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1 Introduction

In the Standard Model (Glashow, 1961; Weinberg, 1967; and Salam, 1968) the Higgs boson plays

an important role in the mechanism of breaking the SU(2) � U(1) symmetry and generating

the W and Z boson masses. By means of the Yukawa interaction the Higgs couples to quarks

and leptons, of mass mf , with a strength of gmf=2MW (g is the coupling constant of the SU(2)

gauge theory). Higgs boson properties and its mass are not predicted by the model. We know

only that its coupling to stable matter is very small, and production and detection are very dif-

�cult. Consequently the nature of the Higgs boson becomes mystery for physicists. The Yukawa

interaction of Higgs boson with fundamental fermions should shed light on understanding the

mass scales of fermions and their origin through the Higgs mechanism (Namsrai, 1996)

In this paper we propose a simple model of the Yukawa and the dipole interactions where force

transmitting quanta-Higgs bosons and massless fermions are spread-out and possess string -like

innermost structure. Such a model leads to a �nite theory of the nonlocal Yukawa and the dipole

interactions. In a previous paper (Namsrai, 1997) we constructed the nonlocal electromagnetic

interaction of the ring charge. Here our purpose is to generalize the mathematical method of this

approach for the massive and the dipole cases. In Section 2 we brie
y discuss the corresponding

rule between electromagnetic and the Yukawa interactions in the ring theory. Section 3 deals

with the Poisson like equation for the Yukawa potential and its solutions. A formal four-

dimensional Euclidean extension of the potential theory in both massless and massive cases is

studied in Section 4. Within the framework of the nonlocal model in Section 5 we discuss some

possibilities of an existence of a new medium range interaction (carrier of which is a massless

spinor particle) and the con�nement of a particle which does not exist in free states, i.e., poles

in those propagators are absent in momentum space. Section 6 is devoted to the construction

of spread-out �elds corresponding to the ring theory and their nonlocal Yukawa and dipole

interaction Lagrangians. Consequences of the theory will be considered elsewhere.

2 The Corresponding Rule Between the Long- and Short-Range

Interactions

Earlier (Namsrai, 1997) we have considered an unoriented stochastic ring charge and a modi�ed

Coulomb's potential

U `
c =

e

2�2
1

r
arcsin

rp
r2 + `2

(1)

and the corresponding propagator of the nonlocal photon �eld is

eD`
��(p) = �g�� e

�

p
�p2`2

�p2 � i"
(2)
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where p2 = p2o � p2. In accordance with the corresponding rule the propagator of the massive

particle carrying the short range Yukawa interaction takes the form

eD`
m(p) =

1

m2 � p2 � i"
exp

h
�
p
(m2 � p2)`2

i
(3)

in the ring theory. In the static limit equation (3) gives the modi�ed Yukawa potential

U `
Y (r) =

g

(2�)3

Z
d3peipr eD`

m(p) (4)

and an explicit form of which is

U `
Y (r) =

g

4�

e�mr

r
� gm

2�2

`Z
0

d�
1p

r2 + �2
K1(m

p
r2 + �2) (5)

where K1(z) is the modi�ed Bessel function and g is a coupling constant. It is natural that the

inverse Fourier transform of (4) yields

eD`
m(p) =

1

g

Z
d3re�iprU `

Y (r) =

=
1

m2 + p2
+
e�`
p
m2+p2

m2 + p2
� 1

m2 + p2
=
e�`
p
m2+p2

m2 + p2
(6)

as should be. Further, making use of changing g ! e and taking the limit m! 0 in expressions

(5) and (6) one gets (1) and (2) exactly. This fact tells us that the corresponding rule is valid

in the given case.

3 The Poisson-like Equation for the Yukawa Potential Theory

First, let us consider the local Yukawa theory, potential of which satis�es the Poisson equation

4UY (r) = g�Y (r) (7)

where �Y (r) =
m2

4�re
�mr with the conditionZ

d3r�Y (r) = 1 (8)

The solution of equation (7) has the integral form

UY (r) =
g

4�

Z
d3r0

�(r0)� �Y (r
0)

jr� r0j (9)

The Fourier transform (3) in the static limit and in the local theory is given by

eDo
m(p

2) =
1

g

Z
d3re�ipr

g

4�

Z
d3r0


o
Y (r� r0)
jr0j (10)
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in accordance with (6) and (9). Here


o
Y (r� r0) = �(r � r0)� �Y (r� r0) = 1

(2�)3

Z
d3qe�iq(r�r

0)e
o
Y (q) (11)

and
1

jr0j =
1

2�2

Z
d3peipr

0 1

p2
(12)

where e
o
Y (q) is the Fourier transform of the density 
o

Y (r) in (10). Therefore we see immediately

that eDo
m(p

2) =
1

p2
e
o
Y (p) (13)

where e
o
Y (p) =

p2

m2 + p2
;

and �̂
1

4�r

�
(p) =

1

p2

It is easy to generalize the above formulas in the ring theory. For example, equation (7) acquires

the form

4U `
Y (r) = g�`Y (r) (14)

�`Y (r) =
m2

4�r
e�mr � m

2�2

`Z
0

d��

�
�
� 3m

r2 + �2
K2(m

p
r2 + �2) +

m2r2

(r2 + �2)3=2
K3(m

p
r2 + �2)

�
(15)

and the normalization condition is Z
d3r�`Y (r) = 1 (16)

In this case, solution (9) is modi�ed by

U `
Y (r) =

g

4�

Z
d3r0


`
Y (r� r0)
jr0j (17)

Here the Fourier transform of 
`
Y (r) = �(3)(r)� �`Y (r) reads

e
`
Y (p) =

Z
d3re�ipr
`

Y (r) = 1� m2

m2 + p2
+

p2

m2 + p2
�

�e`
p
m2+p2 � p2

m2 + p2
=

p2

m2 + p2
e�`
p
m2+p2

So that the similar relation like (13)

eD`
m(p

2) =
1

p2
e
`
Y (p) =

e�`
p
m2+p2

m2 + p2
(18)

holds in this general case. We see that propagator (3) for the Yukawa particle and its potential

(17) are related by the formula (18) in the uni�ed way for the ring theory.
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4 The Potential Theory in the Four-Dimensional Euclidean Space

In order to construct relativistic covariant Yukawa interaction theory of nonlocal quantized �elds

in the ring model it is useful to extend formally the potential theory in the four-dimensional

Euclidean space. Now we turn to this problem.

4.1 The massless case

The ring charge potential in the four-dimensional Euclidean space obeys the d'Alembertian

equation

2EU
o
E(x) = �e�oE(x) (19)

where

2E =
@2

@x2i
; xi = fx1; x2; x3; x4g

and

�oE(x; `) =
3`

4�2
�
r2E + `2

�
�5=2

; (r2E = xixi) (20)

As before, Z
d4x�oE(x) = 1

The solution of (19) has the similar form of (10) and (17):

Uo
E(x) =

e

4�2

Z
d4y

�oE(x� y)

jyj2 (21)

The Fourier transfoms of �oE(x) and
1

4�2
jyj2 = f(y) are given by

e�oE(pE) = Z d4xe�ipEx�oE(x) = e�`
p
p2
E (22)

and ef(p) = ^� 1

4�2jyj2
�
=

1

(2�)2

Z
d4xe�ipx

1

x2
=

1

p2E
; p2E = p21 + :::+ p24 (23)

From expressions (22) and (23) we see that in the four-dimensional Euclidean space a similar

relation like (13) and (18) is valid. So that

Do
E(p) =

1

p2E
e�`
p
p2
E (24)

An analytic continuation of this formula in the pseudo-Euclidean space is exactly equal to the

propagator of the nonlocal photon �eld for the ring charge. An explicit form of the potential

(21) is given by

Uo
E(x) =

1

4�2r2E

241� `q
r2E + `2

35 (25)
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and the Fourier transform reads

^Uo
E(p) =

Z
d4ye�ipyUo

E(y) =
1

p2E
� `

p

1Z
0

d�
J1(pE�)p
`2 + �2

=

=
1

p2E
� `

pE

r
�

2

1p
`pE

�
I1=2(`pE)� L1=2(`pE)

�
(26)

Here modi�ed Bessel and Struve functions I1=2(x) and L1=2(x) are given by

I1=2(`pE) =
1p

2�`pE
(e`pE � e�`pE)

and

L1=2(`pE) = �ie�i�=4H1=2(i`pE) = �
r

2

�

1p
`pE

(1� 1

2
e�`pE � 1

2
e`pE)

Therefore, expression (26) coincides identically with (24).

4.2 The massive case

In the four-dimensional Euclidean space the usual Yukawa local potential theory is extended by

the similar method as expounded above. In this case, equation (19) is changed as follows

2EU
o
Y E(x) = g�oY E(x) (27)

where

�oY E(x) =
m3

4�2rE
K1(mrE)

with the normalization condition Z
d4x�oY E(x) = 1

The solution of (27) acquires the standard form

Uo
Y E(x) =

g

4�2

Z
d4y


Y E(x� y)

y2
(28)

Here the Fourier transforms of quantities: 
o
Y E(x) = �(4)(x) � �oY E(x) and fY (x) =

1
4�2

1
x2
E

are

given by e
Y E(p) = 1� m2

m2 + p2E

and efY (p) = ^� 1

4�x2E

�
(p) =

1

p2E

respectively. Therefore, the Euclidean propagator of the massive particle can be written in the

usual form eDo
Y E(pE) =

1

g

Z
d4xe�ipExUo

Y E(x) =
e
o
Y E(pE)

p2E
=

1

m2 + p2E
(29)

6



by virtue of (28). An explicit form of the four-dimensional Yukawa potential is

Uo
Y E(x) =

g

4�2
m

rE
K1(mrE) (30)

In the ring theory the four-dimensional modi�ed Yukawa potential obeys the equation

2EU
`
Y E(x) = g�`Y E(x) (31)

where

�`Y E(x) =
m

4�2
fm

2

rE
K1(mrE)�

r
2m

�

`Z
0

d��

[� 4m

(r2 + �2)5=4
K5=2(m

q
r2E + �2) +

m2r2E
[r2E + �2]7=4

K7=2(m
q
r2E + �2)]g (32)

satisfying the condition Z
d4x�`Y E(x) = 1

In order to calculate the Fourier transform of (32) we use the following integrals:

I1 =

1Z
0

d��K1(m�)J1(pE�) =
pE
m

1

m2 + p2E

I2 =

1Z
0

d�
�2

(�2 + �2)5=4
K5=2(m

p
�2 + �2)J1(�pE) =

=

r
�

2

pE
�
m�5=2 exp

�
��
q
m2 + p2E

�

I3 =

1Z
0

d�
�4

[�2 + �2]7=4
K7=2(m

p
�2 + �2)J1(�pE) =

= 4pEm
�7=2

r
�

2

1

�
e��

p
m2+p2

E � p3Em
�7=2

r
�

2
(m2 + p2E)

�1=2�

�e��
p
m2+p2

E (33)

As usual, the solution of (31) can be represented in the integral form

U `
Y E(x) =

g

4�2

Z
d4y


`
Y E(x� y)

y2
(34)

Making use of (33) one gets

eD`
Y E(pE) =

1

g

Z
d4xe�ipExU `

Y E(x) =
e
`
Y E(pE)

p2E
=
e�`
p
m2+p2

E

m2 + p2E
(35)

as should be. Here


`
Y E(x� y) = �(4)(x� y)� �`Y E(x� y)

7



and e
`
Y E(pE) = 1�

�
1� p2E

m2 + p2E
e�`
p
m2+p2

E

�
in accordance with formulas (32) and (33). In the ring theory, an explicit form of the potential

U `
Y E(x) in (31) and (34) is given by

U `
Y E(x) =

gm

4�2rE

8<:K1(mrE)�
r

2

�
mrE

`Z
0

d�
K3=2(m

q
r2E + �2)

(r2E + �2)3=4

9=; (36)

It should be noted that if we use an another integral representation

�mE (x) =
1

4�2
1

rE

1Z
0

d�
�4

�2 +m2
e�`
p
m2+�2J1(�rE)

for the density of the "charge" g. Then equation (31) leads to the form

2EU
`
Y E(x) = �g�mE (x) (37)

with the solution given by the integral equation:

U `
Y E(x) =

g

4�2

Z
d4y

�mE (x� y)
y2

(38)

Here the Fourier transform of �mE (x) de�nes as

e�mE (p) = 1

4�2

1Z
0

d� � �4
�2 +m2

e�`
p
m2+�2 4�

2

pE

1Z
0

d� � � � J1(pE�)�

�J1(��) = p2E
p2E +m2

e�`
p
m2+p2

E (39)

where we have used the well-known relation

1Z
0

d� � �J1(pE�)J1(��) = 1

pE
�(�� pE) (40)

In this case, we get again: eD`
Y E(pE) =

e�mE (pE)
p2E

(41)

in virtue of (38). Below, we are interested in a speci�c density �`SE(x) which will be used to

construct spread-out �elds of massive particles. Let us consider the following formal equation

2EU
`
SE(x) = ��`SE(x) (42)

where

�`SE(x) =
1

4�2rE

1Z
0

d� � �2J1(�rE)exp
�
� `
2

p
m2 + �2

�
=

8



=
`

8�2

r
2

�
m5=2

K5=2

�
m
q
r2E + 1

4`
2
�

�
r2E + 1

4`
2
�5=4 (43)

The Fourier transform of (43) is given by

g�`SE(p) = Z d4xe�ipExE�`SE(x) =

=
`

2pE

r
2

m
m5=2

1Z
0

d�
�2�

�2 + 1
4`

2
�5=4K5=2

 
m

r
�2 +

1

4
`2

!
J1(pE�) =

= exp

�
� `
2

q
m2 + p2E

�
(44)

The integral representation for U `
SE(x) in (42) reads

U `
SE(x) =

1

4�2rE

1Z
0

d�J1(�rE)e
�
`

2

p
m2+�2 (45)

which is not a real potential �eld because ofZ
d4x�`SE(x) = e�

1

2
m` (46)

In this speci�c case the limitm! 0 reproduces the electromagnetic ring charge theory while the

limit ` ! 0 (m ! 0) corresponds to the local electromagnetic interaction of the point charge.

For the latter case, the four-dimensional Euclidean extension of the theory does not work, sinceZ
d4x�oSE(x;m = 0) =1

5 Does a Mediun Range Interaction Exist?

Above, we have expounded the long-range electromagnetic and the short-range Yukawa inter-

actions from a point of view of the potential theory. In this connection the following question

arises. Does a medium-range interaction between these two kinds of interactions exist in na-

ture? Roughly speaking, a potential of such a type interaction, if it exists, should behave as

1=r�, 1 < � <1 at the limit r !1. It is an interesting fact that Fourier transforms of these

singular potentials exist for two cases � = 2 and � = 1 only. The latter corresponds to the

electromagnetic potential for which there exists force transmitting quanta, i.e., photon and its

propagator is just the Fourier transform of the Coulomb potential in the static limit. The case

� = 2 leads to the potential of the dipole

Ud(r) =
1

4�"o

� cos �

r2
(47)

satisfying an inhomogeneous Poisson equation

(4� 2

r2
)Ud(r) = 0 (48)

9



In expression (47) � = ed ( d is a length of the dipole) is the electric dipole moment, r is a

distance from the midpoint of a dipole, this line makes an angle � with the dipole axis. Below

we will assume "o = 1. The inverse Fourier transform for (47)

Dd(p
2) =

1

e cos �

Z
d3re�iprUd(r) =

Lp
p2
; (L = �d=2) (49)

de�nes a propagator of a particle in the static limit, which may be absorbed or emitted by the

dipole and its properties are clear from further consideration. As before for the cases of point

and ring charges the direct Fourier transform reads

Ud(r) =
e cos �

(2�)3

Z
d3peiprDd(p

2) (50)

From equation (49) we can see that the dipole is some kind of ring, i.e., the rigid one. It is more

clear from the following exact de�nition

U st
d (r) =

1

4�

ed cos �

r2 + `2
(51)

Here ` is a parameter dimension of length (` = d=2) characterizing nonlocality of the dipole. If

we want to see a stochastic unoriented dipole then we assume that � is a random quantity with

some distribution W (�)
���

2 � � � �
2

�
satisfying conditions (Namsrai, 1997):

�=2Z
��=2

d�W (�) = 1;

�=2Z
��=2

d� � �W (�) = 0;

�=2Z
��=2

d� � �2W (�) = const (52)

The choice (Namsrai, 1997) W (�) = 1
2 cos � leads to the averaged dipole potential

U `
d(r) =< U st

d (r) >�=
ed

16

1

r2 + `2
(53)

This de�nition is more acceptable from a physical point of view. In this case an inhomogeneous

Poisson equation is given by

4U `
d(r) = e�`d(r) (54)

with the solution

U `
d(r) =

e

4�

Z
d3r0

�`d(r� r0)
jr0j (55)

Here

�`d(r) =
d

16

�
6

(r2 + `2)2
� 8r2

(r2 + `2)3

�
satisfying the condition Z

d3r�`d(r) = 0 (56)

as should be for the dipole consisting from opposite electric charges. A nonlocal propagator for

a "spread-out particle" (like nonlocal photon �eld) which may be absorbed or emitted by the

nonlocal dipole-string acquires the form

eD`
d(p

2) =
1

e�=4

Z
d3re�iprU `

d(r) =
Lp
p2
e�`
p
p2 (57)

10



or its analytic continuation expression in four-dimensional Minkowski space is

eD`
d(p

2) =
Lp
�p2 e

�`
p
�p2 ; p2 = p20 � p2 (58)

This formula is very important for us. As we expected, the factor exp[�`
p
�p2] corresponding

to the string property of a particle also appears in this case. It means that our approach has

a universal character for the di�erent potential theories. What kind of a particle does exist if

its propagator is de�ned by formulas (49) and (57) or (58) for the local and nonlocal theories,

respectively? From the Minkowski extension of (49) one gets

eDd(p
2) =

Lp
�p2

=
L

i

1pbp � bp =
L

i

bp
p2

(59)

or analogously (58) yields eD`
d(p

2) =
L

i

bp
p2
e�`
p
�p2 (60)

Here bp = 
ipi, 
i are the Dirac 
-matrices. From de�nitions (59) and (60) we can easily see that

these formulas correspond to the propagators of the massless fermion particles like neutrino. Do

the dipoles emit or absorb neutrino-like particles? This question is now open. Here the dipole

may be rotated with very high speeds. If such particles are detected then we would like to call

these ones nonlocal photons or photinos - the fermion partners of the gauge bosons (photons)

in the supersymmetric theory (Bailin and Love, 1994).

It should be noted that for the dipole-string case, the four-dimensional Euclidean extension of

our formalism is the same as before. For this purpose, let us write down an another representation

for the propagator (57):

eD`
d(p

2) =
1

(e�=4)

Z
d3re�iprU `

d(r) =
4

�
e�`d(p)

" g1
4�

1

r

#
(p) (61)

which follows from expression (55), where"g1
4�r

#
(p) =

Z
d3re�ipr

1

4�r
=

1

p2

and

e�`d(p) = d

16

4�

p

1Z
0

dx � x � sinpx
�

6

(x2 + `2)2
� 8x2

(x2 + `2)3

�
=

=
�2

8
d � pe�`p; (p =

p
p2) (62)

The Euclidean potential corresponding to the propagator (58) acquires the form

U `
dE(x) =

e�

4

1

(2�)4

Z
d4peipx eD`

dE(p
2) =

e

16�
L

1

(r2E + `2)3=2
(63)

In this case, the Poisson equation (54) is changed as follows

2EU
`
dE(x) = �e�`dE(x) (64)
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where

�`dE(x) =
3L

16�

�
4

(r2E + `2)5=2
� 5r2E

(r2E + `2)7=2

�
(65)

or

�`dE(x) =
L

16�rE

1Z
0

d��3e�`�J1(�rE) (66)

with the condition Z
d4x�`dE(x) = 0 (67)

The solution of equation (64) is given by the integral representation:

U `
dE(x) =

1

4�2

Z
d4y

�`dE(x� y)

y2
(68)

Here a similar relation of (61) holds

eD`
dE(x) =

4

�
g�`dE(p)

"
^1

4�2
1

y2E

#
(p) (69)

Thus, we observe that for the very di�erent potential theories there exist the same mathematical

methods.

Now we brie
y discuss some possibilities of the con�nement of the particle, propagator of

which does not have poles in momentum space (E�mov and Ivanov, 1993). Let us consider a

more singular simple potential

U `
c (r) =

g

�2
L2
c

`

(r2 + `2)2
(70)

with respect to (51). Here g is some coupling constant, L is a parameter characterizing a size of

a system (Lc � 1=m, ` means nonlocality of the theory. The corresponding propagator for (70)

de�nes as eD`
c(p) =

1

g

Z
d3re�iprU `

c (r) = L2
ce
�`
p
p2 (71)

In the case of (70), a modi�ed Poisson equation takes the form

4U `
c (r) = �g�`c(r) (72)

where

�`c(r) = 12
`L2

c

�2
`2 � r2

(r2 + `2)4
(73)

with the remarkable property Z
d3r�`c(r) = 0 (74)

Equalities (74) and (71) tell us that potential (70) corresponds to a dipole-like string consisting

of opposite charges g and this system does not exist in free states but only in bounded or

virtual ones-like quarks, gluons and even Higgs bosons (Namsrai, 1996). For the massive case,

expressions (70) and (71) lead to formulas:

U `
cm(r) =

g

2�2
`
K2(m

p
r2 + `2)

r2 + `2
(75)

12



and eD`
cm(p) =

1

g

Z
d3re�iprU `

cm(r) = m�2e�`
p
m2+p2 (76)

Analogously, equation (72) is changed as

4U `
cm(r) = �g�`cm(r) (77)

Here, the charge density is given by

�`cm(r) =
`

2�2

"
3m

K3(m
p
r2 + `2)

(r2 + `2)3=2
�m2r2

K4(m
p
r2 + `2)

(r2 + `2)2

#
(78)

The direct calculation gives Z
d3r�`cm(r) = 0 (79)

as should be in accordance with the universal rule. As before, one can represent the solution of

(77) in the standard integral form

U `
cm(r) =

g

4�

Z
d3r

�`cm(r� r0)
jr0j (80)

So that there exists another formula for (76). That is

eD`
cm(p) = e�`cm(p)

"
^1

4�

1

jxj

#
(p) (81)

where after some calculations we get

e�`cm(p) = Z d3reipr�`cm(r) =
p2

m2
e�`
p
m2+p2 (82)

Similar relations hold for equation (72). For the given cases, the Euclidean extension is also

trivial.

It should be noted again that the propagators

eD`
c(p

2) = L2
ce
�`
p
�p2 (83)

and eD`
cm(p

2) = m�2e�`
p
m2�p2 ; (p2 = p20 � p2) (84)

describe the behavior of virtual particles in momentum space for the ring theory. From (70)

and (75) we see that for these potentials there does not exist their local conterparts in the limit

`! 0 and therefore they are only responsible for pure nonlocal e�ects. Indeed the limit ` ! 0

reduces a size of the system to the point where opposite charges are annihilated mutually and

as a result the given system disappears from our consideration.

13



6 The Construction of Spread-out Fields in the Nonlocal Yukawa

and the Dipole Interactions

Now let us study spread-out or nonlocal �elds propagators of which are given by formulas

(3) and (60) in momentum space. In accordance with the E�mov nonlocal theory (E�mov, 1977

and Namsrai, 1986) we construct nonlocal �elds by using the nonlocal distributions

N `
Y (x) = N `

Y (`
2
2)�(4)(x) (85)

N `
d(x) = N `

d(`
2
2)�(4)(x) (86)

for the Yukawa and dipole interactions, respectively. Here

N `
Y (`

2
2) = exp

�
�1

2

p
m2 �2`

�
(87)

N `
d(`

2
2) = exp

�
�1

2

p�2`
�

(88)

It is easy to see that the Fourier transforms of generalized functions (85) and (86) can be written

in the forms eN `
Y (k

2`2) =

Z
d4xeikxN `

Y (x) = exp

�
�1

2

p
m2 � k2`

�
(89)

eN `
d(k

2`2) =

Z
d4xeikxN `

d(x) = exp

�
�1

2

p
�k2`2

�
(90)

In the Euclidean metric the Fourier transforms of the generalized functions N `
d(x) and N

`
Y (x)

in (86) and (85) coincide with the Fourier transforms of the formal Euclidean extensions of the

charge density �oE(x;
`
2) in (20) and �`SE(x; ) in (43), respectively. It is obvious that functions

(20) [or (86)] and (43) [or(85)] satisfy �-function properties at the limit `! 0, i.e.,

lim
`!0

N `
i (x) = �(4)(x)

lim
`!0

Z
d4xf(x)N `

i (x) = f(0); (i = Y; d) (91)

Here

N `
Y (x) =

`

8�2

r
2

�
m5=2

K5=2

�
m
q

1
4`

2 � x2
�

�
1
4`

2 � x2
�5=4 (92)

and

N `
d(x) =

3`

8�2

�
1

4
`2 � x2

�
�5=2

;
�
x2 = x20 � x2

�
(93)

Thus, we arrive at the square-root Klein-Gordon type,
p
m2 �2, di�erential operators for the

string model of the Yukawa and dipole interactions. Let us construct the spread-out Yukawa

and the nonlocal photon (arising from the dipole interaction) �elds by using these operators:

�`Y (x) =

Z
d4yN `

Y (x� y)�0Y (y) (94)
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and

P `(x) =

Z
d4yN `

d(x� y)P o(y) (95)

where �oY (x) and P
o(x) are the local Yukawa and the local neutrino-like nonlocal photon �elds,

respectively. The usual propagators of these �elds are de�ned as

4o
Y (x� y) =< 0jT f�oY (x)�oY (y)g j0 >=

=
1

(2�)4i

Z
d4pe�ip(x�y)

m2 � p2 � i"
(96)

4o
pt(x� y) =< 0jT

n
P `(x)P

`
(y)
o
j0 >=

=
1

(2�)4i

Z
d4pbp � e�ip(x�y)
�p2 � i"

(97)

where 4o
pt(x) means the local propagator of the neutrino-like �eld. Making use of formulas (96)

and (97) one gets

D`
Y (x� y) =

z }| {
�`Y (x)�

`
Y (y) =

Z
d4y1

Z
d4y2N

`
Y (x� y1)�

N `
Y (y � y2) < 0jT f�oY (y1)�oY (y2)g j0 >=

=
1

(2�)4i

Z d4k
h eN `

Y (k
2`2)

i2
m2 � k2 � i"

e�ik(x�y) (98)

and

D`
pt(x� y) =

z }| {
P `(x)P `(y) =

Z
d4y1

Z
d4y2N

`
d(x� y1)�

N `
Y (y � y2) < 0jT

h
P `(y1)P

o(y2)
i
j0 >=

=
L

(2�)4

Z
d4k

bk
�k2 � i"

h eN `
d(k

2`2)
i2
e�ik(x�y) (99)

In expressions (98) and (99) the Fourier transforms eN `
Y and eN `

d are given by (89) and (90) in

accordance with the string theory discussed above. Now we turn to discuss the problem of how

to formulate interaction Lagrangians for di�erent �elds in the Yukawa and the dipole theories.

Let us consider a simple scheme where fermions  i(i = e; �; :::; u; d; :::; t) interact with the Higgs

boson �oH(x) through some nonlocal (E�mov, 1977; Namsrai, 1986) or averaged (Reuter and

Wetterich, 1993) interaction of the Yukawa scalar form

LYin(x) =
1

2
�i

Z
d4y1

Z
d4y2N

`
Y (y1)N

`
Y (y2) i(x� y1 � y2)�

� i(x� y1 � y2) [�
o
H(x� y1) + �oH(x� y2)] (100)

or in di�erential form

LYin(x) = �i i(x) i(x)�
`
H(x) (101)
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where �i are some coupling constants. The latter corresponds to the assumption that the Higgs

boson carries nonlocality only:

�0H(x)) �`H(x) =

Z
d4yN `

Y (x� y)�oH(y) = N `
Y (`

2
2)�oH(x) (102)

Here N `
Y (x) = N `

Y (`
2
2)�(4)(x) is the generalized function (85) arising from the nonlocal (string)

theory. For the cases (100) and (102), the propagator of the Higgs boson is given by the formula

(98). For the interaction Lagrangian (101) symbolic scheme of the construction of the �nite

S-matrix in the perturbation theory can be represented in the form

S = lim
�!1

T� exp

�
i

Z
d4xLin(x;�)

�
(103)

where T� means chronological ordering operators plus some regularization procedure leading

to �nite matrix elements in series of the perturbation theory and � is a parameter of the

regularization. The limit �!1 means the removal of the regularization (E�mov, 1977). The

exact form of the interaction Lagrangian for the dipole case will be given elsewhere.

In order to construct the perturbation series for the S-matrix (103) with Lagrangians (101)

by prescription of the usual local theory, it is necessary to change (in the Feynman diagrams)

4o
Y (x�y)) D`

Y (x�y) and 4o
pt(x�y)) D`

ptl(x�y) in virtue of (98) and (99) and to keep the

usual local fermion propagator for the �eld  i in corresponding interaction Lagrangians (101).

Here the following Mellin representations for propogators of Yukawa and nonlocal photon �elds

in momentum space:

eD`
Y (k

2) =
`2

2i

���i1Z
��+i1

d�
v(�)

sin��

�
`2(m2 � k2 � i")

���1
(104)

and

eD`
d(k

2) � eD`
pt(k

2) =
`2

2i

���i1Z
��+i1

d�
v(�)

sin��

�
`2(�k2 � i")

���1 bk (105)

are useful for calculation purposes, where

v(�) =
1

cos ���(1 + 2�)
; �1

2
< � < 0 (106)

In (105) the parameter L = �d=2 is omitted. Finally, it should be noted that calculation of

matrix elements for the S-matrix in the perturbation series for the Yukawa and dipole (string)

theories will be presented elsewhere. De�nition of the square-root di�erential operators and

their actions on �eld functions are given in papers (Smith, 1993, Lammerzahi, 1993 and Nam-

srai, 1997).
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