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Abstract

The electromagnetic measurements of general relativistic gravitomagnetic e�ects which

can be performed within a conductor embedded in the space-time of slow rotating gravi-

tational object in the presence of magnetic �eld are proposed.
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The general relativistic electromagnetic e�ects arising from the gravitomagnetic �eld in

noncurrent carrying (super-)conductors with no applied magnetic �eld present have been

discussed by several authors (see, for review, [1]). However, the general-relativistic e�ects

can be ampli�ed by the interplay between gravitomagnetic �eld and either electric current

or magnetic �eld and in this respect, we discuss here a new test of gravitomagnetic �eld of

Earth by using conductors embedded in an external magnetic �eld while in the previous

paper [2] we have already shown that the interaction between the gravitomagnetic �eld

and electric current can lead to the galvanogravitomagnetic e�ect.

Space-time outside a spherically symmetric mass M with angular momentum a is

described by the Kerr metric. This di�ers from the Schwarzschild solution for a static

body by having non-diagonal terms, which imply a local inertial frame to be rotating with

respect to the distant stars at in�nity with the Lense-Thirring angular velocity [3] !(r) �

2aM=r3. Then the metric of the reference frame corotating with the slowly rotating

gravitational object with mass M (in the linear angular momentum a approximation) is

ds2 = �N2c2dt2 +N�2dr2 + r2d�2 + r2 sin 2�d'2 + 2�!r2 sin 2�dtd'; (1)

where N � (1� 2M=r)
1=2

, �! � 
�!(r), 
 is angular velocity of rotation of gravitational

object with respect to the distant stars.

Suppose that the material relations between inductions and �elds have linear character

H�� =
1

�
F�� +

1� ��

�
(u�F�� � u�F��)u

�;

F�� = �H�� +
��� 1

�
(u�H�� � u�H��)u

� (2)

and the general relativistic Ohm's law for conduction current |� is

j�

�
= F��u

�
�RH(F�� + F��u

�u�)j
� +Rggj

�A�� + ��1=2
?

r� (�1=2�e); (3)

here F�� andH�� are the tensors of electromagnetic �eld and induction, respectively, � and

� are the parameters for the conductor, �e is the electrochemical potential per unit charge,

Rgg = 2mc=ne2 is the parameter for the conductor called as galvano-gravitomagnetic one,

n is the concentration of the conduction electrons, obviously � is the electrical conduc-

tivity, RH is the Hall constant, u� is the four-velocity of the conductor, w� = u�;�u
� is

the absolute acceleration, A�� = u�;� + u[�w�] is the relativistic rate of rotation of the

conductor,
?

r� denotes the spatial part of covariant derivative and [ ] represents anti-

symmetrization. The gravitational �eld is assumed to be stationary that is space-time

metric g�� admits a timelike Killing vector ��(t) that is  L�tg�� = 0 ( L�t denotes the Lie

derivative with respect to ��(t), � = ���(t)�(t)�).
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Then the general relativistic expression for the charge distribution inside conductor [4]

�0 =
��RH

c
|2 +

1

4�
f(
�

�
|�);� + [�2�RH(

1

�
|2 + ��1=2|�

?

r� (�
1=2�e))u

�];�

��RggA��w
�|� + g��(�Rgg|

�A��);� �
�

�
w�|� � �w���1=2

?

r� (�1=2�e)

+g��(���1=2
?

r� (�1=2�e));� +H��[A�� + ��RHw�|� + (��RH|�);�]g (4)

can be derived from the general relativisic Maxwell equations

e����F��;� = 0; H��
;� =

4�

c
J�; J�

� c�0u
� + |̂�: (5)

by using material relationships (2) and (3).

The charge density �0 inside a conductor which has no conduction current | = 0 but

embedded in an external magnetic �eld B is

�0 =
1

4�
f�Aw2

� (�Aw�);� + F ��A��g (6)

and has two contributions: the �rst one is due to the absolute acceleration w� and second

one is due to the relativistic rate of rotation of the conductor A�� and can be adjusted and

ampli�ed by the magnetic �eld penetrating inside the conductor. Here F�� = 2�[�E�] +

������
�B� is the electromagnetic �eld tensor, A is the parameter for the conductor, ��

is four-velocity of observer, E� and B� are the electric and magnetic �elds measured by

observer.

In our approximation the charge density, inside a conductor at rest in the orbiting

station (1), is

�0 = �
1

2�

n
F 23A23 + F 13A13

o
: (7)

We do not consider the charge redistribution arising from the absolute acceleration of the

conductor since it does not depend on electromagnetic �eld characteristics.

If the electromagnetic �eld tensor components are

F 31 =
NB�

r sin �
; F 23 =

Br

r2 sin �
(8)

and the nonvanishing components of the relativistic rate of rotation have form

A13 =

r + !r=2

cN
sin 2�; A23 =

�!r2

cN
sin � cos �; (9)

then in our approximation, the space charge density inside the conductor at rest in

the frame of reference (1) is

�0 =



2�c

"
B� sin � �

Br cos �

N

#
+

!

4�c

"
2Br cos �

N
+B� sin �

#
; (10)
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where the magnetic �eld components are measured by zero angular momentum observers

with four-velocity �� � f�N; 0; 0; 0g.

The �rst term in the right hand side of equation (10) results from angular velocity


 and last one is due to the gravitomagnetic �eld of the Earth and has pure general

relativistic nature.

On Earth, the angular velocity of the conductor is given by [1] 
cond = 
 � 
Th �


S � !, where 
Th and 
S are the contributions of the Thomas precession arising from

non-gravitational forces and of the de Sitter or geodetic precession. In order to measure

! one should measure 
cond and then substract from it the independently measured value

of 
 with Very Long Baseline Intererometry [5] and the contributions due to the Thomas

and de Sitter precession.

In contrast to (10), for a superconductor embedded in the gravitational �eld (1) the

space charge density �0(sc) = 0, that is according to the solutions of the general-relativistic

Maxwell equations and London equations, the magnetic �eld penetrating superconductor

is proportional to �! and consequently the charge density is at least of order of �!2. There-

fore, if the temperature T is increased then in the point of the phase transition T = Tc the

applied magnetic �eld penetrates inside the sample and induces a nonvanishing charge

density with the corresponding ow of charges.

For the Earth with mass M = 0:44cm and radius R � 6:37� 108cm, !(r) = 4M
5R


 �

0:6 � 10�9
 near the surface. If the value of applied magnetic �eld around conductor

is 103G and the relaxation time trel = 10�8s then one can �nd a typical value of charge

exchange current arising from gravitomagnetic Lense-Thirring frequency is of order 10�14A

which is within capacity of modern technical measurements. However, in the present

case, there are serious problems arising from environment and the design of proposed

experiment is under consideration.
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