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Abstract

In this paper we describe how lossless customized compression can signif-

icantly reduce the implementation and operational costs of the ALICE DAQ

system.

1. The ALICE DAQ environment

ALICE will study phase transition in collisions of heavy ions at ultra-
relativistic energies at the projected Large Hadron Collider at CERN. It will
produce data volumes of up to 2.5 Gbyte/s 1 with typical trigger rates of 80
Hz and average event sizes of 30 Mbyte.

The parallel architecture shown in Figure 1 distributes this load over a
number of parallel read-out systems, termed Local Data Concentrators. Each
is exposed only to the tra�c of a part of the detector. A number of parallel event
builders process and store the data of all sub-detectors on permanent storage
for later o�-line analysis. However, each event builder sees only a fraction of all
events. While this architecture is completely scalable to almost any data rate,
for cost reasons we will reduce the throughput as much as possible in order to
limit the number of parallel systems and the amount of data to be stored.

The presented methods are not for general use but aimed in particular at
experimental data. As they are adapted to our data they are far superior to
generic algorithms (Hu�man, arithmetic coding, LZW) both in compression
ratio and in speed so as a to keep up with the required throughput. They are
now available as commercial hardware with (de)compression speeds of up to 40
Mbyte/s. Our approach uses these algorithms after transforming the data into
a more \compressible" data space. Here we concentrate on the compressibility-
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Fig. 1. Schematics of DAQ.

enhancing transformations speci�c to physics data.

2. General remarks on compression

A distinction can be made between lossy and lossless compression methods.
Lossy compression is usable where it is permissible to lose quality in trans-
mission and storage while retaining the general content of the data such as in
picture, video and audio transmission or storage (e.g. JPEG, MPEG). Here we
only discuss lossless methods which permit a bit-by-bit reconstruction of the
original data.

Lossless data compression uses the fact that certain data symbols or symbol
strings in the input data are more frequent than others. Variable-length codes
are assigned to the input data: i.e. shorter and longer codes are assigned to
more or less frequent symbols respectively. An intuitive example is the Morse
code which assigns \short" to the frequent letter \e" but \short short short
long long" to the infrequent symbol \:".

The Shannon theorem de�nes the information content of a message in the
following way:

Given a message made up N symbols { out of a set of n di�erent symbols

{ the information content of the message measured in bits is the following:

I = N
P

n

i=1�pilog2(pi)
where pi is the occurrence probability of symbol i.

The de�nition of symbol depends on the application; it might be an ASCII
code, 16- or 32-bit words, words in a text etc.



Two entropy encoders { Hu�man and Arithmetic Coding { compress data
close to their Shannon information content. They are described in 2 and are
available both as hardware and software.

These encoders only consider single symbols and not their order. This article
can be compressed much better when we introduce meta symbols for sequences
such as \the", \compression" and \symbol'.

The Lempel/Ziv/Welch algorithm autonomously searches for frequent sub-
strings and codes them arithmetically. It achieves compression ratios which
are typically higher than 60%. On modern high-end microprocessors the im-
plementation of the popular program gzip achieves a throughput of about 1
Mbyte/s in compression, which is not su�cient for our application.

3. Compression of physics quantities

Let us assume that a charge or any other quantity is measures using an
8-bit digitizer. It is distributed approximately exponentially with a mean value
equal to one tenth of the dynamic range i.e. 26. Each value between [0..255] is
considered a symbol. Applying the above formula to this distribution a mean
information content of 6.11 bits per measured value is obtained. This is almost
25% less than the 8 bits required for saving the data as a sequence of 8-bit
bytes. If the dynamic range is increased by a factor of four using a ten-bit
ADC, it turns out that the mean information content is virtually the same
and hence the possible compression gain even higher (39%). The reason for
this is that an exponential distribution delivers a value which is more than ten
times its mean only every e10 = 22026 samples. Even quite long codes for such
measurements have no appreciable inuence on the compression rates. Given
that in a realistic architecture 10 bits have to be expanded to 16, the gain is
62%.

3.1. Data-speci�c compression

The general-purpose algorithms proceed in the following three steps:

1. They create the statistics for symbols and symbol sequences.

2. They create an optimal (or at least good) symbol to code table.

3. They encode the data according to this table.

Steps 1 and 2 are the most time consuming. In experimental data the statistical
properties of the data are known a priori. This allows step 3 to be performed
immediately with precalculated symbol{code tables.

General algorithms have another basic disadvantage in our application.
They make no assumption regarding the structure of their input data. They
perform processor-intensive searches for features such as symbol sequences
which might not be present at all. They do not know what to consider as
a symbol (1-bit, byte, word, long word etc) and usually assume bytes. In our
case data will often be 10- or 12-bit quantities.

It is often possible to transform the data bijectively into a space where they



are less evenly distributed and hence compress much better.

3.2. Compression of zero-suppressed data

3.2.1. E�ect of zero suppression on data compression

The ALICE detector will contain about 109 sensitive elements. If they were
to be recorded for each event, this would result in an enormous data volume.

Therefore the analogue front end electronics and connected read-out buses
record only data above a certain threshold. Instead of retrieving all data values
in a stream, alternating sequences of addresses and measurements are presented
to the read-out bus systems. This method is not lossless, but detector design-
ers know the minimum signal which can be distinguished from the inherent
detector noise. Only a minor fraction of all connected channels in a given event
surpass this threshold. This results in an enormous reduction factor without in-
troducing dead time, as the suppression algorithm can be executed in hardware
and in parallel over all detector channels.

However, the resulting output shows much less, if any, statistical correlation,
particularly in the address part. If present, the correlation is hard to detect
by standard algorithms as data and addresses are packed into compound data
words. The limit in general does not coincide with a byte boundary. Therefore,
generic compression algorithms perform poorly on zero-suppressed data.

In calibration events in which many or all data channels are to be recorded,
the amount of data can actually increase as the addresses are added to the
data. Compression will not reduce the highly-redundant address part in these
events.

3.2.2. Enhancement of the channel-address compressibility

The measurement values are separated from the added address. Measure-
ment values follow their own statistical distributions; this can be exploited by
assigning them variable length codes.

The ALICE pixel detector, for example, produces only addresses and no
measurement values. The front-end electronics outputs a list of pixel numbers.
16-bit addresses are required for the 65.536 channels of each detector unit. The
binary data value is implicit and zero-suppression lossless; if an address does
not appear in the stream, it means that the associated data value is zero.

There are no major inhomogeneities in the occupancy, i.e. the distribution
of addresses will be quite uniform between 0 and 65.535. Therefore standard
compression methods are of no use.

The addresses are replaced with the address di�erence of a hit pixel with
respect to the previous pixel. This can be accomplished by a very minor change
in the multiplexing hardware.

The original addresses can easily be reconstructed from the new sequence
and the address di�erences will be distributed exponentially with a mean of
50 in the case of a 2% occupancy. The Shannon information content of this
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distribution is 9.3 bits per hit instead of 16, resulting in a 42% data compression.
A residual correlation in the address di�erences due to charge sharing between
neighbouring pixels will actually allow a 50% compression.

3.3. Enhancement of the compressibility of measurement values

The format and amount of data coming from the time projection chamber
(TPC) in ALICE are discussed in 4. At present, we assume that the data from
the TPC will be zero-suppressed. Figure 2 shows how clustered zero suppression
can be performed on the TPC raw data. As the time charge buckets are highly
clustered it is not necessary to apply an address to every word; the following
data structure should su�ce:

charge 1, charge 2, .... ,charge N,address of �rst bucket,# of charge buckets.
next cluster.
We expect about 12.000 tracks in the TPC. Each charged particle traverses

on average 75 circular concentric pad rows. Each of these crossings will involve
4{5 neighbouring pads and about 6{7 consecutive time charge buckets. Two
bytes are needed for the encoding of the cluster start and the cluster length.
At this point we assume a dynamic range of 10 bits and 8-bit logarithmic
encoding. The total amount of data produced after zero suppression will be
about 35 Mbyte/s before compression. This is the dominant contribution to
our sustained bandwidth of up to 2.5 Gbyte/s.

3.3.1. Treatment of analog measurements

The following considerations will be applicable to a wide range of detectors
data:

� Digitization accuracy has to be traded o� against data volume. In most
practical cases the accuracy is chosen so as to be equal to or double the
root mean square of the electronic noise. The introduced digitization noise

only adds 4 or 16% respectively to the intrinsic uctuations.

� On the other hand { as already illustrated in the initial example { dy-
namic range does not inuence the information content signi�cantly, as
long as the measured quantity is distributed approximately exponentially.
Coding measurement values logarithmically presents no gain after entropy
encoding.
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� Furthermore, compression bene�ts from on-line equalization of the gains
and pedestals of the ampli�cation electronics and digitizers. This narrows
the collective distribution of the measurement values and leads to better
compressibility.

� Finally the digitizer sensitivity can be limited to the plausible spatial
and temporal frequency response of the detector by employing analogue
or digital �lters to the measurements. Besides reducing noise and hence
useless information content, this procedure will be particularly bene�cial
for the waveform modelling method of the TPC and the silicon drift data
illustrated in the following section.

3.3.2. Lossless waveform modelling

The cluster addresses and lengths will be encoded using their own speci�c
code trees. The incremental address-storing approach shown for the pixel de-
tector will further reduce the amount of data from addresses.

Using the assumptions of the initial example which match our TPC data
only 25% data reduction on charge measurements can be achieved through en-
tropy encoding. For higher compression rates a detector-speci�c compressibility-
enhancing transformation is perforemed which also applicable for the silicon
drift chamber data.

As sketched in Fig. 3, instead of saving only cluster address, length and
the time buckets, the mean bucket contents will be added to the cluster data.
The time charge buckets are replaced by their residuals with respect to a scaled
model function.

Scaling involves integer divisions, but rounding errors are not relevant, as the
residuals also account for the rounding errors. The residuals have a narrower
distribution than the raw measurements and yield better compression more
than compensating for the added cluster average.

The model function is obtained a priori by measuring the mean pulse shape
of uncompressed data which is known to the encoder and decoder and hence
not part of the data stream.

Exact values for the compression ratio will be obtained after evaluation with
real data. In the ideal case, the waveform is modelled perfectly and the residuals
are only due to the inherent detector noise. If the digitization accuracy chosen
is equal to the noise, the number of bits required is 2.15 per residual or 14 for



the whole pulse containing 6{7 samples. After compression, address, cluster
length, and cluster mean require 16 bits. This makes about 4 bytes compared
with the initial 8{9. When choosing half this accuracy, 3 bytes are for encoding
a cluster.

Because of correlation of the noise in the time domain, residuals will form
typical sequences and be encoded more e�ciently by advanced compression
methods.

This method can losslessly reduce the TPC data by 50%.

3.4. Data-compression implementation

Data will be compressed as early as possible and no later than in the front-
end digital crates in order to relax the bandwidth requirements for all following
subsystems, including the automatic o�-line tape-handling facility.

As the various transformation steps in the proposed data-modelling schemes
are very experiment- and detector-speci�c, they will be handled in software or
in reprogrammable hardware. The �nal step of encoding can be handled by
general-purpose chips. They perform a combination of LZW and arithmetic
coding in real time.

4. Conclusions

Customized compression algorithms could allow us to reduce the bandwidth
requirements of the ALICE DAQ system by a factor of about two. This has a
positive impact on the cost of all subsystems which in most cases scales linearly
with the achieved data reduction. Assuming a tape cost in the order of $1 per
Gbyte, this will help to reduce the operational DAQ cost stemmingmainly from
the magnetic tapes by several million dollars a year.
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