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Abstract

Traditionally product models, and their definitions, have been handled separately from pro-

cess models and their definitions. In industry, each has been managed by database systems

defined for their specific domain, e.g. Product Data Management (PDM) for product defini-

tions and Workflow Management System (WfM) for process definitions. There is little or no

overlap between these two views of systems even though product and process information

interact over the complete life cycle from design to production. The integration of product

and process models in a unified data model provides the means by which information could

be shared across an enterprise throughout the system life cycle.

Existing PDM and WfM systems are based on rigid data models, mostly relational in nature,

which have been designed for a specific phase of the software life cycle. In integrating these

domains, an object oriented approach to data modeling is adopted in this thesis. A model has

been developed that is sufficiently rich in semantics to cater for definitions which span the

product and process domains of PDM and WfM. The model that has been developed is

description-driven in nature in that it captures multiple layers of product and process defini-

tions and it provides flexibility, reusability, schema evolution, complexity handling and ver-

sioning of data elements.

The integrating data model has been implemented in a system using component-based soft-

ware: an object-oriented database, an Object Request Broker, Java user interfaces and C++

programmes. It has been tested in an application in which it is important to handle evolving

definitions, both product- and process-based, over long time scales and in a distributed

system which spans continents. The example studied is that of large-scale scientific detector

construction for the CMS experiment at the European Centre for Particle Physics, CERN,

Geneva. 

In developing a data model that embodied both product and process description, design arti-

facts common to these two domains emerged. These ‘design patterns’ are also inves

in this thesis via the prototype system developed for this study and a discrete set of 

patterns is identified for integrating product and process models.
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This thesis concludes that adopting a description-driven approach to modeling, aligned with

a use of suitable design patterns, can lead to an integration of PDM and WfM models which

is sufficiently flexible to cope with evolving product and process definitions.
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1 Introduction

1.1 Preface

At a time when many companies are embracing Business Process Re-engineering (BPR)

(Georgakopoulos et al., 1995) and are under pressure to reduce ‘time-to-market’ the ongoing

management of product information from creative design through to production has be

increasingly important. Traditionally design engineers have employed Product Data 

agement systems to coordinate and control access to documented versions of 

designs. However, these systems provide control only at the collaborative design lev

are seldom used beyond design. Workflow management systems, on the other ha

employed to coordinate and support the more complex and repeatable work processe

production environment. Most commercial workflow products cannot support the h

dynamic activities found both in the design stages of product development and in r

evolving workflow definitions. The integration of Product Data Management with Workf

Management could provide support for product development from initial CAD/CAM col

orative design through to the support and optimisation of production workflow activ

(Kovacs et al., 1998). This is particularly important in large-scale production manage

systems and in scientific and engineering research environments where system de

likely to evolve over long time scales.

This thesis seeks to establish an infrastructure which enables seamless integration of 

Data Management (PDM) systems with Workflow Management (WfM) systems from

design to the production phases of the traditional system life cycle. Its primary goal is 

implement a system with full PDM and WfM functionality such as will eventually beco

available on the market. Rather this thesis concentrates on identifying a design philosophy

that integrates these two management approaches and on implementing a prototype t

vides core aspects of the two systems in a manner that maximises system flexibility. Building

flexibility and expansibility into the prototype system is the key research issue of the pr

work. An additional objective of this work is to add to the volume of knowledge availabl
Page 13
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the subject of reusable computer system design artifacts, referred to as ‘design patte

object-oriented system development.

1.2 The Research Environment

The research for this thesis was carried out at the European Centre for Particle P

(CERN) during 1996 to 1998 in the computing section of a collaboration which is cons

ing a very large-scale scientific detector entitled the Compact Muon Solenoid (CMS, 1

Historically CERN has developed ad-hoc computing solutions to support the product

its experiments as and when necessary. This has been largely due to the limited s

experiments, to lack of resources and to lack of knowledge of industrial production ma

ment techniques. The next generation of experiments to take place at CERN at the so

Large Hadron Collider (LHC, 1993) facility from 2005 onwards must operate over exte

time scales and will be of such complexity that ad-hoc solutions to production manag

will no longer be sufficient. 

In a scientific environment there is often no clear separation of the design and constr

phases of experiment assembly (see Figure 1-1) and design evolution can often run in

lel to construction rather than being a necessary precursor. Due to the research na

CERN, work on new experiments tends to be very iterative with new designs applied in

tice as soon as possible. This contrasts with traditional industrial production lines wher

product designs are normaly applied when prototyping of the product has been com

Figure 1-1. A typical product development life cycle at CERN

Prototype(s)

Construction

Detector Simulation

Feasibility Study

Mechanical Design

Operation &
Maintenance

Detector Analysis

PDM & CAD Tools

GEANT simulation Tool
input

feedback

 uses data

uses data
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and the production line has been flushed. In industry design is traditionaly decoupled from

production and different systems manage data separately for these two life cycle phases.

The output from the experiment construction process is a single experimental apparatus at a

given point in time i.e. ‘one-of-a-kind’ production process (Hameri, A. and J. Niht

(1998)). This apparatus typically comprises millions of detector elements (such as ele

ics channels, physical devices etc.) each of whose physics characteristics must be m

for the purposes of physics analysis. In addition, over time detector elements will be

duced by multiple suppliers distributed worldwide and the allocation of specific detecto

ments to specific slots in the detector cannot be pre-specified especially since the det

optimised for physics during construction. As the complexity of the experiment de

increases the number of detector slots and candidate detector elements increases

information management system becomes necessary to record the different design c

to control releases of versions of designs, to manage the production, to perform the a

of the construction process and ultimately to record the geometry of the experimental 

tors. Commercial products presently provide limited support for these levels of system

plexity - for example, existing PDM systems used at CERN cannot handle the erro

definition of millions of detector elements at the human level.

As a consequence of the constraints imposed by the development of systems for the

which are investigated later in this thesis, it is necessary for future systems at CERN

based on sound computing solutions and to provide additional facilities, which mu

allowed to evolve over time, to cater for the specific needs of the research environ

Information systems are required to manage the vast quantities of information generate

extended time scales (1999-2005) during the design/construction life cycle of the new 

imental detectors. This thesis seeks to identify appropriate computer science solutions

vide the flexibility needed for LHC experiment construction. 

1.3 The Research Problem

In developing a system to cater for the production needs of CERN-based experiments 

lowing issues must be resolved:

1. What is a suitable and convenient method for describing the CMS detector and to 

extent could Product Data Management (PDM) tools be used?
Page 15
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2. What is a suitable and convenient method for describing the processes that must be car-

ried out on CMS detector elements in design and production and to what extent could 

Workflow Management (WfM) tools be used?

3. How can the relationship between the detector element description and the detector pro-

cess description be best described and what semantics can be associated with that rela-

tionship?

4. How can the representation of this relationship be designed to facilitate integration over 

the complete system life cycle?

5. How can such systems be designed to cater for partial specification and system evolution 

over time thereby allowing design evolution during system implementation?

In trying to answer these research questions this thesis will:

• Show the benefits of the complete integration of PDM and WfM descriptive approa

• Show that any integrated PDM/WfM solution for ‘one-of-a-kind’ systems (such as th

construction of large scale detectors at CERN) should be description-driven in natu

• Show that a reusable, component-based implementation approach is appropriate t

domain.

• Conclude that both PDM and WfM descriptive models share the same design ‘patt

will identify these patterns and will show that these patterns are the basis for integr

the two descriptive approaches.

As a conclusion this thesis will illustrate the extent to which the approach of integrating 

and WfM could be applied in other phases of the product development life cycle an

indicate how technology developed using this approach could be transferred into the

trial domain.

1.4 Structure of the Thesis

Chapter 2 of this thesis reviews current related research in the fields of PDM and WfM

roles of these disciplines are considered and issues concerning their underlying data 
Page 16
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are introduced. Chapter 2 also considers how the standardisation process has influenced

research in the disciplines of PDM and WfM and in particular the work of the Object Man-

agement Group (OMG) is highlighted.

Chapter 3 introduces the concept of so-called ‘description-driven’ systems, systems w

description has been captured in some form of a model (data and/or process models)

layer architectures are considered as input to the research carried out in this thesis 

concept of descriptive ‘meta-objects’ is introduced. This chapter provides the theor

background for the work carried out in later chapters and is based both on existing re

and new concepts introduced by the author. In particular the role of patterns in deve

description-driven systems is introduced in this chapter, existing patterns are studied fo

role in integrating PDM with WfM, these patterns are enriched where required and new

terns are proposed to facilitate the integration.

The following chapters present the research prototype in which integration was st

Chapter 4 describes the environment in which the research ideas expounded in this

were implemented and tested. The CERN environment is briefly described, its desig

straints identified and the design approach used in developing the CRISTAL applic

software is presented in detail. Chapter 5 presents the overall data model developed

CRISTAL application and extends this investigation by presenting a set of enriched d

patterns that have emerged from the CRISTAL data modeling activities. Chapter 6 des

the implementation of the CRISTAL prototypes, the CRISTAL architecture and its und

ing infrastructure and results of the early use of the prototypes. In the final Chapter 7 c

sions are drawn on the outcome of this research and pointers given as to where

research could extend the present work.
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2Current Status of PDM and 
WfM Systems

2.1 Introduction
In product development the management of product design information from design to

implementation is paramount. This is especially true when manufacturers are having to opti-

mise their process engineering so that product development times and ‘time-to-mark

reduced. As the complexity of products increases - and these days composite produ

being manufactured with hundreds of thousands of constituent products - so does the r

ment for the use of computer-based management products. Furthermore, distributed p

tion of products requires that product data and documents be available across loc

wide-area networks and that there is coordinated access to the product data.

Product Data Management (PDM) tools have been used for some time by manufac

companies such as Mercedes-Benz and Ford to manage the data and documents acc

in the design of their products. These systems are normally based on commercially av

PDM systems such as MatrixOne, IBM PM or Sherpa. However, although PDM (Philp

1996) systems provide good support for product documents and data particularly at th

stages of design, their use in supporting the unstructured processes inherent in produc

opment is somewhat limited (Pikosz and Malmqvist, 1996). Also PDM systems provid

facilities for activity definition and no facilities for the enactment of production activitie

Workflow Management systems (WfM) (Georgakopoulos et al., (1995), Hsu (1995)

Schall (1996)), however, allow managers to coordinate and schedule the activities of 

isations to optimise the flow of information or operations between the resources of the o

isation. Commercial workflow management systems and research products are bec

available for the storage of workflow-related information and for the capture of audit 

of workflow operations. These systems seem to be appropriate tools for supporting the

ment of defined workflow operations. Workflow systems are weak at handling the dyn

evolution of process definitions which occurs during the design process and can occu
Page 19
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during the enactment of workflow processes. This chapter outlines current research in PDM

and WfM systems and concludes that they need to be integrated to facilitate the support of

the full product development life cycle in manufacturing from design through to operation.

2.2 Product Data Management

2.2.1 PDM Background

CIMdata (1998) defines Product Data Management as ‘a tool that helps engineers and

manage both data and the product development process’. PDM systems help keep 

volumes of information accumulated at stages in the overall system life cycle. PDMs

grate and manage data and documents for design (e.g. CAD/CAM diagrams, blueprint

applications and information that define the products to be produced by an enterprise. 

ples of products include manufactured products (e.g cars, aeroplanes, computers), p

(civil engineering projects, large assembly projects), facilities (e.g railway system, p

warehouses), assets, plant etc. In other words PDMs help manage the information g

during any product-related process. PDM systems can be used throughout the leve

enterprise e.g at Director, Chief Engineer, Information Technology Manager, CAD/C

manager or engineer and in operations, sales and marketing.

The features of PDM systems include an electronic data vault and document manag

product structure management, project programme management and workflow def

management (Philpotts, 1996). PDMs have been successfully employed to control th

and documents emerging from the creative and collaborative stages of product desig

CAD/CAM) where product structures tend to be hierarchical in nature and when acc

documents needs to be controlled between groups of designers (using e.g. folder m

ment). The advantages of using a PDM are well-documented elsewhere (Pikosz and

qvist, 1997). With a PDM the so-called ‘product breakdown structure’ (PBS, or pro

structure) data is centralised, versioned and can be used for tracking design in an e

ment which supports collaboration. 

2.2.2 PDM Usage

Typically CAD/CAM systems are employed by mechanical engineers to specify the d

of product components. As a consequence of this approach engineers tend to have a 

oriented view of the construction process. Conceptual design is a collaborative activit
Page 20
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designers checking-out and checking-in documents and diagrams of components perhaps

under a policy of configuration management (Feiler, 1991). The database (and data vault)

aspects of a PDM lend themselves well to this creative design process. Product breakdown

(in industry often referred to as ‘Bill Of Materials’ (BOM) see CIMdata, 1998) is alw

strictly hierarchical in form and attributes can be assigned to each product or sub-pr

Objects located in the product hierarchy can go through several stages of developmen

‘state’ can be assigned to a product and can be managed by the PDM.

PDM systems provide a change management service which can be used by engi

applications to assess, control and minimise the impact of material, product and p

changes that occur in complex manufacturing life cycles. A release management s

ensures that data achieves release status only after passing a pre-defined approval 

with user access to released information being based on project, password and oth

defined controls. PDMs comprise a set of integrated applications that improve the effic

of people and processes involved in the design, production and assembly of system pr

On the one hand, the development life cycle of a large high-energy physics detector,

constitutes the research environment for this thesis, is much like any other large-sca

struction activity in that it follows a design-prototype-implement cycle (see Figure 1-

page 14). On the other hand, the nature of experimental physics detector construc

highly dependent on state-of-the-art materials and techniques and therefore it does

from industrial production in that it is highly iterative and consequently dynamic in ex

tion. At the outset of the development a study is carried out (on the basis of some simul

which assesses the feasibility of detector construction. The simulation studies provi

predicted behaviour of the detector materials under operational conditions and ar

dependent on the state of technology at the time of simulation. Similarly the mech

design of the detector is somewhat dictated by the choice of materials as well as physi

siderations. The overall performance of the detector is highly dependent on its desig

therefore any changes in design need to be permeated through from conceptual de

physical construction as quickly as possible. The importance of rapidly reflecting d

changes in production activities is typical of many examples of manufacturing engine

(such as micro-chip manufacture, telecommunications, aircraft manufacturing, comp

where reduction in the time between design and production is critical to reducing pr

development times and ‘times-to-market’.
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A product breakdown structure (PBS) approach to design has been advocated by Bachy &

Hameri (1995) in the design of the CERN-based LHC (LHC, 1993) accelerator. In principle

PDM systems could capture not only product-descriptive data, such as the PBS, but could

also capture process-descriptive data. According to Bachy and Hameri, any PDM system

used for the engineering of large-scale one-of-a-kind facilities should hold the descriptions

of both the PBS and the work breakdown structure (WBS) as well as the assembly break-

down structure (ABS), see upper part of Figure 2-2. The PBS tree saves information pertain-

ing to projects, sub-projects, documents, items etc. The WBS tree holds information about

the organisation of tasks (or activities) to be performed and the resources required for each

task. The ABS tree holds data about how component products (and composite products) are

assembled to form the overall final product. The ABS and WBS define the activities which

enable the engineers to build the production line. 

Current PDM offerings provide adequate support for product-related documents and some

support for product data in applications where the PBS holds up to thousands of items. As

yet no PDM can provide support for a PBS with millions of items, nor can PDMs cater for

data related to distributed production. Furthermore, commercially available PDMs do not

provide adequate support for large scale workflow process definition and execution. This is

largely due to the fact that the data models on which these commercial products are based

are simple tree structures which are insufficiently rich to cater for the integration of very

large numbers of products and processes (Hameri, A. and J. Nihtila (1998)).

2.2.3 PDM Data Models

Traditionally, PDM products have been based on the relational data model and have largely

been based on top of a relational database management system (RDBMS) such as ORACLE

Figure 2-1. The Cadim data model, abridged.
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(Oracle, 1998). One example of this is the Cadim (Cadim, 1998) product which is currently

being used in the CEDAR (Hameri, 1996) project at CERN. Cadim is an industrial engineer-

ing document management system which will be used to handle all types of engineering data

at CERN. In its introduction phase at CERN, Cadim is mainly used to manage projects and

documents. The Cadim data model is based on a rigid hierarchy of data elements against

which data can be stored and tracked - Projects, Items, Documents and Files - and all appli-

cations must fit into this structure (see Figure 2-1). For many small-to-medium scale projects

this is suitable and the hierarchy of actual products can be captured (the familiar BOM). This

hierarchy enables the design of individual product constituents and provides a structure for

ordering and cost tracking. However, as the product becomes more complex in structure,

such as in the construction of large-scale plant, a ‘parts explosion’ (i.e a dramatic increase 

the number of database items) can take place in the PDM and data management with

becomes a problem. As the complexity of the (composite) products increase it be

simply infeasible to enter and manage products individually in a PDM based on a rigid

archy. 

Object-oriented data models for databases (Cattell, 1994) arose as an attempt to ov

the inherent limitations of the relational model for databases. They bridge the gap in s

tics between the user’s perception of a real-world application and the conceptual repre

tion of it. Recently PDM products have begun to appear based on object-oriented

models and on Object Oriented DataBase Management Systems (OODBMS) such as

tivity (Objectivity, 1998), one example being the MatrixOne (Matrix, 1998) product

MatrixOne there is no pre-defined hierarchy of data elements and the developer is 

define appropriate data structures which can cater for complex products and product d

tions. To alleviate the parts explosion problem, it is possible to employ some form of meta-

data management (see Section 3.2 on page 30) where a small number of definitions of prod-

ucts are captured in the model, representing an ‘as-designed’ view of the product, and

tiations of these definitions are used to form the overall product breakdown structure o

built’ view of the product. In this case, the BOM is not explicitly captured in the PDM,

is derived from the instantiation of the meta-data structure. 

As an example consider using a PDM to manage a national electricity distribution net

The network will comprise of units (transformers, power lines, pylons etc.) repeated 

times over the network. Each unit can be simply described and these descriptions cate
Page 23



Current Status of PDM and WfM Systems

e com-

efined

ipants,

system

ssing

uired

 busi-

anage-

 in the

 et al.

 many

 et al.

 process

uling.

ork-

tion

 can
in a PDM. However to cater for the complete national network of units requires the storage

of many hundreds of thousands of individual pylons, power lines and transformers i.e. a parts

explosion. In other words capturing data about the type of unit rather than each individual

unit could dramatically reduce the data management of the distribution network provided

that a BOM is still derivable. This meta-data approach to designing the PDM data model is

one of the main issues investigated later in this thesis.

2.3 Workflow Management

2.3.1 WfM Background

Whereas PDM systems assist in the tracking of product related data through the enterprise

system life cycle, WfM systems track the execution and state of enterprise activities or pro-

cesses. Hales and Lavery (1991) define workflow management software as ‘a proactiv

puter system which manages the flow of work among participants, according to a d

procedure consisting of a number of tasks. It co-ordinates user and system partic

together with the appropriate data resources, which may be accessible directly by the 

or off-line, to achieve defined objectives by set deadlines. The coordination involves pa

tasks from participant to participant in correct sequence, ensuring that all fulfil their req

contributions, taking default action when necessary’.

The origins of workflow management lie in studies of enterprise process modeling and

ness process re-engineering, office automation (e.g billing systems) and database m

ment and software process management. Workflow management is being applied

applications of Computer Supported Cooperative Work (CSCW) and Groupware (Ellis

1991), in Cooperative Information Systems (Papazoglou and Schlageter, 1998) and in

research prototypes (Jablonski and Bussler (1996), Wodtke et al., (1996), Mohan

(1995) and Sheth et al. (1996)). It has been applied to such diverse areas as software

modeling, mortgage request handling, manufacturing control and health care sched

Workflow management is still being researched, particularly in the fields of modeling, w

flow transaction handling (Alonso et al., (1996)), work coordination and collabora

(Sheth and Kochut (1997)) and in the field of so-called ad-hoc workflow management where

workflow process definitions can be defined ‘on-the-fly’ and where these definitions

evolve over time. 
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One further area that has received attention in the recent past is that of handling dynamic

change within workflow systems (Ellis and Rozenberg, 1995). This is of particular relevance

to the work carried out in this thesis since it is important, in the present study, for workflow

execution to continue while the workflow definitions dynamically change. In other words,

products can follow different versions of a workflow composition and the release of the

workflow version must be possible while products are in the middle of a sequence of work-

flow activities.

2.3.2 Scientific Workflow Management

Up to now, there have been relatively few examples of the application of workflow manage-

ment outside the business domain. Workflow management allows the combination of a data-

oriented view on applications, which is the traditional one for information systems, with a

process-oriented one in which activities and their occurrences over time are modeled and

supported properly. Since workflow management combines influences from a variety of dis-

ciplines, including cooperative information systems, computer-supported cooperative work,

groupware systems, or active databases, it has recently attracted the attention of non-business

application domains. Two of these, the domain of scientific applications (in particular in the

natural sciences) and that of engineering applications, seem particularly appropriate for the

exploitation of workflow technology, since they involve processes in which humans and

machines interact in considerable numbers, and could benefit from automation in the execu-

tion of such processes (Weske, Vossen and Medeiros, 1996). 

Scientific work is largely concerned with collecting, gathering and analysing large amounts

of heterogeneous data. Merging data from various sources, performing analyses and carrying

out sequences of tests are among the activities that could be tracked in a WfM system. What

such applications have in common is the fact that the processes to be executed are frequently

(sequences of) events with outcomes which can evolve as the experiment advances, so that

the structure of the entire process is difficult to determine in advance. Nevertheless, model-

ing, execution control, and documentation (for the purpose of reuse) are highly relevant

(Wainer, J. et al., 1996).

In scientific applications, workflow execution requirements require features like:

• flexibility in structuring and modeling (versioned, open-ended, sometimes ad-hoc w

flow definition, allowing decision-making whilst a workflow is being executed);
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• workflows with a complex (or nested) inner structure of individual steps (such that m

level modeling becomes appropriate);

• workflows with a complex data structure of individual steps (e.g. the ‘outcome’ of a 

is complex data);

• distribution of workflow execution;

• the treatment of failures, which can be more complex than dealing with ordinary ca

like reliability and recoverability with respect to data and state;

• complete audit-trail of workflow execution;

• support for long-running activities with or without user interaction;

• application-dependent correctness criteria for executions of individual and concurre

workflows;

• integration with other systems (e.g., file managers, DBMSs, Product Data Manage

tools for analysis of data)

The design of scientific WfM systems therefore requires flexibility in the model used for

inition and execution. WfM systems, like PDM systems, are based on a repository a

applications software which is driven by information stored in the repository. PDM sys

hold information on product data whereas WfM systems gather information on the exe

of processes or activities. It is the basic tenet of this thesis that basing both PDM pr

and WfM products on an integrated object model allows for the parts explosion probl

be alleviated, for flexibility to be provided and for the ability to cope with evolving workfl

specifications. This statement is pursued and justified in the following chapters.

2.4 Standardisation for WfM and PDM
The Workflow Management Coalition (WfMC, 1996) is a standards body drawn from

community of Workflow Management System vendors. It has begun to identify the p

tives from which any workflow management system should be built and the WfMC arch

ture is fast becoming a de facto industrial standard. The WfMC have identified a set of 

primitives with which to describe flows and hence construct a work flow specification. W

these primitives it is possible to model any workflow that is likely to occur. 

The WfMC has produced standards on areas such as workflow Process Definition

change, on workflow Interoperability and workflow Client Application programming Int
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faces (see WfMC, 1996) and have provided considerable input to the workflow workgroup

of the OMG (Schulze et al., 1996). The OMG Business Object Management group has now

proposed a Workflow Facility (OMG, 1998a) and this is currently becoming a fully fledged

standard. This facility includes the definition of a workflow meta-model (a la Bussler, 1997),

interfaces for workflow enactment, workflow monitoring and workflow audit trails. It also

covers many of the aspects required by scientific workflow applications such as the nesting

of workflows, support for ad-hoc workflows and workflow data security, which are not ade-

quately covered by the WfMC.

At the same time the OMG Manufacturing Domain Task Force has been revising a proposal

for standardising PDM Enablers (OMG 1998b) or services that should be provided by stan-

dard PDM products. This PDM Enablers proposal covers manufacturing-specific functions

such as Engineering Change Orders, Document Management, Product Structure Definition

and Configuration Management. 

2.5 Integrating PDM and WfM Systems
Typically, in manufacturing systems, engineers use a PDM and production managers use

Production Planning Systems and/or workflow management software. Design control and

production control are separated and there is little or no cross-talk between the two. This is

despite the fact that design changes need to be reflected quickly into the production environ-

ment to reduce development time. The provision of continuity from design to production

through the provision of consistent product data is therefore a high priority. The integration

of PDMs with workflow management software to provide consistency and continuity seems

Figure 2-2. The relationship between a PDM and a WfM from Design to Production

WfM: Workflow Management system for Production

PDM: Product Data Management system for Design
PBS

Product Breakdown Structure
(Part Specification)

ABS
Assembly Breakdown Structure

(Part & Task Specification)

WBS
Work Breakdown Structure

(Task Specification)

Detector Production Scheme(s)
Workflow models

(centralised database)

Production Workflow instance(s)
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(distributed database)

mapped to
 mapped to
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appropriate. In manufacturing systems the production line can be viewed as a collection of

(versioned) workflows. The ABS and WBS hold the definitions of the production line and

can be mapped onto workflows. The PDM can then manage the definitions of the product

and workflow data and the Workflow software can cater for the instantiation, scheduling and

enactment of those definitions (see Figure 2-2). Up to now the marriage of PDM and WfM

has been proposed only for the capture of design information in manufacturing (Ramanathan,

1996) and, partially, in a civil engineering application (Stumpf, Ganeshan and Liu, 1996).

Furthermore, Hameri & Nihtila (1998) conclude that current state-of-the-art PDM imple-

mentations do not support the whole product life-cycle and that new tools with an approach

to support all organisational functions, including integrated product design and project man-

agement, are needed.

No research has been conducted into how the underlying data models of PDM and WfM

could be integrated. A proposal for a common infrastructure for process and product models

has been outlined by Manolescu and Johnson (1998) and some ‘design patterns’ ha

proposed but that research is in its early stages. This thesis aims to show that ado

description-driven approach to formalising a data model, based on design artifacts co

to process and product models, will facilitate integration between product data manag

and workflow management, thereby providing consistency between design and prod

and speeding up the process of implementing design changes in a production syste

next chapter identifies how building a multi-layer architecture enables description to be

tured in a system and how that description can be used to provide integration betwee

and WfM.
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3Description-Driven Systems

3.1 Introduction
For the purposes of this thesis ‘description-driven systems’ are defined as systems in

the definition of the domain-specific configuration is captured in a computer-readable

and this definition interpreted by applications in order to achieve the domain-specific g

Description-driven systems are therefore similar to the already familiar ‘data-driven

tems’ and to ‘meta-object systems’ which are coming into common parlance in comp

The expression description-driven systems is introduced to clarify common aspects o

approaches and to promote understanding of meta- concepts (Kerverhe & Gerbe, 19

Foote and Yoder, 1998).

In a description-driven system definitions (or descriptions) are separated from instanc

managed independently to allow the definitions to be specified and to evolve asynchro

from particular instantiations (and executions) of those definitions. As a conseque

description-driven system requires computer-readable models both for definitions an

instances. These models are only loosely coupled in that coupling only takes place

instances are created or when a definition, corresponding to existing instantiations, is

fied. The coupling is loose because the life cycle of each instantiation is independen

the life cycle of its corresponding definition.

Workflow management systems are one example of description-driven systems: the bu

process model acts as the definitions of the instantiated workflows and are manage

rately from the instantiations. Up until recently PDM systems, such as Cadim (Cadim, 1

were lacking this abstraction and there was no apparent similarity in the underlying str

of PDM systems and workflow management systems. In the recent past, however, m

PDM systems like Matrix (Matrix, 1998) have begun to follow this abstraction-ba

approach and to move towards supporting workflow definitions in addition to product

definitions.
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Description-driven systems (sometimes referred to as meta-systems) are acknowledged to be

flexible and to provide many powerful features including (see IEEE, 1996 & 1997, Crawley

et al., 1997a and Baker and Le Goff (1997)):

• Reusability

• Complexity handling

• Version handling

• System evolution

• Interoperability

This chapter introduces the concept of description-driven systems, relates this to more

iar multi-layer architectures and describes how multi-layer architectures allow the abov

tures to be realised. It then considers how description-driven systems can be implem

through the use of meta-objects and lists a set of patterns that provide the basis for re

the functionality required by description-driven systems. Finally the chapter states ho

Object Management Group (OMG) is producing a so-called Meta-Object facility, w

could standardise the development of future description-driven systems.

3.2 Layered Architecture of Description-Driven Systems
The concept of separating description from instantiation is well-known in computing 

particularly in the era of object-oriented computing). The ANSI IRDS standard (ANSI, 1

see Figure 3-1), for example, followed the abstraction ideas in developing a multi-la

model in which instances are described by a model which is, in turn, described by a f

model. The concept of models which describe other models has come to be known as

models’1 and is gaining wide acceptance in the world of object-oriented analysis and d

One example of a system which uses a multi-layer architecture is that of a WfM s

(Schulze, 1997). In WfM systems the workflow instances (such as activities or tasks) 

spond to the lowest level of abstraction - the instance layer. In order to instantiate the work

flow objects a workflow scheme is required. This scheme then describes these wo

instances and corresponds to the next layer of abstraction - the model layer. The information

about a model is generally described as meta-data (see Maes and Nardi, 1988 an

1.   According to the Oxford English Reference Dictionary ‘Meta-’ is “denoting position a) behind b) after or
c) beyond of a higher or second order kind (like meta-language)”.
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1995). In order for the workflow scheme itself to be built, a further model is required to cap-

ture/hold the semantic for the generation of the workflow scheme. This model (i.e. a model

describing another model) is the next layer of abstraction - the so-called meta-model layer.

In other words a meta-model is simply an abstraction of meta-data (Schulze, 1997).

The semantics required to adequately model the information in the application domain of

interest will in most cases be different. For example, the semantics for describing PDM sys-

tems (product types, product composition types etc.) is very different from those describing

WfM systems (activity types, activity composition types, actor types, etc.). What is required

for integration and exchange of various meta-models is a universal type language capable of

describing all meta-information. The common approach is to define an abstract language

which is capable of defining another language for specifying a particular meta-model, in

other words meta-meta-information (c.f. Crawley et al. 1997b). In this manner it is possible

to have a number of meta-model layers. The generally accepted conceptual framework for

meta-modeling is based on an architecture with four layers (e.g Byrne, 1996). Figure 3-2

illustrates the four layer meta-modeling architecture adopted by the OMG and based on the

ISO 11179 standard (ISO, 1998).

The meta-meta-model layer is the layer responsible for defining a general modeling language

for specifying meta-models. This top layer is the most abstract and must have the capability

of modeling any meta-model including those describing PDM (PDM 1998) and WfM sys-

tems (WFMC, 1996). It comprises the design artifacts in common to any meta-model. At the

next layer down a (domain specific) meta-model is an instance of a meta-meta-model. It is

the responsibility of this layer to define a language for specifying models, which is itself

defined in terms of the meta-meta types (such as meta-class, meta-relationship, etc.) of the

meta-meta modeling layer above. Examples from manufacturing of objects at this level

Figure 3-1. Workflow Systems in a 3-layer model architecture
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include workflow process description, nested subprocess description and product descrip-

tions. A model at layer two is an instance of a meta-model. The primary responsibility of the

model layer is to define a language that describes a particular information domain. So exam-

ple objects for the manufacturing domain would be product, measurement, production sched-

ule, composite product. At the lowest level user objects are an instance of a model and

describe a specific information and application domain.

3.3 Features of Description-Driven Systems
The desirable features of description-driven systems, outlined in the introduction to this

chapter, can be realised through the adoption of a flexible multi-layered architecture. This

section examines each feature in turn and explains how a multi-layer architecture facilitates

those features.

• Reusability. It is a natural consequence of separating definition from instantiation 

system that reusability is promoted. Each definition can be instantiated many time

therefore reused for multiple applications. For example, a single activity definition

be captured in a workflow management system and can be used for many workflow

cess specifications.

• Complexity handling (scalability). As systems grow in complexity it becomes increa

ingly necessary to capture descriptions of system elements rather than capturing

associated with each individual instantiation of an element. Scalability can therefo

eased, and a parts explosion (see Section 2.2.3 on page 22) avoided, if descriptiv

mation is held both at the model and meta-model layers of a multi-layer architectur

Figure 3-2. A 4-layer meta-modeling architecture
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in addition, if information is captured about the mechanism for the instantiation of

objects at a particular level. In a multi-layer architecture, as abstraction from instance to

model to meta-model is followed, there are fewer data and types to manage at each layer

but more semantics must be specified so that system complexity and flexibility can be

simultaneously catered for. These semantics are always provided at the next higher (or

descriptive) layer of abstraction. As an example of complexity handling consider the dif-

ference between describing the details of every single car of a given model produced by

a company and describing the generic details of a model type. Each single instance of a

car is derived from a given model type - description should be handled at the type level

and details, such as the chassis number, specified only when required for a specific car

instance.

• Version handling. It is natural for systems to change over time - new elements are s

fied, existing elements are amended and some are deleted. Element descriptions c

be subject to change over time. Separating description from instantiation allows ne

sions of elements (or element descriptions) to coexist with older versions that have

previously instantiated. For example, car models change over time and their prod

processes may need to be revisited as a consequence. Cars of different model v

must be handled over time and coexist with other cars of differing model versions. 

rating details of model types from details of single cars allows the model type versio

take place asynchronously with the production of single cars.

• System evolution. When descriptions move from one version to the next the underl

system should cater with this evolution. However, existing production managemen

tems, as used in industry, cannot cater for this. In the car example, it is not possibl

single production line to evolve while production is taking place. Rather the productio

line is flushed of cars following a particular model version before the production lin

changed to reflect the requirements of the new model version. Production is therefo

continuous in nature and design changes take time to be rolled forward into produ

This thesis shows that in capturing description separate from instantiation, using a 

layer architecture, it is possible for system evolution to be catered for while product

underway and therefore to provide continuity in the production process and for d

changes to be reflected quickly into production.
Page 33



Description-Driven Systems

rop-

rder to

should

about

strib-

olutely

 cope

trib-

andling

transac-

istrib-

omains

l appli-

provides

lational

her tables

ystem.

y, reus-

994)

ture of

e state

When

 which

ommon

te and

 object

iption-

e pat-
• Interoperability. A fundamental requirement in making two distributed systems inte

erate is that their software components can communicate and exchange data. In o

interoperate and to adapt to reconfigurations and versions, large scale systems 

become ‘self describing’. It is desirable for systems to be able to retain knowledge 

their dynamic structure and for this knowledge to be available to the rest of the di

uted infrastructure through the way that the system is plugged together. This is abs

critical and necessary for the next generation of distributed systems to be able to

with size and complexity explosions. A stronger aspect of interoperability is that dis

uted systems and components to be integrated should have common ways of h

and dealing with system objects such as events, security, systems management, 

tions and faults. Software components must be able to plug into these common d

uted services and facilities. 

3.4 Implementing Description-Driven Systems 
The concept of meta-data is not new - these ideas have been investigated in many d

and various technologies have been used as the implementation vehicle. A historica

cation of the use of meta-data is in database management systems where a schema 

a representation of the structure, constraints and use of data within the database. Re

database systems have been used to hold meta-data where data in tables describe ot

- for example the data dictionary tables of a relational database management s

Recently it has become clear that object-based systems provide greater expressivit

ability and flexibility in the construction of complex computer systems (Jacobson, 1

than previous systems. Object-oriented systems provide the mechanisms for the cap

system description at a high level of abstraction - descriptive objects themselves hav

and methods - and are therefore suitable for building description-driven systems. 

implementing a description-driven system based on objects, the descriptive element,

holds information about another object is called a ‘meta-object’.

One area of recent interest in systems design is that of ‘patterns’ (Alexander et al. 1977,

Gamma et al. 1995). A pattern names, abstracts, and identifies the key aspects of a c

structure that make it useful for creating a reusable object-oriented architecture. Foo

Yoder (1998) have advocated the development of patterns for meta-data and active

models. It is one of the objectives of this thesis in constructing one instance of a descr

driven system, to identify where existing patterns may be employed, to identify wher
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introduce meta-objects and patterns in the context of a multi-layered architecture.

3.4.1 Meta Objects

For the purpose of this thesis a meta-object is defined an object which manages the descrip-

tion of another object. In other words meta-objects manage the meta-data required to imple-

ment description-driven systems. The ‘meta-’ prefix is used in the same manner, as

used for meta-models, i.e. it describes the connection between objects of different la

abstraction in description-driven systems. It is also important to emphasise that the us

the term meta-object denotes that the system not only ‘stores’ the descriptive informati

also manages it (i.e. it has data, methods and state).

3.4.2 Patterns

The concepts of patterns in object-oriented analysis and design emerged from the id

‘pattern language’ or set of patterns, where each pattern describes how to solve a pa

kind of problem. This idea was originally expounded in architecture by Christopher A

ander (Alexander et al., 1977). The pattern identifies the participating classes and ins

their roles and collaborations, and the distribution of responsibilities. Each pattern fo

on a particular object-oriented modelling problem. It describes when it applies, whet

can be applied in view of other constraints, and the consequences and trade-offs of it

Patterns are a subject of intense research in computer science and an area which is

maturing. Some design patterns e.g Composite and Iterator (Gamma et al., 1995) hav

well-specified and are in general use. For example, Gamma defines the Composite pa

“Compose objects into tree structures to represent part-whole hierarchies. Composite 

ents treat individual objects and compositions of objects uniformly”. According to Gam

the Iterator pattern “provides a way to access the elements of an aggregate object sequ

Figure 3-3. Complex Tree or Composite pattern
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without exposing its underlying representation”. Blaha and Premerlani (1998), 

extended the OMT notation to help specify patterns. A number of patterns have been

to the OMT language to provide “a higher level of building blocks for models than the

primitives of class, association and generalisation”. They also introduce cyclicity int

composite pattern. Of particular interest to the subject of this thesis are the Graph

Description and Homomorphism patterns of Blaha and Premerlani. These patter

described in the following sections and are revisited and enriched in a later chapter 

thesis.

3.4.2.1 Item Description Pattern

Coad’s (1992) Item Description pattern shows the association between description

instances. In principle this pattern is the manifestation of the relationship between 

objects and objects. Consequently this pattern describes consecutive layers of desc

driven systems (see Section 3.2 and Section 3.4.1). The association between Items an

Descriptions can be an aggregate and support link attributes and qualifiers. In the car

ple of Section 3.3, individual cars (of a particular model) are Items which are built acco

to a single car model description. In other words, the association between car and 

holds sufficient semantics for a particular instance of a car to be built according to a 

definition. This mechanism is essential to the separation of instantiation from definitio

required by the multi-layer architecture of description-driven systems where semanti

required for the instantiation of Items from a ItemDescriptions. This pattern is heavily

in the data model described later in this thesis.

Figure 3-4. Item Description and Homomorphism pattern
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3.4.2.2 Homomorphism Pattern

Figure 3-4 also shows the Homomorphism pattern expounded in Rumbaugh et al. (1991).

This figure shows two ItemDescriptions are themselves related so an association is defined

between them. As a consequence of the Item Description pattern and the fact that semantics

have been added to the association between ItemDescriptions, there will necessarily be

semantics attached to the association of one (instantiated) Item to another (instantiated) Item.

According to Rumbaugh et al. (1991) “Homomorphisms are most likely to occur for com

applications that deal with meta-data”. Section 3.4.2.1 stated that the Item Descriptio

tern expresses the connection between layers in a multi-layer architecture. Since th

relationships between elements in each layer (e.g. relationship between ItemDescript

is natural that the Homomorphism pattern appears between layers. The Homomorphis

tern is therefore fundamental to description-driven systems.

As an example of the use of this pattern, consider the two following Item Description

familiar car and car model and a production process and production process model.

example, there are many instantiations of cars of a particular model and production ac

of a particular process model. Also an association can be specified between a car mo

a production process model - that is, the information which is specific to the executio

production process model on a specific car model. When an instantiation of the prod

process is performed on a particular car, details such as the operational conditions m

specified. These operational conditions may be derived from the information on the a

ation between car model and production process model. That is, the semantics of the

ation between the instantiated Items can be derived from the semantics on the asso

between the corresponding Item Descriptions.

3.4.2.3 Version Pattern

In description-driven systems it is important to keep track of versions of definitions

instantiations of these definitions. Figure 3-5 proposes a Version pattern that can fac

individual and collective versioning. This pattern provides the functionality of both

CheckIn/CheckOut Model and Composition Models of configuration management

Feiler (1991)). In this pattern each VersionedObject manages a set of individual versi

itself, each instance having a versionId and being referred to as a VersionedObjectPr

Note that, in principle, a VersionedObject and a VersionedObjectProperty make u

object. Properties are separated from attributes in order to distinguish between meta
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data which is either versioned or not versioned respectively. Changing an object’s attr

does not version the object whereas changing an object’s properties will version it. In

tion to handling versioning of an individual object, this pattern allows for versioning of a

lected set of objects, called a Release. This is achieved by defining a class of objects

ReleaseManagers which are specialisations of VersionedObjects. ReleaseManagers 

sioned and each version, the ReleaseManagerProperty class, manages a collection

sioned objects.

The ReleaseManager maintains a list of added or removed objects in a release. Static 

ing is therefore handled by this pattern. The propagation of changes in a release to dep

objects (i.e the notification of changes to dependent objects and the nature of the dep

cies) is described in the following section.

This Version pattern has, at the time of writing, not been identified by the patterns co

nity. Work is in progress in identifying a so-called ‘History’ pattern (Johnson & Oa

1999), however identification of the Version pattern is an unique contribution of this th

3.4.2.4 Publisher/Subscriber Pattern

To facilitate dynamic version management, which cannot be handled by the Version p

alone, use can be made of Gamma et al’s (Gamma et al., 1995) Observer pattern, ot

referred to as the Publish/Subscribe pattern. Figure 3-6 shows this pattern. In this pa

Figure 3-5. Version pattern

VersionedObject

-id : int

VersionedObjectProperty

-versionId : int

1..n 1

ReleaseManager

ReleaseManagerProperty

0..n

1

{except ReleaseManager}

Figure 3-6. Publisher/Subscriber pattern
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publisher Item (or meta-object) sends out notifications which will reach all subscriber Items

without the Publisher knowing who the Subscribers are and how many Subscribers there are.

(In UML (Fowler & Scott, 1997) this can be represented by a directed association as shown

by the arrow between Publisher and Subscriber in Figure 3-6). This pattern is useful in han-

dling versions of meta-objects when there are dependencies between the meta-objects but

they are not tightly coupled, as discussed later in this chapter.

3.4.2.5 Graph Pattern

Graphs can be directed (cyclic or acyclic) or undirected and simple or complex in nature.

They are sets of nodes which can be either leaf or branch nodes. The general form of a graph

is shown in Figure 3-7 where nodes are linked to other nodes. One example of graphs is the

graph/relationship service of the Object Management Group’s OMA (OMG, 1992b).

In an undirected graph an edge connects any two nodes, whereas in a directed graph

connects a source node to a sink node. In addition, a directed graph can have nodes w

number of edges. Complex graphs make a distinction between branch and leaf 

whereas simple graphs do not. The example quoted by Blaha and Premerlani to d

complex directed graphs is that of the Unix file structure: files are either data files or d

tory files and a directory file contains named files which are identified by a filename th

unique in the context of a directory file. In the Unix file system a file can belong to mul

directories via symbolic links and a file may have a different name in each directory w

it is referenced - this means the structure is a graph. All files have a parent directory 

the root file as shown in Figure 3-8 (from Blaha & Premerlani, 1998). The graph is com

since distinction is drawn between datafiles and directory files - datafiles being leaf 

and directory files being branch nodes.

In an acyclic graph, when the graph has been traversed repetitively from parent to

nodes, there are no instances where a traversal leads to a node being a child of itself

Figure 3-7. Complex Directed Graph pattern
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0..n

0..n
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child
DirectedGraph

0..1
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graphs can allow this form of recursion. Therefore the complex directed graph of the Unix

file system example is acyclic in nature, since a directory file cannot contain a reference to

itself at any level.

The complex Directed Acyclic Graph pattern of Blaha and Premerlani (1998) does not allow

semantics to be added to the association between nodes as branches (see Figure 3-7), conse-

quently there is no way of identifying, and associating attributes or methods to, a particular

instance of the link. Later in this thesis this Directed Acyclic Graph pattern is enriched to

cater for this functionality and it is shown that this provides complexity handling in large sys-

tems.

3.4.3 Patterns and Frameworks

Elsewhere patterns have been discussed in the context of so-called frameworks (Johnson and

Foote, 1988), which are defined as sets of reusable and customisable classes and software

components for specific application domains. PDMs and WfMs constitute two application

domains in which frameworks can be defined. The frameworks used in building PDMs and

WfMs may have some software components in common. These software components can be

built using patterns. Consequently using the language/patterns of multi-layer architectures,

frameworks are simply the software components which result from the meta-model, model

and instance layers for a specific application domain i.e an instance of a complete descrip-

tion-driven system.

Work in the area of patterns (Coad et al., 1995, Foote and Yoder, 1998 and Roberts and

Johnson, 1998) and frameworks (Baumer et al., 1997, Devos and Tilman, 1998 and Riehle

and Gross, 1998) is directly relevant to the ideas expounded in this thesis. Foote and Yoder

(1998) have applied the concepts of pattern representations to the domain of data description.

They conclude that candidate patterns are required to describe meta-data structures and their

inter-relationships. Patterns are thus needed in object-oriented modeling to describe meta-

Figure 3-8. File directory as an example Graph pattern
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model to build meta-objects. Similar conclusions are being drawn by Devos & Tilman (1998)

in the field of design frameworks, where the framework behaviour is driven by repository-

based descriptions and where descriptions of an organisation’s business operation 

rated from the business application.

CORBA 2 is an example of a framework to build general distributed software applica

using patterns. The ORB is composed of classes and components, whereas CORBA S

are implementation of patterns (R. Malveau & T. J. Mowbray (1997)).

3.5 Providing Description-Driven System Features Using 
Meta-Objects

3.5.1 Handling Complexity

In Section 3.3 of this chapter, it was stated that scalability can be eased, and a product

sion avoided, if descriptive information is held both at the model and meta-model lay

a multi-layer architecture. The Item Description pattern combined with the Directed Ac

Graph pattern provides the mechanism by which this can be achieved.

Figure 3-9 shows a combination of the Item Description and Directed Acyclic Graph

terns. The combination of the patterns is established by decomposing an ItemDesc

into its constituent ItemDescriptions. In other words, an ItemDescription can be eithe

mentary or composite in nature and therefore some ItemDescriptions can be made up 

ItemDescriptions. Consider the car and car model example of earlier. A particular desc

of a car model is composed of other descriptions: e.g descriptions of the engine, the c

the drive-system (front-axle system, rear-axle system, wheels, tyres etc.). Some o

descriptions are elementary e.g wheels and some composite e.g drive-system. The a

tion between a CompositeItemDescription and its children will hold semantics such a

number of constituent descriptions of a common type (e.g 4 wheels of 1 wheel descri

Figure 3-9. Combination of the Item Description and Directed Acyclic Graph patterns
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ElementaryItemDesc CompositeItemDesc
0..n
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However, as stated earlier, a simple combination of the Item Description and Directed Acy-

clic Graph patterns as described in Blaha and Premerlani (1998) does not enable the identi-

fication of a particular constituent ItemDescription within its CompositeItemDescription. In

the example, it is not possible to determine which wheel is located at which wheel position.

Consequently the combined patterns require enrichment by the introduction of another meta-

object which captures the membership of an ItemDescription within its CompositeItemDe-

scription(s). Figure 3-10 shows the Enriched Directed Acyclic Graph and Item Description

combined pattern. An ItemDescription can be part of many different CompositeItemDescrip-

tions. For example, one wheel description could be employed in both the front-axle system

and the rear-axle system. One instance of the CompositeMember meta-object will hold the

full semantics of the membership of a particular ItemDescription in a single CompositeItem-

Description. In other words, it is now possible to determine which wheel is located in which

axle system and in which location in that axle system.

When a particular ItemDescription is instantiated into an Item the composition of that Item

is determined by traversing the graph of its ItemDescription. The result will be a hierarchy

of Items organised as a tree in which each node is of a particular ItemDescription. In the car

example the car is made up of a chassis, an engine, a drive-system (comprising front- and

rear-axle systems each of which is composed of 2 wheels etc.). The tree is as deep as there

are layers in the directed acyclic graph and each composite node will have a number of con-

stituent nodes equal to the number of CompositeMember meta-objects in the ItemDescrip-

tion corresponding to that node (see Figure 3-11). Note that when an instance of a

CompositeItemDescription is deleted its corresponding CompositeMember is also deleted.

The complexity of the overall model of Items is therefore handled through the reuse of Item-

Descriptions. The reuse can, in addition, take place at any point in the traversal of the directed

graph so long as the graph is acyclic. For the car example, the number of Items and the

Figure 3-10. Enriched Directed Acyclic Graph pattern
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number of levels of compositeness is not great and complexity handling is not a major issue.

As either the complexity of the Item and the number of levels of composition increases the

role of CompositeMember meta-objects becomes essential. Later in this thesis the Enriched

Directed Acyclic Graph and Item Description patterns are used to manage the complexity

inherent in the construction of a large high energy physics experiment.

3.5.2 Integrating Product & Process Models

Having discussed the role of a directed acyclic graph to describe Items and their constituents

in the previous section, it is now proposed that any product or any process can be modeled

in terms of an Enriched Directed Acyclic Graph pattern combined with an Item Description

pattern.

In manufacturing, models are used to support the design life cycle of a particular product (see

for example Lee, Sause and Hong, 1998 and Haugen, 1998). Products can evolve over time,

their designs may change or the production process may be improved. In Chapter 2 it was

stated that PDM systems have been employed to manage product data in the design life cycle.

PDM systems traditionally employ hierarchies to capture product composition (so-called

‘Bill Of Materials’, BOM) and therefore, as the complexity of the product grows PDM s

tems suffer from a parts explosion. Basing a PDM model on an Enriched Directed A

Graph pattern combined with an Item Description pattern, handles the parts explosio

consequence is that the BOM is only available once the product composition tree ha

generated by traversal of the complete graph structure (as shown in Figure 3-11).

Figure 3-11. Car example for Graph handling complexity
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Products are subject to many processes in the manufacturing life cycle such as design pro-

cesses, assembly processes, test processes, maintenance processes etc. Each of these pro-

cesses can be complex and composite in nature. Ideally the description of these processes

should be captured in a model and instances of these processes managed in some repository.

One example of a process management system is a WfM, which, as stated earlier, can be

described as a description-driven system. Process models to support systems such as WfMs

must cope with process composition, process sequence, parallelism of processes and syn-

chronisation of processes. Basing a WfM model on an Enriched Directed Acyclic Graph pat-

terns combined with an Item Description pattern supports processes of arbitrary complexity

including composition and sub-process reuse. Furthermore, using the CompositeMember

meta-objects of the Enriched Directed Acyclic Graph pattern allows the capture of process

sequence, parallelism and synchronisation.

As stated in Chapter 2 there is an increasing movement in manufacturing to integrate product

and process models for the purposes of life cycle data management. Therefore any system

which can manage both product and process information in a common model is very desir-

able to the manufacturing community. Basing both a product and a process model on the

above patterns and associating product descriptions with process descriptions, provides a

uniform model for manufacturing. The association between the two descriptions carries

semantics in that it describes how a particular process description is applied to a particular

product description and any conditions or constraints on how the process acts on the product

(see Figure 3-12). This association of process description to product description is very pow-

erful - it allows different associations to be defined between a product and different processes

that can take place throughout its life cycle e.g. design, assembly, testing, maintenance etc.

For example, the association of a maintenance process to a product will require quite differ-

ent conditions to be captured from those that are captured when a design process is carried

out on that same product. The integration of PDM with WfM as outlined later in this thesis

demonstrates the power of a unified product and process life cycle model.

Figure 3-12. Product, Workflow and Condition Descriptions.
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3.5.3 Handling Evolution

Production systems should cater for the evolution of product or process descriptions regard-

less of the current state of the production and even while the production continues. Since, as

discussed earlier, layers in a description-driven system are only loosely coupled, modifica-

tions in the meta-model layer can be carried out asynchronously from the application of those

modifications in the model layer (which is itself defined in and generated from the meta-

model layer). Similarly, modifications in the model layer can be asynchronously applied

from their instantiations in the instance layer. 

Even though the modifications are asynchronously applied in each layer, notification of the

modification is required to provide traceability in the production systems. This mechanism

can be handled through a combination of the Publish/Subscribe pattern, described in

Section 3.4.2.4, the Item Description pattern of Section 3.4.2.1 and the Version pattern of

Section 3.4.2.3. In the combination of these patterns, an ItemDescription is a concrete Pub-

lisher and any Item associated with this ItemDescription is a concrete Subscriber. A modifi-

cation in the ItemDescription (at the model layer) is then notified to its Subscribers (at the

instance layer) which can apply their modifications when appropriate. 

The application of the Subscribers’ modifications follows the Homomorphism pat

described in Section 3.4.2.2. The Homomorphism pattern provides linkage between ve

of Items and ItemDescriptions. Consequently an Item can determine the consequen

itself of moving to a new version of an instantiation of its ItemDescription.

3.6 Meta-Objects and Standardisation
In distributed object-based systems, object request brokers, such as the Object Mana

Group’s CORBA (OMG, 1992a) provide for the exchange of simple data types and, in

tion, provide location and access services. The CORBA standard is meant to standard

systems interoperate. OMG’s CORBA Services (OMG, 1994) specify how distrib

objects should participate and provide services such as naming, persistent storage, lif

transaction, relationship and query. The CORBA Services standard is an example of h

describing software components can interact to provide interoperable systems.

Recently a considerable amount of interest has been generated in meta-models an

object description languages (Laddaga and Veitch, 1997). Work has been completed

the OMG on the Meta Object Facility (MOF, OMG 1997) which is expected to manag
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kinds of meta-models relevant to the OMG Architecture. This meta-modeling approach will

facilitate further integration between product data management and workflow management

thereby providing consistency between design and production and speeding up the process

of implementing design changes in a production system.

The purpose of the OMG MOF is to provide a set of CORBA interfaces that can be used to

define and manipulate a set of interoperable meta models. The MOF is a key component in

the CORBA Architecture as well as the Common Facilities Architecture. The MOF uses

CORBA interfaces for creating, deleting, manipulating meta objects and for exchanging

meta models.

The intention is that the meta-meta objects defined in the MOF will provide a general mod-

eling language capable of specifying a diverse range of meta models (although the initial

focus was on specifying meta models in the Object Oriented Analysis and Design domain).

It has been designed to support:-

• Generality: it should be capable of describing a range of meta models.

• Extensibility: it is a core model and is capable of extension by inheritance and comp

tion

• Reuse: when developing meta-data for a new application it should be possible to re

meta-data from other similar applications

• Reflection: it should be capable of being able to represent itself (see Maes, 1987).

The usage of the MOF will depend very much on viewpoint. From a systems desig

viewpoint, who will be looking down the meta architecture layers, the MOF is used to d

an information model for a particular domain of interest. Another viewpoint is that of a

tems programmer who is looking up the meta levels. The concern here is for CORBA c

to obtain information model descriptions to support reflection and interoperability. The 

layer OMG meta-model has been discussed in Section 3.2 and was shown in Figure
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4.1 Introduction
An application has been developed to test the concepts put forward in this thesis. The test

application that will form the basis of this study has been developed to manage the construc-

tion of a large scale high energy physics detector. The detector under construction is called

the CMS Electromagnetic Calorimeter (ECAL) and the construction will take place across

multiple test and assembly centres distributed worldwide over the period 1998-2005. The

ECAL detector is very complex comprising hundreds of thousands of individual products,

many of which are composite in nature, and each product must undergo a series of measure-

ments and tests during assembly. An information system is required to track the status of

assembly both from a product standpoint and from a process standpoint. This information

system must be built on a data model which facilitates product and process tracking and is

sufficiently flexible to cater for evolution of the product and process definitions over the

period of detector construction. It is therefore an ideal vehicle in which to study the integra-

tion of PDM and WfM.

This chapter describes the domain of CERN where the current study of integration between

workflow management and product data management has been conducted. Firstly, an intro-

duction is given to the working environment at CERN which dictates some important design

constraints on any software that is used to support activities at CERN. Secondly the peculiar-

ities of designing systems for operation at CERN’s Large Hadron Collider (LHC, 1993

introduced before the specifics of the Compact Muon Solenoid (CMS, 1995) experime

its Electromagnetic Calorimeter (ECAL, 1997) production is detailed. Finally, having in

tigated the environment for software design and operation in CMS, the chapter dis

aspects of scientific workflow management and establishes a set of constraints whic

be satisfied in the design of any workflow and product data management software u

experiments at CERN. It concludes by proposing the design approach followed in con
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4.2 The Test Environment

4.2.1 The European Laboratory for Particle Physics (CERN)

CERN, the European Laboratory for Particle Physics, exists primarily to provide European

physicists with accelerators that meet research demands at the limits of human knowledge

(see Figure 4-1). In the quest for higher energies which its experiments need to conduct their

research, the Laboratory has played a leading role in developing colliding beam machines.

Notable ‘firsts’ were the Intersecting Storage Rings (ISR) proton-proton collider com

sioned in 1971, and the proton-antiproton collider at the Super Proton Synchrotron 

which came on the air in 1981 and produced the massive W and Z particles two year

confirming the unified theory of electromagnetic and weak forces (for more detail se

CERN Web pages: http://www.cern.ch). The main impetus at present is from the Large

tron-Positron Collider (LEP), where measurements unsurpassed in quantity and qua

Figure 4-1. Current setup of accelerators at CERN
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testing the best description of sub-atomic Nature, the Standard Model, to a fraction of 1%

soon to reach one part in a thousand. By 1996, the LEP energy was doubled to 90 GeV per

beam in LEPII, opening up an important new discovery domain. More high precision results

are expected in abundance throughout the rest of the present decade, which should substan-

tially improve the present understanding. The LEP/LEPII missions will by then be largely

completed. 

4.2.2 The Large Hadron Collider Project (LHC)

LEP data are so accurate that they are sensitive to phenomena that occur at energies beyond

those of the machine itself; rather like the delicate measurement of earthquake tremors far

from an epicentre. This gives us a ‘preview’ of exciting discoveries that may be ma

higher energies, and allow us to calculate the parameters of a machine that can mak

discoveries. All evidence indicates that new physics, and answers to some of the mo

found questions of our time, lie at energies around 1 TeV (1 TeV = 1012 electron-Volts). To

look for this new physics, the next research instrument in Europe's particle physics ar

is the LHC (LHC, 1993). In keeping CERN's cost-effective strategy of building on prev

investments, it is designed to share the 27-kilometre LEP tunnel, and be fed by existin

ticle sources and pre-accelerators. A challenging machine, the LHC will use the 

advanced superconducting magnet and accelerator technologies ever employed. LHC

iments are, of course, being designed to look for theoretically predicted phenomena.

ever, they must also be prepared, as far as is possible, for surprises. This will requir

ingenuity on the part of the physicists and engineers. The LHC is a remarkably ve

accelerator. It can collide proton beams with energies around 7-on-7 TeV and beam cr

points of unsurpassed brightness, providing the experiments with high interaction rates

LHC/LEP operation can supply proton-electron collisions with 1.5 TeV energy, some

times higher than presently available at HERA in the DESY laboratory, Germany.

research, technical and educational potential of the LHC and its experiments is enorm

The LHC is an accelerator which will bring protons into head-on collision at higher ene

(14 TeV) than ever achieved before to allow scientists to penetrate still further into the 

ture of matter and recreate the conditions prevailing in the Universe just 10-12 seconds after

the ‘Big Bang’ when the temperature was 1016 degrees. The LHC luminosity will reach L =

1034 cm-2 s -1 (a quantity proportional to the number of collisions per second). This wil

achieved by filling each of the two rings with 2835 bunches of 1011 particles each. The time
Page 49



between two bunch crossing is 25*10-9 seconds resulting in approximately 109 interactions

per second i.e. 20 interactions per crossing on average. The resulting large beam current (of

around 0.53 A) is a particular challenge in a machine made of delicate superconducting mag-

nets operating at cryogenic temperatures. When two bunches cross in the center of a physics

detector only a tiny fraction of the particles collide head-on to produce the wanted events.

4.2.3 The Compact Muon Solenoid Detector (CMS)

The CMS detector (CMS, 1995 - see Figure 4-2) is one of two general purpose detectors to

be installed at the future Large Hadron Collider. The CMS detector can be subdivided into

Figure 4-2. An artist’s impression of the layout of the CMS high energy physics detector
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one barrel region and two identical end-cap regions. The central element of the CMS detector

is a 13 meter long, 6 meter diameter superconducting solenoid generating a uniform mag-

netic field of 4 Tesla. The magnetic flux is returned through a 1.5 meter thick saturated iron

yoke instrumented with muon chambers. Located within the solenoid bore are the central

tracker (TRACKER 1998) and both the electromagnetic (ECAL, 1997) and hadron (HCAL,

1997) calorimeters. The overall length (excluding the very forward calorimeters) and width

of the detector are respectively 22 and 14.6 meters respectively; the total weight will be about

14500 tons.

The central tracker is designed to reconstruct high transverse momentum muons, electrons

and hadrons with very good accuracy. To achieve the requested accuracy it has to be subdi-

vided into approximately 108channels for each which individual location has to bee known

precisely.

The primary function of the ECAL is the precise measurement of the energy of both electrons

and photons, and, in conjunction with the HCAL, the measurement of jets. The ECAL sub-

detector is composed of about 61,200 Lead Tungstate crystals in a Barrel structure (see

Figure 4-3) and 21,528 crystals in two EndCap structures. Each Barrel crystal is equipped

with twin avalanche photodiodes and each EndCap crystal is equipped with vacuum photot-

riodes to convert the light induced in the crystals by the incoming particles into a meaningful

electronic signal that can be processed by the readout chain. The total weight of the crystals

is 67.4 tonnes occupying 8.14 cubic metres of volume (see Figure 4-4).

Figure 4-3. The Product Graph of the CMS Electromagnetic Calorimeter (ECAL) Barrel
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Each individual Barrel crystal (of which there are 34 types) undergoes a series of quality

assurance tests followed by dimensional measurements and determination of transverse and

longitudinal transmissions and light yields (which must be stored for future reference) prior

to being glued onto the photodiode capsule. Once glued the assembly is known as a sub-unit

and further tests are performed to determine the quality of the gluing and to ensure that the

light produced in the crystal can be measured in its associated electronics. Ten sub-units, plus

support and cooling structures are assembled together to form a sub-module on which more

tests are performed. Modules are constructed from 40 (or 50) sub-modules and supermodules

are comprised of four modules of different types plus readout electronics, support structures,

monitoring devices and cabling. There are 36 supermodules in the cylindrical ECAL Barrel.

The EndCaps follow a similar structure. In total, excluding cabling, the ECAL comprises

about 400,000 products of about 500 product types.

The HCAL subdetector is organized in 18 identical wedges corresponding to approximately

the same number of channels as the ECAL. Finally, the Muon system is organized in four

stations. Each station consists of 12 planes of drift chambers leading to a total of about 106

channels. 

Submodule
Grid

Readout Electronics

Basket

Module
Grid, Cross Plates,
Cooling Serpentine (not shown)
50 Submodules in Module 1 
(40 in Modules 2,3 & 4), 
Basket,
Front Thermal Screen (not shown)
Readout Electronics

Cross Plate

Figure 4-4. A mechanical engineering drawing of an ECAL Barrel Module.
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Each sub-detector channel will be readout individually by a very fast electronic chain then

digitised and analysed for physics event selection. After event selection, the resulting amount

of data collected will be of the order of 1 MByte per event. 

4.3 The CRISTAL Application
The construction process of detectors for the Large Hadron Collider (LHC) experiments is

long scale, heavily constrained by resource availability and evolves with time. As a conse-

quence, changes in detector component design need to be tracked and quickly reflected in the

construction process (Lebeau, Lecoq and Vialle, 1995). As stated in Chapter 2, with similar

problems in industry engineers employ Product Data Management (PDM) systems to control

access to documented versions of designs and managers employ Production Schedulers or

Workflow Management software (WfM) to coordinate production work processes. The scale

of LHC experiments, like CMS, demands that industrial production techniques be applied in

detector construction. 

However, as noted in Chapter 2, no commercial products provide the integrated PDM and

WfM capabilities required for the construction of large scale high energy physics detectors.

A research project, entitled CRISTAL (Cooperating Repositories and an Information System

for Tracking Assembly Lifecycles) has been established to provide integrated product and

process management, based on a common data model, during the construction of CMS. This

is the first time industrial production techniques have been deployed to this extent in high

energy physics detector construction. This section outlines the major functions and applica-

tions of the CRISTAL (Baker et al., 1998 and Bazan et al., 1998) system developed for CMS.

CRISTAL is the vehicle in which the integration of PDM and WfM techniques in managing

large scale physics detector construction is studied for this thesis. 

The CMS detector will be built of many subdetectors such as ECAL, HCAL, Tracker etc.

Each of these sub-detectors will be based on quite different physics principles, will be con-

structed for different purposes and will be designed and realised by autonomous groups. As

a consequence the production of these sub-detectors will be started independently and carried

on in parallel with that of other sub-detectors and integration with other subdetectors will

take place late in CMS construction. Consequently each subdetector will use an independent

installation of CRISTAL and will provide their own specification of their construction pro-

cedures.
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Each CMS sub-detector will be constructed from a large number of precision parts (CMS,

1995) and will be produced and assembled during the next few years by centres distributed

worldwide (see Figure 4-5). These centres will include Shanghai Institute of Ceramics (SIC)

and Bogodoritsk Plant of Technochemical Products (BPTP) crystal production centres, IPN

Lyon capsule testing centre, LPNHE alveoli centre, CERN and ENEA/INFN assembly cen-

tres and DAPNIA monitoring centre in Saclay, France. Each constituent product of each

detector will be measured and tested locally, prior to its assembly and integration in the

experimental area at CERN. Much of the information collected during this phase will be

needed not only to construct the detector, but for its calibration, to facilitate accurate simu-

lation of its performance and to assist in its maintenance over the lifetime of the detector. The

construction process is heavily dependent on many areas of research (materials science, elec-

tronics, computing) so that systematic tracking of the evolution of individual detector parts

and quality control of the assembly process are essential for the subsequent calibration and

maintenance of the detector. Furthermore, coordinating operations required for construction

can be complex given the number of products requiring characterisation, particularly when

the operations are distributed over geographically separated centres. 

Large-scale industrial production systems (such as aeroplane manufacture) have similar

requirements and often employ product data management tools to manage the data and doc-

uments accumulated in the design of product(s). These systems are normally based on com-

mercially available PDM products and successfully support the creative and collaborative

Figure 4-5. The movement of physical parts between centres.
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stages of product design where access to documents needs to be controlled between groups

of designers. However, their use in supporting the unstructured processes inherent in product

research and development is somewhat limited – they provide limited facilities for ac

definition and no facilities for the enactment of production activities. Workflow managem

systems, on the other hand, do provide utilities which facilitate the coordination and s

uling of the activities of organisations to optimise the flow of information between resou

and there are many such tools becoming available commercially. However, WfMs alo

weak at handling the dynamic evolution of process and activity definitions which o

during design and during the enactment of workflow processes. 

No commercial products provide the workflow and product data management capab

required by CMS. A research project, entitled CRISTAL has therefore been initiated, 

component software technologies where possible, to facilitate the management of th

neering data collected at each stage of production of CMS. CRISTAL uses the so-cal

designed’ view of the detector (potentially stored in a Product Data Management syst

build a distributed production scheme which spans construction centres. As the detect

struction evolves during assembly (see Figure 4-6) and also during the lifetime of the 

iment, versions of the production scheme are dispatched from CERN to the centres wh

so-called ‘as built’ view of the detector is gathered, as a consequence of following th

cution of pre-defined activities. On execution of these activities, CRISTAL captures a

physical characteristics of detector components, which are, later, required for detecto

Figure 4-6. The Product Graph and assembly sequences of a Barrel sub-module.
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struction, calibration and maintenance. In Figure 4-6, the product composition graph of an

ECAL Barrel submodule is displayed. For each sub-module component (e.g Sub-Unit, crys-

tal, capsule etc.) an assembly and testing sequence of workflow activities can be specified

for execution in the crystal, capsule, sub-unit and sub-module construction process. Each of

these workflow activities can be composite in nature and a composite workflow activity will

have a particular workflow activity layout, as shown in Figure 4-7 for crystal assembly.

Ultimately, workflow activities are elementary or atomic in nature: i.e. they carry out a single

task which produces a specific outcome. Elementary activities have descriptions, can be

applied at particular centres, have duration and can be executed by Operators, by Instruments

or by User-Supplied software. Conditions can be assigned to these elementary workflow

activities. These production conditions may be a pre-requisite to the execution of the work-

flow activity (so-called Start Conditions) or be a test for successful completion of the work-

flow activity (so-called End Conditions) as shown in Figure 4-8. These conditions are

discussed further in the following chapter.

In the first instance CRISTAL is being used to monitor and control the production and

assembly process of the CMS Electromagnetic Calorimeter (ECAL, 1997). The software

employs workflow and task management techniques and is generic in design and will there-

fore be reusable for other CMS detector groups or indeed by groups with similar require-

ments outside of CMS. At the time of writing, the Tracker (TRACKER, 1998) subdetector

Figure 4-7. Crystal assembly workflows and the Characterisation sub-workflow.
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ristic
group has committed to the use of CRISTAL and the Hadronic calorimeter (HCAL, 1997)

group is evaluating its usage.

Following the growth and characterisation of the ECAL Barrel crystals in Production Centres

in China and Russia, assembly of the crystals with their Capsules (produced in France) and

associated support structures (alveoli) will take place in Local Centres located in Italy, the

UK and CERN. Each of the component products (crystals, electronics, alveoli) will have

their physical characteristics individually measured and recorded to facilitate calibration and

to ensure consistency of the production process (see Figure 4-5). 

Since the overall costs and time scales of ECAL crystal production must be strictly con-

trolled, the efficiency of the production process will be paramount. Quality control must be

enforced at each step in the fabrication process. The CRISTAL system must support the test-

ing of detector parts, the archival of accumulated information, controlled access to data and

the on-line control and monitoring of all production and assembly centres. 

CRISTAL needs to be both a production management and workflow management facility

that tracks products through the manufacturing, assembly and maintenance life cycle. Ulti-

mately, it will provide the as-built view to information stored during ECAL construction,

which is required by physicists as the basis for all detector-related analyses, and is capable

of providing support for other views of the construction data. 

These views include the following as examples:

• A Calibration View. Where physicists will want to view and access product characte

data for experiment calibration and event reconstruction purposes.

Figure 4-8. A workflow activity definition including Start and End conditions.

Activity Description: Transvers optical
Transmission using 12 different wavelengths.

IsActivityRepeatable: Yes

Applicable Centres: Rome, CERN

Who: ACCOS (instrument)

tmin  = 3 mn
tmax = 5 mn

Activity: Traversal Transmission

Start Conditions:
1 crystal required for this
activity to start.

Outcome:
Transmission blocks for every
position and every wavelength.

End Conditions:
Transmission@350nm >= 10%
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• A Maintenance View. Where engineers will refer to the production processes for a

bly and disassembly procedures, update information collected through mainte

operations and design modifications throughout the experiment’s lifetime.

• An Experiment Systems Management View. Where the so-called ‘slow control’ sy

can view the product production history for configuration and fault management

poses. 

In summary, the CRISTAL project aims to implement a prototype distributed engine

information management system, which will control the construction process of 

ECAL. Its specific objectives are to: -

• provide an information system to control quality in the construction of detectors

• monitor the global production process across distributed centres

• capture and store crystal data during detector production and construction

• integrate instruments used to characterise products 

• provide controlled, multi-user access to the production management system and

• provide access to engineering and calibration data for CMS users 

4.4 Design Constraints
The CERN CRISTAL project combines many of the requirements of second generation

workflow systems. This section uses the CRISTAL project as a vehicle in which to demon-

strate aspects of design constraints for scientific workflows. Firstly, the environment at

CERN is research-based and both workflow and product-related definitions tend to evolve

rapidly over time. The CRISTAL software must cater for the development of a High Energy

physics detector (CMS, 1995) which will take place over an extended period of time (1999-

2005) and whose design will naturally advance as time elapses. As a consequence of this

CRISTAL must also support long-running and potentially nested workflow activities, with

natural consequences for transaction handling.

Secondly, the construction of CMS is a one-of-a-kind process. In other words, the evolution

of workflows and product data must be allowed to take place as the production continues -

versions of workflow activities and product definitions must co-exist in the production pro-

cess for the duration of CMS construction. This is in contrast to industrial production lines
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where the process is seldom one-of-a-kind; normally the production line produces many

copies of products that follow a fixed set of repeatable processes during production. If the

sequence of processes (i.e the workflow) requires updating, then the production line is

flushed of products prior to the change taking place. In CMS, the production processes can

be changed while production continues. This implies the coexistence of products (of poten-

tially different versions) in the same production line, which could be following different

versions of a workflow. In addition, users of CRISTAL must ultimately be able to cater for

the ad-hoc definition and execution of workflows, as and when required in CMS construc-

tion. 

Thirdly, the CMS construction process is highly distributed. Production of (versions of)

CMS products will take place in areas as disparate as China and Russia, their testing will be

undertaken in Rome, CERN and the United Kingdom and assembly will largely take place

at CERN. Each of these ‘Centres’ must cater for multiple versions of evolving work

definitions in an autonomous manner but be centrally coordinated from CERN. As a c

quence of the autonomous operation of each centre and the requirement that produ

agement must follow physical product transportation, it will be necessary to pro

product ‘flow’ capability, tracked by a ‘central system’. In other words, production ac

ties can be initiated at one centre and continued at another. Therefore, data collecte

source centre must be made available at the destination centre so that the producti

can be managed without interruption. This implies that product-related data needs to 

the shipped product between centres and that a mechanism is required to resume pro

which previously had been suspended at another centre.

Finally, the data collected in the CRISTAL database must be reliably secure (since 

processes cannot be undone or redone) and available for a variety of purposes. I

words, many different users require access to the CRISTAL data from a variety of view-

points: construction engineers interpret data using an assembly-oriented view wh

physicists see the detector in terms of a set of electronically-decoded channels and m

ical engineers view the detector in terms of constituent 3-dimensional volumes align

space.

These design constraints cannot currently be satisfied by any commercial offering
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CRISTAL design team were therefore free to develop an open and flexible solution. The

team adopted an approach in which a model was developed that provided generality

through the use of meta-data, describing general structures, rather than specifying a

restricted view onto the workflow or product-specific data. This is in contrast to many

workflow solutions which take specific data and attempt to abstract to the more generic.

The particular constraints of time, evolution and flexibility quickly led to the adoption of an

object-oriented approach to product and process modeling. The result has been a detailed

UML model, presented in the next chapter.

4.5 Design Approach
Due to the specialised environment in which this research was carried out a design approach

was adopted which:

• was object-oriented in nature and supported reuse of software components

• handled the distributed nature of CRISTAL usage

• was research-based and catered for evolving user requirements

• resulted in models which were adaptable and supported system versioning

• supported the deferral of decisions on enabling technology to later in the software 

cycle

• was sufficiently flexible and ‘open’ in nature to provide interoperability with other sy

tems

During the analysis phase of the CRISTAL project it was clear that user requirements 

be difficult to specify since the product and process descriptions themselves were the 

of research and since PDM and WfM techniques had not been rigorously applied in the

ronment before. Because of these constraints a rapid prototyping (Davis et al. (1988), G

and Bieman (1991) and Lowell (1992)) philosophy was followed in constructing a ser

prototypes which were used to feedback design decisions to the user commun

approval. Rather than following a rigid phased approach to systems developmenta la

Waterfall Model (Pressman, 1992)) in which design followed analysis and preceded c

an evolutionary approach to systems development, using UML, was followed where mu

CRISTAL prototypes were produced over time and the final prototype was delivered
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step-wise fashion. In this way, each release incorporated the experiences of earlier releases

in a manner analogous to the ‘Spiral Model’ of software development suggested by B

(1988) and each release was available for verification with end-users prior to commi

being given to the next stage of prototype development. 

At the outset of the research it was clear that an object model of the users requireme

needed and that this model should capture the essence of the system description. At th

it was also clear that it would not be possible to use a fully fledged pattern-based ap

to building the object model since the users’ requirements were liable to evolve, perha

nificantly, over the period of design. In other words, it was not possible to use existing d

frameworks (or even single design patterns) as the starting-point for the developmen

overall CRISTAL object model. Rather the object model emerged iteratively follow

detailed discussion with knowledgeable end-users of each prototype’s functionality. 

In developing an object model which was sufficiently flexible to subsume design am

ments as they emerged over time, that maximised reusability of design componen

interoperability of the overall system and, ultimately, produced an adaptable model, 

necessary to study closely the structure of the model that emerged. Each change in th

was discussed with the user community and then its effect on the existing model was c

ered closely prior to its incorporation in the model. As is perhaps expected with descri

driven systems, the model that emerged developed a certain symmetry and even an 

of relative simplicity in its structure. 

As the model stabilised over time its essential structures became rooted in the funda

design of the CRISTAL system and those structures displayed an elegant symmetr

respect to the capture of description for product and process-based models. It becam

that the design approach was producing a model with repeating structures which co

abstracted into design meta-objects that captured a high level of systems description. 

completed the data model for the description-driven CRISTAL system, including m

objects, it was intended to compare the resultant structures with those proposed by t

terns research community, so that their design patterns could be enriched and improv

result of the study of description-driven systems for the integration of PDM and WfM.

following chapter describes the detail of the CRISTAL model and shows that repe

design structures (or patterns) resulted from the meta-modeling process that was em
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5Prototype Data Model

5.1 Introduction
As the CMS construction process gets under way production schemes and product specifica-

tions will continue to evolve. Clearly, these changes in definition must be folded into any

data which is derived from the construction data system. One way of achieving this is for the

system to make available a representation of itself for manipulation. A system which can

make modifications to itself by virtue of containing a description of its own computation is

called a reflective system (Maes, 1987 and Peters and Ozsu 1994). In order to inter-operate

in an environment of future systems and in order to adapt to reconfigurations and versions of

itself the CRISTAL system should adopt some aspects of reflective systems. This chapter

presents the self-describing data model that has been developed as the basis of the CRISTAL

prototypes and which provides a degree of reflection.

5.2 The CRISTAL Description-Driven Architecture
The main feature of the CRISTAL data model resulting from the use of a generic design

approach was its multi-layer architecture. Following the principles described in Section 3.2

on page 30 (and Figure 3-1 on page 31), a three-layer architecture has been developed: the

instance layer, the model layer and the meta-model layer (see Figure 5-1). The instance layer

comprises Items such as Product and Workflow Activity objects and the architectural com-

ponents which manage this layer are known as the CRISTAL Execution components. The

model layer comprises the Item classes and the associations between Item classes. Together

these constitute a model from which Items are instantiated, and which define the CRISTAL

Execution components. In addition this model layer contains ItemDescription instances

(such as Product Definitions and Workflow Activity Definitions) which are managed by an

architectural component known as the CRISTAL Specification component. (Description of

the architectural components is deferred to the next chapter which discusses the physical pro-

totype implementation of CRISTAL). 
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The meta-model layer comprises the ItemDescription classes and associations between Item-

Description classes. Together these constitute a meta-model from which ItemDescriptions

are instantiated and which define the architectural components used for specifying CRIS-

TAL.

In Figure 5-1 the Item Description pattern, of Section 3.4.2.1 on page 36, has been employed

to provide the semantic that relates the Item class (of the model layer) with the ItemDescrip-

tion class of the meta-model layer. As a consequence the pattern can also be applied to relate

an Item instance (at the instance layer) with its corresponding ItemDescription instance (at

the model layer). The multi-layer architecture, which as described in Chapter 3 forms the

basis of a description-driven system, is therefore a direct consequence of the use of the Item

Description pattern. Figure 5-2 shows this use of the Item Description pattern at the level of

collections of classes, called packages. Here a Descriptions Meta-Model of ItemDescription

classes is modeled separately from an Items Model which contains collections of Item

classes related to ItemDescription classes of the meta-model.

Figure 5-1. The CRISTAL three-layer architecture.
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Figure 5-2. CRISTAL packages in the multi-layer architecture.
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The following sections describe the CRISTAL Meta-model package and the CRISTAL

Model package in detail. The first section describes the CRISTAL Meta-Model package,

which corresponds to the meta-model layer of a multi-layer architecture (as described in

Chapter 3) including Descriptions of Products, Workflow Activities, Executors and Data

Formats. The second section describes the CRISTAL Model package (corresponding to the

model layer of a multi-layer architecture) which has been instantiated from the descriptions

in the Meta-Model package. The CRISTAL Model package contains classes of Products,

Workflow Activities, Executors and instances of Data Formats.

5.2.1 CRISTAL Meta-Model Package
All of the major aspects of CRISTAL functionality, such as product model (PBS/ABS),

workflow model (WBS), production conditions, data formats, execution conditions and

executors are specified in the form of packages (see Figure 5-3). Packages are a convenient

mechanism to partition the functionality of CRISTAL, they deal with logical subsets of the

complete CRISTAL model and are themselves collections of object classes. There are

dependencies between the packages, such as between the PBS/ABS, WBS and production

conditions packages and these are shown in Figure 5-3 by arrows connecting the packages.

It is these dependencies or assignments which provide the linkage between the object classes

Figure 5-3. CRISTAL Meta-Model Packages
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within different packages and allow integration between the PBS/ABS (or PDM-related)

world and the WBS (or WfM-related) world. Together the packages and their inter-depen-

dencies are referred to as the Meta-Model layer for CRISTAL.

The CRISTAL Meta-Model layer is composed of three main packages. The Product Graph

Meta-Model package provides semantics to describe the composition and the layout of the

detector elements, the Workflow Graph Meta-Model package defines the language to build

workflow descriptions and the Executors Meta-Model package provides semantics to

describe the different executors which are capable of carrying out a workflow activity. In

other words these three packages hold the description of ‘What is to be produced’, ‘H

should be produced’ and ‘What is going to produce it’. The reason for the separation be

these packages is so that they can evolve independently, given the different nature 

purpose. Without such a distinct separation the relationships and the dependencies b

the packages would be difficult to identify and capture. To describe the depende

between these packages, two more packages have been introduced: the Production

tions package and the Execution Conditions package. The Production Conditions pa

describes any product-related conditions pertaining to the association of a type of wo

activity to a specific type of product e.g any product type instances required as prereq

to the initiation of a workflow type instance (so-called ‘Start Conditions’). The Execu

Conditions package describes any conditions pertaining to the association of a type o

utor to a specific type of workflow activity. 

A further package, the Production Scheme Management package, has been created

how the different definitions are held and managed to provide a sequence of con

releases of the detector production specification. Finally, the Data Format Meta-Model

age has been introduced as an abstraction of all the data structures that are used in C

to collect data.

The dependencies between packages show that in CRISTAL everything is organised 

Product Definitions: the Product Graph Meta-Model is dependent on the Workflow G

Meta-Model which, in turn, is dependent on the Executors Meta-Model. Dependencie

exist between the Production Conditions package and the Execution Conditions pack

The following sections give a detailed description of the packages (and the patterns

emerge from these packages) which are essential for the integration of PDM and WfM

Production Scheme Management, the Product Graph Meta-Model, the Workflow G
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Meta-Model and the Production Conditions packages. In addition, the Data Format Meta-

Model package will also be described since similar patterns emerge from its specification.

The Executors Meta-Model and Execution Conditions package are not described since they

do not have a direct impact to the subject of this thesis i.e. the integration of PDM and WfM

systems.

5.2.1.1 Production Scheme Management Package
This package describes the elements for overall production/construction scheme manage-

ment and shows the adopted versioning policies in CRISTAL. A DetectorProductionScheme

(DPS) describes and manages the complete life cycle of all the CristalDefinitions used to

specify the sub-detector as designed. Each version of the DPS, called a DetectorProd-

SchemeProperty, contains a collection of CristalDefinitions. CristalDefinitions themselves

can be versioned so that one version of a CristalDefinition, called a CristalDefinitionProp-

erty, could be used in one or more DPS versions. A CristalDefinition becomes versioned

whenever it is modified. A DPS is versioned when a new production scheme has been

released or when a CristalDefinition is added or removed from the current DPS release. 

Each DPS version contains a list of references to CristalDefinitions but no information as to

the version of each CristalDefinition. Each CristalDefinition manages its own version history

- in other words, given the DPS version number each CristalDefinition is able to select the

proper version from its ‘history’. This allows individual CristalDefinitions to be interroga

(e.g. for version evolution) whereas in a traditional configuration management system

Figure 5-4. Production Scheme Management package

DetectorProductionScheme

name : String

DetectorProdSchemeProperty

versionNumber : Integer

1..*

1

1..*

1

CristalDefinition

identifier : Integer
name : String

1..*1 1..*1

CristalDefinitionProperty

versionNumber : Integer
documentation : String

1

1..*

1

1..*
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sioning is carried out only at the release level (i.e at the DPS level). Using the terminology

of the Version pattern of Section 3.4.2.3 on page 37, CristalDefinitions are VersionedOb-

jects and DPS is a ReleaseManager. Dynamic version handling is catered for through the use

of the Publish/Subscribe pattern as described in Section 3.4.2.4 on page 38.

5.2.1.2 Product Graph Meta-Model Package
This package describes the PBS/ABS aspects of a sub-detector as-designed - it holds all

details of all versions of the composition and layout of the designed sub-detector. The pack-

age follows the versioning strategy for all CristalDefinitions as described in the previous sec-

tion, utilising the Version pattern of Section 3.4.2.3 on page 37, in conjunction with the

Enriched Composite Item Description pattern of Section 3.5.1 on page 41. 

Each PBS/ABS instance is represented in this package as a ProductDefinition object that has

been instantiated from the ProductDefinition class. The Version pattern emerges from this

package in that a ProductDefinition class is itself a specialisation of the CristalDefinition

class and therefore it manages its own versions (i.e it has a CristalDefinitionProperty).

Figure 5-5. Product Graph Meta-Model package
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ProductDefCompositeMember

identifier : Integer
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0.. *

1

0.. *
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The Enriched Composite Item Description pattern emerges from this package in that:

• A ProductDefinition can be either Elementary or Composite in nature.

• Composite ProductDefinitions are made up of other ProductDefinitions each of whi

has a number and a location in the composite i.e. each Composite ProductDefinitio

a three-dimensional layout.

• The ProductDefCompositeMember identifies and locates a ProductDefinition in the

text of its Composite ProductDefinition. (As a result of the use of a ProductDefCom

iteMember object, the separation of PBS from ABS is no longer required in this mo

The conjunction of the Version and Enriched Composite Item Description patterns pro

great flexibility in versioning products. Firstly, the layout of a composite product ca

amended without changing its composition in a single product version. Secondly, the n

of members of a composite product can be changed without affecting the product to w

refers. Thirdly, versioning a product definition does not affect the different composit

which it may be a constituent.

The flexibility in versioning that results from the use of the Version and Enriched Comp

Item Description patterns maximises the reusability of ProductDefinition instances and

vides a powerful environment for handling complexity. For example the ECAL Barrel 

detector is composed of 36 SuperModules, which are themselves composed of four m

(of different types) and 170 front-end electronic units, each containing 10 channel

define this set-up the following seven product definitions are required:

• SuperModule

• ModuleType1, ModuleType2, ModuleType3 and ModuleType4

• Front-End Electronic Unit

• Channel

These seven product definitions together with the number of their occurrences in eac

position will be sufficient to describe this ECAL example and, once computed, to prod

Bill of Materials comprising a tree of four levels and 61,344 nodes (i.e 36 * [4 + 170 *

nodes).

The role of the CompositeProductLayoutDef object in this package is to separate the 

tion of compositions from any physical representations of the constituent products 
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composite product. For example, a module of type1 is composed of 50 sub-modules (10 each

of five different types). The location of each individual sub-module, in the context of this

module, is independent of the position of the module in its SuperModule. The design of the

sub-modules can therefore evolve provided that the overall module dimensions remain

unchanged. (If the overall dimensions of the module change, then clearly the change must

propagate to the SuperModules in which the module is constituent). This provides consider-

able design flexibility in an environment in which sub-detector detailed specification is

research-led and apt to change with time.

5.2.1.3 Workflow Graph Meta-Model Package
This package describes the WBS aspects of a sub-detector as-designed - it holds all details

of all versions of the workflow activities and layouts required to construct the sub-detector.

Like the PBS/ABS package described above, this package follows the versioning strategy for

all CristalDefinitions as described earlier, utilising the Version pattern of Section 3.4.2.3 on

page 37, in conjunction with the Enriched Composite Item Description pattern of

Figure 5-6. Workflow Graph Meta-Model package
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Section 3.5.1 on page 41. Consequently, exactly the same conclusions can be drawn, from

this package, regarding complexity handling and reusability of process definitions.

This package differs from the Product Graph Meta-Model package in the interpretation of

the CompositeActivityDefProperties and the CompositeActivityLayoutDefs objects (as

opposed to the CompositeProductDefProperties and the CompositeProductLayoutDef

objects). Whereas the CompositeProductDefProperties define the composition of a product

definition, here the CompositeActivityDefProperties defines the sub-processes which are the

constituents in each composite activity. Also the CompositeActivityLayoutDefs of this pack-

age describe how the constituent workflow elements (workflow activities, splits and joins)

are connected in a particular workflow activity type whereas the CompositeProductLayout-

Defs of the Product Graph Meta-Model package describes the position of a product defini-

tion in its composite.

5.2.1.4 Production Conditions Package
The Production Conditions package provides for the integration of the Product Graph and

Workflow Graph Meta-Model packages. This is achieved by adding a directed association

between an instance of a ProductionDefinition to an instance of an ActivityDefinition. This

association effectively captures the conditions, in an object called ProductionConditions,

required for an instance of the WBS to be applied to a specific instance of the PBS/ABS. 

A version of these ProductionConditions (called a ProductionCondProperty, following the

Version pattern) comprises StartConditions, EndConditions, ApplicableCentres and Com-

mands. StartConditions are the required individual product instances for the execution of (an

instance of) a workflow activity definition on a composite product. For example, a sub-unit

is constructed from a crystal and a capsule which are glued together to form the sub-unit. The

StartConditions for the gluing process are therefore the instances of the crystal and the cap-

sule. As the result of the execution of a workflow activity on a product a collection of data

may be stored. To ratify the outcome of the workflow activity execution, EndConditions (or

tolerances) are compared to the collected data. If the data lie within tolerances the following

activities in the workflow are enabled, if not the process stops awaiting a decision on the

course of action for the product. ApplicableCentres are simply the valid locations for a work-

flow activity to take place on a product. Commands are used when the executor of the work-

flow activity is a physical instrument and are the list of instructions required by that

instrument for the execution of the workflow activity on a product.
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As can be seen in Figure 5-7, the Production Conditions Package makes heavy use of the

CompositeMember construct of the Enriched Composite Item Description pattern (see

Figure 3-10 on page 42). The CompositeMember object allows the identification of a spe-

cific instance of a product from a collection of those products in a composite product. For

example, a sub-module is composed of 10 sub-units each located in a position in a mechan-

ical support structure (called an alveoli). The order in which a particular sub-unit is placed

in the sub-module, and the position in which the sub-unit is located in the sub-module is han-

dled by the StartConditions for the ‘Place sub-unit in sub-module’ activity and these c

tions refer to individual CompositeMembers. Therefore, it is possible to determine no

the composition of a product but also how it was populated with constituent products

same principle is used to identify ProductionConditions for the execution of a specific w

flow activity on a product when multiple instances of the same activity are constituent

composite activity. This use of the Enriched Composite Item Description pattern provides

deep integration between the PBS/ABS (or PDM-related) world and the WBS (or WfM-

related) world and is one of the major unique contributions of this research.

The isolation of the production conditions for the execution of (an instance of) a sp

workflow activity on an (instance of an) identified product allows for maximising reus

Figure 5-7. Production Conditions package
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definitions in the CRISTAL application. For example, in ECAL there are 34 different types

of crystals and each crystal type may follow a common workflow process. The model is flex-

ible enough to capture different ProductionConditions for the execution of each instance of

a workflow process on each instance of a crystal type. 

Furthermore, this isolation allows for asynchronous versioning of product definitions and of

workflow activity definitions. That is, product definitions can be versioned separately from

workflow activities and connections between asynchronous versions are made only when an

instance of a workflow activity definition is applied to an instance of a product definition for

construction, according to some ProductionConditions. The detail of this mechanism is

explored in later sections of this chapter.

The technique of assigning application-specific semantics to the association between product

instances and process instances can be generalised for other applications. For example, the

association of a maintenance workflow activity to a product will require quite different con-

ditions to be captured than when the detector was constructed. Also, the association of a cal-

Figure 5-8. DataFormat Meta-Model package
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ibration workflow activity to a product would require calibration-specific conditions to be

captured. In other words, the identified association between the process and product descrip-

tion worlds carries rich semantics. It allows many other links to be made between aspects of

the overall CRISTAL data model: the same mechanism can be used to assign agents to work-

flow activity definitions for the purposes of enactment or the assignment of agents to product

definitions for the purposes of resource management.

In the Homomorphism pattern, of Section 3.4.2.2 on page 37, the semantics in the associa-

tion between two ItemDescriptions dictates the semantics in the association between two

Items. For example, the description of the production conditions which associate a Product

Definition with a Workflow Definition will dictate the production conditions to be applied

when a Workflow instance is executed on a Product instance.

5.2.1.5 DataFormat Meta-Model Package
This package describes all the data structures that are used in CRISTAL to collect data. Data

format definitions (i.e either data record or field definitions) are kinds of CristalDefinitions

which can, of course, be versioned. They can also be composite in nature and the Compos-

iteMember construct can be invoked again to uniquely identify members in the composition

in exactly the same manner as in the preceding sections. Therefore a further use of the

Enriched Composite Item Description and the Version patterns can be seen in the DataFor-

mat Meta-Model package. Furthermore, use of the Enriched Composite Item Description

pattern provides an abstraction of the familiar C++ typedef structure, since a single FieldDef-

Property can be used with different names in the same data format composition.

5.2.2 CRISTAL Model Layer
Just as for the CRISTAL Meta-Model, the CRISTAL model has been partitioned into pack-

ages: the Product Tree Model and Workflow Tree Model packages and the Production Man-

agement package, which are explained in detail in the following sections. As explained in

Section 3.2 on page 30 and as shown in Figure 5-1, the CRISTAL Model is derived from the

CRISTAL Meta-Model through the use of the Item Description pattern.

Section 3.4.2.2 on page 37 detailed the Homomorphism pattern and indicated that it is used

in the generation of a model from its meta-model. In Figure 5-9 the Homomorphism pattern

emerges in that the Product and Workflow Graph Meta-Model packages represent the Item

Description elements and the Product and Workflow Tree Model packages represent the Item
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inking

 graph

on of
elements (see Figure 3-4 on page 36). Similarly, the Production Conditions packages repre-

sents the ConditionDesc element of this figure and the Production Management package rep-

resents its Condition element. It is the responsibility of the ProductionManagement package

to establish when versions of product and workflow activities should be evolved and to carry

out that evolution.

5.2.2.1 Product Tree Model
The Product Tree Model package is constructed from the Product Graph Meta-Model pack-

age by the navigation of an Enriched Composite Item Description pattern. During construc-

tion of the product tree, product nodes are linked to parent nodes by firstly associating

Products with their Product Definitions, secondly by locating the associated parents in the

graph and the parents’ corresponding node locations in the product tree and finally by l

a selected parent node to the original product node.

Consequently the detector ‘as-built’ tree is constructed from the detector ‘as-designed’

and the ‘Bill Of materials’ required for engineering purposes results from the navigati

Figure 5-9. The relationship between the CRISTAL Meta-Model and Model.
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Figure 5-10. Product Tree model
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the graph and from instantiating and executing the tree construction process. The Tree pat-

tern that emerges is, in fact, an enriched tree (see Figure 5-10) and holds more semantics than

the complex tree of Figure 3-3 on page 35 in that, as was found for a normal tree:

• A Product can be either Elementary or Composite in nature. 

• A CompositeProduct is made up of other Products each of which has a number an

location in the composite i.e. each CompositeProduct has a three-dimensional layo

but in addition:

• The CompositeProductMember identifies and locates a Product in the context of its

Composite Product. 

The role of the CompositeProductLayout object in this package is to capture the physic

resentations of the constituent products in the composite product. 

Since the ‘as-built’ tree is established only during construction when products are as

to composite products, there is, at any one time, only a single active version of the p

composition. This version of the product composition is determined when the comp

product is instantiated according to the most recent version of its CristalDefinition. C

quently, the Product Tree Model package differs from the Product Graph Meta-Model 

age since in the latter ProductDefinitionProperties are used for versioning and these 

required in the former. In other words, the meta-model caters for all versions of produc

initions, but there is only a single product tree whose nodes can be derived from dif

versions of the same product definition.

5.2.2.2 Workflow Tree Model
The structure and construction of the Workflow Tree Model package and its relatio

with the Workflow Graph Meta-Model package is exactly analogous with those of the P

uct Tree Model and Product Graph Meta-Model packages. The CompositeActivityLa

object captures the layout of individual activities in their parent (composite) activity - i.e

layout of CompositeActivityMembers in the corresponding CompositeActivity.

This package differs from the Product Tree Model package in the interpretation of the

positeActivityMember and the CompositeActivityLayout objects (compared to the Com

iteProductMember and the CompositeProductLayout objects). Whereas 

CompositeProductMember defined the composition of a product, here the Composite

ityMember defines the sub-processes which are the constituents in each composite wo
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activity. Also the CompositeActivityLayout of this package describes how the constituent

workflow elements (workflow activities, splits and joins) are connected in a particular work-

flow activity whereas the CompositeProductLayout of the Product Tree Model package

describes the position of a product in its composite.

As with the Product Tree Model there is no need for explicit versioning objects to be shown

on the Workflow Tree Model. However, the workflow tree is not established at construction

time (as was the case for the product tree) rather it is established when products are first

instantiated and is thereafter amended. This amendment happens when it is deemed appro-

priate for a new version of the workflow to become active. This is carried out by the Produc-

tionManagement package which has information on the current state of both products and

activities and can determine when a new version of an activity should be invoked, as

explained in the following section.

5.2.2.3 Production Management Package
The Production Management package carries out the physical integration of products and

workflows. A product and its associated workflow activities manage their own ‘state’ 

records being stored in a database of the progress a product makes through its workflo

product and workflow management is kept separate and only a Product Manager (PM)

performs their integration. The PM uses the present state of products and workflow ac

with the prevailing production conditions to determine the next step that a product ta

its workflow.

In effect the Product Manager acts like a mediator (as defined in the Mediator patte

Gamma et al. (1995)) liaising with both workflow activity and product objects, which, th

selves, have no knowledge about each other’s state. By using the Mediator pattern, wo

Figure 5-11. Workflow Tree Model package
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activity objects are decoupled from product objects thereby allowing interaction with these

objects to be handled separately through a single ‘mediator’ object. By so doing the pr

for interaction with both workflow activity and product objects is simplified and only imp

mented through the mediator object.

Figure 5-13 shows an enriched Homomorphism pattern replacing the Condition elem

Figure 3-4 on page 36 by a Mediator class. This enriched pattern describes both the re

ship between the Meta-Model and Model layers of CRISTAL, through the familiar 

Description pattern and the role of the PM as the mediator between Items of the Mode

(in this case between products and workflow activities).

The role of the CRISTAL execution component introduced in the three-layer mod

Figure 5-1 is to manage Items which have been instantiated from ItemDescriptions, us

Item Description pattern. The PM mediates between Items, as described above, and th

it acts as the CRISTAL execution component in the multi-layer model.

5.3 Conclusions
The design of the CRISTAL prototype was dictated by the requirements for adaptability

extended time scales, for schema evolution, for interoperability and for complexity han

and reusability. These constraints meant that a description-driven solution was requi

Figure 5-12. Production Management Package
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Figure 5-13. Enriched Homomorphism pattern
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adopting a description-driven design approach, a separation of object instances from object

descriptions instances was needed. This abstraction resulted in the delivery of a meta-model

as well as a model for CRISTAL. Having completed the data model for the description-

driven CRISTAL system, including meta-objects, the resulting structures were compared

with those proposed by the patterns research community. As a result existing design patterns

could be enriched and new patterns proposed. These patterns are sufficient to cater for the

integration of PDM and WfM.

In conclusion to this chapter, it is apparent that the meta-object or description-driven

approach handles system complexity by promoting object reuse, i.e. the same meta-object

can be used to build different compositions, and by translating complex hierarchies of object

instances into graphs of object definitions. A meta-model of the schema can be stored in the

database which describes the actual objects and allows changes to be made without the need

to alter the database schema itself. This also makes it possible to store different versions of

objects concurrently in the same database. A model can be derived from this meta-model

which is sufficient to perform the PDM-WfM integration. It is a reflection on the power of

the data model produced to provide this functionality that only a very small set of (enriched)

design patterns are required to specify the complete CRISTAL meta-model and instantiated

model.
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6Prototype Implementation

6.1 Introduction
Designing and implementing large-scale software systems, especially for the research com-

munity, is often best achieved through the efforts of a small, well-motivated group of soft-

ware engineers working to tight deadlines and in close contact with the prospective end-users

of the system. The prototype studied in the present work was built by a group of software

engineers and evolved over a period of months after being designed and coded over a period

of 30 months. This chapter describes the work undertaken in implementing functioning pro-

totypes of the CRISTAL system and identifies the contribution of the author in this work. It

also describes some of the technologies used in implementing the prototype, describes its

architecture and how it was evaluated and tested with the end users and closes with a discus-

sion on the relevance of the prototype to the user community.

6.2 Project Organisation
The user motivation for the CRISTAL development came from a CMS Technical Note (Leb-

eau, Lecoq and Vialle, 1995) in which the need for a database was identified ‘to keep t

tory of each (assembled CMS ECAL detector) unit, to have a very high degre

security...and to facilitate all the necessary selections and analyses of stored data’. Th

base envisaged was required to be distributed geographically over several continent

up to 1 Terabyte in size, to provide schema evolution facilities, to be object-oriented in n

and to be accessible with rapid response over time scales lasting several years to ph

who may not be experts in computing. In addition, the database system had to be inte

with an automatic measuring instrument, which performed a series of defined tasks on 

detector components (Peigneux et al., 1997). As no such database system had been e

hitherto by physicists, the user requirements for system specification were difficult to 

Furthermore, the extended time scales of the project required that the system be cap

repeated updating and constant review. Flexibility was clearly the central principle on w

the system was to be developed and close liaison with the end-users was paramount

of the speculative nature of its development.
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The final CRISTAL prototype system was analysed, designed and developed over a period

of three years (from early 1996 to 1999) by a group of engineers working at CERN, Geneva

and, nearby, at LAPP, Annecy. The group was, on average, made up of seven members

during this period of time: a project leader, a software designer, two experienced software

engineers and three students. A further two developers worked part-time on developing the

system. The author was involved from the early stages of system analysis, through detailed

system design, technology evaluation and system architecture specification to the final

implementation and coding of a subset of the prototype system. 

The author was largely responsible for developing the meta-object design which underpins

the CRISTAL data model. The author introduced the idea of integrating the product and pro-

cess model using common design artifacts (or ‘patterns’) and specified a series of pac

as described in Chapter 5, for the CRISTAL Data Model. The author also conducted an

uation of object-oriented technologies before advising on a set of products and appr

which were adopted in the architectural design of the CRISTAL prototypes. In particula

author evaluated the CORBA and ODBMS standards. The author was involved in ver

each major design decision in the implementation of CRISTAL and in the selection of

able enabling technology. As a consequence of this it was appropriate that the author

have been responsible for the implementation of much of the prototype code includin

Product Manager, the Data Duplication Manager, the Instrument Agent and the P

Browser. The practical implementation of the Product Manager embodies aspects b

product data management and workflow management and is the vehicle for their integ

in CRISTAL. Its delivery is central to the operation of the CRISTAL prototype and its fu

tionality is detailed later in this chapter.

6.3 Underlying Technologies
The CRISTAL system uses industry-standard commercial products whenever poss

minimise support problems and to facilitate systems integration. Further functionality is

vided, where needed, in a manner which maximises the flexibility of the prototype. The

ucts and workflow activity data are stored in a commercial object-oriented database pr

Objectivity (Objectivity, 1998). Orbix (Orbix, 1998), an implementation of CORBA (Co

mon Object Request Broker Architecture, OMG 1992a), is used for communication be

the different kinds of distributed CRISTAL components, e.g. the database, the instru
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which automatically measure the properties of sub-detector parts. Users access CRISTAL

through Java (Java, 1998) GUI applications.

6.3.1 CORBA

6.3.1.1 The CORBA Standard from OMG
The Common Object Request Broker Architecture (CORBA), is the Object Management

Group’s answer to the need for interoperability among the rapidly proliferating number of

hardware and software products available today. Simply stated, CORBA allows applications

to communicate with one another no matter where they are located or who has designed them

(see Figure 6-1). CORBA 1.1 was introduced in 1991 by the Object Management Group

(OMG) and defined the Interface Definition Language (IDL) and the Application Program-

ming Interfaces (API) that enable client/server object interaction within a specific implemen-

tation of an Object Request Broker (ORB). CORBA 2.0, adopted in December of 1994,

defines true interoperability by specifying how ORBs from different vendors can interoper-

ate.

The (ORB) is the middleware that establishes client-server relationships between objects.

Using an ORB, a client can transparently invoke a method on a server object, which can be

on the same machine or across a network. The ORB intercepts the call and is responsible for

finding an object that can implement the request, pass it parameters, invoke its method, and

Figure 6-1. The OMG Object Management Architecture (OMA)

Non-standardized
application-specific  interfaces

Vertical
domain-specific interfaces

Horizontal
facility interfaces

Application Objects Domain Objects CORBAfacilities

General service interfaces

CORBAservices

Object Request Broker
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return the results. The client does not have to be aware of where the object is located, its pro-

gramming language, its operating system, or any other system aspects that are not part of an

object’s interface. In so doing, the ORB provides interoperability between applications on

different machines in heterogeneous distributed environments and seamlessly interconnects

multiple object systems. 

In fielding typical client/server applications, developers use their own design or a recognized

standard to define the protocol to be used between the devices. Protocol definition depends

on the implementation language, network transport and a dozen other factors. ORBs simplify

this process. With an ORB, the protocol is defined through the application interfaces via a

single implementation language-independent specification, the Interface Definition Lan-

guage (IDL). ORBs provide flexibility - they let programmers choose the most appropriate

operating system, execution environment and even programming language to use for each

component of a system under construction. More importantly, they allow the integration of

existing components. In an ORB-based solution, developers simply model the legacy com-

ponent using the same IDL that they use for creating new objects, then write ‘wrapper

that translates between the standardized bus and the legacy interfaces. 

CORBA is a step on the road to object-oriented standardization and interoperability.

CORBA, users gain access to information transparently, without them having to know

software or hardware platform it resides on or where it is located on an enterprises' ne

Being the communications “heart” of object-oriented systems, it is claimed that CO

brings true interoperability to today's computing environment. 

The key to understanding the structure of the CORBA architecture is the Reference M

which consists of the following components:

• the ORB, which enables objects to transparently make and receive requests and 

responses in a distributed environment. The ORB is the foundation for building app

tions from distributed objects and for interoperability between applications in hetero

neous and homogeneous environments (OMG, 1992a).

• Object Services, a collection of services (interfaces and objects) that support basic

tions for using and implementing objects. Services are necessary to construct any d

uted application and are always independent of the application domains. For exam

the Life Cycle Service defines conventions for creating, deleting, copying and mov
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objects; it does not dictate how the objects are implemented in an application. A specifi-

cation of an Object Service usually consists of a set of interfaces and a description of the 

service’s behaviour. The syntax used to specify the interfaces is the OMG Interface

nition Language (IDL). The semantics that specify a service’s behaviour are, in gen

expressed in terms of the OMG Object Model. The OMG Object Model is based on

objects, operations, types and subtypes. It provides a standard, commonly understo

of terms with which to describe a service’s behaviour. The following Object Service

specifications are now available: Naming, Event, Persistent Object, Life Cycle, Con

rent Control, Externalization, Relationship, Transaction, Query, Licensing Property,

Time, Security, Trading, Collections. Details about these services can be found in O

(1994).

• Common Facilities, a collection of services that many application may share, but w

are not as fundamental as the Object Services. For instance, a system manageme

electronic mail could be classified as a Common Facility. Information about Commo

Facilities can be found in CORBAfacilities: Common Facilities Architecture (OMG, 

1993).

• Application Objects, which are products of a single vendor or in-house developmen

which control their interfaces. Application Objects correspond to the traditional notio

applications, so they are not standardized by OMG. Instead, Application Objects co

tute the uppermost layer of the Reference Model.

6.3.1.2 Orbix: a CORBA implementation for the CRISTAL prototype
Orbix from IONA technologies is the most popular implementation of CORBA. The O

product family offers seamless standards-based integration of software from desk

server, mainframe to web browser. Orbix and OrbixWeb are C++ and Java-based C

application development and deployment products. Orbix comprises all the CORBA 

tionality, as well as Microsoft COM integration, naming services, and firewall traversal f

tionality (Orbix, 1998). 

Most of the CORBA Object Services have not been implemented by IONA. In particu

the time the CRISTAL prototype was designed, the event, relationship and lifecycle se

were not supported by Orbix. Consequently, only the Orbix ORB and Naming Service

been used in the prototype implementation.
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6.3.2 Object Database Management System

6.3.2.1 The ODMG standard
According to the Object Database Management Group (ODMG) an Object DataBase Man-

agement System (ODBMS) is a database management system that integrates database capa-

bilities with object-oriented programming language capabilities (Cattell, 1994). An ODBMS

makes database objects appear as programming language objects, in one or more existing

programming languages. The ODBMS extends the language with transparently persistent

data, concurrency control, data recovery, associative queries, and other database capabilities.

The primary goal of ODMG is to put forward a set of standards allowing an ODBMS cus-

tomer to write portable applications, i.e., applications that could run on more than one

ODBMS product. The data schema, programming language binding, and data manipulation

and query languages must be portable.

The major components of the ODMG architecture are:

• Object Model: The common data model to be supported by ODBMSs. ODMG has 

the OMG Object Model as the basis for this model. The OMG core model was des

to be a common denominator for object request brokers, object database systems,

programming languages, and other applications. In keeping with the OMG Architec

ODMG has designed an ODBMS profile for their model, adding components (e.g., 

tionships) to the OMG core object model to support their needs.

• Object Specification Languages: One is the object definition language, or ODL, to d

guish it from traditional database data definition languages, or DDLs. ODMG uses 

OMG interface definition language (IDL) as the basis for ODL syntax. Release 2.0 

another language, the object interchange format, or OIF, which can be used to exc

objects between databases, provide database documentation, or drive database te

• Object Query Language: ODBMS defines a declarative (nonprocedural) language 

querying and updating database objects. The relational standard SQL has been us

the basis for OQL, where possible, though OQL supports more powerful capabilitie

• C++ Language Binding: ODMG specifies how to write portable C++ code that man

lates persistent objects. This is called the C++ OML, or object manipulation langua

The C++ binding also includes a version of the ODL that uses C++ syntax, a mecha

to invoke OQL, and procedures for operations on data-bases and transactions.
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• Smalltalk Language Binding. ODMG defines the binding in terms of the mapping 

between ODL and Smalltalk, which is based on the OMG Smalltalk binding for IDL

The Smalltalk binding also includes a mechanism to invoke OQL, and procedures 

operations on databases and transactions. 

• Java Language Binding.ODMG defines the binding between the ODMG Object Mo

(ODL and OML) and the Java programming language as defined by Version 1.1 of 

Java_ Language Specification. The Java language binding also includes a mechan

invoke OQL, and procedures for operations on databases and transactions.

With an ODMG compliant ODBMS it is possible to read and write the same database

C++, Smalltalk, and Java, as long as the programmer stays within the common subset

ported data types. Unlike SQL, ODBMS data manipulation languages are tailored to sp

application programming languages, in order to provide a single, integrated environme

programming and data manipulation.

6.3.2.2 Objectivity: an ODBMS for the prototype implementation
Objectivity/DB is a distributed ODBMS which manages transparently data to high

applications (Objectivity, 1998). Objectivity/DB integrates easily with application softw

and allows users to directly store and manage objects through standard language in

including C++, Smalltalk and SQL using traditional programming techniques and t

Objectivity/DB has recently proposed a limited Java binding which they intend to exten

improve in the next releases of their software. 

Objectivity/DB partially complies to the ODMG standard and the current 5.1 version ha

data replication across Local Area Networks (LAN). The choice of Objectivity/DB for

prototype implementation has been dictated by the need to conform to the CERN stan

sation procedure.

6.4 Prototype System

6.4.1 Overall System Architecture
Essentially the CRISTAL system provides the ability to record and track changes in pr

and workflow definitions for a large-scale engineering environment and for versions of 

definitions to be supplied to remote centres for instantiation. It also provides the abi

execute instances of these definitions at centres and to record the outcomes of the as

workflow activities (McClatchey et al., 1997). In addition, the system logs a histor
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‘events’ (or significant occurrences) as they occur for each individual product instantia

All product data that is accumulated at the centres is highly volatile in nature. In other w

workflows are often executed ‘once-off’ and cannot be repeated or undone. The system

therefore provide reliable local capture of data and replication of that data to a secure 

store. The central store therefore provides a snapshot of the status of the sub-detec

struction. Furthermore, to optimise technical resources centres have responsibilities f

rying out specific tasks - workflows can therefore be split between centres for executio

products must accordingly be moved between centres. Each centre must be capable o

alone data gathering, so that overall production is not dependent on inter-centre net

and each centre must be provided with a minimal set of resources (e.g disk space, m

CPU, instruments) to minimise centre costs.

A CRISTAL system comprises one or more data gathering centres, each of which is feder-

ated into the system (Bazan et al., 1998). These centres are a (single) Central Syste

(one or more) Local Centres in which the CRISTAL software will run. CRISTAL softw

Figure 6-2. Multi-Centre Architecture of CRIStAL
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runs at every centre (either production, assembly or test centres). It is not feasible to store all

of the data redundantly at all sites since the approximate size of the main repository at CERN

will total around 1 TB. However, production sites also have local repositories which must

store only the data belonging to the products that are currently located at that Centre (see

Figure 6-2). When products are shipped, the associated data migrate between the sites. 

The CRISTAL system uses a set of roles (e.g. Coordinator, Centre Supervisor, Operator,

Physicist) to define user access to the software and data. The overall system Coordinator,

located at the Central System, provides the product and workflow definitions for a version

of the sub-detector construction scheme. New versions of product and workflow definitions

are defined centrally at CERN and are farmed out to each Centre by the Coordinator. Differ-

ent centres of one sub-detector are coupled very tightly because they are part of the same con-

struction scheme specification. If two centres can carry out the same workflow activity on

the same product type the construction scheme specifications must be identical since that is

the only way to ensure the integrity of the sub-detector. It is for this reason that releases of

the construction scheme specification are provided centrally and can be edited by only one

person (the Coordinator) at a given time. 

The sub-detector construction scheme is supplied to each Local Centre where it can be

applied by the (local) Centre Supervisor. Products of a given definition follow a series of

workflow activities (of a given definition) which are performed by workflow executors. Each

Local Centre will have a set of Instruments defined in the database in terms of the commands

that each instrument uses and the data formats expected as outcomes from the execution of

workflow activities by instruments (Auffray et al., 1998). Workflows are executed either by

Instruments, by Operators or by automatically launched User-Provided Code. Should the

outcome of a workflow execution be non-conformant then the Centre Superviser is respon-

sible for taking appropriate exceptional action (such as product rejection, workflow activity

re-execution or schedule a specific ad-hoc workflow). Physicists (who may be distributed

geographically) access only the Central System and perform analyses on the accumulated

product-specific data that have been gathered (at outlying centres) during the construction

process. All workflow executors (e.g. Operators) have, consequently, a process-centred view

of production whereas Physicists have a product-centred view of production and the system

must provide the ability to view construction from both standpoints.
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Figure 6-2 also shows the database architecture selected for CRISTAL. It is based on the fed-

erated database concept in which multiple autonomous databases co-operate. The Central

database holds the federation configuration files and any changes in the schema take place

centrally and are dispatched to the Centres via a small, specification database (the Configu-

ration DB). Remote Centres must also be allowed to continue data gathering even when the

network connection to the central database is down. Data is duplicated from the Centres to

the central database when network connections allow. Once written into the central database,

the data is thereafter extracted by read-only processes running centrally. Data extraction

takes place only at the central database. One example of accessing the construction database

is for the extraction of sub-detector calibration data. 

6.4.2 Local Centre Architecture
Figure 6-3 shows the software architecture of a Local Centre. The software comprises a set

of Instruments and Instrument Agents, a set of User-Provided Code Agents, a set of Product

Managers for handling all data to/from the database, a Local Centre Manager (LCM) which

supervises the data gathering in a centre, a set of Desktop Control Panels (DCPs) which

handle user interaction with the system and a Data Duplication Manager which handles all

duplication of data between the Local Centre and the Central System (for secure back-up).

The Desktop Control Panels (DCP) are interpreted Java (Java, 1998) code, which provide the

user interface to CRISTAL (see Figure 6-3). By swiping the barcode of an unique product

Figure 6-3. The software architecture of a Local Centre
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the Operators are guided, via the DCP, through the possible workflow activities that the prod-

uct can follow and are instructed to carry out the corresponding tasks on the swiped product.

Each instrument in the Centre has an associated Instrument Agent which receives commands

from the operator, via the corresponding DCP and Product Manager. The Instrument Agent

communication protocol is ASCII based and is implemented either using Orbix or using a

sockets interface driver depending on the instrument’s computing capabilities. The me

ments from the instrument are converted by the Instrument Agent from ASCII into an o

based format, that the Product Manager can use to store in the database. 

6.4.3 The Product Manager
Product Managers (PM) provide the mechanism by which products are tracked th

workflows. They manage concurrency of workflow activity executions, they manage

storage and carry out all book-keeping of events. Any significant occurrence that happ

a product in a workflow is recorded by its PM which effectively keeps track of the ‘stat

the product in production. As the PM handles all database activity for specific product

DCPs are protected from any changes occurring in the database schema. As a conse

the PM lies at the heart of the CRISTAL system and controls access to versions of p

and process data. It is responsible for the application of any changes to products and

flows resulting from updates of the centrally-defined construction scheme i.e it handl

aspects of dynamic changes in workflow execution. 

As stated in Chapter 5 the PM is an implementation of the Mediator pattern of Gamma

(1995). In practice, this means that the product (PDM) and process (WfM) informatio

be managed separately but can be combined by the Mediator process which appear

nally as a single entity. Product and process data are stored as database objects, ma

the PM. All events associated with these product and process objects are also stored in

nological order as database objects (the so-called ProductionEvents of the Production

nentData). The PM interrogates the database for product and process ‘state’ informati

combines this with the ProductionConditions to determine the next viable workflow a

ties (including ‘shipping’ requests) that can be performed on the product under con

ation. The PM data model is shown in the Production Management package of Figure

Not only does the PM manage static product and process information, it also handles

ing product and process information. When a new release of the product specifi

becomes available at a centre, the PM will compute when and how the change can be a
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Changes can be of different types (e.g product, workflow activity, data format) and as a

Mediator the PM will forward the handling of the change to the appropriate database object.

As a consequence of its role in determining when a change can be applied, it is possible for

products of the same definition to be following quite different versions of the production

scheme at any one time in a centre. 

It is the responsibility of each products’s PM to keep track of the product in its workf

Products can move between centres, so PMs in both the source and destination cent

be able to follow the same workflow i.e to suspend and resume workflow activities 

products are shipped between centres. Products are shipped between centres by th

and the management of ‘Orders’. These orders are specified at the Central System 

Coordinator) and contain a required number of products (of one product definition) an

source and the destination centre names. Orders are dispatched to centres and m

locally by the LCM. At the source centre orders are filled when the product’s PM determ

that the next workflow activity cannot be carried out at the source centre and the p

needs to be shipped. The production for that product is then suspended and only re

when a PM at the destination centre determines that the next workflow activity can be c

out at the destination centre. It is the responsibility of the LCM at the destination cen

Figure 6-4. The Production Management package, showing the Product Manager.
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provide the environment in which suitable PMs are launched, following reception of an

order.

The Product Manager has been implemented as a CORBA object using the CORBA lifecycle

service. In its role as manager of the Local Centre the LCM manages the life cycle of each

PM instance, including when a product is physically transported from one centre to another

(‘shipped’).

6.4.4 Prototype Evaluation.
To ensure that the requirements of the CRISTAL user community were being adeq

captured and ultimately catered for, it was essential to have user involvement in every

of the CRISTAL development. Therefore at the outset of the analysis, user commitme

established for analysis, design, implementation and testing. This included, by definitio

evaluation of the system design and of each ‘prototype’ that was constructed. 

Due to the research nature of the project, and particularly since new technologies were

evaluated and integrated for CRISTAL, two prototypes were developed. The initial p

type was essentially a ‘throw away’ prototype, developed in the first year of the projec

very limited functionality to:

• evaluate the ODBMS and CORBA technologies

• allow training in the use of UML and Java and

• to help in establishing and verifying user requirements.

• to evaluate a ‘rapid prototyping’ design approach.

The first prototype was based on a simplified data model which allowed the descript

products and the capture of product-related characteristics but did not cater for WfM

bilities. A basic UML model was constructed and a ‘rough and ready’ system was ra

implemented. The prototype was built using Objectivity V4.0 and Orbix Version 2.1 and

gramming was in C++ and Java JDK 1.1. It was successful in terms of providing the n

sary experience in the use of UML, Java, Orbix and Objectivity and in providing a too

exploring detailed user requirements. The first prototype established a set of basi

requirements (both mandatory and desirable) which were then used as the starting-p

the development of the later, working prototype.
Page 93



Prototype Implementation

en cap-

, the

kflow

RI-
The later prototype was developed over the second and third years of the project and was

delivered as a series of evolving versions. By this time the enabling technologies were well

understood and the required user functionality could be implemented in a step-wise fashion.

In delivering these prototype versions, a form of Spiral Model (Boehm 1988) development

approach was followed in that the users were consulted for new requirements and a risk anal-

ysis was carried out prior to the development of each new prototype version. This working

prototype was then tested by the users and further improvements emerged through evaluation

of its functionality. These new requirements provided the input to the next cycle of prototype

development (or the next loop in the spiral model). This iterative or evolutionary develop-

ment process continued until there was convergence of the prototype, after a number of pro-

totype versions, with the required and desirable functions of the user environment. The final

prototype was delivered early in 1999 to the ECAL user community. The prototype was built

with Objectivity version 5.1, Orbix Version 2.3 and Java JDK 1.1.7 and Swing.

6.4.5 Prototype Usage and Tests
As proof of the prototype, a number of ECAL detector crystals were made available for char-

acterisation (i.e. measurement, testing and pre-assembly). This sample of over 400 pre-pro-

duction crystals was used to evaluate the functionality and performance of the final

prototype. Over a period of three months, these crystals were characterised while the proto-

type evolved through several development cycles (or loops in the Spiral Model). In total

eight versions of amended process specifications were released during this period. Each

release provided greater functionality and/or greater performance than the previous release

as demanded by the user community. Due to the description-driven nature of the prototype,

the design of the system was robust enough to cope with the rapid prototyping that resulted

from evolving user requirements, which naturally emerged as the prototype was used in ear-

nest.

Allowing description (of products) to be captured and managed separately from instances of

those descriptions has provided the complexity handling required by the user community.

The prototype system had to handle only 400 product-specifications to describe the detector

‘as-designed’ rather than the 250,000 products that would otherwise have to have be

tured by a conventional PDM tool in order to provide the bill of materials. In addition

description-driven nature of the prototype has facilitated the reuse of product and wor

definitions. For example, workflow activity definitions have been defined once in the C
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STAL repository and reused repetitively for a single crystal type and over multiple crystal

types. In fact, there are 34 crystal types and one definition of, for example, the Characterisa-

tion workflow activity, has been repeated both in a workflow for one crystal type, e.g crystal

6Left, and reused over the 34 crystal types. 

During this period of stabilisation of the prototype a total of 0.5 Gbyte of data was captured

in the CRISTAL repository for the pre-production crystals. Around 1 Mbyte of physics data

(dimensional measurements, longitudinal and transverse transmission and light yield data)

was collected for each pre-production crystal. From one prototype to the next the layout and

composition of products (in the PDM structure) and/or workflow activities (in the WfM)

structure could evolve. In other words, in a single repository it was possible to collect data

from numerous versions of products and these products could follow versions of workflows

which evolved with time. This was a severe test of the flexibility of the underlying data

model and, in its success, it was a notable verification of the ability of the data model to cater

for changing user requirements. 

Figure 6-5 and Figure 6-6 show two screenshots of the final CRISTAL prototype. In

Figure 6-5 the Desktop Control Panel of the Coordinator user is displayed. In this

DCP_COOR window the production details of a Barrel crystal of type 6L is being specified.

The interface allows versions of product definitions to be declared in CRISTAL and for any

Figure 6-5. A typical screenshot of the Coordinator’s Desktop Control Panel (DCP_COOR)
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version-specific production condition definitions to be recorded e.g StartConditions, End-

Conditions, ApplicableCentres etc. The DCP_COOR module is also used to specify work-

flow activity definitions and to supply versions of the Product Graph and Workflow Graph

meta-models to Local Centres.Figure 6-6 shows the DCP of the Operator user. In this screen-

shot, an Operator is browsing (or inputing) a set of data which has resulted from a particular

workflow activity being run on a particular product. 

From an end-user standpoint the description-driven design of the prototype meant that data

could be retrieved from the database and physics analyses could be carried out without the

need for extra coding. Further, concurrent analyses of data could be carried out on samples

that had been collected using multiple versions of the system. These features demonstrate the

adaptability of the CRISTAL data model and the full power of description driven systems.

In the period between 1999 and 2005, each of the 80,000 ECAL crystals must undergo a

series of rigorous tests and assembly procedures which can take several days to complete.

Each Barrel crystal will be glued to a capsule and the resulting sub-unit assembly will

undergo further tests. Over a Mbyte of data will be collected for each sub-unit. Sub-units are

assembled into sub-modules, modules and supermodules and data is recorded at each level.

In total around 1 Tbyte of data will be collected for the assembly of ECAL. Tests can be

CRISTAL Project Team 21

Content

Figure 6-6. A typical screenshot of the Operator’s Desktop Control Panel (DCP_OPER)
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repeated on selected crystals, sub-units, modules etc. or can be skipped on a product-by-

product basis. New tests and assembly procedures will need to be specified during the life-

time of construction and new data will be collected alongside data gathered following an ear-

lier version of the assembly workflow. Any data will need to be viewed in the context in

which it was recorded i.e. the product data will need to be viewed in relation to the version

of the workflow process it was following at the time of data taking.

The complexity of this data taking requires the use of an automated data recording and track-

ing system. It would not be technically feasible for these data volumes to be captured without

the use of a system like CRISTAL. In addition, any system specified for ECAL had to be

durable and sufficiently flexible to accomodate frequent evolution. The meta-object structure

of the CRISTAL data model has been shown to provide the flexibility, reusability, complex-

ity handling, interoperability, version handling and schema evolution as required by the

ECAL user community.
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7Conclusions

7.1 Introduction
This chapter concludes the thesis by considering whether and how its research objectives

have been realised. It reflects on the use of meta-objects as a means of providing description-

driven systems and on the application of the technique in integrating PDM with WfM. It then

draws conclusions on the process of extracting patterns from a data model employing meta-

objects. The activities of the OMG and, in particular, its Manufacturing Domain Task Force

is considered in this chapter and its present work is considered in the light of the work in this

thesis. Finally, potential extensions or follow-on research to the present work are considered

including the use of software ‘Agents’ and the exploitation of so-called ‘viewpoints’. 

role of meta-description in the construction of Virtual Enterprises for manufacturing is

briefly considered in this chapter.

7.2 Meta-Objects and Description-Driven Systems
In this doctoral research, meta-objects have been shown to be appropriate mechani

capturing a description of complex product and process models. A meta-object based s

named CRISTAL, has been developed for use in supporting the construction of the

detector, presently being assembled at CERN and at other institutes worldwide. This s

has demonstrated that it is capable of describing all aspects of detector breakdown s

and production process structure for the assembly of CMS using a meta-object, or d

tion-driven approach. Current PDM and WfM tools provide only a subset of the capa

required to support product and process description. This research has demonstra

through the use of common design artifacts it is possible to integrate PDM and WfM

final CRISTAL prototype has shown that by generalising a descriptive approach and

grating the product description of PDMs with process description as in WfM, it is pos

to deliver the functionality that is required to support the full detector assembly process

design to production. It has also shown that a repository based on meta-structures im

flexibility and reusability and allows systems to handle versioning and schema evoluti
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Chapter 3 of this thesis showed how meta-objects allow systems to be designed to cater with

partial specification and system evolution over time, thereby allowing design evolution

during system implementation. Chapter 4 to Chapter 5 showed how this approach has been

deployed in the CRISTAL project. In addition Chapter 5 investigated how existing patterns

could be extended as a result of this research to provide description-driven system capabili-

ties. 

In the CRISTAL data model, there is an association between a given workflow activity meta-

object definition and a named product meta-object definition. The data model has been

designed so that each association of a Product Definition to a Workflow Activity Definition

is declared for a specific purpose. In detector construction, the association is made to indicate

the workflow activity to be instantiated for the assembly of a particular instance of a product

of a given product definition. Each association of a Product Definition to a Workflow Activ-

ity Definition requires Conditions: in detector construction, the data model captures the def-

inition of the conditions required for each assignment of a workflow activity definition to a

product definition. 

This technique can, however, be generalised for other applications. For example, the associ-

ation of a maintenance workflow activity to a specific product will require quite different

(maintenance-specific) conditions to be captured than when a construction workflow activity

was associated with the product. Similarly, the association of a calibration workflow activity

to a product would require calibration-specific conditions to be captured (Le Goff and

McClatchey, 1999)and the association of a project management activity to a product would

require project management-specific conditions to be captured. In other words, the identified

association between the process and product description worlds carries rich semantics. The

method of integrating PDM and WfM through the definition of meta-objects and their mutual

assignment is thus very powerful. It allows many other links to be made between aspects of

the overall data model: the same mechanism can be used to assign agents to workflow activ-

ity definitions for the purposes of enactment or the assignment of agents to product defini-

tions for the purposes of resource management. This aspect is investigated in a later section

of this chapter, where potential extensions to the research reported in this thesis are consid-

ered.
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7.3 Designing CRISTAL
The design approach adopted for this research required close and continuous involvement

with the user community and ensured that each evolutionary prototype catered for the chang-

ing, research requirements of the end-users. Each iteration in prototyping (i.e each loop in

the spiral) produced domain knowledge which was fed into the design of the next iteration,

for example, via UML Use Cases. The rapid prototyping approach not only assisted in elic-

iting user requirements but also its iterative development helped in validating the UML

object model and its dynamic behaviour, leading to a very robust architecture for CRISTAL.

One obvious further advantage of adopting such a rapid application development philosophy

to prototype delivery was that following an evolutionary approach to systems development

the inherent risk of project failure was minimised.

The approach followed for systems design was strictly dictated by the research-oriented

environment in which the prototype was developed: it was driven by the requirement that the

resulting application would be highly configurable, flexible, and adaptable. The design phi-

losophy relied on the use of abstraction, disciplined use of object-oriented design and the

flexible implementation of the domain-specific business rules. Rather than attempt to fit a

prescribed set of patterns emerging from the research of others (Gamma et al., 1995) into the

environment in which the prototype was constructed, a philosophy was followed in which an

application-specific object model (that of CRISTAL) was developed using ‘traditio

UML-modeling and that model was latterly mined for recurring patterns. This approach ha

recently been followed elsewhere in the patterns community (Yoder et al., 1998). 

research presented in this thesis it emerged that common patterns could be determ

both product and process models and the resulting patterns were either enrichments o

ing patterns or new additions to the family of patterns.

This thesis work has therefore delivered not only a working prototype and a flexible and

figurable data model for CRISTAL, it has also provided input to the field of patte

Updated patterns have been proposed which facilitate the integration of product and p

data models: the Graph, Homomorphism and Item Description patterns (enriched vers

that of Blaha & Premerlani, 1998), the Observer pattern (of Gamma et al., 1995) and

Version pattern, as described in Chapter 5. It is believed that this set of patterns for

backbone required for the construction of any description-driven system that must cate

for product and process models.
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7.4 Patterns and Description Driven Systems
In conclusion to the role of patterns in CRISTAL it is informative to reflect on the patterns

that have been extracted from the CRISTAL data model and to consider how they are inter-

related. The following existing patterns emerged from the data model: 

• ItemDescription 

• Publish/Subscribe

• Homomorphism

• Graph

• Tree

• Mediator

These patterns were shown to be insufficient to provide the flexibility required in the C

TAL data model. However, with enrichment of the Graph, Tree and Homomorphism pa

and the addition of a new Version pattern it has been possible to provide the functio

required to integrate PDM with WfM, using a description-driven approach. 

Figure 7-1. CRISTAL pattern summary

Version pattern

Enriched DAG 
pattern

Enriched Tree 
pattern

Item Des cription 
pattern

Enriched Homomorphism 
pattern

Publish/Subscribe 
pattern

Versioned 
Enriched DAG

Mediator pattern

The Tree of Items is 
generated from many 
versions of the Graph of 
ItemDescriptions.

Tree pattern

Homomorphism 
pattern
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Figure 7-1 summarises the inter-relationship between the set of patterns identified for the

integration of PDM systems and WFM systems in the CRISTAL data model. It shows a Ver-

sioned Graph Pattern (as used in Figure 5-5 on page 68, Figure 5-6 on page 70 and Figure 5-

8 on page 73) which has been derived from the Version, Complex Graph and Publish/Sub-

scribe patterns. It also shows an Enriched Homomorphism pattern (as shown in Figure 5-13

on page 78) which has been derived from the ItemDescription and Mediator patterns. Fur-

thermore the diagram brings together the Complex Tree pattern (of Figure 5-10 on page 75

and Figure 5-11 on page 77) with the Versioned Graph pattern from which it is derived.

Instantiation of the Complex Tree pattern from the Versioned Graph pattern is performed by

the Product Manager which consequently carries out the integration of the PDM and WfM

aspects and acts as the CRISTAL execution component. 

Blaha and Premerlani (1998) state that “patterns provide a higher level of building bloc

models than the base primitives of class, association and generalization”. This wo

shown that this assertion is not only true for models but can be extended to include

models. 

7.5 PDM and WfM Integration and the OMG
The integration of PDM and WfM has been investigated in the context of a production

cific process in the present work. It has been demonstrated that full integration can be a

plished through the use of a common meta-modeling approach to both PDM- and 

specific objects. The familiar BOM (or Bill Of Materials), used in PDM, is not explicitly v

ible in the model, but is deduced from the execution of a collection of processes (as d

in the meta-layer) where the PDM-WfM integration actually takes place. The CRIS

model has been designed to be sufficiently abstract to cater for a three-layer architec

description (see Chapter 3). In doing so, the present system could be applied to other 

and process models. For example, the data model could be used to provide docume

agement across the product life cycle - in this case the assignment of a process defin

a product definition would allow the capture of design conditions, as compared to the

duction conditions captured in the CMS ECAL application.

There are several OMG facilities which are relevant to this integration of PDM with W

These include the Workflow Facility (of the Business Object Domain Task Force, see 

1998a), the PDM Enablers (of the Manufacturing Domain Task Force, see OMG 1998

the Meta-Object Facility (MOF see OMG 1997). Each of these facilities has been pro
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since the outset of the research in this thesis and it is interesting to compare the direction fol-

lowed by the OMG with the philosophy expounded in this thesis. 

The purpose of the OMG MOF is to provide a set of CORBA interfaces that can be used to

define and manipulate a set of interoperable meta models. The intention is that the meta-meta

objects defined in the MOF will provide a general modeling language capable of specifying

a diverse range of meta models (Schulze et al. (1998)). The MOF is a key component in the

CORBA Architecture as well as the Common Facilities Architecture. Because of the descrip-

tion-driven approach (and the use of patterns) adopted in CRISTAL, any PDM Enabler and/

or Workflow facility can be mapped onto the CRISTAL model and this maps exactly onto

the Meta-Object Facility of the OMG.

Typically, the MOF will be used for manipulating meta objects to provide integration of tools

and applications across the life cycle using industry standard meta-models, such as UML,

which itself is being proposed as an OMG standard. A technical goal of importance to the

MOF is interoperability with OMG CORBA and the integration with the OMG Business

Object Facility and the OMG Object Analysis and Design (OA&D) domain. All these three

facilities have strong meta data heritage. 

As was stated at the end of Section 7.4, patterns can be used as high level building blocks in

the construction of meta-models. This implies that patterns should be included in the MOF,

perhaps as a library of reusable modeling artifacts. Designers could then use the patterns as

well-established building blocks to facilitate construction of domain-specific meta-models.

Currently the OMG Manufacturing Domain Task Force has established a Product and Pro-

cess engineering (PPE) working group to ‘develop standardized interfaces for softwa

tems supporting design and analysis of products and design and analysis of the proce

facilities used to make them’. The scope of this effort encompasses engineering throu

the product and process life-cycle including the following kinds of manufacturing syst

CAD/CAM/CAE, PDM, Product Configuration Management, Process modeling and s

lation, Product/Process classification, process engineering, plant design and engineer

Product Simulation. This working group has recently stated that the OMG workflow s

fication and the PDM Enablers are complementary and that the PDM Enablers provi

repository for (multiple versions of) information and the Workflow Facility provides the p

cess to dynamically change the information. This is exactly in line with the conclusio

this thesis which, in addition, provides a detailed data model for this integration.
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7.6 Potential Extensions to this Research

7.6.1 Agents and Workflows
Software agents, or cooperating independent and potentially intelligent processes, have been

suggested as mechanisms for planning, controlling and optimising production management

systems. Agent technologies have been successfully deployed in the design and modification

of business processes (Hall & Shahmehri, 1996) and have been proposed as an approach to

the management of workflow in business processes (Merz et al., 1996). The Carnot project

of Singh et al. (1997) uses Cyc (Douglas B. Lenat (1995)), an ontological approach of shar-

ing information, from which autonomous processes can extract data for decision-making. Up

to now, however, agent-based systems have not been used extensively in industrial produc-

tion management. Agent software could be used both to enact the workflow activities and to

interact with the PDM definitions. 

Chapter 5 described the data model that has been developed to integrate PDM and WfM

aspects for the CRISTAL application. It outlined a set of ‘packages’ which partitione

data model into aspects such as PBS, WBS, Detector Design & Construction Manag

and Production Specification. Further packages have been identified in this model inc

the Agent World package and the Execution Specification package. In the AgentWorld

age, object classes such as HumanDefinition, UserCodeDefinition and InstrumentDefinition

reside and these ‘Agents’ are defined as the executors or enactors of specific CR

workflows. This package interacts largely with the WBS and Execution Specification p

age. Agents are Humans (Operators or LocalSupervisors), UserCode supplied by en

of the CRISTAL system to be invoked automatically by CRISTAL, or Instruments w

which the system communicates and which can carry out specific workflow activities.

result of the execution of these instructions, execution results are gathered of a particu

format definition whose detail is captured in the (separate) DataFormat package. 

The ExecutionSpecification package has dependencies on both the WBS and the 

World packages. This is the mechanism through which a defined Agent definition is enacted

for a specific workflow definition. The assignment of Agents to workflow activities is s

ject to a set of Agent Conditions, in a manner entirely analogous to that in which Pr

Definitions are assigned to Workflow Definitions through Production Conditions. 

AgentConditions can therefore define the role of the agent with respect to a Workflow De

inition. Agent Conditions are made up from Outcome and Goal Definitions which toge
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define the operation of the workflow activity by the agent. Each agent-workflow assignment

is established to reach a desired goal and following the execution of its activities, the work-

flow result is stored as an outcome definition. One obvious area where the use of Agent tech-

nology can be applied is in resource allocation and management in a workflow system.

Currently work is in progress to use software agents to optimise the allocation of resources

(e.g. Operators, Machines) to workflow activities in CRISTAL (Murray et al., 1999).

7.6.2 The CRISTAL Repository as a Data Warehouse
Seen from a standpoint of the centralised capture of corporate data from multiple sources and

the storage of that data for extraction by multiple users over extended time scales, the CRI-

STAL database can be viewed as a ‘data warehouse’ (IEEE, 1995 and Widom, 199

the purposes of optimisation and analysis, physicists and engineers must be able to

data from the general CMS construction data warehouse from a number of viewpoint

physicist defines his viewpoint in terms of familiar sets of detector components (or ’ph

elements’) which naturally derive from the tree of physical locations of detector compon

This viewpoint definition is captured in the data model for future use. Figure 7-2 shows

a matrix of physics elements can be extracted from the ‘as-built’ detector construction

archy by providing software which traverses the construction tree and extracts the con

tion data for a selected set of physics elements.

Figure 7-2. The extraction of data from CRISTAL data warehouse into ‘viewpoints’
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Meta-modeling can assist the extraction of data for physics elements provided such an

extraction or meta-query mechanism is developed which navigates the meta-model, inter-

prets the structures in the warehouse and presents the data in a form meaningful to the end-

user. The meta-query facility comprises a set of software processes (or agents) which are

invoked either by a viewpoint-specific application (e.g. calibration) or by a viewpoint non-

specific application. The agents either navigate the generalised warehouse meta-model to

project out viewpoint-specific data (i.e. ‘looking in’ the meta-model) or they mine the m

model to correlate effects between viewpoints (i.e. ‘looking out’ from the data model). I

‘looking in’ (viewpoint-specific) case the agents perform the traversal of the dete

description, following selected physics elements in the construction tree and extract t

evant physics data for the application. In the ‘looking out’ case (viewpoint non-specific

agents are used to determine the effect of a system-wide change on individual viewpo

sets of viewpoints i.e across viewpoints. A meta-query facility is currently under dev

ment for CRISTAL (Estrella et al., 1998).

Most of the time production data is viewed in a manner different to that in which it was

lected. In the example of CRISTAL, the CMS detector construction process necessarily

to a particular construction-oriented representation of construction data. However, f

purposes of optimisation and analysis, physicists and engineers must be able to extra

from the general CMS construction data warehouse from numerous viewpoints. It m

inherently simple for users to extract sets of data from the terabyte-sized warehouse, a

ing to defined criteria, for subsequent analysis. As the CMS production process evolve

data, together with the relationships between different aspects of the data, must be 

nently recorded in the CRISTAL data warehouse. Different groups of users will require

ible ways to locate, access and share this production data. The actual information re

will depend on the viewpoint and the role of the user in the organisation. User group

well require a maintenance, a geometry, an alignment or an experiment slow-controls

point. The physicist therefore needs to define a viewpoint in terms of 'physics elemen

sets of detector components) which are derived from the tree of physical locations of de

components resulting from detector assembly. 

The CRISTAL architecture must support autonomous data collection in remote Centre

secure storage in the central data warehouse at CERN. New versions of product and

flow definitions are defined centrally at CERN and are farmed out to each Centre b
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warehouse Coordinator. Facilities are therefore required to share configuration data between

the independent data acquisition Centres. Remote Centres must also be allowed to continue

data gathering even when the network connection to the warehouse is down. Data is dupli-

cated from the Centres to the warehouse when network connections allow. Once written into

the warehouse, the data is thereafter mined by read-only processes running centrally. 

The database architecture selected for CRISTAL is based on the Objectivity federated data-

base concept in which multiple autonomous databases co-operate. The Central warehouse

holds the federation configuration files and any changes in the schema take place centrally

and are dispatched to the Centres via a small, shared configuration database (the Configura-

tion DB). Production data is gathered at the Centres and copied remotely to the warehouse.

Data mining takes place only at the data warehouse. One example of mining the construction

data warehouse is for the extraction of detector calibration data. For physicists calibration

data is required for each electronic readout channel of the detector. The structure of readout

channels, however, is necessarily different to the assembly structure of the detector. In

essence, the calibration system must be able to mine subsets of physics data from the con-

struction database for the calibration of particular components even if these components are

specified in a manner which is different to that in the construction database. This is facilitated

in CRISTAL through the use of the self-describing nature of the warehouse meta-model.

7.6.3 CRISTAL and the Virtual Enterprise
With increasing complexity of the organisation, data and functions of enterprises, informa-

tion systems need to be increasingly flexible and extendible, intuitive to interrogate and nav-

igate around and to be interoperable with existing legacy systems. Large scale engineering

and scientific projects may, in addition, demand systems which require integration and/or

distribution over many separate organisations. The integration of such ‘islands of inf

tion’, which ultimately forms the basis of so-called ‘virtual enterprises’ (see van Paru

1997) is heavily dependent on the flexibility and accessibility of the data model desc

the enterprise’s repository. The model must provide interoperability, extensibility and 

ability so that a range of applications can access the enterprise data. Making the rep

self-describing and based on meta-object structures ensures that knowledge about th

itory structure is available for applications to interrogate and to navigate around fo

extraction of application-specific data. In this paper, a large application is described 

uses a meta-object based repository to capture product and workflow data in an engin
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data warehouse. It shows that adopting a meta-modeling approach to repository design pro-

vides support for interoperability and a suitable environment on which to build enterprise-

wide data navigation. 

The concept of using meta-data to reduce complexity and aid navigability of data resident in

a database is well known. Also its use in minimising the effect of schema evolution in object

databases has been stated many times elsewhere. In the CRISTAL project meta-data are used

for these purposes and, in addition, meta-models are used to provide self-description for data

and to provide the mechanisms necessary for developing a meta-query facility to navigate

multiple data models. Using meta-queries, data can be extracted from multiple databases and

presented in user-defined viewpoints. The CMS meta-model therefore acts as a repository of

knowledge against which meta-queries are issued to locate and extract data across multiple

databases. Agent processes are used to ‘look in’ the meta-model and extract data from

specified viewpoint and to ‘look out’ from the model to correlate effects between viewpo

The overall effect is to produce an integrated set of cooperating databases accessed

a meta-query facility. Hence ‘islands’ of disparate information (such as maintenance

bration, alignment) are eliminated. Such an approach could reasonably be applied to

isations developing technologies for ‘virtual enterprises’ (such as in Hardwick et al. (1

and Gaines et al. (1995)) where collections of autonomous databases could be relate

central enterprise meta-model. 

7.7 Closing Statement
Proliferation of systems development on standard meta data services, such as the

MOF, together with industry standard meta-models, such as UML, accelerates the mar

component software in general and description-driven (or model-driven) component

ware development in particular, because components meeting specific semantic

requirements can be discovered using the standard meta-object interfaces. Additiona

in the areas of standard meta-models for database technologies, component managem

tracking, transaction discovery and legacy integration is expected in the future. This 

work is presented as one step towards the production of standard description-driven c

nent software.
Page 109



Conclusions
Page 110



8Glossary

To aid the readability of this thesis the author includes here a glossary of all the acronyms

deployed throughout the body of this thesis’s text.

ABS: Assembly Breakdown Structure.

ACCOS: Automatic Crystal Control System.

ADC: Analogue-to-Digital Converter.

ANSI: American National Standards Institute.

APD: Avalanche Photo-Diode.

API: Application Programming Interface.

BOM: Bill Of Materials.

CAD/CAM: Computer Aided Design / Computer Aided Manufacturing.

CAE: Computer Aided Engineering.

CDef: CRISTAL Definitions.

CERN: Conseil Europeen pur la Research Nucleaire. (Now the European Centre for Particle

Physics).

CMS: The Compact Muon Solenoid (experiment).

CORBA: Common Object Request Broker Architecture.

CPU: Central Processing Unit.

CRISTAL: Cooperating Repositories and an Information System for Tracking Assembly

Lifecycles.

CSCW: Computer Supported Cooperative Work.

DAcq: Data Acquisition.

DBMS: DataBase Management System.

DCP: Desktop Control Panel.
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DDL: Data Definition Language.

DDM: Data Duplication Manager.

DESY: Deutsches Elektronen-Synchrotron.

DPS: Detector Production Scheme.

ECAL: Electromagnetic Calorimeter.

EDMS: Engineering Document Management System.

GUI: Graphical User Interfaces.

HCAL: Hadronic Calorimeter.

HEP: High Energy Physics.

HERA: Hadron-Electron Ring Accelerator facility.

IRDS: Information Resource Dictionary System.

IDL: Interface Definition Language.

ISO: International Standards Institute.

ISR: Intersecting Storage Rings.

JDK: Java Development Kit.

LAN: Local Area Network.

LAPP: Laboratoire d’Annecy for Physique des Particules.

LCM: Local Centre Manager.

LEP: Large Electron Positron collider (Phase I).

LEPII: Large Electron Positron collider (Phase II).

LHC: Large Hadron Collider.

MOF: Meta-Object Facility.

MSGC: Micro-Strip Gas Chambers.

OA&D: Object Analysis and Design.

ODBMS: Object DataBase Management System.

ODL: Object Definition Language.

ODMG: Object Database Management Group.
Page 112



OIF: Object Interchange Format.

OMA: Object Management Architecture.

OMG: The Object Management Group.

OML: Object Manipulation Language.

OMT: Object Modeling Technique.

OQL: Object Query Language.

PBS: Product Breakdown Structure.

PDM: Product Data Management system.

PM: Product Manager.

PPE: Product and Process Enginering 

RDBMS: Relational DataBase Management System.

SPS: Super Proton Synchrotron.

SQL: Structured Query Language.

UML: Unified Modeling Language.

WBS: Work Breakdown Structure.

WfMC: The Workflow Management Coalition.

WfM: Workflow Management systems.
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Appendix A - CRISTAL Data 
Dictionary

This appendix gives more detailed description of the classes introduced in Chapter 5 in order

to aid understanding of that chapter. It contains simplified description of classes with asso-

ciated attributes, which are relevant to the study of this thesis.

A.1 CRISTAL Meta-Model Package
This package contains classes to manage and store the specification of the detector produc-

tion. The behaviour of each of the classes in this package are, in principle, very similar as

their sole purpose is to manage meta-data. They differ mostly in their attributes (i.e. the type

of data they manage).

A.1.1 Production Scheme Management Package
This package contains classes for the overall management of definitions.

A.1.1.1 DetectorProductionScheme (DPS)
This manages the list of consistent/applicable releases of the detector production specifica-

tion (i.e. it implements the ReleaseManager of the Version pattern). It is the ‘root’ to find

CristalDefinition object, and has public methods to manipulate them as a whole (e.g. g

list of all FieldDefinition in a given DPS release).

Attributes:

• mIdentifier : Integer

• mName : String

• mListOfProperties : List<DetectorProdSchemeProperty>

A.1.1.2 DetectorProdSchemeProperty
This maintains the set of CristalDefinitions which are included in a single DPS releas

it implements the ReleaseManagerProperty of the Version pattern).
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Attributes:

• mVersionId : Integer

• mListOfDefnitions : List<CristalDefinition>

A.1.1.3 CristalDefinition (CrDef)
This is an abstract class for all definition classes (i.e. it implements the VersionedOb

the Version pattern and the ItemDescription of the Item Description pattern). It define

unversioned-data which are common to all of the definitions and has public metho

manipulate it. Also it can retrieve the property that is valid for a given DPS release

mMapOfProperties attribute).

Attributes:

• mIdentifier : Integer

• mName : String

• mSubName : String

• mType : String

• mMapOfProperties : Map<Integer , CristalDefinitionProperty>.

A.1.1.4 CristalDefinitionProperty
This is an abstract class for all definition properties. It defines the versioned-data whi

common to all definition properties (i.e. it implements the VersionedObjectProperty o

Version pattern).

Attributes:

• mVersionId : Integer

• mDocumentation : String

A.1.2 Product Graph Meta-Model Package
This package contains classes used to build the product description graph or the so

Product Breakdown Structure (PBS) (i.e. it is an implementation of the Enriched Dir

Acyclic Graph (DAG) pattern shown in Figure 3-10 on page 42).
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A.1.2.1 ProductDefinition (ProdDef)
Derived from CristalDefinition. This is an abstact class which defines the unversioned-data

that are common to all definitions in the product description graph (i.e. it implements the

ItemDescription of the Enriched DAG pattern).

Attributes:

• mIcon : BinaryFile

A.1.2.2 ElementaryProductDefinition (EProdDef)
Derived from ProductDefinition. This defines the unversioned-data for atomic elemen

the product description graph (i.e. it implements the ElementaryItemDescription o

Enriched DAG pattern).

A.1.2.3 CompositeProductDefinition (CProdDef)
Derived from ProductDefinition. This defines the unversioned-data for composite elem

in the product description graph (i.e. it implements the CompositeItemDescription o

Enriched DAG pattern).

A.1.2.4 ProductDefinitionProperty
Derived from CristalDefinitionProperty. This is an abstract class which defines the

sioned-data that are common to all definitions in the product description graph.

Attributes:

• mWorkflowDefinitionId : Interger

A.1.2.5 ElementaryProductDefProperty
Derived from ProductDefinitionProperty. This defines the versioned-data for atomic

ments in the product description graph.

A.1.2.6 CompositeProductDefProperty
Derived from ProductDefinitionProperty. This defines the versioned-data for composite

ments in the product description graph.

Attributes:

• mCompositionLayout : ProductCompositionLayoutDef
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A.1.2.7 ProductCompositionLayoutDef
This defines data to store the description of ProductDef composition with the view of the

layout (in a VRML file). It maintains a map between ProductDefCompositeMembers and

identifiers of volumes (VolumeId) in the VMRL file.

Attributes:

• mMapOfCompositeMembers : Map<VolumeId , ProductDefCompositeMember>

• mLayoutView : VRMLfile

A.1.2.8 ProductDefCompositeMember
This identifies one constituent of the composition description (i.e. it implements the C

positeMember of the Enriched DAG pattern).

Attributes:

• mIdentifier : Integer

• mTemporary : Boolean (tempoary member of the composition for tooling reason)

A.1.3 Workflow Graph Meta-Model Package
This package contains classes used to build the workflow description graph or the so

Work Breakdown Structure (WBS) (i.e. it is an implementation of the Enriched Dire

Acyclic Graph (DAG) pattern shown in Figure 3-10 on page 42).

A.1.3.1 ActivityDefinition (ActDef)
Derived from CristalDefinition. This is an abstact class which defines the unversioned

that are common to all definitions in the workflow description graph (i.e. it implements

ItemDescription of the Enriched DAG pattern).

A.1.3.2 ElementaryActivityDefinition (EActDef)
Derived from ActivityDefinition. This defines the unversioned-data for atomic elemen

the workflow description graph (i.e. it implements the ElementaryItemDescription o

Enriched DAG pattern).

A.1.3.3 CompositeActivityDefinition (CActDef)
Derived from ActivityDefinition. This defines the unversioned-data for composite elem

in the workflow description graph (i.e. it implements the CompositeItemDescription o

Enriched DAG pattern).
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A.1.3.4 ActivityDefinitionProperty
Derived from CristalDefinitionProperty. This is an abstract class which defines the ver-

sioned-data that are common to all definitions in the workflow description graph.

Attributes:

• mRepeatable : Boolean

• mMandatory : Boolean

• mExecutorAgentDefIdentifier : Integer

• mActivityOutcomeDefIdentifier : Integer (references one DataFormatDefinition)

• mMinimumDuration : Float (in minutes)

• mMaximumDuration : Float (in minutes)

A.1.3.5 ElementaryActivityDefProperty
Derived from ActivityDefinitionProperty. This defines the versioned-data for atomic 

ments in the workflow description graph.

A.1.3.6 CompositeActivityDefProperty
Derived from ActivityDefinitionProperty. This defines the versioned-data for composite

ments in the workflow description graph. It is possible to define three different layouts/

for one CActDef: process flow, data flow and transactional dependency (how this is ach

is not discussed further here)

Attributes:

mListOfLayouts : List<ProductCompositionLayoutDef>

A.1.3.7 ActivityCompositionLayoutDef
This abstract class is used to store the description of different layouts of a CActDef. It 

tains a map between ActivityDefCompositeMembers and their identifiers in the layout

Attributes:

• mMapOfCompositeMembers : Map<LayoutId , ActivityDefCompositeMember>

A.1.3.8 ActivityDefCompositeMember
This identifies one constituent of the composition description (i.e. it implements the C

positeMember of the Enriched DAG pattern).
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Attributes:

• mIdentifier : Integer

A.1.4 Production Conditions Package
This package contains classes used to build the dependency between the product de

graph and the workflow description graph.

A.1.4.1 ProductionCondition
This ‘association class’ defines the unversioned-data which are required to descri

dependency between product and workflow models (i.e. it implements the Conditio

scription of the Homomorphism pattern and the VersionedObject of the Version patte

A.1.4.2 ProductionCondProperty
This defines the versioned-data which are required to describe the dependency betwee

uct and workflow models (i.e. it implements the VersionedObjectProperty of the Ve

pattern).

Attributes:

• mConditions : List<WorkflowDefMember>

A.1.4.3 WorkflowDefMember
This maps one ActDef instance (attribute mWfActivityDefInstance) in the scope of the 

position of the workflow definition (i.e. the CActDef that is assigned with the ProdDef,

Section A.1.2.1) with the conditions required for its execution.

Attributes:

• mWfActivityDefInstance : List<Integer>

• mStartConditions : List<StartCondition>

• mEndCondition : EndCondition

• mApplicableCenters : List<ApplicableCenter>

• mCommand : Command

A.1.4.4 StartCondition
This class stores the single ProdDef instance required to start the activity. It can only b

for CProdDefs (i.e. when the ProductionCondition is built for a CProdDef).
Page 132



CRISTAL Meta-Model Package

efini-

ctivity-

cope

 the

. This

alues

rds this

n of the
Attributes:

• mProductDefMemberPath : ProductDefMemberPath

A.1.4.5 ProductDefMemberPath
This identifies one ProductDefinition instance in the scope of the CompositeProductD

tion.

Attributes:

• mProductDefCompositeMemberIds : List<Integer>

A.1.4.6 EndCondition
This defines the nominal values that need to be checked against the outcome of an A

Definition instance. It is a map between FieldDefinition instances (i.e. FieldDefs in the s

of the DataFormatDef associated with the ActivityDefinition, see Section A.1.3.4) with

applicable set of values.

Attributes:

• mNominalValues : Map<FieldDefInstance , NominalValues>

A.1.4.7 ApplicableCenter
Defines one centre where an activity can be executed.

Attributes:

• mCentreId : Integer

A.1.4.8 Command
This defines an instruction for an instrument so that it can execute the ActDef instance

is a computer readable format of the ActDef description/documentation including v

which are specific to the current ActDef instance.

A.1.5 DataFormat Meta-Model Package
This package contains classes used to build the data description graph. In other wo

package describes the data structures used to collect data (i.e. it is an implementatio

Enriched Directed Acyclic Graph (DAG) pattern shown in Figure 3-10 on page 42).
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A.1.5.1 DataFormatDefinition
Derived from CristalDefinition. This is an abstract class which defines the unversioned-data

that are common to all definitions in the data description graph (i.e. it implements the Item-

Description of the Enriched DAG pattern).

A.1.5.2 FieldDefinition
Derived from DataFormatDefinition. This defines the unversioned-data for atomic elements

(e.g. C typedef) in the data description graph (i.e. it implements the ElementaryItemDescrip-

tion of the Enriched DAG pattern).

A.1.5.3 DataRecordDefinition
Derived from DataFormatDefinition. This defines the unversioned-data for composite/

nested (e.g. C structure) elements in the data description graph (i.e. it implements the Com-

positeItemDescription of the Enriched DAG pattern).

A.1.5.4 DataFormatDefProperty
Derived from CristalDefinitionProperty. This is an abstract class which defines the ver-

sioned-data that are common to all definitions in the data description graph.

A.1.5.5 FieldDefProperty
Derived from DataFormatDefProperty. This defines the versioned-data for atomic elements

in the data description graph.

Attributes:

• mUnit : String

• mType : Enum{integer, float, string, binaryFile, timeStamp, arrayOfIntegers, arrayO

Floats};

A.1.5.6 DataRecordDefProperty
Derived from DataFormatDefProperty. This defines the versioned-data for composit

ments in the data description graph.

Attributes:

• mCompositionLayout : DataRecordCompositionLayoutDef
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A.1.5.7 DataRecordCompositionLayoutDef
This defines data to store the description of a DataRecordDef composition with a represen-

tation of it in XML format. It maintains a map between DataFormatDefCompositeMember

and identifiers of the representation in the XML file.

Attributes:

mMapOfCompositeMembers : Map<PresentationId , DataFormatDefCompositeMember>

A.1.5.8 DataFormatDefCompositeMember
This identifies one constituent of the composition description (i.e. it implements the Com-

positeMember of the Enriched DAG pattern).

Attributes:

• mIdentifier : Integer

A.2 CRISTAL Model Package
This package defines classes that are used to instantiate the detector production sp

tions, described in Section A.1. These classes have complex functionalities as their p

is to instantiate the definitions and manage the data generated during the production.

A.2.1 Product Tree Model Package
This package defines classes used to build the product tree (i.e. it is an implementatio

Complex Tree pattern shown in Figure 3-3 on page 35).

A.2.1.1 Product
This is an abstract class for all elements in the product tree (i.e. it implements the Nod

the Complex Tree pattern). Its events are: register, reject, assignToComposition, deA

FromComposition, ship and receive. It can determine the next possible Product action

ship, receive, assign, deassign) in its scope. It also stores the identifier of CompProdu

code) to which the Product was assigned.

Attributes:

• mIdentifier : String (e.g. barcode)

• mDefinitionIdentifier : Integer

• mParentProductId : String 

• mEvents : List <ProductEvent>
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A.2.1.2 ElementaryProduct
Derived from Product. This defines an atomic element in the product tree (i.e. it implements

the Leaf from the Complex Tree pattern).

A.2.1.3 CompositeProduct
Derived from Product. This defines a composite element in the product tree (i.e. it imple-

ments the Branch from the Complex Tree pattern). It maintains the composition (e.g allocate,

deAllocate members) and it can determine the next possible CompositeProduct actions (e.g.

allocateMemberProduct, deAllocateMemberProduct) in its scope.

Attribute:

• mComposoitionLayout : CompositeProductlayout

A.2.1.4 CompositeProductLayout
This stores the actual state of the composition. It uses the VRML file to store the corres

ing definition.

Attributes:

• mActualComposition : List<CompositeProductMember>

A.2.1.5 CompositeProductMember
This references a single Product (e.g. by barcode in mMemberProductId) which

assigned to the composition.

Attributes:

• mSlotNumber : Integer (see Section A.1.2.8)

• mMemberProductId : String

A.2.2 Workflow Tree Model Package
This package defines classes used to build the workflow tree (i.e. it is an implementa

the Complex Tree pattern shown in Figure 3-3 on page 35).

A.2.2.1 Activity
This is an abstract class for all elements in the workflow tree (i.e. it implements the 

from the Complex Tree pattern). Its events are: start, finish, ignore, skip and repeat. 

Attributes:

• mIdentifier : String
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• mDefinitionIdentifier : Integer

• mEvents : List <ActivityEvent>

A.2.2.2 ElementaryActivity
Derived from Activity. This defines an atomic element in the workflow tree (i.e. it imp

ments the Leaf from the Complex Tree pattern).

A.2.2.3 CompositeActivity
Derived from Activity. This defines a composite element in the product tree (i.e. it im

ments the Branch from the Complex Tree pattern). It manages activities in its scop

keeps track of their execution. It delegates activity management to composite activitie

it can determine the next possible activitie(s) in its scope.

A.2.2.4 CompositeActivityLayout
This stores the actual composition layout which is generated from the different versio

CADef.

Attributes:

• mActualLayout : List<CompositeActivityMember> 

A.2.2.5 CompositeActivityMember
This references one Activity (e.g. by its identifier in mMemberActivityId) in the layou

the CompositeActivity.

Attributes:

• mMemberActivityId : String

A.2.3 Production Management Package

A.2.3.1 ProductManager
The ProductManager implements the Mediator from the Enriched Mediator pattern sho

Figure 5-13 on page 78. It evaluates Start and End Conditions and processes reque

Agents of the form ‘What-Should-Be-Done-Next’ by consulting the Product and Work

objects (which yield lists of next Activities and Product actions), prioritising the results

giving the list back to the requester. It also handles requests from Agents for activity e

tions by evaluating StartConditions and by delegating the execution to the Activity an

activity terminations by evaluating EndConditions and by delegating the termination t

Activity.
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Attributes:

• mProduct : Product

• mActivities : List <Activity>
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