
The use of ROOM in the design of data-acquisition software components

W. Carena, R. Divià, P. Vande Vyvre and A. Vascotto (for the ALICE collaboration)
CERN, CH 1211 Geneva 23, Switzerland

Abstract
The Event Builder and Distribution System (EBDS) is a

component of the data-acquisition architecture of the ALICE
experiment at CERN. The purpose of the EBDS is to dispatch
the sub-events originated in the detector front-end electronics
to the processors of the Event Filter Farm, where the full
events are assembled.

For the design of the EBDS, we use the Real-time Object-
Oriented Modeling method (ROOM), which was chosen
because of its powerful modeling paradigm, well suited to this
type of application. The use of ROOM is aided by the
ObjecTime Developer tool set, which fully supports the
method and covers all the aspects of the development cycle,
from analysis to code generation. Fast prototyping and
simulation bring a new perspective to the designer, who can
advance by gradual refinements.

We describe how ROOM has been used to design a model
of both the EBDS and its environment, and the results
obtained from the simulation. We also review the experience
acquired with ROOM and the ObjecTime tool, and indicate
what benefits and obstacles we encountered.

I. INTRODUCTION

The ALICE experiment [1] will be performed at the LHC
machine, currently under construction at CERN. The purpose
of the experiment is the study of the quark–gluon plasma
created in high-energy nuclear collisions. The ALICE detector
is specialized in the detection of heavy-ion nucleus–nucleus
interactions.

The ALICE data-acquisition (DAQ) architecture is based
on parallel streams of data, as shown in Figure 1.

L2 Trigger

PDS

GDCGDCGDC GDC

Switch EDM

LDC LDC LDC LDC LDC

Time
Projection
Chamber

Inner
Trackin g
System

Photon
Spectrometer

RORCRORC
RORC

FEDC

FEE

LDC

Particle
Identification

DDL

EBL

L1 Trigger

TDL

Switch

STL

Busy
Clear

FEEFEEFEEFEE

PDS PDS PDS

Muon
Trackin g
Chambers

RORCRORC
RORC

RORCRORC
RORC

RORCRORC
RORC

RORCRORC
RORC

RORCRORC
RORC

FEDC FEDC FEDC FEDC FEDC

FCL

L0 Tri gger

FEE

FEE

FEE

Figure 1: ALICE data-acquisition architecture

The data generated in the detector are transferred through
about a hundred optical links. The data are received in the
Front-End Digital Crates (FEDC) by the Read-Out Receiver
Cards (RORC), which are buffer memories capable of storing
several fragments of events. The Local Data Concentrators
(LDC) in the FEDC are embedded processors that collect the
event fragments and construct the sub-events, which are then
sent over the network to one of the Global Data Collectors
(GDC). The GDCs are processors as well: their role is to put
together all the sub-events, build the full events and send them
to the recording system. The GDC will also have analysis,
filtering and storage functions.

The expected data rates are about 100 Mbyte/sec on each
of the parallel streams, for an aggregate bandwidth of
2.5 Gbyte/sec.

The network linking LDCs and GDCs is based on widely
used standards and off-the-shelf commercial components. We
expect the performance of the Local Area Network
technology available in 2005 (startup of the experiment) to be
adequate to our requirements and affordable.

II. EVENT BUILDING AND DISTRIBUTION SYSTEM

The problem of building events is always present in data-
acquisition systems with parallel streams of data. The sub-
events coming from different machines must be transferred to
a place where the full event can be assembled. In the ALICE
data-acquisition architecture there is not a single object that
can be identified as the event builder [2]. The responsibility
for building the events is rather distributed among several
processors and processes. The LDCs send the sub-events of a
given event to the same GDC. The network links all the
machines together, thus allowing all the GDCs to be accessed
by all the LDCs (see Figure 2).

Local Data Concentrator
(LDC)Global Data Collector

(GDC)

Network

Local Data Concentrator
(LDC)Local Data Concentrator

(LDC)Local Data Concentrator
(LDC)

Event Destination
Manager (EDM)

Figure 2: Interconnections between LDCs, GDCs and EDM

However, as far as the event building is concerned, the
network has only a passive role, which consists of dispatching
the sub-events to their destination. The decision on the
destination is made elsewhere, in the way described below.

A process called Event Destination Manager (EDM)
maintains a list of available GDCs and periodically sends it to
the LDCs. The GDCs inform the EDM of their availability,
according to their load. The LDCs use the list of available
GDCs to establish the event destination. Each GDC list has a
scope of validity referred to a range of event numbers. All the
components of the EBDS process are synchronized through
the event number.

The EBDS as a whole provides the following functions:

x Synchronization of the LDCs on the choice of the
destination GDC.

x Back pressure from the GDCs to the LDCs in case of
GDC congestion.

We are confronted here with a system that has the
following features:

x There are real-time constraints, since it is necessary to
keep up with the data flow.

x It involves inter-process communication and the
establishment of transactions protocols.

x The algorithm used to determine the choice of the
destination contains some heuristic elements.

All these features suggest that it is important to make a
simulation of the system during the design phase.
Furthermore, it would not be easy to adapt a hard-wired
implementation to all the possible parameters and algorithms
that we want to test. We therefore made, in 1997, a study of
several major software design methods [3].

III. THE CHOICE OF ROOM AS DESIGN AND
SIMULATION METHOD

We eventually chose ROOM [4]. The aspects of ROOM
that appeared to us particularly attractive are the following:

x The development process is based on the creation and the
growth of models. The models capture our requirements
and our view of the expected behavior. A fully-grown
model eventually behaves as the target system, and it
therefore becomes the system.

x The operational approach eliminates semantic
discontinuities. There is a single set of modeling
abstractions that are used throughout the development
process, from analysis to design and implementation.

x A tool set exists (ObjecTime Developer [5]), which
supports all the features of the method. In particular it
provides:

x A simulation run-time system that allows even
incomplete models to be executed. This fosters an
incremental and iterative development process and
fast prototyping.

x Code generation in C++.

x A target run-time system where the developed
application can run. The tool provides the visibility
of the target process. Many platforms and operating
systems are supported.

x There were indications of a convergence between ROOM
and the Unified Modeling Language (UML) [6]. The
UML was going to adopt ROOM to extend its formalism
to real-time processes.

IV. THE ROOM PARADIGMS

ROOM is a method specific to the real-time domain,
designed to handle the concepts of timeliness, dynamic
structure of objects, reactiveness, concurrency and
distribution.

The main paradigm used in the ROOM models is that of
active objects, called actors, which communicate among them
by exchanging messages (called signals).

The ROOM developer may use two distinct abstraction
levels in his model, for which two different notations will be
used:

x The schematic level, which uses the ROOM graphic
language.

x The detailed level, in which a traditional programming
language may be used, such as C++.

A ROOM model may be developed and made to grow
along three independent dimensions:

x The structure, which represents the static topological
aspects of the system. It describes the system components
and their relationships in term of communication (ports
and bindings) and containment (actor decomposition).
The representation is made by graphs, as shown in
Figure 3.

Figure 3: Structural view of a model

x The behavior, which represents the dynamic aspects of
the system. It describes how the system changes over
time. The representation is made by finite-state machines,
as shown in Figure 4.

Figure 4: Behavioural view of a model

x The inheritance, which represents the class hierarchy. It
concerns the classes rather than the instantiated objects. It
allows abstraction and re-use of models.

V. THE EBDS ROOM MODEL

A ROOM model of the EBDS has been made using the
ObjecTime tool set. It consists of two distinct parts.

The first part, called the EBDS environment, constitutes
the simulation environment used to test the EDM. It includes
a trigger generator, a number of LDCs and a number of
GDCs. The trigger generator sends triggers to a number of
LDC actors. The LDCs generate events and dispatch them to
the GDCs. The LDCs contain three actors: the event
generator, the event dispatcher and the event sender. The
decision on where to send the event is taken by the dispatcher.

The second part is the EDM itself. It is made of an actor
that keeps track of the status of the GDCs and periodically
updates a status table. The update of the tables demands
synchronization between the EDM and the event dispatchers
in the LDCs.

The model has been built and then exercised in simulation
mode. It has revealed a number of defects in the protocol,
which have been rectified.

Currently, we have split the model, leaving the EDM
separated from the EBDS environment. The environment
continues to run in simulation mode, while the EDM runs in
target mode on a remote machine, as a normal application.
Therefore, we now have a powerful tool that allows us to test
algorithms and system performance.

VI. EXPERIENCE WITH ROOM AND OBJECTIME

We have used the ROOM method with the ObjecTime tool
set for several months, over the last two years, to design and
simulate an application of sizeable dimension.

The whole idea to work on a model from the very
beginning, and to be able to execute the model - even if
partially developed - is extremely attractive, especially in the
field of high-energy physics data-acquisition systems. In a
development environment, where the requirements are often
fuzzy and change occasionally, the possibility to work on
graphical models and to make prototypes at an early stage is
very welcome.

A. Strong points
The ROOM paradigms confirmed that they are extremely

powerful to make models in a well-defined domain of
application, namely the real-time domain. We do not think
that ROOM could be applied to other domains (e.g. physics-
event reconstruction or analysis): this is not the ambition of
the ROOM authors either.

The only slight inconsistency in the language, if any, is the
fact that incoming and outgoing signals belong to different
abstraction levels. While incoming messages are implicitly
processed at the schematic level, when they trigger a state
transition, outgoing signals must be explicitly generated in the
code at the detailed level.

The ObjecTime toolkit is well made. It covers all the
aspects of ROOM and gives access to all the features of the
graphical language. The notation used matches exactly the one
described in the manifesto book [4]. Due to the inherent
complexity of ROOM, the notation is quite complicated and
sometimes difficult to master.

The toolkit is very robust, even though it happened to
crash or hang occasionally.

The toolkit provides a lot of facilities to manage the
models in a collaborative team environment. Parallel
concurrent versions (called updates) may be developed from a
common baseline (called context). Eventually, various updates
may be merged into a new context. Each user owns a
workspace that preserves his own window configuration and
any other settings he/she may have established.

The simulation environment is very powerful. It gives a lot
of visual hints of the course of model execution. It allows
setting of break-points and trace-points, and entering
messages on a logbook. It is possible to inspect variables and
almost all the aspects of the simulated model.

B. Weak points in target mode
The target mode gives the same sort of facilities as the

simulation mode; unfortunately a model that runs happily in
the simulation run-time system (SimulationRTS) is not
guaranteed to run as well in the target run-time system
(TargetRTS). Sometimes the tool crashes when using the
Target Observability capability if the model contains errors
and the application loses contact with the tool.

In order to run on distributed systems, models must be
split by hand. Separated models must be built for each target
processor.

The bindings between actors running on different targets
must be converted into a special kind of communication called
service access/provision point (SAP/SPP). This is normally

dedicated to interconnecting different logical layers of the
model. In other words, the communication between different
target processors is confined to the client/server paradigm.

The implementation of SAP/SPP over TCP/IP sockets is
currently limited to the exchange of textual messages (ASCII-
encoded), which may be highly inefficient for bulk data.

Moreover, there is a number of unfortunate inconsistencies
between the SimulationRTS and the TargetRTS that must be
taken into account, such as the indexing of multiple
instantiated actors, differences in the routines for handling
simulated time and real time, and different time formats.
Some visual hints change when you run in TargetRTS, such
as the messages appearing in the inject port’s Trace window.

C. Other weak points
There are in ObjecTime a number of minor

inconveniences, which do not seem to affect the overall good
impression of the tool set; still, they make life a little more
complicated for the designer. Here are a few of them.

The original human interface is neither instinctive nor user
friendly. The use of buttons and menus in the window
decoration is most unnatural. Things are a bit better since they
have introduced the Microsoft Windows look and feel in
version 5.2 of the tool set.

The tool set provides its own window management within
its main window. Windows are very widely used for any
entity you require to see; therefore, while you work, more
and more windows are stacked on top of one another.
Unfortunately, the concepts of inheritance and containment
are not propagated to the windows; therefore, the user must
manually close windows one by one in order to tidy up a
cluttered screen.

There is no graphical indication of the status of SAPs and
SPPs. Since SAPs and SPPs are necessary in a distributed
environment, substantial features of the model do not appear
in the graph, making it much less self-explanatory.

The remnants of an early proprietary language (RPL)
appear here and there. You are not expected to learn it, but
you cannot ignore it altogether, since some native classes are
defined using the RPL and this will affect the derived class.
When inspecting the variables at run time, the RPL will come
to the surface again.

The run-time error messages are often obscure, in both
working modes.

The built-in statistic tools available are rather poor.

VII. CONCLUSIONS

We have used ROOM and the ObjecTime toolkit for the
development of the Event Builder and Distribution System of
the ALICE experiment. We have found ROOM to be a useful
development method for projects having a strong real-time
connotation. The paradigms adopted by ROOM are very
powerful to succinctly capture the features of the models.
ObjecTime is a complete and robust development tool,
notwithstanding some annoying awkwardness.

 VIII. REFERENCES

[1] ALICE collaboration, Technical Proposal, CERN/LHCC
95-71, 1995.

[2] H. Beker, W. Carena, R. Divià, P. Vande Vyvre, A.
Vascotto, ALICE Event Building and Distribution System
- User Requirements Document, ALICE internal note
INT-96-10, 1996.

[3] M. Macowicz, ALICE Data Acquisition System Control:
Assessment of methods and tools for the development,
ALICE internal note INT-98-02, 1998.

[4] B. Selic, G. Gullekson, P. T. Ward, Real-Time Object-
Oriented Modeling, John Wiley & Sons, 1994.

[5] ObjecTime User Guide, ObjectTime Limited, 340 March
Road, Kanata, Ontario, Canada K2K 2E4.

[6] J. Rambaugh, I. Jacobson, G. Booch, The Unified
Modeling Language Reference Manual, Addison-Wesley,
1999.

