
EXT-2000-089
01/09/1999

A
v
a
ila

b
le

a
t:

h
t
t
p
:
/
/
w
w
w
.
i
c
t
p
.
t
r
i
e
s
t
e
.
i
t
/
~
p
u
b
�

o
f
f

IC
/99/130

U
n
ited

N
ation

s
E
d
u
cation

al
S
cien

ti�
c
an
d
C
u
ltu

ral
O
rgan

ization
an
d

In
tern

ation
al

A
tom

ic
E
n
ergy

A
gen

cy

T
H
E
A
B
D
U
S
S
A
L
A
M

IN
T
E
R
N
A
T
IO

N
A
L
C
E
N
T
R
E
F
O
R
T
H
E
O
R
E
T
IC
A
L
P
H
Y
S
IC
S

O
N
T
H
E
F
IN
IT
E
S
IZ
E
S
C
A
L
IN
G
IN

N
E
U
R
A
L
N
E
T
W
O
R
K
S

E
.
K
oru

tch
eva

1

D
ep
.
F
isica

M
a
tem

a
tica

y
F
lu
id
o
s,

U
N
E
D
,

c/
S
en
d
a
d
el

R
ey

N
o
9
,
2
8
0
8
0
M
a
d
rid

,
S
pa
in
, 2

G
.
N
a
d
ja
ko
v
In
stitu

te
o
f
S
o
lid

S
ta
te

P
h
ysics,

B
u
lga

ria
n
A
ca
d
em

y
o
f
S
cien

ces,
1
7
8
4
S
o
�
a
,
B
u
lga

ria
a
n
d

T
h
e
A
bd
u
s
S
a
la
m

In
tern

a
tio

n
a
l
C
en
tre

fo
r
T
h
eo
retica

l
P
h
ysics,

T
rieste,

Ita
ly

an
d

N
.
T
on
ch
ev

G
.
N
a
d
ja
ko
v
In
stitu

te
o
f
S
o
lid

S
ta
te

P
h
ysics,

B
u
lga

ria
n
A
ca
d
em

y
o
f
S
cien

ces,
1
7
8
4
S
o
�
a
,
B
u
lga

ria
.

A
b
str

a
c
t

W
e
stu

d
y
th
e
�
rst-ord

er
p
h
ase

tran
sition

in
th
e
m
o
d
el
of
a
sim

p
le
p
ercep

tron
w
ith

con
tin

u
ou
s

w
eigh

ts
an
d
w
ith

large,
b
u
t
�
n
ite

valu
es

of
th
e
in
p
u
ts.

M
ak
in
g
th
e
an
alogy

w
ith

th
e
�
rst-ord

er

p
h
ase

tran
sition

s
in

u
su
al

�
n
ite-size

p
h
y
sical

sy
stem

s,
w
e
calcu

late
th
e
sh
ift

an
d
th
e
rou

n
d
in
g

ex
p
on
en
ts

n
ear

th
e
tran

sition
p
oin

t.
In

th
e
case

of
a
gen

eral
p
ercep

tron
w
ith

larger
variety

of

ou
tp
u
ts,

th
e
an
aly

sis
cou

ld
on
ly

give
b
ou
n
d
s
for

th
e
ex
p
on
en
ts.

M
IR

A
M
A
R
E
{
T
R
IE
S
T
E

S
ep
tem

b
er

1999

1R
eg
u
la
r
A
sso

cia
te

o
f
th
e
A
b
d
u
s
S
a
la
m

IC
T
P
.

2C
u
rren

t
a
d
d
ress.

F
a
x
:
+
3
4
-9
1
-3
9
8
-6
6
-9
7
;
E
-m

a
il:

elk
a
@
�
sfu

n
.u
n
ed
.es

brought to you by 
C

O
R

E
V

iew
 m

etadata, citation and sim
ilar papers at core.ac.uk

provided by C
E

R
N

 D
ocum

ent S
erver

https://core.ac.uk/display/25279366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Recently W. Nadler andW. Fink [1] showed that the fraction of patterns that can be stored in

a single and a multilayer neural network (perceptron) obeys a �nite-size scaling (FSS) behavior.

A similar FSS result was previously demonstrated in some problems such as the satis�ability of

random boolean expressions, the connectivity of random graphs [2] and the quasi-species model

of molecular evolution [3], where no intrinsic length scale is present.

The aim of the present comment is to complement the FSS study of perceptron using some

previous knowledge from FSS behavior in di�erent physical systems [4] - [6].

The system, we are interested in, is a single layer perceptron storing a set of input patterns

f��i g; i = 1; :::; N ;� = 1; :::; p, drawn from a Gaussian distribution. By N and p we denote the

numbers of the inputs and the patterns, respectively.

It is well known that for this system, the fraction of all possible input-output relations of

size � = p=N that can be stored, called P (�;N), exhibits a smooth transition from one to zero,

which becomes discontinuous, i.e. �rst-order one, at the critical storage capacity �c and in the

thermodynamic limit N ! 1 [7, 8]. In the case of a single- layer perceptron with one output

unit, Gaussian inputs and continuous couplings, an exact result for P (�;N) is known [8]:

P (�;N) = 21�p�N�1
i=0 (

p� 1
i

): (1)

When the size of the system N is large, eq.(1) takes the asymptotic form:

P (�;N) �
1

2

0
@1 +Erf(

s
N

2�
(2� �))

1
A ; (2)

revealing an FSS behavior with a scaling parameter

y = (�� �c)N
1=� (3)

and a scaling exponent � = 2 near the transition point �c = 2. Thus it is interesting to investigate

the �nite-size e�ects near the transition point and of particular interest is the determination of

the shift and the rounding of the transition.

Following the analogy with the conventional �rst-order transitions [4]-[6], we de�ne as a

transition point �c(N) this value of the parameter �, for which the derivative
���@P (�;N)

@�

��� shows
a maximum for large but �nite values of N (N being the size of the system). This derivative

becomes divergent in the thermodynamic limit at �c = 2. The above de�nition permits to treat

in a similar way the �nite-size e�ects in a perceptron with continuous and binary weights.

From eq.(1) we calculated the inection point of the function P (�;N) with respect to the

parameter � for di�erent values of N and we identi�ed the so-called shift exponent [4]-[6]

�c(N)� �c(1) �
1

N�
: (4)
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Figure 1: The critical storage capacity �c(N) for values of N within the interval [8,400].

We did the same analysis also by using eq.(2). We obtained the following dependence of the

critical storage capacity �c(N) for N -large (see Fig.1):

�c(N)� �c(1) �
1

N
; (5)

giving a shift exponent � = 1.

The result (5) is similar to the well-known result for asymmetric temperature-driven �rst-

order transitions in �nite d-dimensional systems with cubic symmetry, where the location of the

shift by the maximal slope scales like L�d (L being the �nite size) [4]- [6]. Note that in our case

the system is e�ectively one-dimensional (of �nite size N) and there are no boundary conditions

imposed.

The two classes of transitions, symmetric and asymmetric, however show a rounding behav-

ior, which is given by the scaling of the width of the peak of the diverging observable. In other

words, it is the interval over which the singularity is smeared out and which becomes increasingly

sharp as the �nite dimension of the system goes to in�nity.

In the concrete case of the simple perceptron this is the scaling of the width of
���@P (�;N)j

@�

���,
which determines the rounding behavior. Using eq.(2):

����@P (�;N)

@�

���� �
s

N

2�
expf�

[N(2� �)2]

2�
g; (6)
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the rounding exponent � = 1
2 follows. Note that a similar behavior with N occurs for the shift

and the variance of the generalization error in the case of a Bayesian perceptron with continuous

weights [9]. Their speci�c dependence on � however cannot be explained by the present analysis.

An interesting problem is what happens in the case of a perceptron with binary weights [10].

For this case the numerical analysis for the typical fraction shows a sharpness between the two

regimes by increasing N , but there is no de�nitive conclusion about the step-like behavior in

the thermodynamic limit [11]. An investigation, similar to that for the continuous case, could

explain many of the features of this behavior [12].

In the general case of a perceptron, having a larger variety of outputs [13], it has been proved,

[14], that for p � dV C (dV C being the Vapnik-Chervonenkis (VC) dimension), the fraction of all

possible input-output relations obeys the following inequality:

P (�;N) � 21�p�dV C
i=0 (

p� 1
i

): (7)

It has been shown [15] that in the thermodynamic limit N !1 (p; dV C !1) and keeping

� = p
N , and �V C = dV C

N �xed, the VC-entropy shows di�erent behavior above and below

� = 2�V C , which permits to relate the storage capacity of the network to its VC- dimension via

�c � 2�V C (�c � �c(1)).

Eq.(7) shows that for N -large, the asymptotic form of the upper bound �P (�;N) of the

fraction P (�;N) is given by:

P (�;N) � �P (�;N) =
1

2

2
41 +Erf

0
@
s

N

2�
(2�V C � �)

1
A
3
5 ; (8)

leading to the same values for the shift and the rounding exponents for the upper bound, known

from the case of the simple perceptron, These are also upper bounds for the shift and rounding

exponents in the general case. Note also, that for this case, the VC analysis gives only bounds

for the dV C [11], [15].

Finally, we would like to mention that considering the behavior of the VC-entropy above

and below the transition, or studying the behavior of the annealed entropy and its relation to

the generalization error, leads again to the problem of �nding inequalities for the functions of

interest [15].

Obviously, the full understanding of the general problem requires an investigation for every

concrete case of architecture and machine [12].
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