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Abstract
We compare the “unified approach” for the estimation of upper limits with
an approach based on the Bayes theory, in the special case that no events are
observed. The “unified approach” predicts, in this case, an upper limit that
decreases with the increase in the expected level of background. This seems
absurd. On the other hand, the Bayesian approach leads to a result which is
background independent. An explanation of the Bayesian result is presented,
together with suggested reasons for the paradoxical result of the “unified ap-
proach” .

1. INTRODUCTION

The study of a new phenomenon in science often ends up in a null result. However it might be of great
importance to set upper limits, as this will help our understanding by eliminating some of the theories
proposed.

The determination of upper limits is presently a hotly debated issue in several fields of physics.
Many papershavebeen devoted to thisproblem and different solutionshavebeen proposed. In particular
the problem has been discussed in paper [1] (“unified approach”) and, more recently, in papers [2, 3],
based on the Bayes’ theory. The use of the “unified approach” (FC) to set upper limits or confidence
intervals is recommended by thePDG [4]. The“unified” and theBayesian approachesarevery different,
not only in the sense that they lead to different numerical results but more radically in the meaning
they attribute to the quantities involved. These differences lead to intrinsic problems in any comparison
of their separate results. The purpose of this letter is to try to throw some light on this contentious and
important issue. Weshall show that theBayesian approach isthecorrect one. If our argument isaccepted
by thescientific community, many debates about upper limits will beclarified.

2. THE BACKGROUND DEPENDENCE PUZZLE

According to the (FC) “unified approach” the upper limit is calculated using a revised version of the
classical Neyman construction for confidence intervals. This approach is usually referred to as the “uni-
fied approach to the classical statistical analysis” , and it aims to unify the treatment of upper limits and
confidence intervals. On the Bayes side, according to [2, 3], the upper limit may be calculated using
a function

�
that is proportional to the likelihood. This function is called the ”relative belief updating

ratio” and has already been used to analyse data in papers [5, 6]. The procedure has been extensively
described by G. D’ Agostini in [7].

Comparison between the two approaches is difficult for the general case. But we have noticed a
special case which is easier to discuss. In this case the greater efficacy of one approach compared to
the other one seems clear. This case is when the experiment gave no events, even in the presence of a
background greater than zero.

When there are zero counts, the predictions obtained with the two methods are different and both
are-intuitively- quitedisturbing. Our intuition would, in fact, besatisfied by an upper limit that increases
with thebackground level, and this is, in general, thecasewhen theobservation givesanumber of events

199

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25279196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

of the order of the background. However, when zero events are observed, the “unified approach” upper
limit decreasesif thebackground increases(anoisier experiment putsabetter upper limit thanalessnoisy
one, which seemsabsurd) whiletheBayesian approach leadsto thepredictionsthat aconstant upper limit
will be found (the upper limit does not depend on the noise of the experiment). Various papers[8, 9, 10]
have been devoted to the problem of solving some intrinsic difficulties with the ”unified” approach:
in particular to solving the problem of ”enhancing the physical significance of frequentist confidence
intervals” [8], or to imposing ”stronger classical confidence limits” [9]. In this latter article the proposed
method ”gives limits that do not depend on background in the case of no observed events” (that is the
Bayesian result !).

In what follows wewill givean explanation for the two results.

We remind the reader that the physical quantity for which a limit must be found is the events rate
(i.e. a gravitational wave burst rate) � . Here we will assume stationary working conditions. For a given
hypothesis � , the number of events which can be observed in the observation time � is described by a
Poisson processwhich hasan intensity equal to thesum of that dueto background and that dueto signal.

In general, themain ingredients in our problem are that:� we are practically sure about the expected rate of background events �����	�
���
� but not about the
number of events that will actually be observed (which will depend on the Poissonian statistics).
� is theobservation time;� wehaveobserved anumber ��� of eventsbut, obviously, wedo not know how many of theseevents
have to beattributed to background and how many (if any) to truesignals.

Under thestated assumptions, the likelihood is

��� ���������������������
 "!�#$!
%'&�( �)� �+*,� � �-�.�0/$1

����2 � (1)

Wewill now concentrateon thesolution given by theBayesian approach.

The “relativebelief updating ratio”
�

is defined as:

� � �43��
���5�����5�.���
�6� � � �7�8�5� � ��6� �
�9�7�:�<;8�5����� � (2)

This function is proportional to the likelihood and it allows us to infer the probability that �-�
signals will beobserved for given priors (using theBayes’s theorem).

Under thehypothesis ���>=?; if � � =<; , � becomes

� � �@35� � �5�������.�9� � �
!�( A * �

� �
/B1DC

(3)

Theupper limit, or -moreproperly- ”standard sensitivity bound” [7], can then becalculated using
the

�
function: it is thevalue ��EFEF� obtained when

� � ��EFEF��3�� � 35����35�.���?; C ;�G (4)

Weremark that 5% doesnot represent aprobability, but isauseful way to put alimit independently
of thepriors.

Eq. 3 when no events areobserved, that is, when �
� =0, becomes:

� � �4��� � �
!5(

(5)

Thus putting � � �H; in Eq. 4 we find ��EFEF�I�HJ CLK8K , independently of the value of the background
��� .
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Wewill not describe thewell known (FC) procedurehere, but wewould just observe that, accord-
ing to this procedure, for �
�M�<; and �
�M�?; , the upper limit is 3.09 (numerically almost identical to the
Bayes’ one) NFOQP it decreases as � � increases (e.g. for � � �R; and � � � A G the upper (FC) limit at 95%
CL is 1.47).

In an attempt to understand such different behaviour we will now discuss some particular cases.
Suppose we have � � �S; and �
�UT�S; . This certainly means that the number of accidentals, whose
average value can be determined with any desired accuracy, has undergone a fluctuation. The larger the
��� values, thesmaller is the VXW���Y
Z[��Y probability that such fluctuationswill occur. Thusonecould reason
that it is less likely that anumber �
\)] of real signalscould havebeen associated with a largevalueof � � ,
since theobservation gave � � �?; .

According to theBayesian approach, instead, onecannot ignore the fact that theobservation �
�M�
; has already being made at the time the estimation of the upper limit comes to be calculated. The
Bayesian approach requires that, given �
�M�?; and �
�+T�<; , one evaluates the ^�_QV`��^ � that a number � \a]
of signals exists. This ^�_QVb�9^ � of a possible signal is applied to the observation that has already been
made.

Suppose that we have estimated the average background with a high degree of accuracy, for ex-
ample �
� =10. In the absence of signals, the a priori probability of observing zero events, due just to a
background fluctuation, is given by

�
/ �

��� ���M�?;Q� ���M� A ;8�9� � � /
% �Uc C G�d A ; �

e
(6)

Now, suppose that we have measured zero events, that is � � =0. In general � � � � �
��*f��\a]�� . It is
now nonsense to ask what the probability that � � =0 is, since the experiment has already been made and
theprobability is 1.

We may ask how the a priori probability would be changed if � \)] signals were added to the
background. Weget � E / �

��� ���M�?;Q� �
�>� A ;8�5� \a] �9� � �
 / %g# /ihFj & (7)

It is obvious that
� E / can only decrease relative to

�
/ , since we are considering models in which

signal events can only add to noiseevents1.

The right answer is guaranteed if the question is well posed. Given all the previous comments,
the most obvious question at this point is: what is that signal � \)] which would have reduced the
probability

�
/ by a constant factor, for example 0.05 ?

� E / �
�
/ d�;

C ;8G+� � � /
% d � � /ihgj (8)

Using Eqs. 6, 7 and 8 thesolution is:

� � /ihFj �?; C ;�G (9)

that is:
��\)]k�?J CLK8K (10)

1In a gravitational wave experiment signals may add up to the noise with the same phase, thus increasing the energy of the
combined effect, or with a phase opposite to that of the noise, thus reducing the energy. They can in particular add up also to
noiseevents, even if weexpect this to happen with avery low probability, asweknow that theeventsdue to thesignal arevery
“ rare” compared to theevents due to thenoise.

Anyway, in principle, the presence of this fact will lead to the prediction of a signal rate that increases with the background:
in fact the probability that one background event be cancelled by a signal event increases, as l % increases. Thus, if we, at least
in part, attribute the observation of l 1 =0 to a cancellation of background events due to the signal the final limit on m should
increase.

In the modelling we usually, as reasonable, consider this effect be negligible. If this is not the case then it must be properly
modelled in the likelihood.
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Now suppose another situation, ��� =20, thus
�
/ �nJ C A d A ; �

o
. Repeating the previous reasoning

westill get the limit 2.99.

The meaning of the Bayesian result is now clear: we do not care about the absolute value of the
a priori probability of getting � � �R; in the presence of noise alone. The observation of � � �R; means
that the background gave zero counts by chance. Even if the a priori probability is very small, its value
has no meaning once it has happened. The fact that the single background measurement turned out to
be zero, either due to a zero average background or due to the observation of a low (a priori) probability
event, must not changeour prediction concerning possiblesignals.

For ���.�n; we are certain that the number of events due to the background is zero. Clearly this
particular situation gives more information about the possible signals. In the case � � T�p; , instead, it is
not possible to distinguish between background and signal. The mathematical aspect of this is that the
Poisson formulawhen � � �?; reduces to theexponential term only, and thus it ispossible to separate the
two contributions, of thesignal (unknown) and of thenoise (known).

Wenotethat thedifferent behaviour of the limit in theunified approach isdueto thenon-Bayesian
character of the reasoning. In such an approach an event that has already occurred is considered “ im-
probable” : given theobservation of � � �?; they still consider that theprobability

� E / �
�6� � � �<;q� �
���5��\)]��9� � �

 / %g# /ihgj & (11)

decreasesas �
� increases. Asaconsequence they deduce that to a larger ��� correspondsasmaller upper
limit �
\)] .

Given the previous considerations, we must now admit that our intuition to expect an upper limit
that increases with increasing background, even when � � �r; , was wrong. We should have expected to
predict a constant signal rate, as a consequence of the observation of zero events, independently of the
background level.

3. CONCLUSION

We have compared the upper limits obtained with the (FC) “unified” and with the Bayesian procedures,
in thecaseof zero observed events.

We believe that the greater efficacy of the Bayesian approach compared to the (FC) method,
demonstrated for the case ���s�t; , is a strong indication that the Bayesian method -natural, simple
and intuitive- is the correct one. Thus we agree with the proposal in[7] that this method should be
adopted by the scientific community for upper limit calculations (see, for example, [11] on upper limits
in gravitational waveexperiments).
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Discussion after talk of Pia Astone. Chairman Peter Igo-Kemenes.

Don Groom

If you expect 10 background events and observe zero, wouldn’t you conclude simply that some-
thing wasbroken?

P. Astone

Clearly thenumbers I haveused in theexamplearevery high, but an event of very low probability
might have occurred. I simply wanted to force you to understand my point, even with a rather extreme
situation. In any case it is very easy to get zero events, when the estimated background is, for example,
two or three, and the meaning of my example is still the same. I work on gravitational wave detection,
and we are now analysing the data of five detectors in coincidence.It really will not surprise me if, in
thepresenceof abackground different from zero, wewill measurezero coincidenceevents, ashappened
many times in thepast.

As a general comment, I want to say that I am assuming here that your estimation of the back-
ground hasbeen well done. It isobvious that wehave to control and check thebehaviour of our detector
and theprocedure to estimate thebackground!

Alex Read

You said twice something about the expectation of an upper limit that increases with the average
background. Don’t you mean, decreases ?

P. Astone

It depends on the assumed working condition. Assume that the observation � � is roughly equal
to the background � � (and this is the situation that usually happens), and that � � and � � are both much
higher than the signal. In this case the upper limit increases as � ��� , in the Bayesian approach. In this
case we have assumed that � � increases as the background increases. In contrast, if � � is fixed, and the
background increases, then I agreewith you, theupper limit decreases.

A. Read

Yes, in fact the second case was the thing I was thinking about because you concentrated most
of your talk about zero counts and if you had zero counts and after the experiment you increase the
background, the limit improves.

C. Giunti

I don’t know if I understood well, but you said, for example, if you measurezero events, you want
that theupper limit in thecaseof 10 or 20 expected background events is thesame. This iswhat happens
also in theunified approach. If you increasethebackground theupper limit remainsconstant, practically.
It goes down only in the beginning. For example, if you measure zero events, the upper limit decreases
from one to two expected background events, but above that it remains practically constant.

P. Astone

It increases, even if theincreaseisnot very high. In thefirst transparency I gaveanumerical result.
For example, if the background is 15, the upper limit decreases from 3 to 1.47. Numerically it is really
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not so important, but I said that I am not interested in comparing the numbers. What is important is not
to get a limit of 3 or 2 asweare interested in theorder of magnitudeof things, so from my point of view,
3 or 2 is the same. But I tried to understand the meaning of these different behaviours and the reasoning
that lead to the two results. What I found out is that the difference is due to the non-Bayesian character
of the Feldman-Cousins reasoning: they consider still improbable, an event that has already occurred.
On the contrary, using the Bayesian approach, the absolute value of the a priori noise probability is not
important, but what is important is how it is rescaled onceyou suppose that thesignals do exist.

Gunter Zech

I think this likelihood ratio is a rather rational approach, and it is neither Bayesian nor classical,
but once you cut at a certain value this is somehow arbitrary because, I mean, if you have a long tail
or not in the in the likelihood, and cut at 5%, it makes a difference. So all these kinds of approaches
have their problems. In the Poisson case it would be interesting to see if you get a different limit, if you
integrate theBayesian way or if you cut at acorresponding valueof the likelihood. Is thereadifference?

G. d’Agostini

Perhaps I can comment. First of all, in thecasesweare interested in, the likelihood is really steep
on the right side. Usually that is the case. As I always say, if it is not the case, publish the likelihood,
our

�
and so on (for example the log-likelihood). We have done an exercise to see what happens if you

try to integrate the likelihood in the sense that you assume a flat prior, and the order of magnitude is the
same. Wehavea tableof comparison in our paper. Wealso givea justification of thisuniform prior. It is
the prior that gives the same results - really they are almost identical results - that you would get from a
prior which reflects thepositiveattitudeof experimentalists, who arenot losing timeand money, but they
do research because they hope to see something. If you plug in these kinds of priors, you get essentially
thesameanswer as auniform prior.
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