1, 2, 3) (5.5)

with its 24 permutations, for a total of 50 extended vectors.
Using the algebra of combining pairs of these 50 extended ~ki vectors, we obtain 90 distinct

~k4 vectors in 22 double chains with a regular planar k-gon intersection: k > 3 with only
one interior point, as seen in Table 1. Combining three extended ~ki vectors, we obtain four
triple chains with self-dual line-segment intersection-projections and one interior point, which
contain 91 distinct vectors, of which only four ~k4 vectors are different from the 90 vectors
found previously, as also seen in Table 1. Of course, there are some vectors which have a
regular planar k-gon in their intersection and no line-segment intersection. Further, as we
see later in Section 7, there is just one vector, ~k4 = (7, 8, 9, 12), which has only a single point
intersection, i.e., the intersection consists of the zero point alone, and can be determined by
the intersection-projection

J(∆) ↔ Π(∆∗)

Π(∆) ↔ J(∆∗) (5.6)

duality, where the polyhedra ∆ and ∆∗ determine a dual pair of K3 hypersurfaces. We recall
that the sum of the integer points in intersection, J(∆), and in projection, Π(∆∗), is equal
to 14 = 4 + 10, 5 + 9, 6 + 8, 7 + 7, 8 + 6, 9 + 5, 10 + 4 for the plane intersection-projection and
6 = 3 + 3 for the line-segment intersection-projection. This duality plays a very important
role in our description. Eleven of the 22 two-vector chains found previously satisfy directly
the following condition:

J(∆n) = Π(∆n) = ∆n−1,

Π(∆n∗) = J(∆n∗) = ∆n−1∗, (5.7)

which means that the number of integer points in the intersection of the polyhedron (mirror
polyhedron) forming the reflexive polyhedron of lower dimension is equal to the number of
projective lines crossing these integer points of the polyhedron (mirror). The projections of
these lines on a plane in the polyhedron and a plane in its mirror polyhedron reproduce, of
course, the reflexive polyhedra of lower dimension. Only for self-dual polyhedra can one have

J(∆n) = Π(∆n) = Π(∆n∗) = J(∆n∗) = ∆n−1 = ∆n−1∗, (5.8)

namely the most symmetrical form of these relations.
Following the recipe presented as our central Theorem in Section 4, we present Table 5,

which lists all the ~k4 projective vectors derived from pairs of extended vectors of lower dimen-
sion, which fall into the 22 chains listed. In each case, we list the maximum integers m, n in
the chains, which are determined by the dimensions of the extended ~ki vectors. This Table
includes all the 90 projective ~k4 vectors found using our construction. All of these ~k4 vectors
define K3 hypersurfaces which could be obtained using the Zn symmetry coset action ¶.

¶They may also be used to construct higher-level CY1 spaces as the intersections of polynomial loci, as
discussed in Section 9.
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Table 5: The 22 chains of K3 obtained using pairs of ~k4 projective vectors. The number of
K3 spaces in each chain is denoted by N .

Chain ~ki

⋂
~kj ∆Int, ∆

∗
Int

~k(K3) = m · ~ki + n · ~kj

∑
m +

∑
n max(m, n) N

I (0001)
⋂

(1110) (10, 4) (n, n, n, m) 1 · m + 3 · n m = 1, n = 3 3

IV (0001)
⋂

(1120) (9, 5) (n, n, 2n, m) 1 · m + 4 · n m = 1, n = 4 4

XV (0001)
⋂

(1230) (7, 7) (n, 2n, 3n, m) 1 · m + 6 · n m = 1, n = 6 6

X (0011)
⋂

(1100) (9, 5) (n, n, m, m) 2 · m + 2 · n m = 2, n = 2 4

XI (0011)
⋂

(1101) (9, 5) (n, n, m, m + n) 2 · m + 3 · n m = 3, n = 2 6

V (0011)
⋂

(1102) (9, 5) (n, n, m, m + 2n) 2 · m + 4 · n m = 4, n = 2 6
XXII (0011)

⋂
(1210) (7, 7) (n, 2n, m + n, m) 2 · m + 4 · n m = 3, n = 3 6

XV I (0011)
⋂

(1203) (7, 7) (n, 2n, m, m + 3n) 2 · m + 6 · n m = 6, n = 2 9

II (0111)
⋂

(1011) (10, 4) (n, m, m + n, m + n) 3 · m + 3 · n m = 3, n = 3 4

XIII (0111)
⋂

(1012) (8, 6) (n, m, m + n, m + 2n) 3 · m + 4 · n m = 4, n = 3 9

III (0111)
⋂

(3012) (4, 10) (3n, m, m + n, m + 2n) 3 · m + 6 · n m = 6, n = 2 9
XV II (0111)

⋂
(1023) (7, 7) (n, m, m + 2n, m + 3n) 3 · m + 6 · n m = 6, n = 3 12

V I (0112)
⋂

(1012) (9, 5) (n, m, n + m, 2m + 2n) 4 · m + 4 · n m = 4, n = 4 6
V III (0112)

⋂
(1120) (5, 9) (n, m + n, m + 2n, 2m) 4 · m + 4 · n m = 3, n = 4 9

V II (0112)
⋂

(2110) (9, 5) (2n, m + n, m + n, 2m) 4 · m + 4 · n m = 3, n = 1 3

XV III (0112)
⋂

(1023) (7, 7) (n, m, m + 2n, 2m + 3n) 4 · m + 6 · n m = 6, n = 4 16
XIV (0112)

⋂
(2130) (6, 8) (2n, m + n, m + 3n, 2m) 4 · m + 6 · n m = 5, n = 3 8

IX (0112)
⋂

(2103) (5, 9) (2n, m + n, m, 2m + 3n) 4 · m + 6 · n m = 6, n = 3 12

XIX (0123)
⋂

(1023) (7, 7) (n, m, 2m + 2n, 3m + 3n) 6 · m + 6 · n m = 6, n = 6 12
XX (0123)

⋂
(2103) (7, 7) (2n, m + n, 2m, 3m + 3n) 6 · m + 6 · n m = 3, n = 3 12

XXI (0123)
⋂

(3120) (7, 7) (3n, m + n, 2m + 2n, 3n) 6 · m + 6 · n m = 2, n = 2 4
XII (0123)

⋂
(3210) (5, 9) (3n, m + 2n, 2m + n, 3m) 6 · m + 6 · n m = 2, n = 2 4

For illustration, we give in Table 6 the eldest vectors in each chain, i.e., the first members
of all 22 chains, which have m = 1, n = 1. As one can see, some vectors are common to more
than one chain. Using our understanding of the origins of the intersections, and duality, we
can classify these 22 chains in five classes, as indicated by the groupings in Table 6, which
correspond to the intersections, as indicated.

Table 6: The eldest vectors ~ki in the 22 K3 chains which have m = n = 1.
Chain d ~ki

~ki (∆, ∆∗) (∆Int, ∆
∗
Int)

I d = 1 · m + 3 · n (n, n, n, m) (1, 1, 1, 1) (35, 5) (10, 4)
II d = 3 · m + 3 · n (n, m, m + n, m + n) (1, 1, 2, 2) (30, 6) (10, 4)
III d = 3 · m + 6 · n (3n, m, m + n, m + 2n) (1, 2, 3, 3) (23, 8) (4, 10)

IV d = 1 · m + 4 · n (n, n, 2n, m) (1, 1, 1, 2) (34, 6) (9, 5)
V d = 2 · m + 2 · n (n, n, m, m) (1, 1, 1, 1) (35, 5) (9, 5)
V I d = 2 · m + 3 · n (n, n, m, m + n) (1, 1, 1, 2) (34, 6) (9, 5)
V II d = 2 · m + 4 · n (n, n, m, m + 2n) (1, 1, 1, 3) (39, 6) (9, 5)
V III d = 4 · m + 4 · n (n, m, m + n, 2m + 2n) (1, 1, 2, 4) (35, 7) (9, 5)
IX d = 4 · m + 4 · n (2n, m + n, m + n, 2m) (1, 1, 1, 1) (35, 5) (9, 5)
X d = 4 · m + 4 · n (n, m + n, m + 2n, 2m) (1, 2, 2, 3) (24, 8) (5, 9)
XI d = 4 · m + 6 · n (2n, m + n, m, 2m + 3n) (1, 2, 2, 5) (28, 8) (5, 9)
XII d = 6 · m + 6 · n (3n, m + 2n, 2m + n, 3m) (1, 1, 1, 1) (35, 5) (5, 9)

XIII d = 3 · m + 4 · n (n, m, m + n, m + 2n) (1, 1, 2, 3) (31, 8) (8, 6)
XIV d = 4 · m + 6 · n (2n, m + n, m + 3n, 2m) (1, 1, 1, 2) (34, 6) (6, 8)

XV d = 1 · m + 6 · n (n, 2n, 3n, m) (1, 1, 2, 3) (31, 8) (7, 7)
XV I d = 2 · m + 6 · n (m, n, 2n, 3n + m) (1, 1, 2, 4) (35, 7) (7, 7)
XV II d = 3 · m + 6 · n (n, m, m + 2n, , m + 3n) (1, 1, 3, 4) (33, 9) (7, 7)
XV III d = 4 · m + 6 · n (n, m, m + 2n, 2m + 3n) (1, 1, 3, 5) (36, 9) (7, 7)
XIX d = 6 · m + 6 · n (n, m, 2m + 2n, 3m + 3n) (1, 1, 4, 6) (39, 9) (7, 7)
XX d = 6 · m + 6 · n (2n, m + n, 2m, 3m + 3n) (1, 1, 1, 3) (39, 6) (7, 7)
XXI d = 6 · m + 6 · n (3n, m + n, 2m + 2n, 3m) (2, 3, 3, 4) (15, 9) (7, 7)

XXII d = 2 · m + 4 · n (n, 2n, m + n, m) (1, 1, 2, 2) (30, 6) (7, 7)
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It should be noted, however, that the above doubly-extended vector structure does not
exhaust the full list of possible K3 projective vectors. The projective vectors

(~k4)91 = (4, 5, 7, 9),

(~k4)92 = (5, 6, 8, 11),

(~k4)93 = (5, 7, 8, 20),

(~k4)94 = (7, 8, 10, 25),

(~k4)95 = (7, 8, 9, 12), (5.9)

have no planar reflexive polyhedron intersections, and therefore were not included in this list.
To obtain most of the additional ~k4- vectors (5.9), one must consider chains constructed from

three extended vectors of the type ~kex = (0, 0, 1) and ~kex = (0, 1, 1), with all possible per-
mutations, having in the intersection the line-segment polyhedron consisting of three integer
points. All these chains will be J1 − Π1 self-dual: J1 = Π1 = 3. It is easy to see that only
four different such triple chains can be built, as discussed in Section 6. These chains are much
longer than the previous two-vector chains, although their total number, 91, is also less than
the full number of all K3 vectors. The projective vectors

(~k4)12 = (3, 5, 6, 7),

(~k4)13 = (3, 6, 7, 8),

(~k4)14 = (5, 6, 7, 9),

(~k4)95 = (7, 8, 9, 12) (5.10)

are not involved in these chains. However, the union of the doubly-extended and triply-
extended vector chains gives a total of 94 ~k4 projective vectors. Only the ~k4 = (7, 8, 9, 12)
vector has just a point-intersection structure, and is not found by either the double- or triple-
vector constructions, as discussed in more detail in Section 7.

To preview how it arises, note that, by J − Π duality, we know that to ~k = (1, 1, 1, 1),

which has three intersection planes (1,1,1) with ten points, there must correspond a ~k which
has three different π projections with four points. Since it should have a non-trivial projection
structure, namely a four-point planar polyhedron with one interior point in three independent
directions, its external points should satisfy the following condition:

1

4
· {M1 + M2 + M3 + M4 } = M0 = (1, 1, 1, 1). (5.11)

In three-space, these points can only be taken as:

M1 = (4, 1, 0, 0), M2 = (0, 3, 1, 0), M3 = (0, 0, 4, 0), M4 = (0, 0, 0, 3). (5.12)

One can easily check that this polyhedron has three projections: πx1, πx2, πx3, with four points
giving the (1, 1, 1) planar polyhedron. The four points Mi (5.12) give the exceptional vector
~k = (7, 8, 9, 12). By projection, one can see that the five integer points of this polyhedron
produce the (1, 1, 1) planar polyhedron with four points.
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5.2 Invariant Monomials and the J − Π Structure of Calabi-Yau Equations

The experience provided by working with K3 hypersurfaces can aid in the classification
of Calabi-Yau manifolds. Also for this more complicated case, one should use the duality
conditions: one must be prepared to study the intersection structures of polyhedra and their
mirrors and/or to study the projection structures for polyhedra and mirror polyhedra.

This ‘intersection-projection’ structure of the ~k4 vectors from doubly-, triply- and quadruply-
extended vectors allows us to introduce the concept of invariant monomials in the CY equa-
tions. These invariant monomials are homogeneous under the action of the extended vectors,
i.e., if

~z′ = λ
~kex

j · ~z, j = 1, 2, 3, ..., (5.13)

then

~z′
~µ

= λ
~kex

j ·~µ · ~z~µ = λdj · ~z~µ, (5.14)

where dj = dim(~kex
j ) and j = 1, 2, 3, ... is the number of extended ~kex

j vectors. The invariant
monomials, ℘i, correspond to the reflexive polyhedra produced by the invariant set Ψinv which
is the same for all the chains.

These extended vectors can be formed from the following five familiar types of projective
vectors of lower dimensions:

~k1 = (0, 0, 1),

~k1 = (0, 1, 1),

~k3 = (1, 1, 1), ~k3 = (1, 1, 2), ~k3 = (1, 2, 3). (5.15)

A chain of ~k4 projective vectors can be generated from the linear sums of extended vectors,
for example, for j = 1, 2 one can get:

~k4(m, n) = m · ~kex
1 + n · ~kex

2

if ~kex
1

⋂
~kex

2 = {℘i : ℘i ∈ Σinv}. (5.16)

The invariant monomials are universal for all the ~k4 vectors in this chain.
To construct the ~k4 vectors determining K3 hypersurfaces, i.e., determining the corre-

sponding polyhedra with the property of reflexivity, one has to give a correct set of invariant
monomials. We have constructed the 22 sets of invariant monomials corresponding to the
doubly-extended vector structures among the ~k4 projective vectors. In this case, these sets of
the invariant monomials give in the intersection reflexive polyhedra of lower dimensions. The
number of invariant monomials for this doubly-extended vector structure is given by

31 = 1 + 4 × 2 + 22, (5.17)

where the last number corresponds to the Betti number for K3 hypersurfaces: b2 = 22. The
structure of the ~k4 projective vectors obtained from the triply-extended vectors, namely
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~kex = (0, 0, 0, 1) and ~kex = (0, 0, 1, 1), is given by the following four types of invariant mono-
mials:

ΨI3 : (2, 0, 1, 1) , (0, 2, 1, 1) , (1, 1, 1, 1, ) ⇒ x2 · z · u , y2 · z · u , x · y · z · u;

ΨII3 : (2, 2, 1, 0) , (0, 0, 1, 2) , (1, 1, 1, 1, ) ⇒ x2 · y2 · z , z · u2 , x · y · z · u;

ΨIII3 : (2, 2, 2, 0) , (0, 0, 0, 2) , (1, 1, 1, 1, ) ⇒ x2 · y2 · z2 , u2 , x · y · z · u;

ΨIV3 : (2, 0, 0, 2) , (0, 2, 2, 0) , (1, 1, 1, 1, ) ⇒ x2 · u2 , y2 · z2 , x · y · z · u. (5.18)

The four chains corresponding to these sets of invariant monomials are (see Tables 5,6,7 and
8):

~k4(ΨI3) = M · (1, 1, 0, 0) + N · (0, 0, 1, 0) + L · (0, 0, 0, 1) = (M, M, N, L),

~k4(ΨII3) = M · (1, 0, 0, 1) + N · (0, 1, 0, 1) + L · (0, 0, 1, 0) = (M, N, L, M + N),

~k4(ΨIII3) = M · (1, 0, 0, 1) + N · (0, 1, 0, 1) + L · (0, 0, 1, 1) = (M, N, L, M + N + L),

~k4Ψ(IV3) = M · (1, 0, 1, 0) + N · (0, 1, 0, 1) + L · (0, 0, 1, 1) = (M, N, M + L, N + L).

(5.19)

In these chains ‖, the sets of projective vectors are subject to the following additional projective
restrictions:

~k4(ΨI3) · ~eI = 0, ~eI = (−1, 1, 0, 0)

~k4(ΨII3) · ~eII = 0, ~eII = (−1,−1, 0, 1)

~k4(ΨIII3) · ~eIII = 0, ~eIII = (−1,−1,−1, 1)

~k4(ΨIV3) · ~eIV = 0, ~eIV = (1,−1,−1, 1)

(5.20)

Corresponding to these chains, the following triple intersections

~kex
M

⋂
~kex

N

⋂
~kex

L = ΨI3, ΨII3, ΨIII3, ΨIV3 . (5.21)

have the above-mentioned invariant monomials.
The K3 algebra has the interesting consequence that all the {1 + 4 + 22} invariant mono-

mials that give ‘good’ planar reflexive polyhedra in the 22 two-vector chains also can be
found by triple constructions. Therefore it is interesting to list now the 22 types of invari-
ant monomials whose origin is also connected with the triple intersections of all types of
projective vectors, the triply-extended vectors ~kex

1 = (0, 0, 0, 1), the doubly-extended vectors
~kex

2 = (0, 0, 1, 1), and the singly-extended vectors, ~kex
3 = (0, 1, 1, 1), (0, 1, 1, 2), (0, 1, 2, 3).

These monomials, ~z~µ, are invariant under action of the extended vectors

~kex
i · ~µ = dim(~kex

i ),

~kex
j · ~µ = dim(~kex

j ),

~kex
l · ~µ = dim(~kex

l ). (5.22)

‖There is in fact another ‘good’ triple intersection, of the extended vectors (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1),
but the chain I ′3 = (M, M, N, N + L) it produces has the same three invariant monomials, (0, 2, 1, 1) +
(2, 0, 1, 1) + (1, 1, 1, 1) as the I3 chain, which includes all its projective vectors.
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The directions of the possible projections Π are determined ∗∗ by the degenerate monomial
(x · y · z · u) ⇒ ~µ = (1, 1, 1, 1) and by the exponents of the following 22 invariant monomials,
µ = (µ1, µ2, µ3, µ4):

(3, 0, 0, 0), (3, 1, 0, 0), (3, 1, 1, 0), (3, 2, 0, 0),

(3, 2, 1, 0), (3, 3, 0, 0), (3, 3, 1, 0),

(4, 0, 0, 0), (4, 1, 0, 0), (4, 1, 1, 0), (4, 2, 0, 0),

(4, 2, 1, 0), (4, 3, 0, 0), (4, 3, 1, 0), (4, 4, 0, 0), (4, 4, 1, 0),

(6, 0, 0, 0), (6, 1, 0, 0), (6, 2, 0, 0), (6, 3, 0, 0),

(6, 4, 0, 0), (6, 6, 0, 0). (5.23)

where the underlines pick out those triple intersections where the intersections of pairs of
vectors also specify reflexive polyhedra, which will be important later. The four other types
of possible projections were already defined above.

The algebraic-geometry sense of (J, Π)(∆) ↔ (Π, J)(∆∗) duality for K3 hypersurfaces can
be interpreted through the invariant monomials: the list of the invariant monomials for
the two-extended-vector classification and the list of all of the three-extended-vector clas-
sification are the same, and the total number of them is equal to 31 = 1 + 4 × 2 + 22. The
J(∆, ∆∗) ↔ Π(∆∗, ∆) duality can be interpreted at a deeper level for J = Π chains: the in-
variant monomials are identical for corresponding CY equation and for its mirror equation.
The projection-projection structure gives additional information about the form of the cor-
responding CY equation. For example, this structure determines the subset of monomials
corresponding to the invariant monomials. As result, the homogeneous CY equation can
be written in according in terms of the intersection-projection structure of the projective ~k
vectors:

℘(~z) =
J∑
i

~z ~mi
0{

Π∑
p

ap
~mi

0
~znp·~eΠ} = 0. (5.24)

Here the ~z ~mi
0 are the invariant monomials which are defined by intersection structure, the

vector ~eΠ is the direction of the projection, and the np are integer numbers.

6 Three-Vector Chains of K3 Spaces

As already mentioned, one can find additional chains of K3 projective vectors ~k4 if one
considers systems of three extended vectors of the type ~kex

1 = (0, 0, 0, 1) and ~kex
2 = (0, 0, 1, 1),

which have in their intersections only three integer points or only three invariant monomials.
As also already remarked, there are only four different chains, corresponding to the four kinds
of invariant monomial triples. We have also commented that these new chains yield only
four additional K3 vectors, whilst the remaining vector, ~k4 = (7, 8, 9, 12), can be constructed
out of four extended vectors, as discussed in the following Section. The relationship between
the two- and three-vector constructions, and their substantial overlap, is the subject of this
Section.

∗∗Additional constraints on the invariant monomials are given in Section 7, reducing their number to 9 =
1 + 3 + 5.
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6.1 The Three-Vector Chain I3: ~k4 = (M, M, N, L)

Table 7: The 18 K3 hypersurfaces in the three-vector chain I3: ~k = (M, M, N, L) = M ·
(1, 1, 0, 0) + N · (0, 0, 1, 0) + L · (0, 0, 0, 1). Here and subsequently, the symbol ℵ in the first
column denotes the location of the corresponding vector in Table 1. The numbers in the last
columns indicate their locations in the corresponding chains.

ℵ M M N L [d] (∆, ∆∗) I II IV V V II X XI III

J(∆) − − − − − − 10 10 9 9 9 9 9 −
π(∆∗) − − − − − − 4 4 5 5 5 5 5 −
π(∆) − − − − − − − 10 − − 9′ − − −
J(∆∗) − − − − − − − 4 − − 5′ − − −

1 1 1 1 1 [4] (35, 5∗) 1 − − − 1 1 − −
2 1 1 1 2 [5] (34, 6∗) 2 − 1 − − − 1 −
3 1 1 1 3 [6] (39, 6∗) 3 − − 1 − − − −
4 1 1 2 2 [6] (30, 6∗) − 1 2 − − 2 − −
5 1 1 2 3 [7] (31, 8∗) − − 3 − − − 2 −
6 1 1 2 4 [8] (35, 7∗) − − 4 2 − − − −
7 1 1 3 4 [9] (33, 9∗) − − − − − − 4 −
8 1 1 3 5 [10] (36, 9∗) − − − 3 − − − −
9 1 1 4 6 [12] (39, 9∗) − − − 5 − − − −
10 2 2 1 3 [8] (24, 8∗) − − − − 2 − 3 −
11 2 2 1 5 [10] (28, 8∗) − − − 4 − − − −
42 2 2 3 5 [12] (17, 11∗) − − − − − − 5 −
43 2 2 3 7 [14] (19, 11∗) − − − 6 − − − −
12 3 3 1 2 [9] (23, 8∗) − 2 − − − − − −
44 3 3 2 4 [12] (15, 9∗) − − − − 3 − − −
65 3 3 4 5 [15] (12, 12∗) − − − − − − − 1
21 4 4 1 3 [12] (21, 9∗) − 3 − − − − − −
48 5 5 2 3 [15] (14, 11∗) − 4 − − − − − −

In this chain, the dimension (d = 2M + N + L) and the eldest vector is ~keld = (1, 1, 1, 1),
whose invariant monomials are (2, 0, 1, 1) + (0, 2, 1, 1). The relations between this three-vector
chain and the previously-discussed two-vector chains can easily be found. We consider the
first three vectors in Table 7, which also form the two-vector chain I:

I : m · (1, 1, 1, 0) + n · (0, 0, 0, 1) = (m, m, m, n) →
M = N = m = [dim]{(0, 0, 0, 1)} = 1,

L = n ≤ [dim]{(1, 1, 1, 0)} = 3. (6.1)

Similarly, one can consider four vectors (2, 2, 1, 1), (3, 3, 1, 2), (4, 4, 1, 3) and (5, 5, 2, 3), which
form the two-vector chain II:

II : m · (1, 1, 1, 0) + n · (1, 1, 0, 1) = (m, n, m + n, m + n) →
N = m ≤ [dim]{(1, 1, 0, 1)} = 3,

L = n ≤ [dim]{(1, 1, 1, 0)} = 3,

M = m + n < 6.

(6.2)

The four vectors (1, 1, 2, 1), (1, 1, 2, 2), (1, 1, 2, 3) and (1, 1, 2, 4) from the two-vector chain IV
have the following relations with this triple chain:

IV : m · (1, 1, 2, 0) + n · (0, 0, 0, 1) = (m, m, 2m, n) →
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M = m ≤ [dim]{(0, 0, 0, 1)} = 1,

N = 2m = 2,

L = n ≤ [dim]{(1, 1, 2, 0)} = 4.

(6.3)

The six vectors (1, 1, 1, 3), (1, 1, 2, 4), (1, 1, 3, 5), (1, 1, 4, 6), (2, 2, 1, 5) and (2, 2, 3, 7) in Table 7
correspond to the two-vector chain V :

V : m · (1, 1, 0, 2) + n · (0, 0, 1, 1) = (m, m, n, 2m + n) →
M = m ≤ [dim]{(0, 0, 1, 1)} = 2,

N = n ≤ [dim]{(1, 1, 0, 2)} = 4,

L = 2m + n < = 8.

(6.4)

The next three vectors (1, 1, 1, 1), (3, 3, 2, 4) and (2, 2, 1, 3) from the two-vector chain V II
have the following connection to this triple chain:

V II : m · (1, 1, 2, 0) + n · (1, 1, 0, 2) = (m + n, m + n, 2m, 2n) →
M = m + n < 4,

N = 2m < 4,

L = 2n < 4.

(6.5)

Two vectors (1, 1, 1, 1) and (1, 1, 2, 2) correspond to the two-vector chain X:

X : m · (1, 1, 0, 0) + n · (0, 0, 1, 1) = (m, m, n, n) →
M = m ≤ 2,

N = n ≤ 2,

L = n ≤ 2.

(6.6)

Finally, the values of M, N, L of the five projective vectors (1, 1, 1, 2), (1, 1, 2, 3), (1, 1, 3, 4),
(2, 2, 1, 3) and (2, 2, 3, 5) correspond to the fact that they are also from the two-vector chain
XI:

XI : m · (1, 1, 0, 1) + n · (0, 0, 1, 1) = (m, m, n, m + n) →
M = m ≤ 2,

N = n ≤ 3,

L = m + n ≤ 5.

(6.7)

6.2 The Three-Vector Chain II3: ~k4 = (M, N, L, M + N)

In this chain, shown in Table 8, the dimension d = 2M+2N+L, there is a symmetry: M ↔
N , the eldest vector ~keld = (1, 1, 1, 2), and the invariant monomials are (2, 2, 1, 0)+ (0, 0, 1, 2).
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Table 8: The 45 K3 hypersurfaces in the II3 chain: ~k = (M, N, L, Q = N + M) = M ·
(1, 0, 0, 1) + N · (0, 1, 0, 1) + L · (0, 0, 1, 0).

ℵ M N L Q [d] (∆, ∆∗) II IV V I V III XI XIII XIV XV XV II XXII

− − − − − − J(∆) 10 9 9 5 9 8 6 9 9 7
− − − − − − π(∆∗) 4 5 5 9 5 6 8 5 5 7

− − − − − − π(∆) 10 − 9 5′ − − − − − −
− − − − − − J(∆∗) 4 − 5 9′ − − − − − −
2 1 1 1 2 [5] (34, 6∗) 1 1 1

4 1 1 2 2 [6] (30, 6∗) 1 2 1
5 1 1 3 2 [7] (31, 8∗) 3 2 1 1
6 1 1 4 2 [8] (35, 7∗) 4 1
10 1 2 2 3 [8] (24, 8∗) 1 3 2 2
12 1 2 3 3 [9] (23, 8∗) 2 2 3
13 1 2 4 3 [10] (23, 11∗) 2 4 3
14 1 2 5 3 [11] (24, 13∗) 3 3 5
15 1 2 6 3 [12] (27, 9∗) 2 6
7 1 3 1 4 [12] (33, 9∗) 4 1
21 1 3 4 4 [12] (21, 9∗) 3 3
24 1 3 8 4 [16] (24, 12∗) 3
16 1 4 2 5 [12] (24, 12∗) 2 4
22 1 4 3 5 [13] (20, 15∗) 4 5
31 1 4 10 5 [20] (23, 13∗) 4
25 1 5 3 6 [15] (21, 15∗) 3
30 1 5 4 6 [16] (19, 17∗) 4 5
32 1 6 4 7 [18] (19, 20∗) 4
36 1 7 5 8 [21] (18, 24∗) 5
39 1 8 6 9 [24] (18, 24∗) 6
42 2 3 2 5 [12] (17, 11∗) 2 5
45 2 3 4 5 [14] (13, 16∗) 4 5
48 2 3 5 5 [15] (14, 11∗) 4
51 2 3 10 5 [20] (16, 14∗) 5
18 2 5 1 7 [15] (26, 17∗) 7
49 2 5 3 7 [17] (13, 20∗) 7
59 2 5 6 7 [20] (11, 23∗) 7
52 2 7 3 9 [21] (14, 23∗) 9
61 2 9 5 11 [27] (11, 32∗) 13
23 3 4 1 7 [15] (22, 17∗) 6
46 3 4 2 7 [16] (14, 18∗) 5 6
67 3 4 5 7 [19] (9, 24∗) 7
71 3 4 14 7 [28] (12, 18∗) 6
50 3 5 2 8 [18] (14, 20∗) 8
68 3 5 4 8 [20] (10, 22∗) 8
27 3 7 1 10 [21] (24, 24∗) 8
70 3 7 4 10 [24] (10, 26∗) 9
54 3 8 2 11 [24] (15, 27∗) 10
72 3 10 4 13 [30] (10, 35∗) 11
77 3 11 5 14 [33] (9, 39∗) 12
57 4 5 2 9 [20] (13, 23∗) 6
81 4 5 6 9 [24] (8, 26∗) 8
83 4 5 7 9 [25] (7, 32∗)
87 4 7 6 11 [28] (7, 35∗) 9
90 5 6 8 11 [30] (6, 39∗)

Comparing this chain with the previous two-vector chains, one can see clearly the possible
values of M, N, L for the projective vectors (M, N, L, M + N). For example, if one compares
the four vectors (1, 1, 2, 2), (1, 2, 3, 3), (1, 3, 4, 4) and (2, 3, 5, 5) in this triple chain with their
structure in the two-vector chain II, one finds the following relations:

II : m · (1, 0, 1, 1) + n · (0, 1, 1, 1) = (m, n, m + n, m + n) →
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M = m ≤ [dim]{(0, 1, 1, 1)} = 3,

N = n ≤ [dim]{(1, 0, 1, 1)} = 3,

L = m + n < 6.

(6.8)

Similarly, we find the following relations between the values of M, N, L in the triple chain and
the values of m, n for double chains:

IV : m · (1, 1, 0, 2) + n · (0, 0, 1, 0) = (m, m, n, 2m) →
M = N = m ≤ [dim]{(0, 0, 1, 0)} = 1,

L = n ≤ [dim]{(1, 1, 0, 2)} = 4.

(6.9)

V I : m · (1, 0, 2, 1) + n · (0, 1, 2, 1) = (m, n, 2m + 2n, m + n) →
M = m ≤ [dim]{(0, 1, 2, 1)} = 4,

N = n ≤ [dim]{(1, 0, 2, 1)} = 4,

L = 2m + 2n < 8.

(6.10)

V III : m · (1, 0, 2, 1) + n · (1, 1, 0, 2) = (m + n, n, 2m, m + 2n) →
M = m + n ≤ 8,

N = n ≤ [dim]{(1, 0, 2, 1)} = 4,

L = 2m ≤ 2[dim]{(1, 1, 0, 2)} = 8.

(6.11)

XI : m · (1, 0, 1, 1) + n · (0, 1, 0, 1) = (m, n, m, m + n) →
M = m ≤ [dim]{(0, 1, 0, 1)} = 2,

N = n ≤ [dim]{(1, 0, 1, 1)} = 3,

L = m.

(6.12)

XIII : m · (1, 0, 2, 1) + n · (0, 1, 1, 1) = (m, n, m, m + n) →
M = m ≤ [dim]{(0, 1, 1, 1)} = 3,

N = n ≤ [dim]{(1, 0, 2, 1)} = 4,

L = 2m + n.

(6.13)
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XIV : m · (1, 0, 2, 1) + n · (1, 2, 0, 3) = (m + n, 2n, 2m, m + 3n) →
M = m + n,

N = 2n ≤ 2[dim]{(1, 0, 2, 1)} = 8,

L = 2m ≤ 2[dim]{(1, 2, 0, 3)} = 12.

(6.14)

XV : m · (1, 2, 0, 3) + n · (0, 0, 1, 0) = (m, 2m, n, 3m) →
M = m,≤ [dim]{(0, 0, 1, 0)} = 1,

N = 2m ≤ 2[dim]{(0, 0, 1, 0)} = 2,

L = n ≤ [dim]{(1, 2, 0, 3)} = 6.

(6.15)

XV II : m · (1, 2, 0, 3) + n · (0, 1, 1, 1) = (m, 2m + n, n, 3m + n) →
M = m,≤ [dim]{(0, 1, 1, 1)} = 3,

N = 2m + n

L = n ≤ [dim]{(1, 2, 0, 3)} = 6.

(6.16)

XXII : m · (1, 0, 2, 1) + n · (0, 1, 0, 1) = (m, n, 2m, m + n) →
M = m ≤ [dim]{(0, 1, 0, 1)} = 2,

N = n ≤ [dim]{(1, 0, 2, 1)} = 6,

L = 2m.

(6.17)

6.3 The Three-Vector Chain III3: ~k4 = (M, N, L, M + N + L)

In this chain, tshown in Table 9, he dimension d = 2M + 2N + 2L, there is M ↔ N ↔ L
symmetry, the eldest vector ~keld = (1, 1, 1, 3), and the invariant monomials are (2, 2, 2, 0) + (0, 2, 2, 2).
We see in the Table the appearance of the following two-vector chains

V : m · (1, 1, 0, 2) + n · (0, 0, 1, 1) = (m, m, n, 2m + n) →
M = N = m ≤ [dim]{(0, 0, 1, 1)} = 2,

L = n ≤ [dim]{(0, 0, 1, 1)} = 4.

(6.18)
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Table 9: The 48 K3 hypersurfaces in the III3 chain: ~k = (M, N, L, Q = N + M + L) =
M · (1, 0, 0, 1) + N · (0, 1, 0, 1) + L · (0, 0, 1, 1).

ℵ M N L Q [d] (∆, ∆∗) V V I IX XV I XV III XIX XX
− − − − − − J(∆) 9 9 5 7 7 7 7
− − − − − − π(∆∗) 5 5 9 7 7 7 7

− − − − − − π(∆) − 9 − − 7 7 7
− − − − − − J(∆∗) − 5 − − 7 7 7

3 1 1 1 3 [6] (39, 6∗) 1 1

6 1 1 2 4 [8] (35, 7∗) 2 1 1
8 1 1 3 5 [10] (36, 9∗) 3 1
9 1 1 4 6 [12] (39, 9∗) 4 1
11 1 2 2 5 [10] (28, 8∗) 5 1 2
15 1 2 3 6 [12] (27, 9∗) 2 3 2
17 1 2 4 7 [14] (27, 12∗) 4 2
19 1 2 5 8 [16] (28, 14∗) 5 3
20 1 2 6 9 [18] (30, 12∗) 6 2
24 1 3 4 8 [16] (24, 12∗) 3 3
26 1 3 5 9 [18] (24, 15∗) 4
28 1 3 7 11 [22] (25, 20∗) 8
29 1 3 8 12 [24] (27, 15∗) 3
31 1 4 5 10 [20] (23, 13∗) 4
33 1 4 6 11 [22] (22, 20∗) 5 5
34 1 4 9 14 [28] (24, 24∗) 9
35 1 4 10 15 [30] (25, 20∗) 4
37 1 5 7 13 [26] (21, 24∗) 6
38 1 5 12 18 [36] (14, 18∗) 5
40 1 6 8 15 [30] (21, 24∗) 7
41 1 6 14 21 [42] (24, 24∗) 6
43 2 2 3 7 [14] (19, 11∗) 6 2
47 2 3 4 9 [18] (16, 14∗) 4 7 3
51 2 3 5 10 [20] (16, 14∗) 5
53 2 3 7 12 [24] (16, 20∗) 11
55 2 3 8 13 [26] (16, 23∗) 10
56 2 3 10 15 [30] (18, 18∗) 7
58 2 4 5 11 [22] (14, 19∗) 6
60 2 5 6 13 [26] (13, 23∗) 7
62 2 5 9 16 [32] (13, 29∗) 14
63 2 5 14 21 [42] (15, 27∗) 9
64 2 6 7 15 [30] (13, 23∗) 9
69 3 4 5 12 [24] (12, 18∗) 8
71 3 4 7 14 [28] (12, 18∗) 6
73 3 4 10 17 [34] (11, 31∗) 13
74 3 4 11 18 [36] (12, 30∗) 12
75 3 4 14 21 [42] (13, 26∗) 8
78 3 5 11 19 [38] (10, 35∗) 15
79 3 5 16 24 [48] (12, 30∗) 10
82 4 5 6 15 [30] (10, 20∗) 4
84 4 5 7 16 [32] (9, 27∗) 10
85 4 5 13 22 [44] (9, 39∗) 16
86 4 5 18 27 [54] (10, 35∗) 11
88 4 6 7 17 [34] (8, 31∗) 11
91 5 6 8 19 [38] (7, 35∗) 12
92 5 6 22 33 [66] (9, 39∗) 12
93 5 7 8 20 [40] (8, 28∗)
94 7 8 10 25 [50] (6, 39∗)

V I : m · (1, 0, 1, 2) + n · (0, 1, 1, 2) = (m, n, m + n, 2m + 2n) →
M = m ≤ [dim]{(0, 1, 1, 2)} = 4,

N = n ≤ [dim]{(1, 0, 1, 2)} = 4,
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L = m + n.

(6.19)

IX : m · (1, 0, 1, 2) + n · (0, 2, 1, 3) = (m, 2n, m + n, 2m + 3n) →
M = m ≤ [dim]{(0, 2, 1, 3)} = 6,

N = 2n ≤ 2[dim]{(1, 0, 1, 2)} = 8,

L = m + n.

(6.20)

XV I : m · (1, 0, 2, 3) + n · (0, 1, 0, 1) = (m, n, 2m, 3m + n) →
M = m ≤ [dim]{(0, 1, 0, 1)} = 2,

N = n ≤ [dim]{(1, 0, 2, 3)} = 6,

L = 2m.

(6.21)

XV III : m · (1, 0, 1, 2) + n · (0, 1, 2, 3) = (m, n, m + 2n, 2m + 3n) →
M = m ≤ [dim]{(0, 1, 2, 3)} = 6,

N = n ≤ [dim]{(1, 0, 1, 2)} = 4,

L = m + 2n.

(6.22)

XIX : m · (1, 0, 2, 3) + n · (0, 1, 2, 3) = (m, n, 2m + 2n, 3m + 3n) →
M = m ≤ [dim]{(0, 1, 2, 3)} = 6,

N = n ≤ [dim]{(1, 0, 2, 3)} = 6,

L = 2m + 2n.

(6.23)

XX : m · (2, 0, 1, 3) + n · (0, 2, 1, 3) = (2m, 2n, m + n, 3m + 3n) →
M = 2m ≤ 2[dim]{(0, 1, 2, 3)} = 6,

N = 2n ≤ 2[dim]{(1, 0, 2, 3)} = 6,

L = m + n.

(6.24)
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Table 10: The 8 K3 hypersurfaces in the IV3 chain: ~k = (M, N, M + L, N + L) = M ·
(1, 0, 1, 0) + N · (0, 1, 0, 1) + L · (0, 0, 1, 1).

ℵ M N M + L N + L [d] (∆, ∆∗) V II X XII XXI XXII

− − − − − − J/(∆) 7 9 5 7 7
− − − − − − π(∆∗) 7 5 9 7 7

− − − − − − π(∆) − − 5′ 7′ −
− − − − − − J(∆∗) − − 9′ 7′ −
1 1 1 1 1 [4] (35, 5∗) 1 1 1 − −
4 1 1 2 2 [6] (30, 6∗) − 2 − 1 1
10 1 2 2 3 [8] (24, 8∗) 2 − − − −
13 1 2 3 4 [10] (23, 11∗) − − 2 − 2
16 1 2 4 5 [12] (24, 12∗) − − − 2 3
44 2 3 3 4 [12] (15, 9∗) 3 − − 3 −
45 2 3 4 5 [14] (13, 16∗) − − 3 − 4
66 3 4 5 6 [18] (10, 17∗) − − 4 4 −

6.4 The Three-Vector Chain IV3: ~k4 = (M, N, M + L, N + L)

In this case (see Table 10), we have the dimension d = 2M + 2N + 2L, the eldest vector
~k = (1, 1, 1, 1), and the invariant monomials are (2, 0, 0, 2) + (0, 2, 2, 0). This three-vector
chain includes the following vectors form the two-vector construction:

V II : m · (2, 1, 1, 0) + n · (0, 1, 1, 2) = (2m, m + n, m + n, 2n) →
M = 2m ≤ 4,

N = m + n ≤ 4,

L = n − m ≥ 0.

(6.25)

X : m · (1, 1, 0, 0) + n · (0, 0, 1, 1) = (m, m, n, n) →
M = m ≤ 2,

N = m ≤ 2,

L = n − m ≥ 0.

(6.26)

XII : m · (3, 2, 1, 0) + n · (0, 1, 2, 3) = (3m, 2m + n, m + 2n, 3n) →
M = 3m,

N = 2m + n,

L = 2n − 2m,

(m, n) = (1, 2), (2, 1) ; (1, 1), (1, 4), (4, 1), (2, 5), (5, 2).

(6.27)

XXI : m · (1, 2, 3, 0) + n · (1, 2, 0, 3) = (m, 2m, 3m, 3n) →
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M = m,

N = 2m,

L = m,

(m, n) = (1, 1), (1, 2), (2, 1), , (1, 5), (5, 1), (4, 5), (5, 4).

(6.28)

XXII : m · (1, 0, 2, 1) + n · (0, 1, 0, 1) = (m, n, 2m, m + n) →
M = m ≤ [dim]{(1, 0, 2, 1)} = 4,

N = n ≤ [dim]{(1, 0, 2, 1)} = 4,

L = m.

(6.29)

7 The Dual K3 Algebra from Four-Dimensional Extended Vectors

As discussed in the Introduction, the enumeration of K3 reflexive polyhedra obtained at
level zero from pairs of projective vectors (Section 5) and triples (Section 6) is not quite

complete. The one remaining example, corresponding to ~k4 = (7, 8, 9, 12), can be found
using the intersection-projection and duality properties outlined in Section 3, as we now
discuss. This method can be used to build projective-vector chains using the rich projective
structure of K3 vectors. For example, one can construct a chain with, as youngest vector,
~k4 = (7, 8, 10, 25), which is dual to the eldest vector ~k4 = (1, 1, 1, 3) contained in the triple
chain III3. Similarly, one can consider other cases, e.g., building a chain with youngest vector
~k4 = (5, 6, 8, 11), contained in the triple chain II3.

7.1 The Dual ~π Projective-Vector Structure of K3 Hypersurfaces

We obtained in section 6, as an interesting application of the K3 algebra, all the 1 + (4×
2) + 22 invariant monomials of the 22 double-intersection K3 chains via the triple intersec-
tions of K3 extended vectors. These invariant monomials correspond to particular directions
relative to the reflexive polyhedra, which can be used to find the projection structures of
the vectors. In particular, they can be used to find all the projective vectors which have no
planar-intersection structure at all. Because of duality, their polyhedra have sufficient invari-
ant directions that the projections on the corresponding perpendicular planes give reflexive
planar polyhedra. Examples include youngest vectors which are dual to eldest vectors as well
as other relations in the corresponding chain, e.g., as we shall see, the remaining K3 vector
(7,8,9,12) is dual to (1,1,1,1), (7,8,10,25) is dual to (1,1,1,3), etc..

To understand this more deeply, we consider triple chains built using a special subalgebra
of the four-dimensional extended vectors: ~k

ex(i)
3 = (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (0, 1, 1, 2)

and (0, 1, 2, 3), with all possible permutations. We consider triples ~k
ex(i,j,l)
3 of these vectors

with the property that each pair (i, j), (j, l), (l, i) gives a reflexive planar polyhedron:

[~k
ex(i)
3 ]

⋂
[~k

ex(j)
3 ] = [~k3]. (7.1)
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We note that the triple intersections of these triples of extended vectors always define an
invariant direction, ~π. In some cases, the triple intersection contains just two monomial
vectors, and ~π is simply defined by their difference:

[~k
ex(i)
3 ]

⋂
[~k

ex(j)
3 ]

⋂
[~k

ex(r)
3 ] ⇒ ~πN = {~µ − ~µ0}, (7.2)

where ~µ0 = (1, 1, 1, 1) is the basic monomial z~µ0+~1 = x · y · z · u. These cases are listed in
Table 11.

Table 11: Triples of ~k3

ex
vectors giving invariant directions ~πN = ~µN − ~µ0 defined by pairs of

monomials. Also indicated are the sizes of the corresponding polyhedra ∆ and the two-vector
chains to which they belong.

~π
(α)
N

~k
ex(i)
3

~k
ex(j)
3

~k
ex(p)
3 ∆Jij

∆Jjp
∆Jpi

inv.monom ~µN

~π
(1)
1 (0, 0, 1, 1) (1, 2, 0, 1) (1, 2, 1, 0) 7XXII 9V I 7XXII x3 · z · u (3, 0, 1, 1)

~π
(2)
1 (0, 0, 1, 1) (1, 2, 0, 3) (1, 2, 3, 0) 7XV I 7XXI 7XV I x3 · z · u (3, 0, 1, 1)

~π
(1)
2 (0, 1, 1, 1) (1, 0, 1, 1) (1, 1, 0, 1) 10II 10II 10II u3 (0, 0, 0, 3)

~π
(2)
2 (0, 1, 1, 1) (1, 0, 1, 1) (1, 3, 0, 2) 10II 4III 7XV II u3 (0, 0, 0, 3)

~π
(3)
2 (0, 1, 1, 1) (1, 0, 3, 2) (1, 3, 0, 2) 7XV II 7XXI 7XV II u3 (0, 0, 0, 3)

~π
(4)
2 (0, 1, 1, 1) (3, 0, 1, 2) (3, 1, 0, 2) 4III 7XIX 4III u3 (0, 0, 0, 3)

~π
(1)
3 (1, 1, 1, 0) (0, 1, 2, 1) (2, 1, 0, 1) 8XIII 9V II 8XIII y3 · u (0, 3, 0, 1)

~π
(2)
3 (1, 1, 1, 0) (0, 1, 2, 1) (2, 1, 0, 3) 8XIII 6XIV 4III y3 · u (0, 3, 0, 1)

~π
(3)
3 (1, 1, 1, 0) (0, 1, 2, 3) (2, 1, 0, 3) 4III 7XX 4III y3 · u (0, 3, 0, 1)

~π
(4)
3 (0, 1, 2, 1) (1, 2, 3, 0) (2, 1, 0, 3) 7XV III 5XII 6XIV y3 · u (0, 3, 0, 1)

~π
(1)
4 (0, 1, 1, 2) (1, 0, 1, 2) (1, 2, 1, 0) 9V I 9V II 5V III y4 (0, 0, 4, 0)

~π
(2)
4 (0, 1, 1, 2) (1, 2, 1, 0) (2, 0, 1, 1) 5V III 5V III 5V III y4 (0, 0, 4, 0)

~π
(1)
5 (1, 0, 1, 2, ) (1, 2, 0, 3) (1, 2, 3, 0) 5IX 7XXI 6XIV x4 · y (4, 1, 0, 0)

These pairs of invariant monomials correspond to directions ~πi = ~µi − ~µ0 in the expo-
nent/monomial hyperspace given by the following vectors ~µN : N = 1, 2, 3, 4, 5:

~µ1 = (3, 0, 1, 1),

~µ2 = (0, 0, 0, 3),

~µ3 = (0, 3, 0, 1),

~µ4 = (0, 0, 4, 0),

~µ5 = (4, 1, 0, 0).

(7.3)

as can be seen in Table 11.
In the other cases, the triple intersections contain three points which form a degenerate

linear polyhedron, which also defines a unique direction ~π determined by three points, one of
which (~µ0) corresponds to the origin:

[~k
ex(i)
3 ]

⋂
[~k

ex(j)
3 ]

⋂
[~k

ex(r)
3 ] ⇒ ~πN = {~µ+ − ~µ0} = {~µ0 − ~µ−}, (7.4)

as seen in Table 12.
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Table 12: Triples of ~k3

ex
vectors defining directions ~πN determined by three invariant mono-

mials.
~π

(α)
N

~k
ex(i)
3

~k
ex(j)
3

~k
ex(p)
3 ∆Jij

∆Jjp
∆Jpi

~µ+ ~µ−

~π
(1)
6 (0, 0, 1, 1) (1, 1, 0, 1) (1, 1, 1, 0) 9XI 10II 9XI (0, 2, 1, 1) (2, 0, 1, 1)

~π
(2)
6 (0, 0, 1, 1) (1, 1, 0, 2) (1, 1, 2, 0) 9V 9V II 9V (0, 2, 1, 1) (2, 0, 1, 1)

~π
(1)
7 (0, 1, 1, 1) (1, 0, 1, 1) (1, 1, 0, 2) 10II 8XIII 8XIII (0, 0, 1, 2) (2, 2, 1, 0)

~π
(2)
7 (0, 1, 1, 1) (1, 0, 2, 1) (1, 1, 0, 2) 8XIII 5V III 8XIII (0, 0, 1, 2) (2, 2, 1, 0)

~π
(2)
7 (0, 1, 1, 1) (1, 0, 2, 1) (1, 2, 0, 3) 8XIII 6XIV 7XV II (0, 0, 1, 2) (2, 2, 1, 0)

~π
(2)
7 (0, 1, 2, 1) (1, 0, 2, 1) (1, 1, 0, 2) 9V I 5V III 5V III (0, 0, 1, 2) (2, 2, 1, 0)

~π
(1)
8 (0, 1, 1, 2) (1, 0, 1, 2) (1, 1, 0, 2) 9V I 9V I 9V I (0, 0, 0, 2) (2, 2, 2, 0)

~π
(2)
8 (0, 1, 1, 2) (1, 0, 1, 2) (1, 2, 0, 3) 9V I 5IX 7XV III (0, 0, 0, 2) (2, 2, 2, 0)

~π
(3)
8 (0, 1, 1, 2) (1, 0, 2, 3) (1, 2, 0, 3) 7XV III 7XX 7XV III (0, 0, 0, 2) (2, 2, 2, 0)

~π
(4)
8 (0, 1, 1, 2) (2, 0, 1, 3) (2, 1, 0, 3) 5IX 7XIX 5IX (0, 0, 0, 2) (2, 2, 2, 0)

It is easy to see that five of the invariant monomials from Table 11 produce a reflexive
three-dimensional polyhedron. For example, from ~µ2, ~µ3, ~µ4 and ~µ5 one obtains the following
exceptional vector whose associated polyhedron has no intersection substructure:

~µα · ~k4 = d = k1 + k2 + k3 + k4, α = 0, 2, 3, 4, 5
~k4 = (7, 8, 9, 12)[d = 36], (7.5)

where we used the constraint

~µ0 =
1

4
· (~µ2 + ~µ3 + ~µ4 + ~µ5 ). (7.6)

Thus duality enables us to identify the missing 95th K3 vector, which was not generated
previously in our systematic study of the two- and three-vector chains. We recall that they
contain totals of 90 and 91 vectors, respectively, of which only 94 were distinct.

Similarly, using these invariant monomials, one can find the rest of the exceptional ~k4

vectors, (3, 5, 6, 7), (3, 6, 7, 8), (5, 6, 7, 9) which were not included in the triple chains, together
with (3, 4, 5, 6). They have intersection polyhedra that are not linear. These other exceptional
~k4 vectors are defined as follows:

~µα · ~k4 = d α = 0, 1, 2, 3, 3′

~k4 = (3, 5, 6, 7)[d = 21], (7.7)

where again the following constraint has been used:

~µ0 =
1

4
· (~µ1 + ~µ2 + ~µ3 + ~µ′

3 ) =

(3, 1, 0, 1) + (0, 0, 0, 3) + (1, 0, 3, 0) + (0, 3, 1, 0);

and

~µα · ~k4 = d α = 0, 1, 2, 3, 4
~k4 = (3, 6, 7, 8)[d = 24], (7.8)
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with the constraint:

~µ0 =
1

4
· (~µ1 + ~µ2 + ~µ3 + ~µ4 ) =

(3, 0, 1, 1) + (0, 0, 0, 3) + (1, 0, 3, 0) + (0, 4, 0, 0).

We also find

~µα · ~k4 = d α = 2, 3, 3′, 5
~k4 = (5, 6, 7, 9)[d = 27], (7.9)

where the following constraint also has been used:

~µ0 =
1

4
· (~µ2 + ~µ3 + ~µ′

3 + ~µ5 ) =

(0, 0, 0, 3) + (0, 3, 0, 1) + (0, 1, 3, 0) + (4, 0, 1, 0).

and

~µα · ~k4 = d α = 1, 2, 3, 3′

~k4 = (3, 4, 5, 6)[d = 18], (7.10)

where the following constraint also has been used:

~µ0 =
1

4
· (~µ1 + ~µ2 + ~µ3 + ~µ′

3 ) =

(3, 1, 1, 0) + (0, 0, 0, 3) + (1, 0, 3, 0) + (0, 3, 0, 1).

7.2 Projective Chains of K3 Spaces Constructed from ~πN Vectors

Using the invariant directions found in the previous Subsection, one can construct new
triple chains:

p · [~k4]~πN
= m · ~kex(i) + n · ~kex(j) + r · ~kex(l) (7.11)

each corresponding to a direction ~π determined by an intersection of invariant monomial
pairs. Each good projective vector in such a chain, determined by an invariant direction,
contains the monomial/projective direction in its polyhedron. With respect to this direction,
the polyhedron is projected onto a ‘good’ planar reflexive polyhedron. If the projective vector
appears in several different chains, its polyhedron will have ‘good’ projections corresponding
to each of these chains. This property can be used to make a classification by their projections
of the projective vectors and their reflexive polyhedra. One finds that 78 projective K3 vectors
out of 95 have such aprojective property. Taking into account the rest of the vectors which
already were known from double-intersection J = Π-symmetric chains, one can recover all 95
projective K3 vectors.

The distribution of the 3-dimensional set of positive-integer numbers m, n, r depends on
the dimension of the three extended vectors d(i) =

∑
α{~kex(i)

3 }α, i = 1, 2, 3, participating in the
construction of the chain, can have some ‘blank spots’, corresponding to ‘false vectors’ which
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do not correspond to any reflexive polyhedron. The origin of this phenomenon is connected
with the structure of Calabi-Yau algebra, i.e., some of the projective vectors have different
expansions (double-, triple-,...) in terms of the extended vectors. So, for example, if a vector
is forbidden in two-vector expansions, it should also be forbidden in triple, etc., expansions,
which is what we call a false vector. The self-consistency of the algebra entails the absences
of some combinations of integer numbers m, n, r, even though all of them are below their
maximum values. We already have met and discussed this phenomenon in the classification
of triple-vector chains.

As seen in Table 11, one can give examples of triple intersections giving just one good
vector which has three different projections with Π = 4:

[~k4]~π(2)
1

⋂
[~k4]~π(2)

2

⋂
[~k4]~π(4)

3
⇒ (3, 5, 6, 7)[21]

[~k4]~π(2)
1

⋂
[~k4]~π(2)

2

⋂
[~k4]~π(2)

4
⇒ (3, 6, 7, 8)[24]

[~k4]~π(2)
2

⋂
[~k4]~π(3)

3

⋂
[~k4]~π(1)

3
⇒ (5, 6, 7, 9)[27].

(7.12)

Moreover, the exceptional vector, which has four different projections with Π = 4, is given by
the intersection of four such chains, i.e.:

[~k4]~π(1)
2

⋂
[~k4]~π(2)

3

⋂
[~k4]~π(2)

4

⋂
[~k4]~π(1)

5
⇒ (7, 8, 9, 12)[36]. (7.13)

To understand this in more detail, we consider one chain with projection Π = 4, which is
determined by the invariant direction ~π

(1)
2 . The vectors of this chain are represented as

linear combinations with positive-integer coefficients, M, N, L, of the following three projective
vectors, taken from the third line in Table 11:

~k4(~π
(1)
2 ) = M · (0, 1, 1, 1) + N · (1, 0, 1, 1) + L · (1, 1, 0, 1)

= ( N + L, M + L, M + N, M + N + L )

(7.14)

The basis is constructed out of the exceptional invariant monomials determining the ~π direc-
tions. Projecting on the perpendicular plane gives us planar reflexive polyhedra, so the third
basis vector

~e3 = (−1,−1,−1, 2) ⇒ (0, 0, 0, 3). (7.15)

is common to all the chains discussed in this Subsection.
Looking at the distribution of allowed integers M, N, L, we see ‘blank spots’ such as

M = N = L = 1, corresponding to the ‘false vector’ (2, 2, 2, 3), which is forbidden by the
double-vector classification: it would require m = 2 in the chain (2, 2, 2, 3) = m (1, 1, 1, 0) +
n (0, 0, 0, 1), but actually mmax = 1 for this chain. Also, all the polyhedra corresponding to

these projective vectors have the other invariant directions ~π
(2)
3 → (1, 0, 3, 0) with Π = 4 and

should produce the following triple-vector expansion chain:

~k4(~π
(2)
3 ) = M · (0, 1, 1, 1) + N · (1, 0, 1, 2) + L · (3, 2, 1, 0)

= ( N + 3L, M + 2 L, M + N + L, M + 2 N )

(7.16)
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Table 13: Extended vectors ~k4 in the chain ~π
(1)
2 with Π = 4 with: Q · ~k = (N +L, M +L, M +

N, M +N +L) = M · (0, 1, 1, 1)+N · (1, 0, 1, 1)+L · (1, 1, 0, 1) and d = 3M + 3N + 3L, whose

youngest vector is ~kyoung = (7, 8, 9, 12).

ℵ ~k4 [det] M N L (∆, ∆∗) Π − J∗ Chain

95 (7, 8, 9, 12) [36] 5 4 3 (5, 35) 4 − 10 −
89 (5, 6, 7, 9) [27] 4 3 2 (6, 30) 4 − 10 III
80 (3, 6, 7, 8) [24] 5 2 1 (9, 21) 4 − 10 III
76 (3, 5, 6, 7) [21] 4 2 1 (9, 21) 4 − 10 III
66 (3, 4, 5, 6) [18] 3 2 1 (10, 17) 4 − 10 III
65 (3, 3, 4, 5) [15] 2 2 1 (12, 12) 4 − 10 III
44 (2, 3, 3, 4) [24] 2 1 1 (7, 26) 4 − 10 III

Projecting on the perpendicular plane to the vector

~e3 = (0,−1, 2,−1) ⇒ (1, 0, 3, 0). (7.17)

gives us planar reflexive polyhedron with 4 points. This chain is a little longer and contains
other projective vectors. Similarly, one can find using the other projective directions, ~π

(α)
4

and ~π
(1)
5 , two new triple expansion chains. Together these four invariant directions, ~π

(α)
i ,

(i=2,3,4,5), with the constructions of the corresponding triple projective chains contain 40
projective vectors (see Table 1).

Table 14: The K3 hypersurfaces in chain III with intersection J=4: ~k(III) =
(3n, m, m + n, m + 2n) = m · (0, 1, 1, 1) +n · (3, 0, 1, 2): d = 3m + 6n with level l = m + n,
mmax = 6, nmax = 2.

ℵ ~ki[dim] ∆(J = 4) ∆∗(Π = 10) (Π, J∗)

12 (3, 1, 2, 3)[9] 23 = 4L + 4J + 15R 8∗ = 3∗L + 4∗J + 1∗R (10, 4∗)
44 (3, 2, 3, 4)[12] 15 = 7L + 4J + 4R 9∗ = 4∗L + 3∗C + 2∗R (9, 5∗); (7, 7∗)
25 (6, 1, 3, 5)[15] 21 = 16L + 4J + 1R 15∗ = 7∗L + 7∗J + 1∗R (7, 7∗)
65 (3, 3, 4, 5)[15] 12 = 4L + 4J + 4R 12∗ = 1∗L + 10∗J + 1∗R (4, 10)
66 (3, 4, 5, 6)[18] 10 = 2L + 4J + 4R 17∗ = 8∗L + 3∗C + 6∗R (7, 7)
76 (3, 5, 6, 7)[21] 9 = 1L + 4J + 4R 21∗ = 11∗L + 3∗C + 7∗R (4, 10)
80 (3, 6, 7, 8)[24] 9 = 1L + 4J + 4R 21∗ = 12∗L + 3∗C + 6∗R (4, 10)
89 (6, 5, 7, 9)[27] 6 = 1L + 4J + 1R 30∗ = 17∗L + 3∗C + 10∗R (4, 10)

One can compare the projection set, ~π
(1)
2 and Π = 4, with the double-vector-intersection

chain with J = 4. It is interesting to note that six vectors from the projective chain shown in
Table 13 also appear in the III-intersection chain with J = 4 shown in Table 14. Conversely,
the chain shown in this latter Table has just two vectors: (3, 1, 2, 3), (1, 3, 5, 6) that are not
contained in Table 13. The intersection structure of the III chain shown in Table 14 is
obtained from the following two vectors:

~k4(III) = m · (0, 1, 1, 1) + n · (3, 0, 1, 2)

= ( n, m, m + n, m + n )

1 ≤ m ≤ 6, 1 ≤ n ≤ 2.

(7.18)

The corresponding four invariant monomials are:

~µ1
0 = (0, 0, 0, 3) ⇒ u3
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~µ2
0 = (1, 0, 3, 0) ⇒ x · z3

~µ3
0 = (2, 3, 0, 0) ⇒ x2 · y3

~µ4
0 = (1, 1, 1, 1) ⇒ x · y · z · u. (7.19)

and the corresponding basis can be chosen in the form:

~e1 = (0,−m − n, m, 0)

~e2 = (0,−1, 2,−1)

~e3 = (−1,−1,−1, 2)

(7.20)

The canonical expression for the determinant of this lattice is

det(~e1, ~e2, ~e3, ~e0) = 3 · m + 6 · n = d, (7.21)

where ~e0 ≡ (1, 1, 1, 1).

Table 15: The K3 hypersurfaces in chain II with intersection J=10: ~k(II) =
(n, m, m + n, m + n) = m · (0, 1, 1, 1)+ n · (1, 0, 1, 1) with d = 3m + 3n, q = 1, mmax =
3, nmax = 3.

ℵ ~ki[dim] ∆(J = 10) ∆∗(Π = 4) (Π, J∗)
4 (1, 1, 2, 2)[6] 30 = 10L + 10J + 10R 6∗ = 1∗L + 4∗J + 1∗R (10, 4∗)
12 (1, 2, 3, 3)[9] 23 = 10L + 10J + 3R 8∗ = 3∗L + 4∗J + 1∗R (10, 4∗)
21 (1, 3, 4, 4)[12] 21 = 10L + 10J + 1R 9∗ = 4∗L + 4∗J + 1∗R (10, 4∗)
48 (2, 3, 5, 5)[15] 14 = 3L + 10J + 1R 11∗ = 4∗L + 4∗J + 3∗R (10, 4∗)

7.3 Example of a J, Π = 10 Double-Intersection Chain

To see another aspect of mirror symmetry and duality, consider the II chain with inter-
section J(∆) = Π(∆) = 10 and J(∆∗) = Π(∆∗) = 4 shown in Table 15. The decomposition
of this chain is in terms of the following two vectors:

~k4 = m · (0, 1, 1, 1) + n · (1, 0, 1, 1)

= ( n, m, m + n, m + n )

1 ≤ m ≤ 3, 1 ≤ n ≤ 3.

(7.22)

The basis of the lattice in which the polyhedral intersection with the set of positive-integer
points corresponds to Table 15 is the following:

~e1 = (−m, n, 0, 0)

~e2 = (−1,−1, 1, 0)

~e3 = (−1,−1, 0, 1) (7.23)

and the corresponding determinant is

det(~e1, ~e2, ~e3, ~e0) = 3 · m + 3 · n = d, (7.24)
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where ~e0 = (1, 1, 1, 1) again. The ten corresponding invariant monomials are:

~µ1
0 = (3, 3, 0, 0) ⇒ x3 · y3

~µ2
0 = (2, 2, 1, 0) ⇒ x2 · y2 · z

~µ3
0 = (1, 1, 2, 0) ⇒ x · y·z2

~µ4
0 = (0, 0, 3, 0) ⇒ z3

~µ5
0 = (2, 2, 0, 1) ⇒ x2 · y2 · u,

~µ6
0 = (1, 1, 1, 1) ⇒ x · y · z · u,

~µ7
0 = (0, 0, 2, 1) ⇒ z2 · u,

~µ8
0 = (1, 1, 0, 2) ⇒ x · y · u2,

~µ9
0 = (0, 0, 1, 2) ⇒ z · u2,

~µ10
0 = (0, 0, 0, 3) ⇒ u3. (7.25)

For the vector ~k4 = (1, 1, 2, 2), one can consider the basis

~e1 = (−3, 3, 0, 0)

~e2 = (−1,−1, 1, 0)

~e3 = (−1,−1, 0, 1) (7.26)

with determinant 18, in which the dual pair of polyhedra:

1L + 10J + 1R = 12,

4∗L + 4∗J + 4∗R = 12∗. (7.27)

both contain 12 points and 12 mirror points, respectively.

7.4 Example of a Chain with Π = 5 and Eldest Vector ~k4 = (7, 8, 10, 25)

Now we present in Table 16 a projective chain with Π = 5, constructed from the invariant
direction ~π

(1)
8 with the invariant monomials (0, 0, 0, 2)+(2, 2, 2, 0). The 14 projective vectors of

this chain are represented as linear combinations with positive-integer coefficients, M, N, L, Q:
Q = 2, 1 of the following three vectors: Projecting on the perpendicular plane gives us planar
reflexive polyhedra, so the third basis vector

~e3 = (−1,−1,−1, 1) ⇒ (0, 0, 0, 2). (7.28)

is common to all the chains discussed in this Subsection.
The vectors of this chain are represented as linear combinations with positive-integer

coefficients, M, N, L, Q: Q = 2, 1 of the following three vectors:

Q · ~k4(~π
(1)
8 ) = M · (0, 1, 1, 1) + N · (1, 0, 1, 2) + L · (1, 1, 0, 2)

= ( N + L, M + L, M + N, 2 · M + 2 · N + 2 · L )

(7.29)
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Table 16: The K3 hypersurfaces in the ~π
(1)
8 chain with projection Π = 5 related to the IX

with J = 5: Q · ~k = (N + L, M + L, M + N, 2M + 2N + 2L) = M · (0, 1, 1, 2) +N · (1, 0, 1, 2)

+L · (1, 1, 0, 2) with d = 4M + 4N + 4L, ~keld = (1, 1, 1, 3), ~kyoung = (7, 8, 10, 25), Q = 2 or 1.

ℵ ~k4 [det] M N L Q (∆, ∆∗) Π − J∗ chain

94 (7, 8, 10, 25) [50] 11 9 5 2 (6, 39∗) 5 − 9 −
93 (8, 7, 5, 20) [40] 2 3 5 1 (8, 28∗) 5 − 9 −
91 (5, 6, 8, 19) [38] 9 7 3 2 (7, 35∗) 5 − 9 IX
88 (7, 6, 4, 17) [34] 9 5 3 2 (8, 31∗) 5 − 9 IX
84 (4, 5, 7, 16) [32] 4 3 1 1 (9, 27∗) 5 − 9 IX
82 (4, 5, 6, 15) [30] 7 5 3 2 (10, 20∗) 5 − 9 IX
69 (3, 4, 5, 12) [48] 3 2 1 1 (7, 35∗) 5 − 9 IX
64 (2, 6, 7, 15) [30] 6 3 1 2 (13, 23∗) 5 − 9 IX
60 (2, 5, 6, 13) [26] 9 3 1 2 (13, 23∗) 5 − 9 IX
58 (2, 4, 5, 11) [22] 7 3 1 2 (14, 19∗) 5 − 9 IX
47 (2, 3, 4, 9) [36] 5 3 1 2 (9, 27∗) 5 − 9 IX
43 (2, 2, 3, 7) [14] 3 3 1 2 (19, 11∗) 5 − 9 IX
11 (1, 2, 2, 5) [20] 3 1 1 2 (15, 15∗) 5 − 9 IX
3 (1, 1, 1, 3) [12] 1 1 1 2 (39, 6∗) 5 − 9 IX

where the third basis vector,

~e3 = (−1,−1,−1, 1) ⇒ (0, 0, 0, 2). (7.30)

is common to all the chain.
There can be constructed additional three chains, ~π

(2,3,4)
8 , with the same invariant direction,

(0,0,0,2)-(2,2,2,0), and the same youngest vector, but with the different triple intersections
and therefore with the different projective chains. Together one can find inside all of four
projective chains, ~π

(α)
8 , α = 1, 2, 3, 4, a total of 33 projective vectors (see Table 1).

It is interesting to note that the chain ~π
(1)
8 has 11 ~k4 vectors with Π = 5 in common with

the IXJ chain where J = 5, whose structure is obtained from the following two vectors:

~k4(IX) = m · (0, 1, 1, 2) + n · (2, 1, 0, 3)

= ( 2n, m + n, m, 2m + 3n )

1 ≤ m ≤ 6, 1 ≤ n ≤ 4.

(7.31)

The chain IX of ~k4 projective vectors with the structure 5J=4 ↔ 9Π=4 is presented in Ta-
ble 17. The lattice determinant and the basis are given by the following expressions:

~e1 = (0,−m, m + n, 0)

~e2 = (−1, 2,−2, 0)

~e3 = (−1,−1,−1, 1), (7.32)

and

det(~e1, ~e2, ~e3, ~e0) = 4 · m + 6 · n = d, (7.33)

where ~e0 = (1, 1, 1, 1).
The possible values of m and n for this chain are also determined by the dimensions of

the extended vectors, d(~kex(i)) = 6 and d(~kex(j)) = 4, with the additional constraint nmax =
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Table 17: The K3 hypersurfaces in the chain IX: ~k = (2n, m + n, m, 2m + 3n) = m ·
(0, 1, 1, 2) + n · (2, 1, 0, 3) with d = 4m + 6n, mmax = 6, nmax = 3 and ~keld = (1, 2, 2, 5)[10].

N ~k[dim] ∆(J = 5) ∆∗(Π = 9) (∆J , ∆∗
Π)

11 (2, 2, 1, 5)[10] 28 = 7L + 5J + 16R 8∗ = 3∗L + 4∗C + 1∗R (10′)
43 (2, 3, 2, 7)[14] 19 = 7L + 5J + 7R 11∗ = 1L + 9J + 1R (5Π, 9J )
24 (4, 3, 1, 8)[16] 24 = 3L + 5J + 16R 12∗ = 1L + 5J + 6R (5Π, 9J )
33 (6, 4, 1, 11)[22] 22 = 1L + 5J + 16R 20∗ = 1L + 5J + 14R (7Π ∈ 9Π)
47 (2, 4, 3, 9)[18] 16 = 7L + 5J + 4R 14∗ = 6L + 7J + 1R (7Π ∈ 9Π)
58 (2, 5, 4, 11)[22] 14 = 7L + 5J + 2R 19∗ = 9L + 9J + 11R (5Π, 9J )
60 (6, 5, 2, 13)[26] 13 = 1L + 5J + 7R 23∗ = 1L + 9J + 13R (5Π, 9J )
69 (4, 5, 3, 12)[24] 12 = 3L + 5J + 4R 18∗ = 6L + 7J + 5R (7Π ∈ 9Π)
64 (2, 7, 6, 15)[30] 13 = 7L + 5J + 1R 23∗ = 13L + 9J + 1R (5Π, 99)
84 (4, 7, 5, 16)[32] 9 = 3L + 5J + 1R 27∗ = 13L + 9J + 5R (5Π, 9J )
88 (6, 7, 4, 17)[34] 8 = 1L + 5J + 2R 31∗ = 9L + 9J + 13R (5Π, 9J )
91 (6, 8, 5, 19)[38] 7 = 9L + 5J + 1R 35∗ = 16L + 7J + 12R (5Π, 9J )

3 < dim(0, 1, 1, 2) (see Table 17):

p · ~k4(IX) = m · (0, 1, 1, 2) + n · (2, 0, 1, 3)

p = 1 → 1 ≤ m ≤ 6; , 1 ≤ n ≤ 3 (7.34)

The 5 invariant monomials for this chain are the following:

~µ1
0 = (1, 4, 0, 0) ⇒ x · y4

~µ2
0 = (2, 2, 2, 0) ⇒ x2 · y2 · z2

~µ3
0 = (3, 0, 4, 0) ⇒ x3 · z4

~µ4
0 = (1, 1, 1, 1) ⇒ x · y · z · u

~µ5
0 = (0, 0, 0, 2) ⇒ u2. (7.35)

7.5 Example of a J = Π = 9 Chain

To see another aspect of mirror symmetry and duality, we now consider the chain V I
with intersection J(∆) = Π(∆) = 9 and J(∆∗) = Π(∆∗) = 5 shown in Table 15, which is

constructed from the extended vectors ~ki = (0, 1, 1, 2) and ~kj = (1, 0, 1, 2). In this case, duality
gives very simple connections between the numbers of integer points in the dual polyhedron
pair, as seen in Table 18.

Table 18: The K3 hypersurfaces in the chain V I: ~k(V I) = (n, m, m + n, 2m + 2n) = m ·
(0, 1, 1, 2) + n · (1, 0, 1, 2).

N ~k4 ∆(J = 9) ∆∗(Π = 5) ∆Π, ∆∗
J

6 (1, 1, 2, 4)[8] 35 = 13L + 9J,Π + 13R 7∗ = 1∗L + 5∗Π,J + 1∗R (9Π,J , 5J,Π)

15 (2, 1, 3, 6)[12] 27 = 5L + 9J,Π + 13R 9∗ = 1∗L + 5∗Π,J + 4∗R (9Π,J , 5J,Π)

24 (3, 1, 4, 8)[16] 24 = 2L + 9J,Π + 13R 12∗ = 1∗L + 5∗Π,J + 6R (9Π,J , 5J,Π)

31 (4, 1, 5, 10)[20] 23 = 1L + 9J,Π + 13R 13∗ = 1∗L + 5∗Π,J + 7R (9Π,J , 5J,Π)

24 (3, 2, 5, 10)[20] 16 = 2L + 9J,Π + 5R 14∗ = 3∗L + 5∗Π,J + 6∗R (9Π,J , 5J,Π)

71 (3, 4, 7, 14)[28] 12 = 2L + 9J,Π + 1R 18∗ = 7∗L + 5∗Π,J + 6∗R (9Π,J , 5J,Π)

The canonical basis for chain V I is:

~e1 = (−m, n, 0, 0)
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~e2 = (−1,−1, 1, 0)

~e3 = (−1,−1,−1, 1) (7.36)

with the following restriction on the determinant

det(~e1, ~e2, ~e3, ~e0) = 4 · m + 4 · n = d, (7.37)

where ~e0 = (1, 1, 1, 1).
The possible values of m and n for this chain are determined by the dimensions of the

extended vectors, without any unexpected puzzles:

p · ~k4(V I) = m · (0, 1,1, 2) + n · (1, 0,1, 2)

p = 1 → 1 ≤ m ≤ 4; 1 ≤ n ≤ 4. (7.38)

and the following:

~µ1
0 = (4, 4, 0, 0) ⇒ x4 · y4

~µ2
0 = (3, 3, 1, 0) ⇒ x3 · y3 · z

~µ3
0 = (2, 2, 2, 0) ⇒ x2 · y2 · z2

~µ4
0 = (1, 1, 3, 0) ⇒ x · y · z3

~µ5
0 = (0, 0, 4, 0) ⇒ z4

~µ6
0 = (2, 2, 0, 1) ⇒ x2 · y2 · u

~µ7
0 = (1, 1, 1, 1) ⇒ x · y · z · u

~µ8
0 = (0, 0, 2, 1) ⇒ z2 · u

~µ9
0 = (0, 0, 0, 2) ⇒ u2. (7.39)

are the 9 invariant monomials Ψinv for this chain.
Analogously, one can consider the projective chain ~π

(α)
7 (Π = 5) with youngest vector

(5,6,8,11), and compare it with the double-intersection chain V III, constructed from the

extended vectors ~k(V III) = m ·(0, 1, 1, 2)+n ·(1, 1, 2, 0); (d = 4m+4n. mmax = 3, nmax = 4),
~keld = (1, 2, 3, 2)[8]. Among the 95 K3 projective vectors, 26 have such an invariant-direction
structure, and therefore can be found in corresponding projective chains (see Table 1).

8 K3 Hypersurfaces and Cartan-Lie Algebra Graphs

We discuss in this Section more details of the emergence of Cartan-Lie algebra graphs in
our construction of CY spaces.

8.1 Cartan-Lie Algebra Graphs and the Classification of Chains of Projective
Vectors

As we commented already in the Introduction and in Section 2, the structure of the pro-
jective ~k4 vectors in 22 chains leads to interesting relations with the five classical regular dual
polyhedron pairs in three-dimensional space: the one-dimensional point, two-dimensional line
segment and three-dimensional tetrahedron, octahedron-cube and icosahedron-dodecahedron.
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There are also interesting correspondences with the Cartan-Lie algebra CLA graphs for the
five types of groups in the ADE6,7,8 series: see Figure 8. The CLAJ,Π graphs, which can

be seen in the polyhedra of the corresponding ~k4 projective vectors, follow completely the
structure of the five possible extended vectors:

~kext
C = (0, 0, 0, 1) ↔ Ar;

~kext
D = (0, 0, 1, 1) ↔ Dr;

~kext
T = (0, 1, 1, 1) ↔ E6;

~kext
O = (0, 1, 1, 2) ↔ E7;

~kext
I = (0, 1, 2, 3) ↔ E8. (8.1)

We give in Table 19 the ADE structures and the CDJ diagrams of all the eldest K3 projective
vectors from the 22 double chains. An illustration is given in Figure 8, and the rest of this
Section discusses the examples of chains XV to XIX, illustrating the power of our systematic
approach.

Table 19: The eldest vectors (m = n = 1) for all the 22 chains of K3 hypersurfaces, and the
corresponding Cartan-Lie algebra diagrams CLAJ .

N ~ki(eldest) Structure max ∆(J) CLAJ min ∆∗(Π)

I (1, 1, 1, 1)[4] (0, 1, 1, 1)e6 + (1, 0, 0, 0)a 35 = 10e6 + 10J=4 + 15a E
(1)
6 ↔ A

(1)
12 5∗ = 1∗e6 + 3∗C + 1∗a

II (1, 1, 2, 2)[6] (0, 1, 1, 1)e6 + (1, 0, 1, 1)e6 30 = 10e6 + 10J=Π=4 + 10e6 E
(1)
6 ↔ E

(1)
6 6∗ = 1∗e6 + 4∗

Π=J=4 + 1∗e6
III (3, 1, 2, 3)[9] (0, 1, 1, 1)e6 + (3, 0, 1, 2)e8 23 = 4e6 + 4J=4 + 15e8 G2

(1) ↔ E
(1)
8 8∗ = 3∗e6 + 4∗J=4 + 1∗e8

IV (1, 1, 1, 2)[5] (0, 1, 1, 2)e7 + (1, 0, 0, 0)a 34 = 13e7 + 9J=4 + 12a E
(1)
7 ↔ A

(1)
9 6∗ = 1∗e6 + 4∗C + 1∗a

V (1, 1, 1, 3)[6] (0, 1, 1, 2)e7 + (1, 0, 0, 1)d 39 = 13e7 + 9J=4 + 17d E
(1)
7 ↔ D

(1)
10 6∗ = 1∗e7 + 4∗C + 1d

V I (1, 1, 2, 4)[8] (0, 1, 1, 2)e7 + (1, 0, 1, 2)e7 35 = 13e7 + 9J=Π=4 + 13e7 E
(1)
7 ↔ E

(1)
7 7∗ = 1∗e7 + 5∗Π=4 + 1∗e7

V II (1, 1, 1, 1)[4] (0, 1, 1, 2)e7 + (2, 1, 1, 0)e7 35 = 13e7 + 9J=4 + 13e7 E
(1)
7 ↔ E

(1)
7 5∗ = 1∗L + 3∗C + 1∗R

V III (1, 2, 3, 2)[8] (0, 1, 1, 2)e7 + (1, 1, 2, 0)e7 24 = 12e7 + 5J=4 + 7e7 E
(1)
7 ↔ F

(1)
4 8∗ = 3∗e7 + 4∗C + 1∗e7

IX (2, 2, 1, 5)[10] (0, 1, 1, 2)e7 + (2, 1, 0, 3)e8 28 = 7e7 + 5J=4 + 16e8 F
(1)
4 ↔ E

(1)
8 8∗ = 3∗e7 + 4∗C + 1∗e8

X (1, 1, 1, 1)[4] (0, 0, 1, 1)d + (1, 1, 0, 0)d 35 = 13d + 9J=2 + 13d D
(1)
8 ↔ D

(1)
8 5∗Π=� = 1∗

d
+ 3∗C + 1∗

d

XI (1, 1, 1, 2)[5] (0, 0, 1, 1)d + (1, 1, 0, 1)e6 34 = 15d + 9J=2 + 10e6 D
(1)
8 ↔ E

(1)
6 6∗ = 1∗

d
+ 4∗C + 1∗e6

XII (1, 1, 1, 1)[4] (0, 1, 2, 3)e8 + (3, 2, 1, 0)e8 13 = 4e8 + 5J=Π=2 + 4e8 G
(1)
2 ↔ G

(1)
2 11∗ = 1∗e8 + 9∗Π=J=2

+ 1∗e8
XIII (1, 1, 2, 3)[7] (0, 1, 1, 1)e6 + (1, 0, 1, 2)e7 31 = 10e6 + 8J=Π=2 + 13e7 E

(1)
6 ↔ E

(1)
7 8∗ = 1∗e6 + 6∗Π,J + 1∗e7

XIV (1, 1, 1, 2)[5] (0, 1, 1, 2)e6 + (2, 1, 3, 0)e8 18 = 7e6 + 6J=Π=2 + 5e8 F
(1)
4 ↔ G

(1)
2 10∗ = 1∗e6 + 8∗Π=J=2

+ 1∗e8
XXII (1, 2, 1, 2)[6] (0, 1, 1, 2)e7 + (1, 1, 0, 0)d 30 = 13e7 + 7J=Π=2 + 10d E

(1)
7 ↔ D7 6∗ = 1∗e7 + 4∗J + 1∗

d

XV (1, 1, 2, 3)[7] (0, 1, 2, 3)e8 + (1, 0, 0, 0)a 31 = 16e8 + 7J=4 + 8a E
(1)
8 ↔ A

(1)
6 8∗ = 1∗e8 + 6∗C + 1∗a

XV I (1, 1, 2, 4)[8] (0, 1, 2, 3)e8 + (1, 0, 0, 1)d 35 = 16e8 + 7J=4 + 12d E
(1)
8 ↔ D8 7∗ = 1∗e8 + 5∗C + 1∗e8

XV II (1, 1, 3, 4)[9] (0, 1, 2, 3)e8 + (1, 0, 1, 1)e6 33 = 16e8 + 7J=Π=4 + 10e6 E
(1)
8 ↔ E

(1)
6 9∗ = 1∗e8 + 7∗

Π=J=4 + 1∗e6
XV III (1, 1, 3, 5)[10] (0, 1, 2, 3)e8 + (1, 0, 1, 2)e7 36 = 16e8 + 7J=Π=4 + 13e7 E

(1)
8 ↔ E

(1)
7 9∗ = 1∗e8 + 7∗

Π=J=4 + 1∗e7
XIX (1, 1, 4, 6)[12] (0, 1, 2, 3)e8 + (1, 0, 2, 3)e8 39 = 16e8 + 7J=Π=4 + 16e8 E

(1)
8 ↔ E

(1)
8 9∗ = 1∗e8 + 7∗Π=J=4 + 1∗e8

XX (1, 1, 1, 3)[6] (0, 1, 2, 3)e8 + (2, 1, 0, 3)e8 21 = 7e8 + 7J=Π=4 + 7e8 F
(1)
4 ↔ F

(1)
4 9∗ = 1∗e8 + 7∗Π=J=4 + 1∗e8

XXI (3, 2, 4, 3)[12] (0, 1, 2, 3)e8 + (3, 1, 2, 0)e8 15 = 4e8 + 7J=Π=4 + 4e8 G
(1)
2 ↔ G

(1)
2 9∗ = 1∗e8 + 7∗Π=J=4 + 1∗e8
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Figure 8: Illustration of the Cartan-Lie algebra diagram classification of the
22(= [13 + 1] + 8∗) chains of K3 polyhedra shown in Table 19. Here G denotes the cyclic, di-
hedral, tetrahedron, octahedron-cube, and icosahedron-dodecahedron subgroups of SU(2), L/R

denote left/right integer points and CLAJ diagrams, Jn the type of intersection, and the ~k3

are all the possible planar vectors. We find rmaxL = 17 or rmaxR = 17 for the A1
r series, and

rmaxL = 16 or rmaxR = 16 for the D1
r series. In the example shown here, one can see the

polyhedron with the projective vector: ~k4 = (1, 1, 3, 4)[9].
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8.2 The K3 Chain XV with Graphs in the E
(1)
8 − A(1)

r Series

Here we give the list of ~k4 vectors which can be constructed from the Weierstrass vectors
~k3 ≡ (1, 2, 3) and ~k1 = (1), shown as chain XV in Table 20. The number of ~k4 vectors in
this chain is determined by the positive-integer numbers: m = 1, n ≤ 6, according to the
dimensions of the corresponding component ~ki.

Table 20: The K3 hypersurfaces in the chain XV : ~k = (m, 2 · m, 3 · m, n) = m · (1, 2, 3, 0) +

n · (0, 0, 0, 1): d = 6m + n, mmax = 1, nmax = 6, ~keld = (1, 2, 3, 1)[7].

ℵ m, n ~k[d] ∆(J = 7) Group ∆∗(Π = 7)

5 1, 1 (1, 2, 3, 1)[7] 31 = 8L + 7J + 16R A
(1)
6 L

8∗ = 1∗L + 6∗C + 1∗R
10 1, 2 (1, 2, 3, 2)[8] 24 = 10L + 7J + 7R A

(1)
7 L

8∗ = 3∗L + 4∗C + 1∗R
12 1, 3 (1, 2, 3, 3)[9] 23 = 12L + 7J + 4R A

(1)
8 L

8∗ = 4∗L + 3∗C + 1∗R
13 1, 4 (1, 2, 3, 4)[10] 23 = 14L + 7J + 2R A

(1)
9 L

11∗ = 3∗L + 3∗C + 1∗R
14 1, 5 (1, 2, 3, 5)[11] 24 = 16L + 7J + 1R A

(1)
10 L

13∗ = 9∗L + 3∗C + 1∗R
15 1, 6 (1, 2, 3, 6)[12] 27 = 19L + 7J + 1R A

(1)
11 L

9∗ = 5∗L + 3∗C + 1∗R

The basis for this chain, see Figure 9, can be written in the the following form:

~e1 = (−n, 0, 0, m)

~e2 = (−2, 1, 0.0)

~e3 = (−3, 0, 1, 0) (8.2)

The determinant of this canonical basis coincides, of course, with the dimensions of the ~k4

vectors:

det(~e1, ~e2, ~e3, ~e0) = 6 · m + 1 · n = d, (8.3)

where ~e0 = (1, 1, 1, 1). The decomposition of this chain is again determined by the dimension

of the extended vectors d(~kex(i)) = k
ex(i)
1 + k

ex(i)
2 + k

ex(i)
3 + k

ex(i)
4 , as seen in Table 20:

~k4(XV ) = m · (1, 2, 3, 0) + n · (0, 0, 0, 1)

m = 1 1 ≤ n ≤ 6. (8.4)

The seven invariant monomials corresponding to this chain are:

~µ1
0 = (6, 0, 0, 1) ⇒ x6 · u

~µ2
0 = (4, 1, 0, 1) ⇒ x4 · y · u

~µ3
0 = (2, 2, 0, 1) ⇒ x2 · y2 · u

~µ4
0 = (0, 3, 0, 1) ⇒ y3 · u

~µ5
0 = (3, 0, 1, 1) ⇒ x3 · z · u

~µ6
0 = (1, 1, 1, 1) ⇒ x · y · z · u

~µ7
0 = (0, 0, 2, 1) ⇒ z2 · u. (8.5)

Considering the dual pairs for these vectors, one can see that the singularities of the eldest
vector ~k4 = (1, 2, 3, 1) correspond to some graphs of the A

(1)
6 L − E

(1)
8 R series, as seen in Fig-

ure 9. For instance, if one looks at the integer points in the edges of the polyhedron on the
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left (right) side of the intersection by the hyperplane ~ki = (0, 1, 2, 3), one sees graphs with

A
(1)
6 L and E

(1)
8 R Lie algebras. Going to the last minimal ~k = (1, 2, 3, 6) of this chain, we find

that the right graph degenerates and left points reproduce A
(1)
11 with the maximum possible

rank in this chain. Thus, the six ~k vectors in this chain produce the following graphs in the
A series: A

(1)
6 , A

(1)
7 , A

(1)
8 , A

(1)
9 , A

(1)
10 , A

(1)
11 .

1

1

1 11 11 1 2 4 6 5 4 3 2 1

3

A E 8

1

RL J 7

6

Figure 9: The A
(1)
6 L − E

(1)
8 R graph from the eldest (1, 2, 3, 1)[7] polyhedron in chain XV :

31 = 8L + 7J + 16R.

8.3 The K3 Chain XV I with Graphs in the E
(1)
8 − Dr Series

Table 21: The K3 hypersurfaces in the chain XV I: ~k = (n, m, 2m, 3m+n) = m · (0, 1, 2, 3)+

n · (1, 0, 0, 1): (d = 6m + 2n), mmax = 2, nmax = 6, ~keld = (1, 1, 2, 4)[8].

ℵ ~k[d] ∆(J = 7) Group ∆∗(Π = 7) (Π(∆), J(∆∗))

6 (1, 1, 2, 4)[8] 35 = 16L + 7J + 12R D8R 7∗ = 1∗L + 5∗C + 1∗R (9, 5∗)
11 (2, 1, 2, 5)[10] 28 = 7L + 7J + 14R D9R 8∗ = 1∗L + 4∗C + 3∗R (10, 4∗)
15 (3, 1, 2, 6)[12] 27 = 4J + 7J + 16R D10R 9∗ = 1∗L + 4∗C + 4∗R (9, 5∗)
17 (4, 1, 2, 7)[14] 27 = 2L + 7J + 18R D11R 12∗ = 1∗L + 4∗C + 7∗R (7, 7∗)
19 (5, 1, 2, 8)[16] 28 = 1L + 7J + 14R D12R 14∗ = 1∗L + 4∗C + 9∗R (7, 7∗)
20 (6, 1, 2, 9)[18] 30 = 1L + 7J + 22R D13R 12∗ = 1∗L + 4∗C + 7∗R (7, 7∗)
47 (3, 2, 4, 9)[18] 16 = 4L + 7J + 5R −−− 14∗ = 3∗L + 5∗C + 6∗R (7, 7∗)
58 (5, 2, 4, 11)[22] 14 = 1L + 7J + 6R −−− 19∗ = 3∗L + 4∗C + 12∗R (5, 9∗)

The basis for the chain shown in Table 21 is

~e1 = (−m, n, 0, 0)

~e2 = (0,−2, 1, 0)

~e3 = (−1,−1,−1, 1), (8.6)

with

det(~e1, ~e2, ~e3, ~e0) = 6 · m + 2 · n = d, (8.7)

where ~e0 = (1, 1, 1, 1) again. The decomposition of this chain is completely determined by
the dimensions of the vectors shown in Table 21:
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p · ~k4(XV I) = m · (0, 1,2, 3) + n · (1, 0,0, 1)

p = 1∗ → 1 ≤ m ≤ 2; 1 ≤ n ≤ 6

p = 2 → m = n = 2. (8.8)

The seven invariant monomials corresponding to this chain are the following:

~µ1
0 = (2, 6, 0, 0) ⇒ x2 · y6

~µ2
0 = (2, 4, 1, 0) ⇒ x2 · y4 · z

~µ3
0 = (2, 2, 2, 0) ⇒ x2 · y2 · z2

~µ4
0 = (2, 0, 3, 0) ⇒ x2 · z3

~µ5
0 = (1, 3, 0, 1) ⇒ x · y3 · u

~µ6
0 = (1, 1, 1, 1) ⇒ x · y · z · u

~µ7
0 = (0, 0, 0, 2) ⇒ u2. (8.9)

The example of the E
(1)
8 L −D8R graph associated with the eldest (1, 1, 2, 4))[8] polyhedron in

Table 21 is shown in Figure 10.

7L R

E
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1
8D
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2
2 4 6 5 4 3 2

3
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1

1

1

12 2

Figure 10: The E
(1)
8 L−D8R graph from the eldest (1, 1, 2, 4))[8] polyhedron in the chain XV I:

33 = 16L + 7J + 10R.

8.4 The J = Π Symmetric Chain XV II with Exceptional Graph E6 × E8

We show in Table 22 the projective vectors constructed from ~kex
3 = (0, 1, 1, 1) and ~kex

3 =
(1, 0, 2, 3). In this case, the number of points in the maximal polyhedron with m = n = 1 can
easily be calculated: 33 = (10)L + (7)int + (16)R. The ‘right’ 15R + 1R points form the graph

for the affine E
(1)
8 Lie algebra, as shown in Figure 11:

6 = 1 + 1 + 1 + 1 + 1 + 1 ⇒ {(Px0)1 + (Px1)2 + (Px2)3 + (Px3)4 + (Px4)5 + (Px5)6}
3 = 3 ⇒ {(Px6,x

′
6,x

′′
6
)3}

6 = 4 + 2 ⇒ {(Px7,x
′
7,x

′′
7 ,x

′′′
7

)4 + (Px8,x
′
8
)2}. (8.10)
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The ‘left’ points in this polyhedron, 9L + 1L, correspond to the E
(1)
6 affine series with the

Coxeter numbers:

3 = 1 + 1 + 1 ⇒ {(Px1)1 + (Px2)2 + (Px3)3}
3 = 2 + 1 ⇒ {(Px4,x

′
4
)2 + (Px0)1}

3 = 2 + 1 ⇒ {(Px5,x
′
5
)2 + (Px6)1}. (8.11)

For mmax = d(~k(1, 2, 3)) = 6 and nmin = 1, the corresponding polyhedron contains 18 points:

18 = (10)L + (7)int + (1)R. Conversely, for mmin = 1 and nmax = 3 = dim(~k(1, 1, 1)), the self-

dual vector ~k = (3, 1, 7, 10) has 24 integer points: 24 = (1)L + (7)int + (16)R. Finally, the
polyhedron with m = 5 and n = 3 contains the minimal possible number of integer points,
namely 9 = (1)L + (7)int + (1)R. This minimal vector (3, 5, 11, 14)[33] is the dual conjugate

of the vector ~k = (1, 1, 4, 6)[12].

Table 22: The K3 hypersurfaces in the chain XV II: ~k = (n, m, m + 2n, m + 3n) = m ·
(0, 1, 1, 1) + n · (1, 0, 2, 3): d = 3m + 6n, max(m, n) = (6, 3).

ℵ ~k[d] ∆ ∆∗

7 (1, 1, 3, 4)[9] 33 = 10L + 7J=Π + 16R 9∗ = 1∗L + 7∗Π=J + 1∗R
16 (1, 2, 4, 5)[12] 24 = 10L + 7J=Π + 7R 12∗ = 4∗L + 7∗Π=J + 1∗R
25 (1, 3, 5, 6)[15] 21 = 10L + 7J=Π + 4R 15∗ = 7∗L + 7∗Π=J + 1∗R
32 (1, 4, 6, 7)[18] 19 = 10L + 7J=Π + 2R 20∗ = 12∗L + 7∗Π=J + 1∗R
36 (1, 5, 7, 8)[21] 18 = 10L + 7J=Π + 1R 24∗ = 16∗L + 7∗Π=J + 1∗R
39 (1, 6, 8, 9)[24] 18 = 10L + 7J=Π + 1R 24∗ = 16∗L + 7∗Π=J + 1∗R
18 (2, 1, 5, 7)[15] 26 = 3L + 7J=Π + 16R 17∗ = 1∗L + 7∗Π=J + 9∗R
27 (3, 1, 7, 10)[21] 24 = 1L + 7J=Π + 16R 24∗ = 1∗L + 7∗Π=J + 16∗R
52 (2, 3, 7, 9)[21] 14 = 3L + 7J=Π + 4R 23∗ = 7∗L + 7∗Π=J + 9∗R
54 (3, 2, 8, 11)[24] 15 = 1L + 7J=Π + 7R 27∗ = 4∗L + 7∗Π=J + 16∗R
61 (2, 5, 9, 11)[27] 11 = 1L + 7J=Π + 3R 32∗ = 9∗L + 7∗Π=J + 16∗R
72 (3, 4, 10, 13)[30] 10 = 1L + 7J=Π + 2R 35∗ = 12∗L + 7∗Π=J + 16∗R
77 (3, 5, 11, 14)[33] 9 = 1L + 7J=Π + 1R 39∗ = 16∗L + 7∗Π=J + 16∗R

The canonical basis of the chain shown in Table 22 is:

~e1 = (−m, n, 0, 0)

~e2 = (−2,−1, 1, 0)

~e3 = (−1, 0,−1, 1), (8.12)

with

det(~e1, ~e2, ~e3, ~e1) = 3 · m + 6 · n = d, (8.13)

where ~e1 = (1, 1, 1, 1). The possible values of m and n for this chain are determined in the

standard way from the dimensions of the extended vectors, d(~kex(j)) = 6 and d(~kex(i)) = 3, as
seen in Table 22:

p · ~k4(XV II) = m · (0, 1,1, 1) + n · (1, 0,2, 3)

p = 1∗ → 1 ≤ m ≤ 6; ; 1 ≤ n ≤ 3;

p = 2 → m = n = 2;

p = 3 → m = n = 3. (8.14)
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Table 23: The group singularities of the dual pairs of elliptic polyhedra in chain XV II.

P 3(~k) H(∆) H(∆∗) GL(∆) GR(∆) GL(∆∗) GR(∆∗)

(1, 1, 3, 4) m1 + m2 + m3 = 0 m∗
1 = 0 E6 E8 SU(1) SU(1)

(1, 2, 4, 5) m1 + m2 + m3 = 0 m∗
1 = 0 E6 F4 G2 SU(1)

(1, 3, 5, 6) m1 + m2 + m3 = 0 m∗
1 = 0 E6 G2 F4 SU(1)

(1, 4, 6, 7) m1 + m2 + m3 = 0 m∗
1 = 0 E6 SU(2) E7 SU(1)

(1, 5, 7, 8) m1 + m2 + m3 = 0 m∗
1 = 0 E6 SU(1) E8 SU(1)

(1, 6, 8, 9) m1 + m2 + m3 = 0 m∗
1 = 0 E6 SU(1) E8 SU(1)

The seven invariant monomials corresponding to this chain are the following:

~µ1
0 = (6, 3, 0, 0, ) ⇒ x6 · y3

~µ2
0 = (4, 2, 1, 0, ) ⇒ x4 · y2 · z

~µ3
0 = (2, 1, 2, 0, ) ⇒ x2 · y · z

~µ4
0 = (0, 0, 3, 0, ) ⇒ z3

~µ5
0 = (3, 2, 0, 1, ) ⇒ x3 · y2 · u

~µ6
0 = (1, 1, 1, 1, ) ⇒ x · y · z · u

~µ7
0 = (0, 1, 0, 2, ) ⇒ y · u2 (8.15)

and the corresponding E
(1)
6 L−E

(1)
8 R graph associated with the eldest (1, 1, 3, 4))[9] polyhedron

in chain XV II is shown in Table 23 and Figure 11.
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Figure 11: The E
(1)
6 L−E

(1)
8 R graph associated with the eldest (1, 1, 3, 4))[9] polyhedron in chain

XVII: 33 = 10L + 7J + 16R.

8.5 The J = Π Symmetric Chain XV III with Exceptional Graph E7 × E8

This chain can be built from the vectors ~kexi

4 = (0, 1, 1, 2) and ~kexj

4 = (1, 0, 2, 3), with pos-
itive integers m ≤ 6 and n ≤ 4. The maximal (m = n = 1) polyhedron in this chain is again

completely determined by the dimensions 4 and 6 of the projective vectors ~kexi

4 and ~kexj

4 ,
respectively:

36 = (13)L + (7)J=Π + (16)R. (8.16)
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The ‘right’ 15R + 1R and ‘left’ 12L + 1L points produce the graphs for the affine E
(1)
8 and E

(1)
7

Lie algebras, respectively, as seen in Figure 12. The vector ~k = (3, 4, 9, 14)[28] is self-dual

with E
(1)
8 graphs for the dual polyhedron pair. The ‘minimal’ vector ~k gives the following set

of integer lattice points in the polyhedron:

(1)L + (7)int + (1)R = 9. (8.17)

Table 24: The K3 hypersurfaces in the chain XV III: ~k = (n, m, m + 2n, 2m + 3n) =
m · (0, 1, 1, 2) + n · (1, 0, 2, 3): d = 4m + 6n, mmax = 6, nmax = 4.

ℵ ~k[d] ∆ ∆∗

8 (1, 1, 3, 5)[10] 36 = 13L + 7J=Π + 16R 9∗ = 1∗L + 7∗Π=J + 1∗R
17 (1, 2, 4, 7)[14] 27 = 13L + 7J=Π + 7R 12∗ = 4∗L + 7∗Π=J + 1∗R
26 (1, 3, 5, 9)[18] 24 = 13L + 7J=Π + 4R 15∗ = 7∗L + 7∗Π=J + 1∗R
33 (1, 4, 6, 11)[22] 22 = 13L + 7J=Π + 2R 20∗ = 12∗L + 7∗Π=J + 1∗R
37 (1, 5, 7, 13)[26] 21 = 13L + 7J=Π + 1R 24∗ = 16∗L + 7∗Π=J + 1∗R
40 (1, 6, 8, 15)[30] 21 = 13L + 7J=Π + 1R 24∗ = 16∗L + 7∗Π=J + 1∗R
19 (2, 1, 5, 8)[16] 28 = 5L + 7J=Π + 16R 14∗ = 1∗L + 7∗Π=J + 6∗R
28 (3, 1, 7, 11)[22] 25 = 2L + 7J=Π + 16R 20∗ = 1∗L + 7∗Π=J + 12∗R
34 (4, 1, 9, 14)[28] 24 = 1L + 7J=Π + 16R 24∗ = 1∗L + 7∗Π=J + 16∗R
55 (3, 2, 8, 13)[26] 16 = 2L + 7J=Π + 7R 23∗ = 4∗L + 7∗Π=J + 12∗R
53 (2, 3, 7, 12)[24] 16 = 5L + 7J=Π + 4R 20∗ = 7∗L + 7∗Π=J + 6∗R
74 (4, 3, 11, 18)[36] 12 = 1L + 7J=Π + 4R 30∗ = 7∗L + 7∗Π=J + 16∗R
73 (3, 4, 10, 17)[34] 11 = 2L + 7J=Π + 2R 31∗ = 12∗L + 7∗Π=J + 12∗R
62 (2, 5, 9, 16)[32] 13 = 5L + 7J=Π + 1R 29∗ = 16∗L + 7∗Π=J + 6∗R
78 (3, 5, 11, 19)[38] 10 = 2L + 7J=Π + 1R 35∗ = 16∗L + 7∗Π=J + 12∗R
85 (4, 5, 13, 22)[44] 9 = 1L + 7J=Π + 1R 39∗ = 16∗L + 7∗Π=J + 16∗R

The canonical basis for the chain shown in Table 24 is:

~e1 = (−m, n, 0, 0)

~e2 = (−2,−1, 1, 0)

~e3 = (−1,−1,−1, 1), (8.18)

with

det(~e1, ~e2, ~e3,~1) = 4 · m + 6 · n = d, (8.19)

The possible values of m and n for this chain fill up the dimensions of the extended vectors
d(~kex(j)) = 6 and d(~kex(i)) = 4, as seen in Table 24:

p · ~k4(XV III) = m · (0, 1,1, 2) + n · (1, 0,2, 3)

p = 1∗ → 1 ≤ m ≤ 6; 1 ≤ n ≤ 4;

p = 2 → m = n = 2;

p = 3 → m = n = 3;

p = 4 → m = n = 4. (8.20)

The seven invariant monomials corresponding to this chain are the following:

~µ1
0 = (6, 4, 0, 0, ) ⇒ x6 · y4
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Table 25: The group singularities of the dual pairs of elliptic polyhedra in chain XVIII.

P 3(~k) H(∆) H(∆∗) GL(∆) GR(∆) GL(∆∗) GR(∆∗)

(1, 1, 3, 5) m1 + m2 + 2m3 = 0 m∗
1 = 0 E7 E8 SU(1) SU(1)

(1, 2, 4, 7) m1 + m2 + 2m3 = 0 m∗
1 = 0 E7 F4 G2 SU(1)

(1, 3, 5, 9) m1 + m2 + 2m3 = 0 m∗
1 = 0 E7 G2 F4 SU(1)

(1, 4, 6, 11) m1 + m2 + 2m3 = 0 m∗
1 = 0 E7 SU(2) E7 SU(1)

(1, 5, 7, 13) m1 + m2 + 2m3 = 0 m∗
1 = 0 E7 SU(1) E8 SU(1)

(1, 6, 8, 15) m1 + m2 + 2m3 = 0 m∗
1 = 0 E7 SU(1) E8 SU(1)

~µ2
0 = (4, 3, 1, 0, ) ⇒ x4 · y3 · z

~µ3
0 = (2, 2, 2, 0, ) ⇒ x2 · y2 · z2

~µ4
0 = (0, 1, 3, 0, ) ⇒ y · z3

~µ5
0 = (3, 2, 0, 1, ) ⇒ x3 · y2 · u

~µ6
0 = (1, 1, 1, 1, ) ⇒ x · y · z · u

~µ7
0 = (0, 1, 0, 2, ) ⇒ y · u2 (8.21)

The E
(1)
7 L−E

(1)
8 R graph associated with the eldest (1, 1, 3, 5))[10] polyhedron in chain XV III

can be seen in Table 25 and Figure 12.
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Figure 12: The E
(1)
7 L − E

(1)
8 R graphs associated with the (1, 1, 3, 5))[10] polyhedron in chain

XV III: 36 = 13L + 7J + 16R.

8.6 Chain XIX with (7J , 7Π) Weierstrass Triangle Fibrations

We now consider the chain XIX of ~k4 projective vectors with E8L and E8R graphs. This
chain starts from the m = n = 1 polyhedron, which is left-right symmetric with respect to
the intersection P 2(1, 2, 3). This polyhedron P 3(1, 1, 4, 6) contains 39 = 16L + (7)J=Π + 16R

integer points: see Table 26 and Figure 13. The minimal vector ~k = (5, 6, 22, 33)[66] is the dual

conjugate of the eldest vector ~k = (1, 1, 4, 6)[12], the vector ~k = (1, 6, 14, 21)[42] is self-dual,

and its dual pair of K3 polyhedra yield the self-dual E
(1)
8 graph.

The basis of the chain shown in Table 26 is the following:

~e1 = (−m, n, 0, 0)
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Table 26: The K3 hypersurfaces in the J = Π symmetric chain XIX with ~k = (n, m, 2m +
2n, 3m + 3n) = m · (0, 1, 2, 3) + n · (1, 0, 2, 3): d = 6m + 6n), mmax = 6, nmax = 6,
~keld = (1, 1, 4, 6)[12].

ℵ ~k4 ∆(J = Π = 7) ∆∗(Π = J = 7)

9 (1, 1, 4, 6)[12] 39 = 16L + 7J=Π + 16R 9∗ = 1∗L + 7∗Π=J + 1∗R
20 (1, 2, 6, 9)[18] 30 = 16L + 7J=Π + 7R 12∗ = 4∗L + 7∗Π=J + 1∗R
29 (1, 3, 8, 12)[24] 27 = 16L + 7J=Π + 4R 15∗ = 7∗L + 7∗Π=J + 1∗R
35 (1, 4, 10, 15)[30] 25 = 16L + 7J=Π + 2R 20∗ = 12∗L + 7∗Π=J + 1∗R
38 (1, 5, 12, 18)[36] 24 = 16L + 7J=Π + 1R 24∗ = 16∗L + 7∗Π=J + 1∗R
41 (1, 6, 14, 21)[42] 24 = 16L + 7J=Π + 1R 24∗ = 16∗L + 7∗Π=J + 1∗R
56 (2, 3, 10, 15)[30] 18 = 7L + 7J=Π + 4R 18∗ = 7∗L + 7∗Π=J + 4R

75 (3, 4, 14, 21)[42] 13 = 4L + 7J=Π + 2R 26∗ = 12∗L + 7∗Π=J + 7R

63 (2, 5, 14, 21)[42] 15 = 7L + 7J=Π + 1R 27∗ = 16∗L + 7∗Π=J + 4∗R
79 (3, 5, 16, 24)[48] 12 = 4L + 7J=Π + 1R 30∗ = 16∗L + 7∗Π=J + 7∗R
86 (4, 5, 18, 27)[54] 10 = 2L + 7J=Π + 1R 35∗ = 16∗L + 7∗Π=J + 12∗R
92 (5, 6, 22, 33)[66] 9 = 1L + 7J=Π + 1R 39∗ = 16∗L + 7∗Π=J + 16∗R

~e2 = (−2,−2, 1, 0)

~e3 = (−1,−1,−1, 1), (8.22)

with

det(~e1, ~e2, ~e3, ~e0) = 6 · m + 6 · n = d, (8.23)

where ~e0 = (1, 1, 1, 1). The possible values of m and n for this chain are completely determined

by the dimensions of the vectors d(~kex(j)) = 6 and d(~kex(i)) = 6 (see Table 26):

p · ~k4(XIX) = m · (0, 1,2, 3) + n · (1, 0,2, 3)

p = 1∗ → 1 ≤ m ≤ 6; 1 ≤ n ≤ 6;

p = 2 → m = n = 2;

p = 3 → m = n = 3;

p = 4 → m = n = 4;

p = 6 → m = n = 6. (8.24)

The seven invariant monomials corresponding to this chain are the following:

~µ1
0 = (6, 6, 0, 0) ⇒ x6 · y6

~µ2
0 = (4, 4, 1, 0) ⇒ x4 · y4 · z

~µ3
0 = (2, 2, 2, 0) ⇒ x2 · y2 · z2

~µ4
0 = (0, 1, 3, 0) ⇒ y · z3

~µ5
0 = (3, 3, 0, 1) ⇒ x3 · y3 · u

~µ6
0 = (1, 1, 1, 1) ⇒ x · y · z · u

~µ7
0 = (0, 0, 0, 2) ⇒ u2. (8.25)

Using these invariant monomials and basis the CY equations for all the ~k(l = m + n) projec-
tive vectors of this chain can be written in the following form:
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F (~z)m,n =
j=7∑
j=1

~z~µj
0{

p=ΠjL∑
p=1

apL

~µj
0

· ~znpL·(−~e1) +
p=ΠjR∑

p=1

apR

~µj
0

· ~z−npR·(−~e1)}, (8.26)

where the basis vector ~e1 = (m,−n, 0, 0). The E
(1)
8 L − E

(1)
8 R graph obtained from the eldest

(1, 1, 4, 6)[12] polyhedron in chain XIX is shown in Table 27 and Figure 13.

Table 27: The group singularities of the dual pairs of elliptic polyhedra in chain XIX.

P 3(~k) H(∆) H(∆∗) GL(∆) GR(∆) GL(∆∗) GR(∆∗)

(1, 1, 4, 6) m1 + 2m2 + 3m3 = 0 m∗
1 = 0 E8 E8 SU(1) SU(1)

(1, 2, 6, 9) m1 + 2m2 + 3m3 = 0 m∗
1 = 0 E8 F4 G2 SU(1)

(1, 3, 8, 12) m1 + 2m2 + 3m3 = 0 m∗
1 = 0 E8 G2 F4 SU(1)

(1, 4, 10, 15) m1 + 2m2 + 3m3 = 0 m∗
1 = 0 E8 SU(2) E7 SU(1)

(1, 5, 12, 18) m1 + 2m2 + 3m3 = 0 m∗
1 = 0 E8 SU(1) E8 SU(1)

(1, 6, 14, 21) m1 + 2m2 + 3m3 = 0 m∗
1 = 0 E8 SU(1) E8 SU(1)
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Figure 13: The E
(1)
8 L−E

(1)
8 R graph obtained from the eldest (1, 1, 4, 6)[12] polyhedron in chain

XIX: 39 = 16L + 7J + 16R.

9 Perspectives on the Further Classification of CY3 and K3 Spaces

Although a fuller study of CY3 spaces lies outside the scope of this paper, a preliminary
study is of interest here, for the following reason. In addition to the 95 K3 spaces (Table 1)
related to the zeroes of single polynomials discussed in previous Sections, others can be found
by ‘higher-level’ constructions as the intersections of the loci of zeroes of quasihomogeneous
polynomials, which are obtainable from CY3 spaces, as we now discuss.

When going on to consider the general construction of ~k5 projective vectors in CP 4 that
describe CY3 hypersurfaces, we start from the 95 simple extensions of these K3 vectors as
well as 5 multiple extensions of lower-dimensional vectors, together with all their possible
permutations. Corresponding to the previous five forms of extended vectors, one finds the
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following sets and permutations: quadruply-extended basic vectors with the cyclic C5 group
of permutations:

~kex
1 = (0, 0, 0, 0, 1) : |C5| = 5; (9.1)

triply-extended composite vectors with the dihedral D5 group of permutations:

~kex
2 = (0, 0, 0, 1, 1) : |D5| = 10; (9.2)

the following doubly-extended composite vectors with the D′
5, A

′
5 and A5 groups of permuta-

tions:

~kex
3 = (0, 0, 1, 1, 1) : |D′

5| = 10, (9.3)

~kex
3 = (0, 0, 1, 1, 2) : |A′

5| = 30, (9.4)

~kex
3 = (0, 0, 1, 2, 3); |A5| = 60. (9.5)

we recall that the alternating group of permutations A5 can be identified with the icosahedral
symmetry group I. All the other extended ~k5 vectors can be obtained similarly from 95 K3
vectors, utilising the symmetric group S5 or some subgroups. The full set of extended ~k5

vectors is displayed in Table 28. As noted in its caption, the total number of extended vectors
is 10 270.

As an illustration how our method may be used to classify CY3 manifolds, we now describe
briefly how to obtain the complete list of ~k5 vectors with K3 intersections, which we find
to be distributed in 4242 chains. To build the chains for CY3 which have a double-vector
structure, each of which is parametrized by a pair of positive integers, should find the ‘good’
pairs of ‘extended’ vectors (i.e., those whose intersection gives a reflexive K3 hypersurface),
which involves checking all the 10 270 × 10 271/2 = 52 731 315 possible pairs of vectors from
Table 28. It was just such a search by computer that led to the 4242 double chains mentioned
above, together with their eldest vectors. For more complete information about these chains,
see [37].

These chains give many CY3 projective vectors, but not all. The complete list also includes
the ‘good’ triples which have elliptic fibres. This requires looking for good triples among the
following five types of five-dimensional extended vectors:

1. (0, 0, 0, 0, 1) ⇒ 5,

2. (0, 0, 0, 1, 1) ⇒ 10,

3. (0, 0, 1, 1, 1) ⇒ 10,

4. (0, 0, 1, 1, 2) ⇒ 30,

5. (0, 0, 1, 2, 3) ⇒ 60, (9.6)

where the number after the arrow on each line of (9.6) corresponds to the number of permu-
tations in each case. We have found 259 such good triples, together with their eldest vectors,
corresponding to 259 elliptic chains. The union of the K3 and elliptic projective vectors still
does not yield the full dual set of ~k5 projective vectors. We must also construct another set
of chains using quadruples from among the following multiply-extended vectors:

1. (0, 0, 0, 0, 1) ⇒ 5,

2. (0, 0, 0, 1, 1) ⇒ 10, (9.7)
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Table 28: The 100 distinct types of five-dimensional ‘extended’ projective vectors used to
construct CY3 spaces, listed together with the orders of their permutation groups. Including
these permutations, the total number of extended vectors is 10 270.

ℵ ~k
(i)
5ex G(perm) ℵ ~k

(i)
5ex G(perm)

i (0, 0, 0, 0, 1) 5 46 (0, 2, 3, 4, 7) 120
ii (0, 0, 0, 1, 1) 10 47 (0, 2, 3, 4, 9) 120
iii (0, 0, 1, 1, 1) 10 48 (0, 2, 3, 5, 5) 60
iv (0, 0, 1, 1, 2) 30 49 (0, 2, 3, 5, 7) 120
v (0, 0, 1, 2, 3) 60 50 (0, 2, 3, 5, 8) 120
1 (0, 1, 1, 1, 1) 5 51 (0, 2, 3, 5, 10) 120
2 (0, 1, 1, 1, 2) 20 52 (0, 2, 3, 7, 9) 120
3 (0, 1, 1, 1, 3) 20 53 (0, 2, 3, 7, 12) 120
4 (0, 1, 1, 2, 2) 30 54 (0, 2, 3, 8, 11) 120
5 (0, 1, 1, 2, 3) 60 55 (0, 2, 3, 4, 7) 120
6 (0, 1, 1, 2, 4) 60 56 (0, 2, 3, 10, 15) 120
7 (0, 1, 1, 3, 4) 60 57 (0, 2, 4, 5, 9) 120
8 (0, 1, 1, 3, 5) 60 58 (0, 2, 4, 5, 11) 120
9 (0, 1, 1, 4, 6) 60 59 (0, 2, 5, 6, 7) 120
10 (0, 1, 2, 2, 3) 60 60 (0, 2, 5, 6, 13) 120
11 (0, 1, 2, 2, 5) 60 61 (0, 2, 5, 9, 11) 120
12 (0, 1, 2, 3, 3) 60 62 (0, 2, 5, 9, 16) 120
13 (0, 1, 2, 3, 4) 120 63 (0, 2, 5, 14, 21) 120
14 (0, 1, 2, 3, 5) 120 64 (0, 2, 6, 7, 15) 120
15 (0, 1, 2, 3, 6) 120 65 (0, 3, 3, 4, 5) 60
16 (0, 1, 2, 4, 5) 120 66 (0, 3, 4, 5, 6) 120
17 (0, 1, 2, 4, 7) 120 67 (0, 3, 4, 5, 7) 120
18 (0, 1, 2, 5, 7) 120 68 (0, 3, 4, 5, 8) 120
19 (0, 1, 2, 5, 8) 120 69 (0, 3, 4, 5, 12) 120
20 (0, 1, 2, 6, 9) 120 70 (0, 3, 4, 7, 10) 120
21 (0, 1, 3, 4, 4) 60 71 (0, 3, 4, 7, 14) 120
22 (0, 1, 3, 4, 5) 120 72 (0, 3, 4, 10, 13) 120
23 (0, 1, 3, 4, 7) 120 73 (0, 3, 4, 10, 17) 120
24 (0, 1, 3, 4, 8) 120 74 (0, 3, 4, 11, 18) 120
25 (0, 1, 3, 5, 6) 120 75 (0, 3, 4, 14, 21) 120
26 (0, 1, 3, 5, 9) 120 76 (0, 3, 5, 6, 7) 120
27 (0, 1, 3, 7, 10) 120 77 (0, 3, 5, 11, 14) 120
28 (0, 1, 3, 7, 11) 120 78 (0, 3, 5, 11, 19) 120
29 (0, 1, 3, 8, 12) 120 79 (0, 3, 5, 16, 24) 120
30 (0, 1, 4, 5, 6) 120 80 (0, 3, 6, 7, 8) 120
31 (0, 1, 4, 5, 10) 120 81 (0, 4, 5, 6, 9) 120
32 (0, 1, 4, 6, 7) 120 82 (0, 4, 5, 6, 15) 120
33 (0, 1, 4, 6, 11) 120 83 (0, 4, 5, 7, 9) 120
34 (0, 1, 4, 9, 14) 120 84 (0, 4, 5, 7, 16) 120
35 (0, 1, 4, 10, 15) 120 85 (0, 4, 5, 13, 22) 120
36 (0, 1, 5, 7, 8) 120 86 (0, 4, 5, 18, 27) 120
37 (0, 1, 5, 7, 13) 120 87 (0, 4, 6, 7, 11) 120
38 (0, 1, 5, 12, 18) 120 88 (0, 4, 6, 7, 17) 120
39 (0, 1, 6, 8, 9) 120 89 (0, 5, 6, 7, 9) 120
40 (0, 1, 6, 8, 15) 120 90 (0, 5, 6, 8, 11) 120
41 (0, 1, 6, 14, 21) 120 91 (0, 5, 6, 8, 19) 120
42 (0, 2, 2, 3, 5) 60 92 (0, 5, 6, 22, 33) 120
43 (0, 2, 2, 3, 7) 60 93 (0, 5, 7, 8, 20) 120
44 (0, 2, 3, 3, 4) 60 94 (0, 7, 8, 10, 25) 120
45 (0, 2, 3, 4, 5) 120 95 (0, 7, 8, 9, 12) 120

The number of CY3 chains found in this way is just six.
In addition to these 4242 double, 259 triple and 6 quadruple CY3 chains (to be compared

with the 22 double and 4 triple K3 chains found previously), one must find all the vectors
whose intersection contains only one central interior point (to be compared with the excep-
tional K3 vector (7, 8, 9, 12)). We have found just two such examples in the case of CY3,
namely (41, 48, 51, 52, 64) and (51, 60, 64, 65, 80), again using the intersection-projection du-
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ality technique. The eldest vectors for all the CY3 projective vector chains we have found can
be obtained from [37].

In the cases of dimension higher than three, the concept of intersection-projection duality
is richer, and leads to one important and by now well-known consequence [7, 33], namely the
isomorphism between different homology groups for dual pairs of CYd manifolds M, M∗, and
specifically the following relation:

Hp,q(M) ∼ Hd−p,q(M∗) (9.8)

for 0 ≤ p, q ≤ d. We leave a more complete discussion of duality of CY3 spaces to future
work, limiting our discussion here of their ramifications for the classification of K3

Our construction based on the 10 270 extended vectors obtained from the 100(= 95 + 5)
types of projective vectors in lower dimensions n = 1, 2, 3, 4 shown in Table 28 yielded all the
4242 (259, ...) eldest vectors representing CY3 spaces with K3 (elliptic, ...) fibers. However,
this method of construction simultaneously provides a new higher-level list of K3 spaces
defined by planar polyhedra. To explain this, let us first assign to all K3 spaces defined by n-
dimensional projective vectors level zero, and denote them by Π0. Then, level one K3 spaces
consist of all the ‘good’ intersections†† of two (n + 1)-dimensional extended vectors, denoted
by Π1. This yields a list of reflexive polyhedra that is more complete than the previous list
of polyhedra obtained from n-dimensional projective vectors, i.e., Π0 ⊆ Π1. Continuing, one
may define the set of all ‘good’ intersections of level two, Π2, by considering the intersections
of three (n + 2)-dimensional extended vectors, and similarly for the higher levels 3, 4, ...:

Π0 ⊆ Π1 ⊆ Π2 ⊆ ... ⊆ Πlast (9.9)

until this process gives us no new reflexive polyhedra. Since the number of distinct reflexive
polyhedra in any dimension is finite, e.g., the maximal number of integer points for planar
polyherdra is 10, for K3 polyhedra it is 39, etc., there exists a maximum last level, after
which one cannot find any new types of polyhedra.

Following this approach in the simple case of CY1 spaces, we recall that we found three
planar polyhedra (triangles) at level zero, determined by the three projective vectors (1, 1, 1),
(1, 1, 2) and (1, 2, 3). At level one, constructing the 22 chains of K3 projective vectors via
the 22 ‘good’ intersections of the five types of four-dimensional extended vectors, we now
find 7 new planar polyhedra in 9 of the 22 two-vector K3 chains, differing from the previous
three triangles by the numbers of vertices (V, V ∗) and/or by the numbers of integer points
(N, N∗) and/or by the areas of these planar polyhedra, as shown in Table 29. To look for
further new polyhedra at level 2, one should consider the five following types of vectors:
(1), (1, 1), (1, 1, 1), (1, 1, 2) and (1, 2, 3), extended to five dimensions. Taking into account all
the 50 possible permutations, and looking for the ‘good’ triple intersections, we find among
the 259 ‘good’ planar reflexive polyhedra mentioned above just three distinct new polyhedra,
which are exhibited in Table 30.

Extending this procedure, we found among the 4242 chains of CY3 spaces with ‘good’
intersections 730 new K3 polyhedra at level one, many with multiple realizations as in Ta-
bles 29 and 30. As an example how such new K3 spaces emerge, consider the following
two-vector CY3 chain: m(0, 1, 1, 4, 6) + n(1, 0, 1, 4, 6). The maximum values of m and n are
determined by the dimensions of these extended vectors, namely d = 12. This chain contains

††In the sense that they give n-dimensional reflexive polyhedra.
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Table 29: The 7 distinct new planar polyhedra, representing new CY1 spaces, that are found
as double intersections involving 9 of the 22 two-vector K3 chains. Two realizations each are
given for 2 of the new polyhedra.

ℵ ~k
(i)
4ex

~k
(i)
4ex N, N∗ V, V ∗

1 (0, 0, 1, 1) (1, 1, 0, 0) 9, 5∗ 4, 4∗
(0, 0, 1, 1) (1, 1, 0, 1) 9, 5∗ 4, 4∗

2 (0, 0, 1, 1) (1, 2, 0, 1) 7, 7∗ 4, 4∗
3 (0, 1, 1, 1) (1, 0, 1, 2) 8, 6∗ 4, 4∗
4 (0, 1, 1, 1) (3, 0, 1, 2) 4, 10∗ 3, 3∗
5 (0, 1, 1, 2) (1, 1, 2, 0) 5, 9∗ 3, 3∗

(0, 1, 1, 2) (2, 0, 1, 3) 5, 9∗ 3, 3∗
6 (0, 1, 1, 2) (2, 1, 3, 0) 6, 8∗ 4, 4∗
7 (0, 1, 2, 3) (3, 2, 1, 0) 5, 9∗ 4, 4∗

Table 30: The 3 distinct new planar polyhedra, representing new CY1 spaces, that are obtain-
able as triple intersections of five-dimensional extended projective vectors, the sum of which
gives an eldest CY3 projective vector. Three realizations each are given for 2 of the new
polyhedra.

ℵ ~k
(i)
5ex

~k
(i)
5ex

~k
(i)
5ex N, N∗ V, V ∗

1 (0, 0, 0, 1, 1) (0, 1, 1, 0, 0) (1, 0, 1, 0, 1) 8, 6∗ 5, 5∗
2 (0, 0, 0, 1, 1) (0, 1, 1, 0, 1) (1, 0, 1, 1, 0) 7, 7∗ 5, 5∗

(0, 0, 0, 1, 1) (0, 1, 1, 0, 1) (1, 1, 2, 0, 0) 7, 7∗ 5, 5∗
(0, 0, 1, 1, 1) (1, 1, 0, 0, 1) (0, 1, 0, 1, 2) 7, 7∗ 5, 5∗

3 (0, 0, 0, 1, 1) (1, 1, 1, 0, 0) (0, 1, 2, 0, 1) 6, 8∗ 5, 5∗
(0, 0, 0, 1, 1) (0, 1, 2, 0, 1) (2, 1, 0, 1, 0) 6, 8∗ 5, 5∗
(0, 0, 1, 1, 1) (0, 1, 0, 1, 2) (1, 0, 2, 1, 0) 6, 8∗ 5, 5∗

46 different ~k5 projective vectors. The four-dimensional pentahedroid corresponding to the
eldest vector in this chain is shown in Figure 14. As can be seen there, in addition to its 5
vertices, the pentahedroid has 10 one-dimensional edges, 10 two-dimensional triangular faces,
and 5 three-dimensional tetrahedral facets. This pentahedroid contains two realizations of
the tetrahedron corresponding to ~k4 = (1, 1, 4, 6), whose intersection contains an elliptic fibre

corresponding to ~k3 = (1, 2, 3).
A snapshot of the complete m(0, 1, 1, 4, 6) + n(1, 0, 1, 4, 6) chain is shown in Figure 15,

where the number of points N in each member of the chain is plotted as a function of
d = k1 + k2 + k3 + k4 + k5 for each of the allowed values of m. We note a systematic tendency
for N to decrease as d increases. (The structure of the chain is, of course, symmetric under the
interchange: n ↔ m). The corresponding plot for the dual polyhedra is shown in Figure 16:
here we see that the number of points N∗ increases as d increases.

To get another impression of the rich new structures emerging at levels one and above,
we consider a ‘tetrahedron subalgebra’ of our K3 algebra, i.e., we consider only those projec-
tive vectors corresponding to point- and segment-polyhedra, triangles and tetrahedra. With
this restriction, we start from only 32 K3 projective vectors, corresponding to four-vertex
tetrahedra and five of our previous extended vectors. In this way, the number of reflexive
polyhedra at level one is reduced to just 632, consisting of 460 tetrahedra and 172 reflexive
polyhedra with numbers of vertices between 5 and 10. In this list of 632 polyhedra, there are
actually only 146 distinct new types of polyhedra, as shown in Table 31. More information
about them can be obtained from [37]: we leave their more detailed study to later work.

The method described here has a very simple geometrical interpretation. According to
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Figure 14: The 4-dimensional pentahedroid corresponding to the CY3 space specified by the
eldest vector ~k5 = (1, 1, 2, 8, 12)[24] in the two-vector chain m(0, 1, 1, 4, 6) + n(1, 0, 1, 4, 6).
The number of integer points in this pentahedroid is N(S) = 335, and the volume S = 72.
SL(4, Z) transformations produce an infinite number of polyhedroids, conserving the volume.

the chain structure, each CY3 can have a complex internal structure, and correspondingly its
vector can be extended as a sum of two K3, three elliptic, four two-component or five single-
component extended vectors. Another nice feature of this chain structure is that it gives
us complete information about the integer lattice which determines all the CY equations.
Moreover, it also gives us the possibility of summarizing the singularity structure of CY3

spaces. As we discussed in Section 8, the K3 polyhedron structure gives us a systematic way
of classifying the corresponding Cartan-Lie algebra graphs. It will be interesting to make a
full corresponding analysis for CY3 hypersurfaces, taking duality into account. This method
could also provide the full classification of Betti-Hodge topological numbers for CY3 manifolds.
Moreover, this algebraic method enables us to ‘walk’ between different dimensions, e.g., to
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Figure 15: The number of points N found in different members of the chain m(0, 1, 1, 4, 6) +
n(1, 0, 1, 4, 6), plotted as a function of d = k1 + k2 + k3 + k4 + k5 for different values of m.

classify CY4, ...5,... manifolds (Figure 1). The greatest limitations may be our abilities to
analyze this algebra and/or the available computer resources.

A fuller analysis of our structural classification of the ~k5 vectors for CY3 manifolds will
be given in later work. An important aspect of this procedure is that we can study the
structures of the positive-integer lattices which correspond to the ~k vectors, introducing the
corresponding modular (for two-dimensional sublattices) and hypermodular (for 3-, 4- or
higher-dimensional lattices) transformations. These yield duality groups that are more gen-
eral than the well-known S, T and U dualities, including them as subgroups. Moreover, the
study of the geometric properties of the one-dimensional complex torus, two-dimensional K3
hypersurfaces and Calabi-Yau manifolds with dimensions d = 3, 4, ... gives insight into the
possible rank and dimensions of the Lie algebras which may be important for the understand-
ing of the nature of the symmetries used in high-energy physics.
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Figure 16: The number of points N∗ found in the polyhedra dual to the previous
m(0, 1, 1, 4, 6) + n(1, 0, 1, 4, 6) chain, plotted as a function of d = k1 + k2 + k3 + k4 + k5

for different values of m.
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Table 31: The 146 distinct new polyhedra, representing new K3 spaces, that are obtainable
as double intersections of projective vectors in the ‘tetrahedron subalgebra’ containing only
point- and segment-polyhedra, triangles and tetrahedra. Many of these have several different
realizations as double intersections: more details can be found in [37].

ℵ N, N∗ V, V ∗ Pic,P ic∗ ℵ N, N∗ V, V ∗ Pic, P ic∗ ℵ N, N∗ V, V ∗ Pic,P ic∗

1 31, 6∗ 6, 5∗ 2, 18∗ 51 14, 19∗ 7, 6∗ 13, 8∗ 101 22, 20∗ 5, 5∗ 10, 11∗
2 28, 9∗ 7, 6∗ 4, 16∗ 52 26, 8∗ 6, 5∗ 4, 17∗ 102 20, 16∗ 5, 5∗ 10, 13∗
3 29, 7∗ 6, 5∗ 4, 17∗ 53 25, 14∗ 6, 6∗ 7, 13∗ 103 24, 18∗ 5, 5∗ 9, 12∗
4 22, 8∗ 6, 5∗ 7, 16∗ 54 15, 21∗ 5, 5∗ 12, 10∗ 104 15, 21∗ 4, 4∗ 14, 10∗
5 31, 9∗ 6, 5∗ 3, 17∗ 55 22, 16∗ 6, 6∗ 9, 11∗ 105 21, 15∗ 4, 4∗ 10, 14∗
6 21, 12∗ 7, 6∗ 8, 13∗ 56 12, 18∗ 6, 7∗ 13, 10∗ 106 10, 26∗ 5, 6∗ 15, 7∗
7 17, 20∗ 7, 7∗ 11, 9∗ 57 17, 13∗ 6, 6∗ 10, 13∗ 107 10, 32∗ 6, 6∗ 16, 4∗
8 22, 14∗ 6, 6∗ 8, 13∗ 58 24, 12∗ 5, 5∗ 7, 14∗ 108 19, 14∗ 5, 5∗ 11, 13∗
9 24, 12∗ 6, 5∗ 7, 14∗ 59 15, 15∗ 4, 4∗ 14, 12∗ 109 16, 26∗ 5, 5∗ 13, 8∗
10 20, 12∗ 6, 6∗ 10, 13∗ 60 20, 11∗ 7, 6∗ 9, 14∗ 110 12, 27∗ 5, 5∗ 15, 7∗
11 20, 20∗ 6, 6∗ 10, 10∗ 61 10, 20∗ 5, 6∗ 16, 9∗ 111 15, 15∗ 5, 5∗ 12, 13∗
12 13, 14∗ 6, 6∗ 13, 11∗ 62 11, 14∗ 6, 6∗ 14, 12∗ 112 10, 23∗ 6, 6∗ 15, 7∗
13 26, 8∗ 6, 5∗ 5, 17∗ 63 24, 18∗ 5, 5∗ 8, 12∗ 113 6, 34∗ 5, 6∗ 18, 2∗
14 26, 7∗ 6, 5∗ 5, 17∗ 64 16, 17∗ 6, 6∗ 11, 11∗ 114 25, 11∗ 5, 5∗ 8, 15∗
15 18, 8∗ 6, 5∗ 9, 16∗ 65 8, 26∗ 5, 6∗ 17, 5∗ 115 15, 15∗ 4, 4∗ 13, 13∗
16 24, 10∗ 6, 6∗ 6, 15∗ 66 14, 11∗ 7, 6∗ 12, 14∗ 116 14, 16∗ 5, 5∗ 12, 13∗
17 11, 11∗ 4, 4∗ 15, 15∗ 67 8, 26∗ 6, 7∗ 17, 3∗ 117 9, 27∗ 5, 5∗ 16, 6∗
18 21, 17∗ 7, 7∗ 9, 11∗ 68 21, 19∗ 6, 6∗ 10, 10∗ 118 10, 26∗ 6, 6∗ 16, 6∗
19 14, 15∗ 6, 6∗ 12, 11∗ 69 12, 12∗ 4, 4∗ 14, 14∗ 119 22, 14∗ 5, 5∗ 9, 14∗
20 23, 11∗ 5, 5∗ 7, 15∗ 70 10, 17∗ 5, 6∗ 15, 11∗ 120 7, 31∗ 5, 6∗ 17, 3∗
21 10, 20∗ 7, 7∗ 15, 7∗ 71 9, 15∗ 4, 4∗ 16, 12∗ 121 15, 15∗ 5, 5∗ 13, 12∗
22 7, 23∗ 5, 6∗ 17, 5∗ 72 8, 23∗ 5, 6∗ 16, 8∗ 122 15, 15∗ 4, 4∗ 12, 14∗
23 10, 14∗ 5, 6∗ 15, 12∗ 73 24, 12∗ 6, 6∗ 8, 14∗ 123 19, 11∗ 5, 5∗ 10, 14∗
24 12, 12∗ 6, 6∗ 13, 13∗ 74 19, 11∗ 4, 4∗ 11, 14∗ 124 12, 18∗ 6, 6∗ 14, 10∗
25 6, 30∗ 4, 4∗ 18, 4∗ 75 11, 19∗ 4, 4∗ 17, 10∗ 125 11, 17∗ 5, 5∗ 14, 11∗
26 25, 11∗ 6, 6∗ 6, 14∗ 76 19, 11∗ 4, 4∗ 10, 17∗ 126 20, 14∗ 6, 6∗ 7, 14∗
27 12, 12∗ 4, 4∗ 16, 14∗ 77 8, 24∗ 5, 6∗ 16, 7∗ 127 14, 16∗ 5, 5∗ 13, 12∗
28 21, 9∗ 4, 4∗ 9, 17∗ 78 31, 11∗ 5, 5∗ 5, 16∗ 128 19, 17∗ 5, 5∗ 11, 12∗
29 15, 15∗ 5, 6∗ 11, 12∗ 79 20, 22∗ 5, 5∗ 11, 10∗ 129 12, 24∗ 5, 5∗ 15, 8∗
30 12, 12∗ 4, 4∗ 14, 16∗ 80 26, 10∗ 6, 5∗ 3, 17∗ 130 12, 20∗ 6, 6∗ 13, 10∗
31 31, 8∗ 5, 5∗ 4, 17∗ 81 26, 10∗ 5, 5∗ 7, 16∗ 131 12, 24∗ 5, 5∗ 14, 9∗
32 17, 11∗ 6, 5∗ 9, 16∗ 82 19, 11∗ 4, 4∗ 10, 16∗ 132 7, 26∗ 5, 6∗ 17, 5∗
33 20, 10∗ 5, 5∗ 9, 16∗ 83 16, 14∗ 5, 5∗ 12, 14∗ 133 11, 28∗ 7, 7∗ 15, 5∗
34 18, 12∗ 5, 5∗ 11, 14∗ 84 14, 16∗ 6, 6∗ 12, 12∗ 134 9, 33∗ 5, 5∗ 16, 4∗
35 15, 12∗ 4, 4∗ 13, 13∗ 85 23, 13∗ 5, 5∗ 9, 14∗ 135 14, 28∗ 5, 5∗ 14, 7∗
36 9, 21∗ 4, 4∗ 17, 9∗ 86 23, 10∗ 5, 5∗ 8, 15∗ 136 10, 29∗ 6, 6∗ 15, 5∗
37 25, 17∗ 6, 6∗ 8, 12∗ 87 14, 16∗ 6, 5∗ 14, 11∗ 137 11, 25∗ 5, 5∗ 15, 8∗
38 15, 21∗ 5, 5∗ 13, 10∗ 88 12, 18∗ 6, 6∗ 15, 10∗ 138 17, 26∗ 6, 6∗ 12, 8∗
39 17, 10∗ 6, 5∗ 11, 15∗ 89 29, 13∗ 5, 5∗ 6, 15∗ 139 15, 18∗ 5, 5∗ 13, 11∗
40 10, 23∗ 6, 6∗ 16, 7∗ 90 17, 19∗ 5, 5∗ 12, 11∗ 140 11, 19∗ 5, 5∗ 16, 10∗
41 13, 28∗ 7, 7∗ 14, 6∗ 91 11, 19∗ 4, 4∗ 16, 10∗ 141 20, 25∗ 5, 5∗ 11, 9∗
42 24, 21∗ 5, 5∗ 9, 11∗ 92 14, 16∗ 6, 6∗ 13, 11∗ 142 10, 26∗ 5, 5∗ 16, 7∗
43 9, 24∗ 5, 5∗ 17, 7∗ 93 10, 24∗ 6, 6∗ 15, 6∗ 143 11, 25∗ 6, 6∗ 15, 7∗
44 12, 30∗ 6, 6∗ 15, 5∗ 94 8, 34∗ 5, 6∗ 17, 3∗ 144 9, 33∗ 5, 5∗ 17, 4∗
45 21, 9∗ 5, 5∗ 8, 16∗ 95 14, 16∗ 5, 5∗ 14, 12∗ 145 11, 13∗ 5, 5∗ 14, 13∗
46 16, 11∗ 6, 5∗ 11, 13∗ 96 16, 15∗ 7, 6∗ 12, 12∗ 146 9, 36∗ 5, 5∗ 17, 3∗
47 11, 16∗ 7, 7∗ 13, 9∗ 97 11, 31∗ 5, 5∗ 16, 5∗
48 26, 10∗ 6, 5∗ 6, 15∗ 98 9, 30∗ 6, 7∗ 16, 4∗
49 18, 12∗ 6, 5∗ 11, 13∗ 99 14, 10∗ 6, 5∗ 12, 15∗
50 12, 22∗ 6, 7∗ 14, 8∗ 100 9, 28∗ 6, 7∗ 16, 5∗
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