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1 Introduction

In a synchrotron ring, kickers have large contribution to the longitudinal coupling impedance [1]. In this
report, we calculate the longitudinal impedance and the impedance by coaxial wire method with very
simplified kicker models, and compare the results with the measurements of the SPS MKE kicker [2].

The first model (Model 1) is discussed in Section 2. This has axially symmetric geometry. Analytical
calculation for this model shows much higher impedance than the measurement at 200 MHz. The
electromagnetic simulation code HFSS [3] is used to check the calculation.

Next model (Model 2) is discussed in Section 3. The reason why Model 1 gives higher impedance at
low frequency may be because there are no metal electrodes in the model. So, we put metal plates both
sides and modified the geometry in order to calculate the impedance analytically. Analytical calculation
of the impedance shows good agreement with the measurement at low frequency (≤ 200 MHz). But at
high frequency (≥ 400 MHz) this model gives higher impedance. Also, the measurement by the coaxial
wire method is simulated with HFSS.

Since the Model 2 gives higher impedance at high frequency (≥ 400 MHz), we modified the side
metal plates and the ferrite block to more realistic geometry (Model 3) to see the effect of them.
The HFSS simulations show that these effects are small for real beam, but the imaginary part of the
impedance by the coaxial wire method becomes larger because of a trapped mode around the outer
metal plate. This topic is shown in Section 4.

From the comparison of Model 2, Model 3 and the measurement, we thought that some by-passing
modes are created in the kicker and they make the real and imaginary parts of the impedance in the
measurement small and large. In the SPS MKE kicker, the electromagnetic field at high frequency can
easily travel between the ferrite block and the vacuum vessel. So, we input almost real structure of the
SPS MKE kicker to the HFSS, and simulated the measurement by the coaxial wire method. The result
agrees with the real measurement well. This is shown in Section 5.

From the longitudinal impedances, the power dissipated into the ferrite kicker is calculated in Section
6. The values are compared with the energy consumption measurement done in the SPS.

2 Model 1

The simplest model of a ferrite kicker, consisting of a cylindrical ferrite shell, is shown in Figure 1. We
assume the length in axial direction is infinite in this report. Ferrite is atb < r < d. There is vacuum

Figure 1: Model 1

inside (r < b). The outside (r > d) is filled with perfect conductor. The beam passes atr = 0.
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2.1 Analytical Calculation

The impedance calculation of this model is a simple extension of that of the resistive wall [4]. The axial
component of the beam current density (jz) of angular frequencyω is described as

jz(r, φ, z) =
I0

2πr
exp(jω(t− z/c))δ(r). (1)

Throughout this report, we assume the beam has the velocity of lightc. Sometimes the exponential term
exp(jω(t− z/c)) will be omitted below.

This current density create a TEM field:

E(S)
r = Z0H

(S)
φ =

Z0I0

2πr
, (2)

whereZ0 = cµ0 = 377 Ω is the characteristic impedance in vacuum.
Also a TM0 mode in the vacuum regionr < b is excited. Since the wave number in the axial direc-

tionk isω/c, the wave number in the radial direction is zero in the vacuum region. So, the corresponding
Bessel functions simply toJ0(krr) → 1, J1(krr) → krr/2. Thus, the field is

Ez = A,

Er = A
jkr

2
,

Z0Hφ = A
jkr

2
. (3)

The field in the ferrite is

Ez = (BH
(2)
0 (krr) + CH

(1)
0 (krr)),

Er =
jk

kr
(BH

(2)
1 (krr) + CH

(1)
1 (krr)),

Z0Hφ =
jkεr

kr
(BH

(2)
1 (krr) + CH

(1)
1 (krr)), (4)

wherekr = k
√

εrµr − 1, H is the Hankel function. The relative permittivityεr is ε′r − jε′′r + σ/(jωε0).
The relative permeabilityµr is µ′r − jµ′′r .

From the boundary condition atr = b andr = d, the following relations are obtained,

A = BH
(2)
0 (krb) + CH

(1)
0 (krb),

Z0I0

2πb
+ A

jkb

2
= (BH

(2)
1 (krb) + CH

(1)
1 (krb))

jkεr

kr
,

BH
(2)
0 (krd) + CH

(1)
0 (krd) = 0. (5)

The impedance per unit lengthZ/L is [5]

Z

L
= −A

I0
=

Z0

2πb

j

H
(1)
0 (krd)H

(2)
1 (krb)−H

(2)
0 (krd)H

(1)
1 (krb)

H
(1)
0 (krd)H

(2)
0 (krb)−H

(2)
0 (krd)H

(1)
0 (krb)

kεr

kr
− kb

2

. (6)

When d → ∞, the Hankel functionH(1)
0 (krd) goes to infinity, and the above equation can be

simplified as,
Z

L
=

Z0

2πb

j

H
(2)
1 (krb)

H
(2)
0 (krb)

kεr

kr
− kb

2

. (7)
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In our case, the wave numberkr can be approximated askr ' √εrµrk ' (1− j)
√

ε′rµ′′r/2k. If we

assume|krb| ≥ 1, the Hankel functions go toH(2)
1 (krb)/H

(2)
0 (krb) ' j. With these assumptions, we

obtain
Z

L
' Z0

2πb

1
kεr

kr
+ jkb

2

' (1− j)
Z0

2πb

√
µ′′r
2ε′r

1

1 + 1−j
2

√
µ′′

r

2ε′
r
kb
' (1− j)

Z0

2πb

√
µ′′r
2ε′r

. (8)

It is interesting to see that this impedance has capacitive component.
Figure 2 shows the relative permeability of 4A4 ferrite [6, 7]. This ferrite is used in the SPS MKE
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Figure 2: Relative permeability of 4A4 ferrite. The solid and dotted lines show the real and imaginary
parts, respectively. Relative permittivity of 4A4 isεr = 12.

kicker. We assume that the permittivity isε′r = 12. There is some ambiguity on the value of the
conductivityσ [1]. For the sake of the simplicity, we assumeσ = 0.

Figure 3 shows the longitudinal impedance per unit length. From the right graph of Figure 3, we can
observe that when the thickness of the ferrite is finite there is a resonance. The resonance condition is
d − b ' λ/(4

√
|εr||µr|). From this, the resonant frequency for our case is 30 MHz, which agrees with

the graph.

2.2 Simulation with HFSS

The method of the simulation is discussed in [8].
The geometry is shown in Figure 4. We chose the variables asb = 20 mm andd = 80 mm. The

length in axial direction is now finite and equal to 1 m. Since HFSS has some option to assign some
currents on planes, we used this to simulate the beam. Current sources of 2 cm length are tiled around
the axis. Phase difference between adjacent currents is 2 cm /λ× 360◦.

Since this geometry has axial symmetry, we used 1/36 model for the simulation. Figure 5 shows the
electromagnetic field at 200 MHz.

In this simulation, we put 1 A current source around the axis. Since the model is 1/36, we anticipated
that the total current is 36 A. But the excited field is much smaller. This may be due to the boundary
condition problem in HFSS. So, we decided to calculate the current on the axis fromHφ. To minimize
the effect ofEz, we observedHφ at small radius. The left graph showsHφ at r = 5 mm. Since the
maximum value ofHφ is 60 A/m, the currentI0 at the axis isI0 ' 2πrHφ = 1.9 A.
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Figure 3: Longitudinal coupling impedance per unit length for Model 1 for infinite (left) and finite
(right) ferrite thickness. The solid and dotted lines show the real and imaginary parts, respectively.

Figure 4: Model 1 geometry used for HFSS: only 1/36 of the structure is simulated.

The right figure showsEz at r = 20 mm. Since in our caseEz is independent of the transverse
coordinate in the vacuum, we can use this value to calculate the impedance. One can seeEz =
9300 6 145◦ V/m. Thus the impedance per unit length isZ/L = −Ez/I0 = (4100 − j2800) Ω/m at
200 MHz. At 200 MHz, the measurement [2] gave Re(ZCW ) = 600 Ω for the SPS MKE kicker. Since
the length of the ferrite isl = 1.658 m, the impedance per length is Re(ZCW/L) = 360 Ω/m. So, the
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Figure 5: Electromagnetic field along a 1 m long ferrite cylinder corresponding to Model 1 at 200 MHz
by HFSS simulation. Solid and dotted lines show the real and imaginary parts, respectively.
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result is about 10 times larger.
Figure 6 shows the result of HFSS simulation.
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Figure 6: Longitudinal impedance per unit length of Model 1 by HFSS. Cross and diamond symbols
show the real and imaginary parts by HFSS simulation. Solid and dotted lines show the real and imagi-
nary parts of the impedances by analytical calculation.

2.3 Coaxial Wire Method

2.3.1 Analytic Calculation

For distributed impedance systems like our ferrite kicker, the following ‘Log’ formula is used in the
coaxial wire measurement [2]:

ZCW = −2Zc log(S21/S21ref ). (9)

In this equation,Zc andS21 are the characteristic impedance and the transmission coefficient, respec-
tively. The transmission coefficientS21 in our case isexp(−γl), whereγ, l are the attenuation constant
and the length of the DUT. The reference transmission coefficientS21ref is exp(−jωl/c). Thus the
‘Log’ formula becomes

ZCW

L
= 2Zc(γ − jω/c). (10)

So, what we have to know to calculateZCW/L are the characteristic impedanceZc and the attenuation
constantγ.

The characteristic impedanceZc is given in [2] as,

Zc =
Z0

2π
log(b/a), (11)

wherea is the wire radius. Though we are not sure whether this formula is correct for this case, we will
use this because there are no alternatives now.

Next we calculate the attenuation constant. The electromagnetic field in the vacuum region (a <
r < b) is

Ez = (AJ0(k1r) + BN0(k1r)) exp(jωt− γz),

Er = (AJ1(k1r) + BN1(k1r))
γ

k1
exp(jωt− γz),

Z0Hφ = j
k

γ
Er, (12)
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whereJ andN are the Bessel function and the Neumann function, respectively. The wave numberk1 is√
k2 + γ2. The electromagnetic field in the ferrite is

Ez = (CJ0(k2r) + DN0(k2r)) exp(jωt− γz),

Er = (CJ1(k2r) + DN1(k2r))
γ

k2
exp(jωt− γz),

Z0Hφ = j
kεr

γ
Er. (13)

The wave numberk2 is
√

k2εrµr + γ2.
From the boundary conditions atr = a, b, d, we obtain

AJ0(k1a) + BN0(k1a) = 0,

AJ0(k1b) + BN0(k1b) = CJ0(k2b) + DN0(k2b),

(AJ1(k1b) + BN1(k1b))/k1 = εr(CJ1(k2b) + DN1(k2b))/k2,

CJ0(k2d) + DN0(k2d) = 0. (14)

The attenuation constantγ can be obtained by solving the above equations forA, B, C, D, andγ.
Figure 7 shows the longitudinal impedance per unit length by the coaxial wire method. It is seen that

when the wire radius is 1 mm,|ZCW/L| is smaller than|Z/L|. In this case, the characteristic impedance
is 180Ω. When the wire radius is10−100 mm, the characteristic impedance becomes 13700Ω. In this
case,ZCW /L approaches toZ/L.

2.3.2 HFSS

The geometry is shown in Figure 8. The axial length of the ferrite is 1 m. We add two waveguides of 5
cm length, 2 cm radius on both sides, in order to have regular TEM modes at both ports. The radius of the
wire is 1 mm. The characteristic impedanceZc of the coaxial waveguide isZ0/(2π) log(20/1) = 180 Ω.

For example at 200 MHz, the scattering parameter isS21 = 0.00010 6 − 329.222◦. Then the
impedance is

Re(ZCW/L) = −2Zc log 0.00010 = 3309 Ω/m,

Im(ZCW/L) = −2Zc(arg S21 + ωl/c) = 408 Ω/m. (15)

Figure 9 shows the simulated versus analytical longitudinal impedance per unit length by the coaxial
wire method.

3 Model 2

Compared with the measurement [2], Model 1 gives much larger impedance at 200 MHz. This may
be because we neglected metal electrode plates at the two sides. In the kicker at lower frequency, the
electromagnetic field should be strongly deformed so that most of the image current go through the
electrode plates. This lowers the impedance at low frequency. So, we added electrodes at both sides in
the Model 2, and we deformed the ferrite block in order to calculate the impedance analytically. The
model is shown in Figure 10. Ferrite is at−a < x < a, b < |y| < d. There is vacuum between two
ferrite rectangular blocks (−a < x < a,−b < y < b). The outside (|x| > a or |y| > d) is filled with
perfect conductor. The beam passes atx = y = 0.
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Figure 7: Longitudinal impedance per unit length for Model 1 with coaxial wire method (analytical
calculation). The solid and dotted lines show the real and imaginary parts, respectively.

Figure 8: Model 1 geometry with coaxial wire used for HFSS.

3.1 Analytical Calculation

For the source field (E(S)
r , H

(S)
φ ), we can use Eq. (2). But this field does not satisfy the new boundary

conditions at|x| = a. Since it is convenient for the field to satisfy the boundary condition at|x| = a,
we add image current densities at(x, y) = (2na, 0), n = 0,±1,±2, · · ·. The modified field becomes

(E(S)
x , E(S)

y ) = (Z0H
(S)
y ,−Z0H

(S)
x ) =

Z0I0

2π

∞∑
n=−∞

(−1)n (x− 2na, y)

(x− 2na)2 + y2

=
Z0I0

2a

(sin(πx/(2a)) cosh(πy/(2a)), cos(πx/(2a)) sinh(πy/(2a)))

cosh(πy/a)− cos(πx/a)
.(16)
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Figure 9: Longitudinal impedance per unit length for Model 1 with coaxial wire method (analytical cal-
culation, HFSS). The solid and dotted lines show the real and imaginary parts by analytical calculation.
Cross and diamond symbols represent the real and imaginary parts by HFSS simulation.

Figure 10: Model 2: cross section for the modified, rectangular geometry. The beam moves alongz (out
of the page).

There are waveguide modes in the vacuum region:

Ez =
∑
n

(An + Bn) cos(kxnx) cosh(kxny),

Ex =
∑
n

jk

kxn

An sin(kxnx) cosh(kxny),

Ey =
∑
n

jk

kxn
Bn cos(kxnx) sinh(kxny),

Z0Hz =
∑
n

(An + Bn) sin(kxnx) sinh(kxny),

Z0Hx = j
∑
n

(
kxn

k
An + (

kxn

k
− k

kxn

)Bn) cos(kxnx) sinh(kxny),

Z0Hy = j
∑
n

((
kxn

k
+

k

kxn
)An +

kxn

k
Bn) sin(kxnx) cosh(kxny), (17)

wherekxn = (2n + 1)π/(2a), n = 0, 1, 2, · · ·.
The field in the upper ferrite block is

Ez =
∑
n

Cn cos(kxnx) sin(kyn(y − d)),
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Ex =
j

εrµr − 1

∑
n

(
kxn

k
Cn + µr

kyn

k
Dn) sin(kxnx) sin(kyn(y − d)),

Ey =
j

εrµr − 1

∑
n

(
−kyn

k
Cn + µr

kxn

k
Dn) cos(kxnx) cos(kyn(y − d)),

Z0Hz =
∑
n

Dn sin(kxnx) cos(kyn(y − d)),

Z0Hx =
j

εrµr − 1

∑
n

(εr
kyn

k
Cn − kxn

k
Dn) cos(kxnx) cos(kyn(y − d)),

Z0Hy =
j

εrµr − 1

∑
n

(εr
kxn

k
Cn +

kyn

k
Dn) sin(kxnx) sin(kyn(y − d)), (18)

wherek2
xn + k2

yn = (εrµr − 1)k2.
From the boundary conditions aty = b, we obtain

(An + Bn) cosh(kxnb) = Cn sin(kyn(b− d)),

E(S)
xn +

jk

kxn
An cosh(kxnb) =

j

εrµr − 1
(
kxn

k
Cn + µr

kyn

k
Dn) sin(kyn(b− d)),

E(S)
yn +

jk

kxn

Bn sinh(kxnb) =
jεr

εrµr − 1
(
−kyn

k
Cn + µr

kxn

k
Dn) cos(kyn(b− d)),

(An + Bn) sinh(kxnb) = Dn cos(kyn(b− d)), (19)

whereE(S)
xn , E(S)

yn are

E(S)
xn =

1

a

∫ a

−a
dxE(S)

x (x, b) sin(kxnx),

E(S)
yn =

1

a

∫ a

−a
dxE(S)

y (x, b) cos(kxnx). (20)

The longitudinal impedance per unit lengthZ/L is

Z

L
= −∑

n

An + Bn

I0

=
j

I0

∞∑
n=0

E(S)
xn sh + E(S)

yn ch

[kxn

k
(1 + εrµr)sh ch + kyn

k
(µrsh2tn− εrch2ct)]/(εrµr − 1)− k

kxn
sh ch

. (21)

wheresh, ch, tn, andct aresinh(kxnb), cosh(kxnb), tan(kyn(b− d)), andcot(kyn(b− d)), respectively.
Equation (20) can be simplified as follows. By differentiatingE(S)

xn with b, we obtain

dE(S)
xn

db
=

1

a

∫ a

−a
dx

∂E(S)
x

∂y
sin(kxnx)

=
1

a

∫ a

−a
dx

∂E(S)
y

∂x
sin(kxnx)

= −kxn
1

a

∫ a

−a
dxE(S)

y cos(kxnx)

= −kxnE(S)
yn . (22)

Similarly we obtain
dE(S)

yn

db
= −kxnE(S)

xn . (23)
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These equations are solved as,

E(S)
xn = A exp(kxnb) + B exp(−kxnb),

E(S)
yn = −A exp(kxnb) + B exp(−kxnb). (24)

Since these values should go to 0 whenb goes to infinity,A should be 0. So, what we have to do is to
find B. This can be done by the integration ofE(S)

y at b = 0.

B = lim
b→0

E(S)
yn

=
Z0I0

2a2
lim
b→0

∫ a

−a
dx

πb/(2a)
1
2
(πb/a)2 + 2 sin2(πx/(2a))

=
Z0I0

2a2
lim
b→0

πb

2a

∫ ∞

−∞
dx

1
1
2
(πb/a)2 + 2(πx/(2a))2

=
Z0I0

2a
. (25)

Thus we obtain

E(S)
xn = E(S)

yn =
Z0I0

2a
exp(−kxnb). (26)

Finally we obtain

Z

L
= j

Z0

2a

∞∑
n=0

1

[kxn

k
(1 + εrµr)sh ch + kyn

k
(µrsh2tn− εrch2ct)]/(εrµr − 1)− k

kxn
sh ch

. (27)

Figure 11 shows the longitudinal impedance per unit length. The impedance of this model at 200
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Figure 11: Longitudinal impedance per unit length for Model 2 (analytic calculation). The solid and
dotted lines show the real and imaginary parts, respectively.

MHz is Z/L = (410 + j1305) Ω/m. This value is consistent with the measurement [8]. But at higher
frequencies, the real part of the impedance is 2–3 times higher than the measurement.

3.2 HFSS

The geometry is shown in Figure 12. Since this geometry is symmetric with respect to thex = 0 and
y = 0 planes, we use 1/4 model to do the simulation. So we need much more volume to simulate Model
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Figure 12: Model 2 geometry used for HFSS.

2 than for the Model 1. Since the number of mesh points should not exceed about 50000 due to the
computer resource problem at CERN, we could not make the mesh size small enough. We used manual
mesh option in HFSS so as to make the mesh size smaller than 10 mm, which is not enough. To reduce
the volume, we reduced the axial length of the model from 1 m to 50 cm.

Figure 13 shows the electromagnetic field at 200MHz. The left figure showsHφ at (x, y) =
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Figure 13: Electromagnetic field at 200 MHz for Model 2 by HFSS simulation. Left figure shows the
transverse magnetic field atr = 5 mm. Solid and dotted lines are the real and imaginary parts ofHx

at (x, y) = (0, 5) mm, respectively. Dashed and long dashed lines are the real and imaginary parts of
Hy at (x, y) = (5, 0) mm, respectively. Right figure shows the axial electric field atr = 16 mm. Solid
and dotted lines are the real and imaginary parts ofEz at (x, y) = (0, 16) mm, respectively. Dashed and
long dashed lines are the real and imaginary parts ofEz at (x, y) = (16, 0) mm, respectively.

(5, 0), (0, 5) mm, from which the current at the axis is estimated. Since the maximum value ofHφ

is 7 A/m, The currentI0 at the axis isI0 ' 2πrHφ = 0.22 A.
The axial component of the electric field at(x, y) = (0, 0) is needed to calculate the impedance. But

around the axis, the field is very noisy because the current sources are on the axis. So, the electric field
at the center should be approximated using the field outside. Since the axial component of the electric
field (Ez) satisfies the two dimensional Laplace equation (4⊥Ez = 0) in the vacuum region, one may
prove the following relation:

Ez(r = 0) =
1

2π

∫ 2π

0
dφEz(r, φ). (28)

We use this to estimateEz on the axis.
The right figure showsEz at (x, y) = (16, 0), (0, 16) mm. We average these two values and obtain

Ez ' 280 6 −106◦ V/m. Thus the impedance per unit length isZ/L = −Ez/I0 = (340+j1200) Ω/m at
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200 MHz by HFSS. This value is smaller than the analytical calculation by factor of 0.85. The difference
between the analytical calculation and the result by HFSS may be due to the large mesh size.

Figure 14 shows the result of the HFSS simulation.
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Figure 14: Longitudinal impedance per unit length of Model 2 by HFSS. Solid and dotted lines show
the real and imaginary part of the impedances by analytical calculation. Cross and diamond symbols
show those by HFSS simulation.

3.3 Coaxial Wire Method with HFSS

The geometry is shown in Figure 15. Input parameters for HFSS simulation are as follows. The axial

Figure 15: Model 2 geometry with wire used for HFSS.

length of the ferrite is 1 m. Two circular waveguides of 20 mm radius, 50 mm length, are added on
both sides. The radius of the wire is 1 mm. The characteristic impedanceZc of the coaxial waveguide
is Z0/(2π) log(20/1) = 180 Ω. In [2], they usedZc = 60 log(1.27D/d) , whereD, d are the vertical
aperture and the diameter of the wire. By using this,Zc = 181 Ω, which is almost the same as our value.

From the scattering parameters, we calculate the impedance. For example at 200 MHz, we got
S21 = 0.43458 6 − 399.225◦. We thus find

Re(ZCW/L) = −2Zc log |S21| = 304 Ω/m,

Im(ZCW/L) = −2Zc(arg S21 + ωl/c) = 892 Ω/m,

where the total lengthl is 1.1 m. Figure 16 shows the longitudinal impedance per unit length by the
coaxial wire method. We may observe that the center wire changes the resonant frequency of this system
from 600 MHz to beyond 800 MHz. By comparing the result with the measurement [2], we can see that
at 200 MHz, the real part of the impedance is 600Ω by the measurement. Since the length of the ferrite
in the MKE kicker isl = 1.658 m, the impedance by our result is 500Ω. So, the real parts agree well.
The imaginary part by the measurement is 2000Ω. Our value is 1500Ω. So, also, the imaginary parts
agree.
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Figure 16: Longitudinal impedance per unit length for Model 2 by coaxial wire method (HFSS). Cross
and diamond symbols represent the real and imaginary parts by coaxial wire method with HFSS. The
solid and dotted lines show the real and imaginary parts of the impedance with beam by analytical
calculation.

At 400 MHz, the real part of the impedance by the measurement is 1800Ω, our result is 1600Ω, so
real parts agree well. But the imaginary part by the measurement is much larger than our result.

From 600 MHz, the real part of the impedance by the measurement is about twice or three times
smaller than our result. The imaginary part by the measurement is much larger than our result.

4 Model 3

The discrepancy between the result of the measurement and of the HFSS simulation of Model 2 may be
due to the following two reasons:

• In reality, the side plates are not like Model 2.

• The ferrite is surrounded by the vacuum vessel. Some amount of electromagnetic field travels the
space between the ferrite and and vacuum vessel. This makes the impedance by the coaxial wire
method small at high frequency.

To check the first point, the following model (Model 3) is studied. The model is shown in Figure 17.

Figure 17: Model 3
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Since the analytic calculation of the impedance is very complicated, we decided to do HFSS simu-
lation only.

4.1 HFSS Simulation

The geometry is shown in Figure 18. Figure 19 shows the result of HFSS simulation. We can see the

Figure 18: Model 3 geometry used for HFSS: 1/2 geometry used.
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Figure 19: Longitudinal impedance per unit length of Model 3. Cross and diamond symbols show the
result by HFSS simulation. Solid and dotted lines show the real and imaginary part of the impedances
by analytical calculation for Model 2.

impedance is almost the same as that of Model 2.

4.2 Coaxial Wire Method with HFSS

The geometry is shown in Figure 20. We added coaxial waveguides of 20 mm radius on both sides, and
calculated the scattering parameters with HFSS. The radius of the wire is 1 mm. Since the geometry is
symmetric with respect to they = 0 plane, we used 1/2 geometry.

From the scattering parameters, we calculate the impedance. For example at 200 MHz, we got
S21 = 0.47126 6 − 397.312◦. Thus we find

Re(ZCW /L) = −2Zc log |S21| = 286 Ω/m,

Im(ZCW /L) = −2Zc(argS21 + ωl/c) = 883 Ω/m,
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Figure 20: Model 3 geometry with wire used for HFSS.

where the total lengthl is 1.1 m. Figure 21 shows the longitudinal impedance per unit length by the
coaxial wire method. At high frequencies, the imaginary part becomes larger than that for the Model 2.
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Figure 21: Longitudinal impedance per unit length for Model 3 by coaxial wire method (HFSS). Cross
and diamond symbols represent the real and imaginary parts by coaxial wire method with HFSS. The
solid and dotted lines show the real and imaginary parts of the impedance with beam by analytical
calculation for Model 2.

This may be due to a trapped mode around the outer metal plate.

5 Model 4

Since Model 2 or Model 3 did not reproduce the measurement by the coaxial wire method, there must
be some other reasons.

Since there are spaces between the ferrite block and the vacuum vessel, electromagnetic field at high
frequency can go through these spaces easily. If the attenuation constantsγ of these waveguides are
very small, the fields go through these waveguides without attenuation and are gathered at the exit of the
kicker. This makes Re(ZCW ) lower. The imaginary part Im(ZCW ) may become larger, because such
waveguides give the inductive impedance. These waveguides make resonances and the behavior of the
impedance as a function of frequency very complicated.
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To see the effect of this, we input an almost realistic geometry to HFSS and simulated the coaxial
wire method. The total length of the ferrite is too long (1.658 m) to do the real beam simulation with
HFSS.

5.1 Coaxial Wire Method with HFSS

The geometry is shown in Figure 22. Figure 23 shows the longitudinal impedance by the coaxial wire

Figure 22: Model 4 geometry with wire used for HFSS.

method.
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Figure 23: Longitudinal impedance for Model 4 by coaxial wire method (HFSS). Cross and diamond
symbols represent the real and imaginary parts by coaxial wire method with HFSS. The solid and dotted
lines show the real and imaginary parts of the impedance with beam by analytical calculation for Model
2.

Since this model has a big volume, the result has large errors.
There is some ambiguity on the determination ofZc. At both ends, the radius of the beamduct is 76

mm. Thus, the characteristic impedanceZc is 260Ω. The result by HFSS is 270Ω. In this figure, we
usedZc = 270 Ω. But in the ferrite regionZc should be 180Ω. So, there is the ambiguity of factor of
1.5.

At 200 MHz, the real part ofZCW is 190Ω, which is much smaller than the measurement. There are
some resonances from 400 MHz. They may reduce the real part of the impedance at higher frequencies.
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Figure 24: Argument ofS21 for Model 4 coaxial wire method by HFSS simulation. The relative perme-
ability is 2.348 - j 18.838 for whole frequency range. Resonances can be seen from 400 MHz.

n Frequency (GHz) |In/I0| Re(Z)(Ω)
Model 1 Model 2

0 0.0 1.0 0 0
1 0.2 0.915 7090 680
2 0.4 0.63 4820 3611
3 0.6 0.41 3842 5664
4 0.8 0.24 3280 4961
5 1.0 0.1 2918 3971

Table 1: Some parameters for power calculation of the SPS MKE kicker.

The resonances can be easily seen in Figure 24. For each frequency, we plot this kind of figure to
determinearg S21. This figure is with the parameters at 600 MHz. We can see that from 350 MHz, there
are some resonances. They change the phase ofS21. Because of the resonances, we cannot determine
the phase at 600 MHz and 800 MHz. Model 4 seems to have smaller Re(ZCW ) beyond 600 MHz than
Model 3. This shows the effect of by-passing electromagnetic field.

Figure 25 shows the electric field ony = 0 plane at 600 MHz.

6 Estimation of the Power

The power dissipated in the kicker can be calculated with the following equation:

P =
∞∑

n=−∞
Re(Z(nω0))|In|2, (29)

whereω0 is the angular frequency of the ring (2π/T0). The n-th fourier componentIn of the currentI0

is < I0 exp(−jnω0t) >.
We apply this formula to the SPS MKE kicker. There was a measurement atI0 = 0.134 A. The

measured power is 60 W [9]. The fourier components of the current and the impedances of Model 1 and
Model 2 are shown in Table 1.
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Figure 25: Electric field on the y = 0 plane at 600 MHz. Waves go from right to left. Waves around the
wire attenuate quickly, and disappears at a certain distance. Some waves are transmitted via the space
between ferrite and vacuum vessel, and joined at the exit of the kicker.

The power is

P = η|I0|2
5∑

n=−5

|In/I0|2Re(Z(nω0)) =

{
78 W, Model 1
29 W, Model 2

(30)

where we multiply by the efficiencyη = 0.25, since the beam is present for 1/4 of the whole cycle. They
agree with the measurement within a factor of two.

7 Conclusion

Both Model 1 and Model 2 give reasonable power dissipation. Model 2 seems to be more realistic. The
coaxial wire method tends to give lower real part of the longitudinal coupling impedance.
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