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rameterization for reactor antineutrino oscillation exper-
iments, short-baseline accelerator neutrino oscillation ex-
periments, and �� $ �� atmospheric neutrino oscillation
experiments.
In certain cases, however, neutrino-matter interactions

can dramatically change the oscillation probability [4].
These matter e�ects are particularly important in ex-
plaining the solar �e 
ux de�cit in terms of neutrino os-
cillations. In the presence of matter e�ects, Eq. (2) is
modi�ed to

P (�e ! �e) = P1 cos
2 � + (1� P1) sin

2 �

+2
p
P1(1� P1) sin � cos � cos

�
2:54

�m2

E
L + �

�
; (3)

where P1 is the probability of the neutrino exiting the
Sun in the �1 mass eigenstate and � is a phase induced
by the matter e�ects, which is not important for our
purposes. See Ref. [5,6] for more details. Because P1
depends on �m2 cos 2�, the half of the parameter space
traditionally considered 0 � � � �

4
(the light side) is

physically inequivalent to the other half �
4
< � � �

2
(the

dark side). However, all data analysis have been reported
on the (�m2; sin2 2�) plane with positive �m2 only for
solar neutrino experiments and hence only half of the
parameter space has been analyzed. Even though the
dark side has been studied in the context of three-
avor
[7] and four-
avor [8] neutrino oscillations, the impor-
tance of studying both halves for the simplest case of
two-
avor oscillations has been largely ignored in the lit-
erature. There also appeared to be a misconception in
the literature that physics was discontinuous at maximal
mixing � = �

4
. For instance, matter e�ects in the Earth

were once thought to disappear as the mixing approached
maximal. However, the authors of Ref. [9] emphasized
that the matter e�ects remain important even for the
maximal mixing, and the present authors further showed
that physics is completely continuous beyond � = �

4
[6].

One can still retain the dark side with only 0 � � � �
4

if a separate parameter space with �m2 < 0 is added.
This is indeed what Super-Kamiokande did in the case of
�� $ �s oscillations of atmospheric neutrinos [10]. How-
ever, as argued in [6], it is more natural to use 0 � � � �

2

with the �xed sign of �m2 to exhibit the continuity of the
physics between the two halves of the parameter space.
Part of the reason why the dark side has been neglected

in the literature is that it is impossible to obtain �e sur-
vival probabilities less than one half when the two mass
eigenstates are incoherent, i.e., when the last term in
Eq. (3) is absent. (This occurs in the so-called \MSW
region" 10�8 <� �m2 <

� 10�3 eV2 [11].) Indeed, the data
from the Homestake experiment [3] used to be about a
quarter of the SSM prediction, and this could have been
an argument for dropping the dark side entirely in the
MSW region. However, the change from BP95 [12] to
BP98 [13] calculations increased the Homestake result to

about a third of the SSM with a relatively large theoret-
ical uncertainty. Therefore it is quite possible that the
\MSW solutions" extend to the dark side as well. More-
over, some people question the SSM and/or the Homes-
take experiment, and perform �ts by ignoring either (or
both) of them [14]. We show below that some of the
MSW solutions to the solar neutrino puzzle indeed ex-
tend to the dark side and hence it is necessary to explore
the dark side experimentally. If we further relax the the-
oretical prediction on the 8B solar neutrino 
ux and/or
ignore one of the solar neutrino experiments in the global
�t, the preferred regions extend even deeper into the dark
side.
Another possible reason for disregarding the dark side

is that the so-called \vacuum oscillation region" (�m2 <
�

10�9 eV2) was believed to be the same in the light
and dark sides. This is because P1 approaches cos2 �
for �m2 � 10�9 eV2(E=MeV) and Eq. (3) reduces
to Eq. (2). It is remarkable, however, that low-energy
(especially pp) neutrinos do not reach this limit for
�m2 >

� 10�10 eV2 and hence the preferred regions are
di�erent in the light and the dark sides [15]. This ob-
servation also implies that the separation of the MSW
region and the vacuum oscillation region as traditionally
done in the global �ts is arti�cial and misleading. It is
important to study the entire range of �m2 continuously.
If sin2 2� is not a good parameter, what is the alterna-

tive? Two suggestions have been made in the literature.
One is sin2 �, which is natural since the matter e�ect de-
pends directly on sin2 � [6]. If plotted on the linear scale,
pure vacuum oscillations would yield physics re
ection-
symmetric around sin2 � = 0:5. If plotted on the log
scale, the re
ection symmetry is lost, but it is still a useful
parameterization as physics is completely continuous and
smooth from the light to the dark side. Another possible
parameterization is tan2 �, which retains the re
ection
symmetry for pure vacuum oscillation around tan2 � = 1
if plotted on the log scale [7,6]. We employ tan2 � for the
analysis below because we would like to use the log scale
to present the MSW solutions as well as the importance
of the matter e�ect on the \vacuum oscillation" region
at the same time. Note that the Jacobian from sin2 �
or tan2 � to sin2 2� is singular at � = �

4
and plots with

sin2 2� will display unphysical singular behavior there [6].
We next present the results of global �ts to the cur-

rent solar neutrino data from water Cherenkov detectors
(Kamiokande and Super-Kamiokande) [16], a chlorine
target (Homestake) [3] and gallium targets (GALLEX
and SAGE) [17] on the full parameter space. We do not
include the spectral data from Super-Kamiokande [18] as
it appears to be still evolving with time. The �t is to
the event rates measured at these experiments only. In
computing the rates we include not only the pp, 7Be, and
8B neutrinos, but also the 13N, 15O, and pep neutrinos.
We use Eq. (3) with P1 computed in the exponential

2



approximation for the electron number density pro�le
in the Sun, and properly account for neutrino interac-
tions in the Earth during the night with a realistic Earth
electron number density pro�le by numerically solving
Schr�odinger equation as described in [6]. Since the mix-
ing angle at the production point in the Sun's core de-
pends on the electron number density, we integrate over
the production region numerically. We treat the corre-
lations between the theoretical uncertainties at di�erent
experiments following Ref. [7]. To insure a smooth tran-
sition between the MSW and the vacuum oscillation re-
gion, we integrate over the energy spectrum (including
the thermal broadening of the 7Be neutrino \line") for
�m2 � 10�8 eV2 and average the neutrino 
uxes over
the seasons. For �m2 > 10�8 eV2 we treat the two mass
eigenstates as incoherent. Results are completely smooth
at �m2 = 10�8 eV2, as expected. This allows us to �t
the data from �m2 = 10�11{10�3 eV2 all at once, un-
like previous analyses which separate out the \vacuum
oscillation region" from the rest.
As was mentioned earlier, we take the global �t to the

currently available data only as indicative of the ulti-
mate result because we expect much better data to be
collected in the near future to eventually supersede the
current data set. We would like to keep our minds open to
surprises such as the possibility that one of the earlier ex-
periments was not entirely correct or that the theoretical
uncertainty in the 
ux prediction was underestimated.
In this spirit, we employ more conservative attitudes in
the global �t than most of the analyses in the literature
in the following three possible ways. (1) We allow higher
con�dence levels, such as 3 �. (2) We relax the theoret-
ical prediction on the neutrino 
ux. (3) We ignore some
of the experimental data in the �t.
The global �t results are presented in Fig. 1 at the 2 �

(95% CL) and 3 � (99.7% CL) levels de�ned by �2��2
min

for two degrees of freedom. It is noteworthy that both
the LMA and LOW solutions (we use the nomenclature
introduced in [19]) extend to the dark side at the 3 �
level. At 99% CL, however, the LMA solution is con�ned
to the light side. This result is consistent with the two-

avor limit of the three-
avor analysis in [7] and the four-

avor analysis in [8], where the spectral data is included
and the LOW solution extends into the dark side at 99%
CL. Another interesting fact is that the LOW solution
is smoothly connected to the VAC solution, where the
preferred region is clearly asymmetric between the light
and the dark sides. Note that, at �m2 � 10�9 eV2,
the allowed region is bigger in the dark side. The region
10�9 < �m2 < 10�8 eV2 was, to the best of the authors'
knowledge, never studied fully in the literature and this
result demonstrates the need to study the entire �m2

region continuously without the arti�cial separation of
the \MSW region" and \vacuum oscillation region," as
traditionally done in the literature.
We next present a �t where the theoretical prediction
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FIG. 1. A global �t to the solar neutrino event rates at
chlorine, gallium and water Cherenkov experiments. The re-
gions are shown at 2 � (light shade) and 3 � (dark shade)
levels. The region tan2 � > 1 is the dark side � > �

4
.

of the 8B 
ux is relaxed. Even though the helioseismol-
ogy data constraints the sound speed down to about 5%
of the solar radius [13], the core region where 8B neutri-
nos are produced is still not constrained directly. Given
the sensitive dependence of the 8B 
ux calculation on the
core temperature �8B � T 22, we may consider it as a free
parameter in the �t. This can be done within the formal-
ism of Ref. [7] by formally sending the error in CBe to
in�nity. The result is presented in Fig. 2. The preferred
region extends more into the dark side than the previ-
ous �t. Even though the LMA and LOW solutions are
connected in this plot, the lack of a large day-night asym-
metry at Super-Kamiokande would eliminate the range
3 � 10�7 <� �m2 <

� 10�5 eV2 for 0:2 <� tan2 � < 1 [16].
It is important for Super-Kamiokande to report their ex-
clusion region on the dark side.
Finally, we present a �t where the event rate measured

at the Homestake experiment is not used in Fig. 3. This
may be a sensible exercise given that the neutrino capture
e�ciency was never calibrated in this experiment. The
preferred region extends into the dark side even at the
95% CL. Note also the asymmetry between the dark and
the light sides even for �m2 < 10�9 eV2.
We expect the data of the current and next gen-

eration of solar neutrino experiments, such as Super-
Kamiokande, SNO, GNO, Borexino, KamLAND, to
eventually supersede the current data set. Therefore we
regard the above global �ts only as estimates of the ulti-
mate results. The most important point is that all exper-
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