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Abstract

We compare the “unified approach” for the estimation of upper limits with
an approach based on the Bayes theory, in the special case that no events are
observed. The “unified approach” predicts, in this case, an upper limit that
decreases with the increase in the expected level of background. This seems
absurd. On the other hand, the Bayesian approach leads to a result which is
background independent. An explanation of the Bayesian result is presented,
together with suggested reasons for the paradoxical result of the “unified ap-
proach”.

1. INTRODUCTION

The study of a new phenomenon in science often ends up in anull result. However it might be of great
importance to set upper limits, as this will help our understanding by eliminating some of the theories
proposed.

The determination of upper limits is presently a hotly debated issue in several fields of physics.
Many papers have been devoted to this problem and different solutions have been proposed. In particular
the problem has been discussed in paper [1] (“unified approach”) and, more recently, in papers [2, 3],
based on the Bayes' theory. The use of the “unified approach” (FC) to set upper limits or confidence
intervalsis recommended by the PDG [4]. The“unified” and the Bayesian approaches are very different,
not only in the sense that they lead to different numerical results but more radically in the meaning
they attribute to the quantities involved. These differences lead to intrinsic problemsin any comparison
of their separate results. The purpose of this letter is to try to throw some light on this contentious and
important issue. We shall show that the Bayesian approach isthe correct one. If our argument is accepted
by the scientific community, many debates about upper limits will be clarified.

2. THE BACKGROUND DEPENDENCE PUZZLE

According to the (FC) “unified approach” the upper limit is calculated using a revised version of the
classical Neyman construction for confidence intervals. This approach is usually referred to as the “ uni-
fied approach to the classical statistical analysis’, and it aims to unify the treatment of upper limits and
confidence intervals. On the Bayes side, according to [2, 3], the upper limit may be calculated using
afunction R that is proportional to the likelihood. This function is called the "relative belief updating
ratio” and has already been used to analyse data in papers [5, 6]. The procedure has been extensively
described by G. D’ Agostini in[7].

Comparison between the two approaches is difficult for the general case. But we have noticed a
special case which is easier to discuss. In this case the greater efficacy of one approach compared to
the other one seems clear. This case is when the experiment gave no events, even in the presence of a
background greater than zero.

When there are zero counts, the predictions obtained with the two methods are different and both
are-intuitively- quite disturbing. Our intuition would, in fact, be satisfied by an upper limit that increases
with the background level, and thisis, in general, the case when the observation gives anumber of events
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of the order of the background. However, when zero events are observed, the “unified approach” upper
limit decreasesif the background increases (anoisier experiment puts abetter upper limit than aless noisy
one, which seems absurd) while the Bayesian approach |eads to the predictions that a constant upper limit
will be found (the upper limit does not depend on the noise of the experiment). Various papers8, 9, 10]
have been devoted to the problem of solving some intrinsic difficulties with the " unified” approach:
in particular to solving the problem of ”enhancing the physical significance of frequentist confidence
intervals’[8], or to imposing " stronger classical confidence limits’'[9]. In this latter article the proposed
method " gives limits that do not depend on background in the case of no observed events’ (that is the
Bayesian result !).
In what follows we will give an explanation for the two results.

We remind the reader that the physical quantity for which alimit must be found is the events rate
(i.e. agravitationa wave burst rate) ». Here we will assume stationary working conditions. For a given
hypothesis r, the number of events which can be observed in the observation time 7' is described by a
Poisson process which has an intensity equal to the sum of that due to background and that dueto signal.
In general, the main ingredientsin our problem are that:
e we are practically sure about the expected rate of background events r, = n; /7" but not about the
number of events that will actually be observed (which will depend on the Poissonian statistics).
T isthe observation time;
¢ we have observed a number n,. of events but, obviously, we do not know how many of these events
have to be attributed to background and how many (if any) to true signals.
Under the stated assumptions, the likelihood is

e (r 4 1)

J(ne|r,m) = o , M
We will how concentrate on the solution given by the Bayesian approach.
The “relative belief updating ratio” R is defined as:
f(ne|r,m)
R(rsne,rp, T) = ——"—, 2
rimes s T) = i Tr =0, @

This function is proportional to the likelihood and it allows us to infer the probability that »1°
signalswill be observed for given priors (using the Bayes's theorem).

Under the hypothesisr, > 0 if n. > 0, R becomes

R(rsne,ry, T) = e’ (1 + L) ’ . (3)

Ty

The upper limit, or -more properly- " standard sensitivity bound” [7], can then be calculated using
the R function: it is the value r;, obtained when
R(7ssp; ne;rp; T) = 0.05 4

Weremark that 5% does not represent a probability, but isauseful way to put alimit independently
of the priors.

Eq. 3 when no events are observed, that is, when n.=0, becomes:
R(r)=e"" (5)

Thus putting n. = 0in Eq. 4 wefind ryg = 2.99, independently of the value of the background
ng.
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We will not describe the well known (FC) procedure here, but we would just observe that, accord-
ing to this procedure, for n. = 0 and n;, = 0, the upper limit is 3.09 (numerically amost identical to the
Bayes' one) but it decreases as n;, increases (e.g. for n. = 0 and n, = 15 the upper (FC) limit at 95%
CL is1.47).

In an attempt to understand such different behaviour we will now discuss some particular cases.
Suppose we have n. = 0 and n, # 0. This certainly means that the number of accidentals, whose
average value can be determined with any desired accuracy, has undergone a fluctuation. The larger the
ny, values, the smaller isthe a priori probability that such fluctuations will occur. Thus one could reason
that it islesslikely that anumber ng,, of real signals could have been associated with alarge value of 7y,
since the observation gave n. = 0.

According to the Bayesian approach, instead, one cannot ignore the fact that the observation n. =
0 has aready being made at the time the estimation of the upper limit comes to be calculated. The
Bayesian approach requiresthat, given n. = 0 and n;, # 0, one evaluates the chance that a number n,,
of signals exists. This chance of a possible signal is applied to the observation that has already been
made.

Suppose that we have estimated the average background with a high degree of accuracy, for ex-
ample n;,=10. In the absence of signals, the a priori probability of observing zero events, due just to a
background fluctuation, is given by

fo=f(ne=0[n, =10) =e ™ =4.5-10"" (6)

Now, suppose that we have measured zero events, that is n.=0. In general n. = (ny + ngw). Itis
now nonsense to ask what the probability that n.=0 is, since the experiment has aready been made and
the probability is 1.

We may ask how the a priori probability would be changed if n,, signals were added to the
background. We get

fsn = f(nc = O|nb = 10> ngw) = 67(nb+ngw) (7)

It is obviousthat f,, can only decrease relative to f,,, since we are considering models in which
signal events can only add to noise eventst.

The right answer is guaranteed if the question is well posed. Given all the previous comments,
the most obvious question at this point is: what is that signal n,4,, which would have reduced the
probability f,, by a constant factor, for example 0.05 ?

fsn = fn-0.00 = " . 7w (8)

Using Egs. 6, 7 and 8 the solutionis:

e " =(0.05 9

that is:
Ngw = 2.99 (10)

In a gravitational wave experiment signals may add up to the noise with the same phase, thus increasing the energy of the
combined effect, or with a phase opposite to that of the noise, thus reducing the energy. They can in particular add up also to
noise events, even if we expect this to happen with avery low probability, as we know that the events due to the signal are very
“rare” compared to the events due to the noise.

Anyway, in principle, the presence of this fact will lead to the prediction of asignal rate that increases with the background:
in fact the probability that one background event be cancelled by asignal event increases, as n, increases. Thus, if we, at least
in part, attribute the observation of n.=0 to a cancellation of background events due to the signal the final limit on » should
increase.

In the modelling we usually, as reasonable, consider this effect be negligible. If thisis not the case then it must be properly
modelled in the likelihood.
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Now suppose another situation, n,=20, thus f,, = 2.1 - 10~". Repeating the previous reasoning
we still get the limit 2.99.

The meaning of the Bayesian result is now clear: we do not care about the absolute value of the
apriori probability of getting n. = 0 in the presence of noise aone. The observation of n, = 0 means
that the background gave zero counts by chance. Even if the a priori probability is very small, its value
has no meaning once it has happened. The fact that the single background measurement turned out to
be zero, either due to a zero average background or due to the observation of alow (apriori) probability
event, must not change our prediction concerning possible signals.

For n. = 0 we are certain that the number of events due to the background is zero. Clearly this
particular situation gives more information about the possible signals. In the case n. # 0, instead, it is
not possible to distinguish between background and signal. The mathematical aspect of thisis that the
Poisson formulawhen n. = 0 reduces to the exponential term only, and thusit is possible to separate the
two contributions, of the signal (unknown) and of the noise (known).

We note that the different behaviour of the limit in the unified approach is due to the non-Bayesian
character of the reasoning. In such an approach an event that has already occurred is considered “im-
probable’: given the observation of n. = 0 they still consider that the probability

fsn = f(nc = 0|nb7 ngw) = e—(nb-i-ngw) (ll)

decreases as n;, increases. As a consequence they deduce that to alarger n;, corresponds a smaller upper
limit 7,g,.

Given the previous considerations, we must now admit that our intuition to expect an upper limit
that increases with increasing background, even when n. = 0, was wrong. We should have expected to
predict a constant signal rate, as a conseguence of the observation of zero events, independently of the
background level.

3. CONCLUSION

We have compared the upper limits obtained with the (FC) “unified” and with the Bayesian procedures,
in the case of zero observed events.

We believe that the greater efficacy of the Bayesian approach compared to the (FC) method,
demonstrated for the case n. = 0, is a strong indication that the Bayesian method -natural, simple
and intuitive- is the correct one. Thus we agree with the proposal in[7] that this method should be
adopted by the scientific community for upper limit calculations (see, for example, [11] on upper limits
in gravitational wave experiments).
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Discussion after talk of Pia Astone. Chairman Peter | go-Kemenes.

Don Groom

If you expect 10 background events and observe zero, wouldn’t you conclude simply that some-
thing was broken?

P. Astone

Clearly the numbers| have used in the example are very high, but an event of very low probability
might have occurred. | smply wanted to force you to understand my point, even with a rather extreme
situation. In any case it is very easy to get zero events, when the estimated background is, for example,
two or three, and the meaning of my example is still the same. | work on gravitational wave detection,
and we are now analysing the data of five detectors in coincidence.lt realy will not surprise me if, in
the presence of abackground different from zero, we will measure zero coincidence events, as happened
many timesin the past.

As a genera comment, | want to say that | am assuming here that your estimation of the back-
ground has been well done. It is obvious that we have to control and check the behaviour of our detector
and the procedure to estimate the background!

Alex Read

You said twice something about the expectation of an upper limit that increases with the average
background. Don’t you mean, decreases ?

P. Astone

It depends on the assumed working condition. Assume that the observation n. is roughly equal
to the background n;, (and this is the situation that usually happens), and that n. and n; are both much
higher than the signal. In this case the upper limit increases as /1y, in the Bayesian approach. In this
case we have assumed that n.. increases as the background increases. In contrast, if n. isfixed, and the
background increases, then | agree with you, the upper limit decreases.

A. Read

Yes, in fact the second case was the thing | was thinking about because you concentrated most
of your talk about zero counts and if you had zero counts and after the experiment you increase the
background, the limit improves.

C. Giunti

I don't know if | understood well, but you said, for example, if you measure zero events, you want
that the upper limit in the case of 10 or 20 expected background eventsisthe same. Thisiswhat happens
alsointhe unified approach. If you increase the background the upper limit remains constant, practically.
It goes down only in the beginning. For example, if you measure zero events, the upper limit decreases
from one to two expected background events, but above that it remains practically constant.

P. Astone

Itincreases, even if theincreaseisnot very high. Inthefirst transparency | gave anumerical result.
For example, if the background is 15, the upper limit decreases from 3 to 1.47. Numerically it isreally
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not so important, but | said that | am not interested in comparing the numbers. What is important is not
to get alimit of 3 or 2 aswe are interested in the order of magnitude of things, so from my point of view,
3or 2isthe same. But | tried to understand the meaning of these different behaviours and the reasoning
that lead to the two results. What | found out is that the difference is due to the non-Bayesian character
of the Feldman-Cousins reasoning: they consider still improbable, an event that has aready occurred.
On the contrary, using the Bayesian approach, the absolute value of the a priori noise probability is not
important, but what isimportant is how it is rescaled once you suppose that the signals do exist.

Gunter Zech

I think this likelihood ratio is a rather rational approach, and it is neither Bayesian nor classical,
but once you cut at a certain value this is somehow arbitrary because, | mean, if you have a long tail
or not in the in the likelihood, and cut at 5%, it makes a difference. So all these kinds of approaches
have their problems. In the Poisson case it would be interesting to seeif you get a different limit, if you
integrate the Bayesian way or if you cut at a corresponding value of the likelihood. Isthere adifference?

G. d’Agostini

Perhaps | can comment. First of all, in the cases we are interested in, the likelihood isreally steep
on theright side. Usually that isthe case. As| aways say, if it is not the case, publish the likelihood,
our R and so on (for example the log-likelihood). We have done an exercise to see what happens if you
try to integrate the likelihood in the sense that you assume aflat prior, and the order of magnitude is the
same. We have atable of comparison in our paper. We also give ajustification of thisuniform prior. Itis
the prior that gives the same results - really they are aimost identical results - that you would get from a
prior which reflects the positive attitude of experimentalists, who are not losing time and money, but they
do research because they hope to see something. If you plug in these kinds of priors, you get essentially
the same answer as a uniform prior.
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