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Abstract

In this paper, we consider the unbounded generalized Friedrichs operator H, i.e. the operator
of multiplication by the rational function u with the perturbation of integral operator with kernel
K. We prove that if the kernel K satisfies some analyticity condition, then the essential spectrum

of H coincides with the spectrum of the multiplication operator.
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1 Introduction

In Ly(R) we consider the non-self-adjoint unbounded operator H defined by the formula

Hf() = u(e)f (@) + [ K(e.0)f()dy. S € D,

i.e. H = Hy+V, where Hy is the operator of multiplication by the rational function v and V
is integral operator with analytical kernel K (x,y) in W2 = W, x W, satisfying the following
condition

M
|K(3+iyat+iy)|<8—a7>la (K)

for all y € (—a, ), where W, = {z € C : |[Imz| < a}, «is a fixed number, C' the complex
plane and D, = {f € La(R) : [ |u(z)f(x)|*dz < co}.

The bounded generalized self-adjoint Friedrichs model is considered for the case of when u and
K are analytic functions in [1]. In Lakaev S. N. [1], it was proved that the absolutely continuous
spectrum of the operator H coincides with the spectrum of Hy. Moreover, the singular spectrum
of H is a finite set. In [2] the structure of essential spectrum for non-self-adjoint bounded
Friedrichs operator is described.

First, we remark that D, = D(H"*), where D(H*)— is a domain of the adjoint operator H*.
Thus, the operator H is a closed operator (see theorem VIII.1 in [3]). Let o(H) is a spectrum
of H.

Definition 1. A point A € o(H) is called discrete if X is isolated and the operator

1 B
P)\__% (H—p) 'du
lu—Al=p

2T

is finite dimensional, where (H — p) !

is a resolvent of the operator H and the number p > 0
such that {p : |u — A| < p} = {A}. We denote by oyis.(H) a discrete spectrum of the operator
H.

Definition 2. The essential spectrum of operator H is the set
Oess(H) = o(H) \ 0gisc(H).
Denote by I' the range of the function u. Let I' be a set satisfying the following condition
C\TI'=D;U...UDy,

where D; is an unbounded connected open set in C' for i = 1,s. We observe that I' = o(H)),
where o(Hj) is the spectrum of the operator Hy.

Theorem. The essential spectrum of operator H concides with the spectrum of the operator
Hy, i.e.



2 Auxiliary lemma and the proof of the main result

Let A(z) be the Fredholms determinant of the operator I +V (Hy—z)~!, where z € C'\ o(Hy), I
is a unit operator, (Hy—z) ! is a resolvent of the operator Hy. The function A(z) is represented

by the formula
o dn(2)
Ay =14y (1)
n=1 '

dn(2) :/R.../RDn(:cl,...,mn;z)dml...dmn, (2)

K(xlaxl) K([I)l,%’z) K(l'lawn)
K(zg,21) K(zo,29) -+ K(xo,2p)
Dy (z1,...,xp;2) = . . . X
K(zp,21) K(xp,x2) -+ K(xp,2n)
1 1
X

u(zy) —z  ulag) — 2

Proposition 1. The series (1) converges for all z € C'\ o(H)).

Proof. We note that the function Dy (x1,...,zn; 2) is integrable, due to condition (K). Let
N be a positive number. The function Dy, (z1, ..., Zp; 2) is symmetric. Therefore, the integral (2)

is represented by the following expression:

dn(z):/ / K@ty oy i) Gn
r Jr u(zy) — 2z u(zy) —2z
dxy dz,

= K, (x1,...,x +
/901>N /xn|>N w1 n)U(xl) -z u(zy) — 2

k
—l—...—)—Cn/ / / / Ky (x1, ... xp) X
lz1[<N lZk| <N J|Tp— (1) >N |zn|>N

o dxy dz,
u(zy) — 2z u(w,) — 2
dxy dz,
+/ / K,(x1,...,xp
je1|[ <N J]an|<N (e )U(fm)—z u(rn) — 2
where

K(z1,21) K(rvi,22) - K(zi,20)

K(xzo,21) K(x,29) -+ K(x2,25)
Kn(wla axn) = . . . " .

K(wmxl) K(wnaxZ) T K(xnawn)

Consequently, we obtain:

1
dn(2)] < / / Ky(z1,...,xp)|dzy .. . dey + ...+
| n( )| = (mz)n o> N |:L‘n\>N| n( 1 n)| 1 n
1
—i—C?{f n/ / / / | K (21, ey ) |dzy . dzp+
(M) Jios|<v ol <N Jw— >N Jjanl >N

1
+ / / Ky(x1,...,x2p)|dzy .. . dx
(m2)™ Jjzy|<N \wn\<N| n( w)ldo "

3




where m, = infycp |u(z) — 2| > 0 for z € C'\ o(H)).

We can choose a number N such that be following inequlity

/ / | K (21, ey ) |dzy - o day, <
|z1|>N |Tn|>N

S/ / / / | K (21, oy ) |dzy . day, <
lz1|<N  Jop|<N S|y SN S |za|>N

< / / Ko (21, 0oy ) |d . . dam,
|lz1|<N |zn|<N

holds.

Then we have

2n
|dn(2)] < (o) /|a:1|<Nm/|m |<N|Kn(x1,...,wn)|dac1...dacn

Thus, by using the condition (K) and applying Hadamard’s theorem we obtain the following

inequality
|dn(2)] <

—M"(2N)"v/n".

(mz)
This proves proposition 1.

Lemma 1. Let 7 be a fixed positive integer. There exists an unbounded subset D C D;
such that A(z) — 1 as z — oo and z € D.

Proof. We denote by ay, ..., aj the real poles of rational function u, m, = inf,cr |u(z) — z|.

a) Let z € D; and m, — oo as z — oo. Then we have

Pyr |g2n, o / /|K (@1, 00y n)|ds .. dy =

n=1 n=1

1 o0
- m_ Z (m TL 1 nl / / |K xy, 7mn)|dx1 .. dZCn (3)
% n=1

By using (3) we obtain lim,,__,o, A(z) =1 in z € D;, since

> 1
Z—'/ / | K (21, ) |dxy - .. dy < 00.
n:On' R R

b) Now let m, — ¢ = const as z — oo for z € D;. Then there exists an integer N, a positive

number ¢ < a and an unbounded connected set D, = D}(N,§) C D; such that
u D) CcQ=Ur {z:|z—ai| <6, Imz>0yU{z=a+iy:0<y <4z >N},

where N > |a]|.
Let z € D} and ¢1(2),...,¢;(z) € Q be solutions of the equation u(z) —z = 0 and 'y a
contour defined by

Ins=Uimk{z: |z —aj| =06,Imz >0} U{z = —N +iy : 0 < yd}U



U{z=N+iy:0<y<d,z|>N}U{z=2+id:|z| > N}

Let K(t,s) be an analytic continuation in W2 of the function K (x,y),z,y € R.

The function d;(z) is represented as

dl(Z):/RM:/R K(,t)dt+/ K(t,t)dr _

u(r) — 2 \I'ns u(t) —

o K((2),4(2) K(z,z)dx
27Tz§ () -i—/r .

Since |u(t) — z| > p > 0, for all z € D}, there exists a number N > 0 such that the following

/ / tl, n;Z)|dt1...dtn§

FNS FN&

s2/
Ry,

inequality

/ / tl,..,tn;z)|dt1...dtn§
B FNS Pn.s
/ / n(E1y oeny n)|dt1...dt
RN& Ry s
holds, where
RN75 = (—N,a1 —(5) U (a1 + 0, a0 —(5) U...U (al,1 + 0, —(5) U (al +5,N).
We denote by K, a number defined by

K 650 K)o K 65(2)
WE) ity W) T, W)

K(;(2)),t K(t,s
tel'n s u(t) — z tel'n s u(t) — 2 s;tERN 5 u(t) — 2

B

1} (4)
Hence, we get

| K (2, 1) dt
Rys |u(t) = 2]

where py s is a length of the contour Ry s.

|dy(2)] <27mlK, + 2 <27lK, + 2pn s K.

Proposition 2. lim, ,,, K, =0 for z € D;.
Proof. Let u/(x) = const. Then

lim v;(2) = oo, for allj <.

Z—00

If u'(x) # const. Then
lim v;(2) = 00,5 <.

Thus, we have
K ((2),%;(2))
! (5(2))

| =0.

sup lim
p Z—>00 |
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Note that the contour Ry s is bounded. So, we obtain

Zlg& lu(t) — z| =00, t€ Ryp.
Consequently,
K(t
lim | sup (’S)|:0.
200 ¢ tEFN,(; 'U/(t) -

The relation lim,_,, K, = 0 is proved analogously for all cases.

Now, we consider

361,961) K (21, 22) K(x1,2n)
/ / 562,1131 K(:C27m2) K(IEQ,ZC”) »
K(wn,l'l) K(wn,l'Q) K(mnawn)
dxrq dxy, _
Xu(xl) —z ulw,) — 2
K(tlatl) K(tlatZ) K(tlatn)
/ / K(tg,tl) K(tg,tg) K(tg,tn) «
R\ys  JR\Dys E :
K(tn?tl) K(tnatZ) K(tnatn)
dty dt,
Xu(tl)—z'”u(tn)—z +...+
k
Lk /R\FM.../R\FN,J /FM dtn_k_l.../FN’s dt, %
K(tlatl) K(tlatQ) K(tlatn)
K(ta,t1)  K(ta,t2) K(tg,ty)
X : : : X
1 1 dtn k1 dtn
><u(t1) —z ulty g —zulty g 1) —z  ulty) —z
K(tlatl) K(tlatZ) K(tlatn)
K(ta,t1) Kl(ta,to) K(ts, )
o : .
K(tn,t1) K(tn,t2) K(tn,tn)
dty dt,
Xu(tl)—z Tty — 2
Ky, v5,)  K(j,,%5,) K (), %5,)
(2mi)" Xl: Xl: K( @bj?,%bjl) K(%bj?ﬂ/)jz) K(@bjz:a@bjn)
j1=1 jn=1 . . .
K(¥j,,¢5) K, %)) K(),,%5.)
» 1 1 n
u' (Y, (2)) (Y5, (2))



mi) L 1
+(2 Z Z ¢]1 z)) " u (), (2)) /FN,S )

J1=1 Jn—1=1
K(¢j1a¢j1) K(¢j1 ) ¢j2) e K(¢j1 ) wn)
K(¢j27 ¢]1) K(Q/)Jz ) 1/)]2) e K(¢]2 ) ZL‘n) dz,
: : : u(zy) — 2
K($n7¢j1) K($n7¢j2) o K(2n,Tn)
1
CE@2mi)»*
+eet G2 Z Z e TR e B AT A

K(¢j1a¢j1) K(¢j1a¢jn_k) K(qulatnfkfl) K(¢j13tn)
K(¢j27 7vbjl) e K(¢j2,¢jn7k) K(¢j27 tn—k—l) T K(¢j27tn)

K(tnawjl) K(tna¢jn_k K(tnatnfkfl) K(tnatn)

K(tl,tl) K(t1,t2) -+ K(t1,t,)
dtp—k—1 +/ / K(ta,ta) -+ K(tg,tn) y
u(tn_k_l)—zu )—2 Jrys  Jras : : :
K(ty,t1) K(tp,t2) -+ K(tn,tn)
dty dty,

X

u(ty) —z  ulty) —z
Arguing as above (as for the case n=1) by using (4) and applying Hadamard’s theorem we get

the following inequality
|dn(z)| < an?\/ n" + nln712le5K;Lv n" + +C£ln7k(2pN,5)kK?v n"4+...+

+(2pn )" KZVn™ < 2"(2pN )" K Vn",
for all z € D} and n =1,2,.... As consequence we get

00 2 nKn 002n2 nKn—l n
91l 3 el < 5 BEMTEDE _ e 5 ZC

n!

for all z € D} = Dj(N,¥).
Now, by proposition 2, we have the proof of lemma 1.

Proof of theorem. The operator H — z is represented as
H—z=(I+V(Hy—2)")(Hy - 2)

for 2 € C'\o(H). Thus, (H—2z)~! exists if and only if (I+V (Hy—2)~!)) ! exists. By proposition
1, Fredholm’s determinant A(z) is defined for all z € C'\ o(Hp). V is a compact operator. The
function V(Hy — z) ! is compact valued analytic in C'\ o(H). By using the analytic Fredholm
theorem, we conclude that (I + V(Hy — 2)~ 1)) ! exists on C'\ o(Hy) except for discrete set
D C C\ o(Hp), since by lemma 1 (I + V(Hp — 2)~1))~! exists for certain z € C \ o(Hp). So
Oess(H) C o(Hy).



Now let Ay be an arbitrary element of I'(Ag # o0) and u(xg) = Ao, u is a rational function.
Then there exists positive Ny > 0 such that function w is continuous in [zg.zo + NLO] We set
nn+1), as x¢€ (x L, T 1
) = { VO 20+ Dm0+l
0 as mgé(mo—i-n—ﬂ,:cg-i-g]
for integer n > Ny. Evidently, f,(z) € D,, and {f,} is an orthonormalized system. It is easy to

show that
lim || (H —2zXo)fn |=0.

n—00

Thus, Ao € o(H). In other words I' = o(Hy) C o(H). Consequently, o(Hy) C 0ess(H).
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